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Preface

This volume contains the papers presented at the International Workshop on Formal
Methods for Industrial Critical Systems and Automated Verification of Critical Systems
(FMICS-AVoCS), which was held in Pisa, Italy, September 26-28, 2016.
FMICS-AVoCS 2016 combines the 21% International Workshop on Formal Methods
for Industrial Critical Systems and the 16™ International Workshop on Automated
Verification of Critical Systems.

The aim of the FMICS workshop series is to provide a forum for researchers who are
interested in the development and application of formal methods in industry. In particular,
FMICS brings together scientists and engineers that are active in the area of formal
methods and interested in exchanging their experiences in the industrial usage of these
methods. The FMICS workshop series also strives to promote research and development
for the improvement of formal methods and tools for industrial applications.

The aim of the AVoCS workshop series is to contribute to the interaction and
exchange of ideas among members of the international research community on tools
and techniques for the verification of critical systems. The subject is to be interpreted
broadly and inclusively. It covers all aspects of automated verification, including model
checking, theorem proving, SAT/SMT constraint solving, abstract interpretation, and
refinement pertaining to various types of critical systems that need to meet stringent
dependability requirements (safety-critical, business-critical, performance-critical, etc.).

The topics of interest include, but are not limited to:

— Design, specification, refinement, code generation, and testing of critical systems
based on formal methods

— Methods, techniques, and tools to support automated analysis, certification, debug-
ging, learning, optimization, and transformation of critical systems, in particular
distributed, real-time systems, and embedded systems

— Automated verification (model checking, theorem proving, SAT/SMT constraint
solving, abstract interpretation, etc.) of critical systems

— Verification and validation methods that address shortcomings of existing methods
with respect to their industrial applicability (e.g., scalability and usability issues)

— Tools for the development of formal design descriptions

— Case studies and experience reports on industrial applications of formal methods,
focusing on lessons learned or identification of new research directions

— Impact of the adoption of formal methods on the development process and asso-
ciated costs

— Application of formal methods in standardization and industrial forums

This year we received 24 submissions. Each of these submissions went through a
rigorous review process in which each paper was reviewed by at least three researchers
from a strong Program Committee of international reputation. We selected 11 full papers



VI Preface

and 4 short papers for presentation during the workshop and inclusion in these pro-
ceedings. The workshop also featured keynotes by Thomas Arts (QuviQ AB, Gothen-
burg, Sweden), Silvia Mazzini (Intecs SpA, Pisa, Italy), and Jan Peleska (Universitét
Bremen, Germany). We hereby thank the invited speakers for having accepted our
invitation.

We are very grateful to our sponsors, the European Research Consortium for
Informatics and Mathematics (ERCIM), Formal Methods Europe (FME), and Springer
International Publishing AG. We thank Alfred Hofmann (Vice-President Publishing)
and the Editorial staff of Springer for publishing these proceedings. We also thank
Tiziana Margaria (University of Limerick & LERO, the Irish Software Research
Center, Ireland), the coordinator of the ERCIM working group FMICS, and the other
board members, as well as the steering committee of AVoCS, all listed below, for their
continuous support during the organization of FMICS-AVoCS. We acknowledge the
support of EasyChair for assisting us in managing the complete process from sub-
mission to these proceedings.

Finally, we would like to thank the Program Committee members and the external
reviewers, listed below, for their accurate and timely reviewing, all authors for their
submissions, and all attendees of the workshop for their participation.

July 2016 Maurice ter Beek
Stefania Gnesi
Alexander Knapp
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Lessons Learned in a Journey Toward
Correct-by-Construction Model-Based
Development

Laura Baracchil, Silvia Mazzini!, Stefano Puri',
and Tullio Vardanega®

"Intecs SpA, Pisa, Italy
{laura.baracchi,silvia.mazzini, stefano.puri}@intecs.it
2 Universita di Padova, Italy
tullio.vardanega@math.unipd.it

Abstract. In our view, an effective correct-by-construction (CbyC) approach,
geared to making it extremely difficult to introduce errors in the software
development process, would have two main ingredients: one, the adoption of
model-driven engineering (MDE) to manipulate malleable and yet powerful
abstractions; the other, rigor at each development step, to enable (possibly
automated) formal reasoning or analysis of the correctness of the step, and
(possibly automated) derivation, whenever possible, of correct base input for the
subsequent step.

We advocate that using models in most of the development steps, supported
by adequate MDE techniques and tooling (far more productive today than in the
early age of CbyC), makes it easier to define correct requirements, to design a
system that meets the requirements, and to develop an implementation that
preserves the desired correctness properties. We discuss lessons learned in the
attempt to apply the long-known principles of CbyC first promoted by Dijkstra,
to modern model-based development practices. We recall the intent and scru-
tinize the outcomes of a string of research projects that focused explicitly on the
pursