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Estimation of Trip Matrices: Shortcomings 
and Possibilities for Improvement 

RUDI HAMERSLAG AND BEN H. IMMERS 

Since the early 1970s several techniques have been developed 
for estimating origin-destination (0-D) matrices using all 
kinds of data. This paper presents a survey of four different 
0-D matrix estimation techniques. It is shown that some 
techniques can be applied only in certain restricted conditions 
and, even worse, may lead to considerable loss of information. 
To alleviate this problem, it is suggested that elastic, instead 
of fixed, constraints be used. It is also possible to overcome 
this problem by using an explicit stochastic estimation tech­
nique (binary calibration). Because of the absence of time and 
space-dependent coefficients, this technique can also be used 
for making forecasts. 

Origin-destination (0-D) matrices contain trips between 
a number of origins and destinations per time period 
means of transport, and the like. 0 -D matriceg,.._..an essen­
tial part of the basic information on transport demand­
are used for several purposes-for example: 

• transport planning and design: the calculation of 
traffic flows and the prediction of bottlenecks in road 
networks; 

• evaluation of alternatives: sensitivity analyses; 
• simulation of traffic flows in networks, design of traffic 

control devices, and specification of signal settings for 
controlled intersections. 

Depending on the objective of the study, the information 
stored in the 0-D matrix can be specified with respect to: 

• size of study area: entries and exits of an intersection 
or zones in a regional transport study; 

• means of· transport: per mode or combination of 
modes; 

• time period (time of the day): 24 hours, peak hour, 
15-minute intervals, etc.; 

• date: past, present, or future situation; 
• purpose: home-based work, recreation, shopping, etc. 

If the 0-D matrix contains information on the present 
situation it is called "base year matrix." Such a matrix 
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can be estimated using all kinds of (available) traffic and 
transport data, such as: 

• Complete data: all trips are observed. (Because of 
organizational and financial constraints, this procedure 
wtlJ never be applied.) 

• Incomplete, direct, and indirect data. Incomplete data 
comes from taking a sample. Direct data results from 
observing 0 -D trips. Indirect data is a product of calculat­
ing 0-D trips using other information sources, such as 
traffic counts, route assignment, etc. Examples of these 
kinds of data follow: 

-Household surveys: trips of only those people living 
in the survey area are observed. 

-Road questionnaires: Trips of only those people 
passing through are observed. Double counts as well 
as long-distance trips may bias the estimates. 

-Ticket sales: season tickets and special tickets may 
lack 0-D information. 

-Cordon/screenline/traffic counts: only traffic vol­
umes on a road section are observed. 

-Route choice information. 
-Old 0-D matrices. 

Problems arise, however, in expanding these data. For 
example, because all data sources are incomplete, a great 
number of trips (and 0-D pairs) are not observed. Also, 
the data sources show considerable overlap, which may 
result in apparently contradictory 0-D information 
(caused by the stochastic properties of the data). 

To give a complete and consistent picture of the trip 
(0-D) pattern., 0-D matrix estimation techniques are used. 
Although the underlying assumptions as well as the applied 
optimization techniques may differ, the objective of all 
base-year matrix estimation procedures is to obtain an 
optimum fit between the estimate and the available set of 
surveyed data. 

Since the early 1970s several techniques have been 
developed using different approaches with respect to: 

• Formulation of the objective function in combination 
with the use of an underlying distribution model-for 
example, maximum likelihood (Hamerslag and Huisman 
[J]), minimum of variance (Smit [2,3]), constrained least 
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squares (Hendrickson and McNeiJ (4)) information min­
imization (Van Zuylen [5], Van Zuylen and Willumsen 
[6]) entropy maximization (Willumsen [7]), and others 
(e.g., Nickesen et al. [8]). 

• Use of different data sources (direct and indirect data) 
and a priori information as well as the incorporation of 
constraints in the calibration process of the model (for 
example, see Van ZuyJen (9, 1 O], Van Zuylen and Branston 
[Jl], Willumsen [12] , Cremer and Keller [13], Bell 
(/4,15)). 

• incorporation ofa stochastic component (as data from 
observations are stochastic) and assumptions about the 
distribution pattern of the observed data (for example, see 
Hamerslag and Huisman [J], Smit (2], Hamerslag et al. 
[16], Hendrickson & McNeil [4], Willumsen (17]). 

• Influence of congestion on route choice (for example, 
see Nguyen (18], Willumsen [17], Gur [19], and Turnquist 
and Gur [20]). 

All kinds ofO-D matrix estimation techniques are being 
used in the transportation planning process. The objective 
of this paper is to analyze the qualities and possibilities for 
applying some of the matrix estimation techniques that 
are most frequently used. 

In this paper four different techniques are discussed: 

1. The weighted Poisson estimator in combination with 
partial matrix estimation techniques, 

2. Entropy maximizing and information minimizing 
techniques, 

3. Information minimizing technique with elastic con­
straints, 

4. Explicit stochastic estimation technique (the binary 
calibration model). 

This paper does not deal with techniques that allow for 
alternative route choice assumptions (e.g. LINKOD· 
see Gur [19]). Description of the model in terms of 
all-or-nothing assignment implies that comparisons be­
tween observed and calculatedJink flows should preferably 
be made on screenline level. Incorporation of alternative 
route choice assumptions and, consequently, comparison 
of observed and calculated link flows per link may induce 
errors introduced in trip generation and the trip distribu­
tion model that are being corrected for in the assignment 
model. 

A second reason for exclusion of the LINKOD model is 
that application of the model is possible only if volume 
counts on all links are available (which is hard to realize 
in practical situations). Alleviation of this severe constraint 
by Gur (19) results in a model based on partial volume 
counts. However, thi model also requires quite some 
additional information- that is total vehicle-hours of 
travel and capacities and free travel times for all links. 

The paper is organized as follows. First the weighted 
Poisson estimator is presented. The weighted Poisson es­
timator can be used for estimating deterrence functions as 
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well as 0-0 matrices. The estimator can be used even if 
only part of all 0-D pairs has been observed. 

Next both entropy and information optimization tech­
niques are discussed. Based on a practical application, the 
entropy and information optimizing techniques are shown 
to generate very poor results and to induce a considerable 
loss of information. Therefore a new technique is intro­
duced (information optimizing model with elastic con­
straints) that produces considerably better results. This is 
the next topic described. 

Then a description is presented of an explicit stochastic 
- estimation technique. This technique is based on the like­
lihood estimation theory. The coefficients of a transpor­
tation forecasting model are calibrated in such a way that 
an optimum fit is obtained to alJ available data. Simulta­
neously a base-year matrix and the coefficients of a fore­
casting model are estimated. 

FinalJy, some major conclusions are drawn about the 
possible applications of all the techniques discussed. A 
summary of the particular qualities of the techniques 
appears in the paper's closing table. 

WEIGHTED POISSON ESTIMATOR 

The weighted Poisson estimator is based on two assump­
tions. First, it is assumed that all interzonal volumes are 
independent and Poisson distributed with some expected 
value. Second, the expected number of trips is multipli­
cative-the product of some independent variables. Max­
imizing the likelihood yields the estimation equations. 

The following well-known model (see e.g., Wilson 
[21]) is an example of a foreca ting model with a multi­
plicative form: 

(1) 

with 

LL Tum= G; Vi (2) 
pn 

and 

LL Tum= A1 VJ (3) 
im 

where: 

Tu111 = the estimated number of trips from i to j with 
modem 

C = constant term 
a;, b1 =balancing factors 

O;, D1 =polarities (generation and attraction power) of 
zone i resp. j 

Fm(C1;,,,) =deterrence function for modem 
c,",, = generaHzed cost for 0-D pair ij and mode m 
G, =the generation of trips in zone i (origins) 
A1 =the attraction of trips in zone j (destinations). 
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Let us assume 

(4) 

and 

(5) 

where Cijm belongs to generalized cost class k. 

Substitution of formulas 4 and 5 in formula 1 yields 

't;jm = CoAFmk Vi, j, m (6) 
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The result is a set of nonlinear equations with which the 
coefficients can be determined using an iterative method, 
such as the Gauss-Seidel principle. 

(14) 

(15) 

LL Tum 
I) 

FA _ _,cu="'-ek__ V k 
"'k - LL Co,a1 m, (16) 

lj 

The probability of observing Tijm trips can be given by the and 
equation 

(7) 

where T ijm = estimate of T ijm· 

The number of trips Tv,,, is assumed to be independent 
for all combinations of ij, and m. As a result the value of 
the log-likelihood function (L *) becomes 

L* = ln(L) = LL ln(Pr[Tijm I Tum]) 
ij 

(8) 

The coefficients in formula 1 should be chosen in such 
a way that the log-likelihood has a maximum value. Sub­
stitution of formulas 1 and 7 in 8 yields the log-likelihood 
function: 

L * = LL l(-Co;aJ1mk) 
ij 

+ Tum[ln(C) + ln(o;) + ln(aj) + ln(Fmk)] 

- ln(Tuml)I (9) 

The maximum value of the log-likelihood is found by 
setting the first partial derivatives to zero: 

oL* 
Vi -=0 (10) 

00; 

oL* 
Vj (11) --o 

o~ -

oL* 
Vm, k (12) ~=O 

oFmk 

oL* 
(13) -=0 

oC 

(17) 

This set of equations can be solved only if there are no 
inconsistencies in the data. In general this condition will 
not be fulfilled if data from more than one home interview 
or from various cordon interviews are used. 

The weighted Poisson estimator was applied for the first 
time in the early 1970s. At first the model was used for 
estimating deterrence functions (Evans and Kirby [22], 
Hamerslag [23]}. Since then, the model has also been used 
for estimating 0-D matrices, even if only a part of all 
0-D pairs has been observed. For that reason, the model 
is especially suited for making estimates using survey data 
from cordon interviews. An estimate of unobserved 0 -D 
pairs in the matrix can be obtained using partial matrix 
techniques (Neffendorf and Wootton [24]). This applica­
tion of the model, however is not always without problems 
(see, for example, Day and Hawkins [25], Kirby and 
Murchland [26]). Information from road traffic counts or 
public transport ridership cannot be used as it lacks 0-D 
information. The weighted Poisson estimator is also used 
for the analysis of multidimensional matrices (Hamerslag 
et al. [27]). 

ENTROPY MAXIMIZING AND INFORMATION 
MINIMIZING MODEL 

According to information theory, the most likely trip 
matrix is a matrix that can arise in the greatest number of 
ways and that satisfies whatever constraints are placed on 
the system. The entropy maximizing (EM) and informa­
tion minimizing (IM) models are equivalent; the only 
difference between them is that the latter makes use of 
some initial knowledge about the likely trip matrix (an a 
priori matrix). The IM model is a generalization of the 
EM model. 
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If only the total number of trips in the system is known, 
the entropy maximizing method will distribute these trips 
evenly over all cells of the matrix. Adding some constraints 
might result in a more realistic picture. Wilson (28) for 
example, subjected the entropy to the following con­
straints: the total number of origin and destination trips 
per zone and a general function of distance (e.g., general­
ized cost). The result is a conventional, double-constrained 
gravity model with an exponential deterrence function. It 
is also possible to incorporate some extra information into 
the model-for example, the observed link flows (link 
counts Va per direction). It should be noted, however, that 
each link count (Va) adds an extra constraint to the esti­
mate that results in an extra Lagrange multiplier and, 
consequently, an extra coefficient in the model. Of course, 
it is also possible to make au estimate of a trip matrix 
without using information that is essential in the conven­
tional gravity model (e.g., the average distance traveled). 

The EM model for the estimation of trip matrices 
from traffic counts was introduced by Willumsen (7). 
Van Zuylen (9) derived the IM model. An attractive 
feature of Van Zuylen's model is the possibility of incor­
porating extra information (an a priori trip matrix) that 
might result in a more realistic estimate of the actual trip 
matrix. Later the possibility of incorporating extra a priori 
information is also introduced in the EM model. The 
better the a priori matrix, the better the estimate will be. 
An old 0-D matrix might be well suited for use, but it is 
also possible to use an 0-D matrix estimate from the 
weighted Poisson model (see preceding section) or a 
Wilson type of model as a first guess. 

Formulation of the Information Minimizing Model 

According to the information minimizing theory (Van 
Zuylen [9]), the most likely trip matrix Tu satisfies the 
following equation: 

L =min :L~ [Tuln(~)] 
TIJ U J. fj 

(18) 

subject to 

LL (Tud'ij) =Ra Va (19) 
1j 

where 

L ="distance" between matrices 
Tu= the number of trips frum i to j (to be estimated 

a posteriori) 
R., =constraint a (e.g. traffic count, total number of 

arrivals per zone, trip length distribution, etc.) 
dij = the fraction of trips ij subjected to constraint R,, 

(e.g., the number of trips ij that make use of link 
a) 

Tu = a priori matrix. This matrix is based on some 
initial knowledge (old 0-0 matrix or model esti­
mate). 
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If Tu = 1, Equation 18 is equivalent to the entropy 
maximizing formulation. 

Minimizing the information of Equation 18 subject to 
the constraints of 19 gives an estimate for Tu. The solution 
can be derived by minimizing the Lagrangian (if the 
Kuhn-Tucker conditions are fulfilled) 

(20) 

The solution is found by setting the partial derivatives to 
zero 

~ = 0 Vij 
f>Tu 

l'!L = 0 Va 
fiAa 

Equation 21 yields 

fJL A ( ) ~ = 1 + ln(Tu) - ln(Tu) - L Aa LL dij = 0 
(JJ 1J a IJ 

Suppose 

ln(X0 ) = -1 ln(Xa) = Aa LL dij 
ij 

Substitution in Equation 23 yields 

Tu= TuXo II Xa Vi, j 
a 

where 

LL (Tudij) =Ra Va 
ij 

(21) 

(22) 

(23) 

(24) 

(19) 

Equation 24 shows that the a priori information (0-D 
matrix) is multiplied by a number of coefficients X,,. Each 
constraint {R,,) introduces an extra coefficient X,, into the 
model. An important difference between the IM and EM 
models is that in case of more observations (N} per 0-D 
pair, there i& a positive correlation betw~~n the hias of the 
EM estimate and the number of times the flow is counted; 
the IM estimate is free of bias (see Maher [29]). 

The model described earlier has some specific charac­
teristics: 

• The amount of traffic (Tu) is estimated using a model 
with coefficients that are time- and place-dependent. A 
change in the volume counts will result in a change of the 
coefficients (Lagrange multipliers) of the model. 
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• Equation 18 is not defined in case Tu= 0. All relations 
of the trip matrix Tu that are not observed cannot be used 
in the estimation process. This may become a severe 
problem if an observed a priori 0-D matrix is used that 
(in most cases) contains, for the greater part, zero values. 
All 0-D pairs that are not observed should be estimated 
first, for example, by using the weighted Poisson model 
(see preceding section). 

• If the set of constraints in Equation 19 contains in­
consistencies, no feasible solution will be found. To be 
able to solve this problem, it is necessary to remove all 
inconsistencies from the data and to estimate the trip 
matrix from the consistent flows (see Van Zuylen [9), Van 
Zuylen and Willumsen [6]). This problem often occurs, 
especially if cordon surveys are used in which 0-D pairs 
might be observed several times. Therefore, some tech­
niques have been developed to cope with this problem 
(see, e.g., Roos [30] Ellis and Van Ammers [31], and Smit 
and Te Linde [32)). 
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To improve the estimation technique, the entropy 
maximizing model has been extended in several ways­
for example, the incorporation of a route information 
component (Van Maarseveen and Ruygrok [33], Van 
Maarseveen et al. [34], Willumsen [12)), as well as 
the introduction of time-dependent trip matrices 
(Willumsen [17]). 

Loss of Information 

Van Vuren [35] used the IM model to estimate an 0-D 
matrix of bicycle trips in Delft. The a priori information 
consisted of an 0-D matrix of partly observed, partly 
modeled trips; bicycle counts were added as extra infor­
mation. As can be seen from Figure I, the model estimate 
(a posteriori matrix) differed considerably from the a priori 
matrix, which indicates that quite some a priori informa­
tion got lost. 
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.tllll 
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FIGURE 1 Random sample of the a priori and a posteriori values 
of 0-D pairs estimated using the information minimizing model (35). 
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The tremendous change in the trip matrix might have 
been caused by the following factors: 

• incorrect a priori matrix, 
• specific properties of the information minimizing 

model, 
• inconsistent data. 

Unfortunately, it is not possible to trace the effects of 
all factors. However, an indication of the effects of the 
specific properties of the model can be given using the 
following example in which the model as been applied to 
a small network. The network is shown in Figure 2. Trips 
are generated between the zones 1, 2, 3, and 4 only. The 
observed trip pattern (Tu) is shown in Table 1. This trip 
matrix will be used as a priori information. The assignment 
of all trips to the network results in link flows as indicated 
with C (calculated) in Figure 2. 

The observed link flows are indicated with 0. There is 
some dissimilarity between the calculated and observed 
flows, but the deviations are kept within bounds. As is 
usual in practice, only the network flows on a limited 
number of links are observed. 

O= 80 
C=100 

FIGURE 2 Observed (0) and calculated (C) link flows. 
Calculated link flows are based on assignment of observed 
0-D matrix (Table 1). 

3 

4 
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The results of the estimation of the 0-0 matrix using 
the information minimizing model are also shown in Table 
1; the calculated flows are shown in Figure 3. As can be 
seen from Figure 3, the observed and calculated network 
flows are practically identical, which implies that there are 
no inconsistencies in the data. Otherwise, no feasible so­
lution would have been obtained. A closer look at Table 
1, however, makes it evident that the estimated 0-D matrix 
has changed considerably. 

This example clearly illustrates that because of the nec­
essary adjustments that had to be made to meet the link 
flow constraints, the information stored in the a priori 
matrix has changed considerably. 

In fact, the entropy maximizing model as introduced by 
Willumsen ( 7) will render almost the same results. The 
introduction of constraints with regard to the total nnmher 
of incoming and outgoing flows per zone as well as the 
total distance traveled will result in the entropy model as 
formulated by Wilson. This very model, however, can also 
be considered an a priori matrix. The incorporation of 
extra constraints will modify the results of the estimation 
process in the same way as has already been indicated 
(except for the adaptation to the incoming and outgoing 

O= 80 
C= 80 

FIGURE 3 Observed and calculated link flows using the 
information minimizing model. 

4 

TABLE 1 OBSERVED (A PRIORI MATRIX TiJ) AND ESTIMATED (TiJ) 
0-D MATRIX USING THE INFORMATION MINIMIZING MODEL 

from to 2 3 4 

Tij Tij Tij Tij Tij Tij Tij Tij 1r1J ~Tij 

10 27 40 30 10 11 60 68 

2 10 31 40 28 10 10 60 69 

lO 6 10 5 IO 19 30 30 

4 10 10 IO 8 40 81 60 99 

P1J;F1j 30 47 30 40 l20 l39 30 40 210 266 
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flows per zone). Figure l, being the result of a practical 
application of the model, clearly shows which adjustments 
in the a priori matrix were necessary to cope with all 
constraints. Actually the model formulation places less 
importance or less confidence in the a priori information. 
The concept of giving weights (e.g., in accordance with the 
reliability of different types of information) might be more 
appropriate. 

INFORMATION MINIMIZING MODEL WITH 
ELASTIC CONSTRAINTS 

The example in the preceding section clearly indicates that 
application of the information minimizing model may 
lead to considerable loss of information. The reason for 
this (unexpected) result can be found in the omission of 
the stochastic properties of the constraints (traffic counts 
and the like). All constraints that are incorporated into the 
model behave deterministically. To solve this problem of 
"information loss," it is suggested that the model be refor­
mulated using elastic instead of fixed constraints (analo­
gous to the transportation model with elastic constraints; 
Hamerslag [23]). 

Model Specification 

Application of elastic constraints in the optimization prob­
lem yields the following equations: 

Tu= TuXo II Xa Vi, j (24) 
a 

LL (Tud'ij} = Sa Va (25) 
I} 

(26) 

So Equation 19 is replaced by Equations 25 and 26. But 
in case ga = 0, Sa equals R 0 • 

In case of a constraint b, substitution of Equations 24 
and 25 in 26 yields the following equation: 

(
TX II (X )db) x-gb Rb = x b L_L I} 0 a a I} 

I] a>"'b 

(27) 

which, after some conversion results in: 

{ 

Rb } 11<1+gb> 

xb = LL TuXd II (Xa)dt 
IJ a 

a,.b 

(28) 

The exponent [1/(1 + gb)] in Equation 28 is defined as 
the elasticity of constraint b. If the elasticity [ l /(l + gb)] 
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equals 0, then Xb = 1, which implies that constraint b does 
not have any influence on the model estimate. If the 
elasticity [1/(1 + gb)] equals l, however, the model estimate 
will correspond completely with constraint b. In the latter 
case, the information minimizing model is being dealt 
with. 

An interesting feature of the model with elastic con­
straints is that (choosing correct values of the elasticities) 
the loss of a priori information that will occur has been 
reduced considerably. This can easily be demonstrated 
using the example given earlier. The results of an applica­
tion of the model using an overall value of the elasticities 
of0,5 are shown in Figure 4 and Table 2. 

As can be seen from Table 2 the estimated 0-D matrix 
is very similar to the a priori matrix; this implies that the 
information stored in the a priori matrix influences the 
model estimate (no loss of information). Still some differ­
ences between the observed and calculated link flows will 
remain. This phenomenon is completely in accordance 
with the nature of observed link flows, however, showing 
quite a bit of variation over time. Therefore the amount 
of extra information added to the problem by observed 
link flows (traffic counts) is limited; consequently, the 
application of fixed constraints would be erroneous. 

The estimate of the 0-D matrix strongly depends on the 
values of the elasticities (as is shown in Table 3), especially 
for values close to J. Although it is not yet possible to give 
a clear indication of which values should be given to the 
elasticities of the constraints, it is obvious that two factors 
are predominant: 

• the additive amount of 0-D information and 
• the reliability of the information. 

Apart from these factors, it is obvious that the values of 
the elasticities should be chosen in such a way that the 
sum (or weighted sum) of chi2 (for flows and 0-D pairs) 
has a minimum value. (See Figure 5 and Table 4.) 

As has been shown, the application of the information­
minimizing model with elastic constraints might improve 

O= 80 
C=101 

FIGURE 4 Observed and calculated link flows using the 
information minimizing model with elastic constraints. 

3 

4 
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TABLE 2 OBSERVED (A PRIORI MATRIX Tu) AND ESTIMATED (Tu) 
0-D MATRIX USING THE INFORMATION MINIMIZING MODEL 
WITH ELASTIC CONSTRAINTS 

from to 2 

Tij Tij Tij Tij 

elasticity - 0,5 0,5 

10 13 

2 10 11 

3 10 9 10 11 

4 10 10 10 11 

F1j;'i_T1j 30 30 30 35 

considerably the estimate of an 0-D matrix using a priori 
information and traffic counts. Nevertheless, some short­
comings (some of them indicated in the section on the 
weighted Poisson estimator) will remain: 

• Each observation is formulated as a constraint and 
consequently results in the incorporation of an extra coef­
ficient in the estimation model. These coefficients are 
time- and place-dependent, which precludes the possibility 
of using the model for predicting medium- to long-term 
changes. 

• The estimated 0-D matrix depends heavily on the 
values of the elasticities (see Table 3). If those values equal 
0, the a priori matrix will not change. A value of the 
elasticities equal to 1 will result in the information mini­
mizing model. 

• The available information from traffic counts is used 
to fit only those 0-D pairs that pass along the observed 
links. All other 0-D pairs will not change at all. This 
problem can be overcome by using additional 0-D infor­
mation-for example, trip distance distribution. 

BINARY CALIBRATION MODEL 

The use of traffic data for estimation (calibration) purposes 
requires some caution. The continuous variation of traffic 
flows, the availability of data from various sources (sur­
veys, counts ticket sales), as well as differences in sample 
size and observed population groups may result in a con­
siderable amount of stochasticity. Especially if various 

3 

Tij 

40 

40 

40 

120 

4 

-
Fij 1Tij Tij Tij Tij 

0,5 0,5 

40 10 11 60 64 

40 10 11 60 62 

10 11 30 )1 

45 60 66 

125 30 33 210 223 

kinds of survey data are used because of this stochasticity, 
some inconsistencies in the data may show up (the data 
seem to be contradictory). In general, use of various data 
sources does not raise any problems; it is also possible 
(especially in case of inconsistencies), however, for no 
feasible solution to be found. The latter is especially true 
for the entropy type of model. Estimation models do exist, 
however, that can deal with the stochastic properties of 
the observations. Like the entropy model, all coefficients 
are calibrated in such a way that an optimum fit will be 
obtained between the observed data and the estimated trip 
matrix. One essential difference, in contrast to the entropy 
type of model, is that no additional coefficients are intro­
duced to meet all constraints. 

Hamerslag and Huisman (J) formulated the binary cal­
ibration model, which is based on the assumption that the 
observed data are independently Poisson distributed. 

Smit (2) and Hendrickson and McNeil (4) use a normal 
distribution. Use of both latter models may raise some 
problems because they allow for negative flows (especially 
in case of relatively small flows). 

Model Formulation 

Suppose Tu is the available a priori information (e.g., an 
old, observed 0-D matrix). Instead of using an observed 
0-D matrix, it is preferable to use estimates of Tu (e.g., an 
estimate of Tu using the weighted Poisson model). 

An advantage of the use of estimates is that the 0-D 
matrix Tu will not contain zero values. Analogous to 
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TABLE 3 ESTIMATE OF 0-D MATRIX FOR DIFFERENT VALUES OF 
THE ELASTICITIES 

from to 2 

elasticities 

o.o 10 

o.s 13 

0.8 17 

0.9 

1.0 

2 10 

11 

15 

19 

31 

3 10 10 

9 11 

8 

8 

6 

4 10 10 

10 11 

10 

10 

10 

Equation 6 such a matrix can be formulated as follows: 

(29) 

where 

Tu= number of trips from i to j (model estimate or 
a priori matrix) 

C = constant term 
O; = a;O; = product of balancing factor and polarity of 

zone i 
cl = bjDj = product of balancing factor and polarity of 

zone} 
Fk = value of deterrence function for a generalized cost 

class k and cu E k. 

10 

12 

20 

8 

11 

27 

5 

8 

3 4 

40 10 

40 11 

37 11 

34 11 

30 11 

40 10 

40 11 

38 11 

35 11 

28 10 

10 

11 

13 

15 

19 

40 

45 

55 

63 

81 

Let us further assume 

Ya= information from observations (a) (e.g., depar­
tures, arrivals per zone, traffic counts, trip distance 
distribution, etc.) 

dij =a binary variable indicating whether 0-D pair ij 
belongs to observation a (dij = 1) or not (dij = 0) 

ano 

Ya ~ LL (Tud't) (30) 
u 

The relation between the estimate of the base year 
matrix (Tu) and the a priori matrix can be represented by 
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-Flows ----· 0-D matrix--- -- Sum 
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FIGURE 5 Chi-square for different values of the elasticities. 

TABLE 4 OBSERVED (A PRIORI MATRIX Tu) AND ESTIMATED (Tu) 
0-D MATRIX USING THE BINARY CALIBRATION MODEL 

from to 2 3 4 

. 
Tij Tij Tij Tij Tij Tij Tij Tij ]Tij ]Tij 

10 10 40 40 10 12 60 62 

2 10 10 40 40 10 12 60 62 

3 10 10 10 9 10 11 30 30 

4 10 11 10 11 40 40 60 62 

. 
F1j;1i_T1j 30 31 30 30 120 120 30 35 210 216 

the following equation: The logarithm of the likelihood yields 

(31) ln(L) = L* = -L (.Ya)+ L [Ya ln(Ya)] 
a a 

where i E /, j E J, and k E K. - L [ln(Ya!)] 
a 

(34) 

The preceding formulation implies that sets of balancing 
factors as well as discrete values of the deterrence function 
are modified; however, the general form of the model 
remains unchanged. 

An optimum adjustment between Ya and Ya can be 
determined by maximizing L * or as 

Assuming that the observations (Ya) are independent 
and Poisson distributed, the likelihood (L) can be deter­
mined as follows: 

Pr[Ya I Ya]= exp(-Ya)(Yar">/Ya! 

L = II (Pr[ Ya I Ya]) 
a 

(32) 

(33) 

L [ln(Ya!)] = constant 
a 

by maximizing 

(35) 
a a 
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O= 80 
C=104 

37 

3 

4 

FIGURE 6 Observed and calculated link flows using the 
binary calibration model. 

which yields the following equations: 

L [ ( :u _ 1) o Ya] = O 
a Ya 001 

VI (36) 

L [ ( ~ - I) o Ya] = 0 u Ya odJ VJ (37) 

}: [ ( ~ - 1) o Ya] = 0 a Yu oFK VK (38) 

L[(:a_ 1)oYa]=O a Ya oC (39) 

The values of 01 , dh Fk, and C will be determined itera­
tively (anaJogous to the Gauss-Seidel principle). Inserting 
those values in Equation 31 yields the estimates for the 
base year matrix t i/. 

Application of the Model 

The results of a practical application of the binary calibra­
tion model using the same example as before (network, a 
priori information, and link traffic counts) are shown in 
Figure 6 and Table 4. 

It can be noted from Table 4 that the trip matrix estimate 
(Tu) is practically equivalent to the observed a priori 
matrix. It can also be noted from Figure 6 that all link 
traffic flow estimates are not equivalent to the link traffic 
counts, but there is a great similarity. Both results corre­
spond to the very nature of the data used in the estimation 
process (see also the preceding section on information 
optimizing with elastic constraints). 

The advantage pf using the binary calibration model, 
especially compared to the information minimizing model 
with elastic constraints, is that no extra coefficients are 
incorporated in the model that allows use of the model for 
making medium- and long-term forecasts. 

CONCLUSIONS 

This paper deals with four models that can be used for 
estimating an 0-D matrix: 

• the weighted Poisson estimator 
• the entropy maximizing and information minimizing 

model 
• the information minimizing model with elastic con­

straints 
• the binary calibration model 

The weighted Poisson model is especially well suited for 
estimating deterrence functions and a base year matrix 
using information from household or cordon surveys (only 
0-D information). This base year matrix estimate is espe­
cially appropriate for use in the information minimizing 
model with elastic constraints or the binary calibration 
model (the base year matrix estimate is treated as a priori 
information). 

The entropy maximizing and information minimizing 
models show some severe shortcomings. First, neither 
model allows for inconsistent information. Second, all 
coefficients in the model are time- and place-dependent, 
which precludes the possibility of using the models for 
making medium- and long-term forecasts. And, last but 
not least, use of both models induces loss of information. 

The latter problem can be resolved using a model with 
elastic instead of fixed constraints. As has been shown, the 
values of the elasticities strongly influence the estimate 
and, consequently the loss of information. Besides, the 
available information from traffic counts is used only to 
fit those 0-D pairs that pass along the observed links. AU 
other 0-D pairs will not change at all. 

The binary calibration model does not show any of the 
shortcomings just mentioned. The model, however, has a 
rather complex structure and has been successfully applied 
in the Netherlands (see, e.g., Haroerslag et al [16) and 
Heere and Huisman [36]). -

Table 5 presents a summary of the main characteristics 
of the models dealt with in this paper. 
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TABLE 5 SUMMARY OF MAIN CHARACTERISTICS OF FOUR 0-D 
ESTIMATION TECHNIQUES 

model type 

characteristic 

estimation unobserved 

C>-D pairs 

apparently contradictory 

information permitted 

possibility of using 

traffic counts 

change of C>-D pairs 

loss of information 

time and place 

dependency of coef f i­

cients (if yes, it is 

not possible to use the 

model for medium and 

long term forecasts) 

complex structure of 

model 
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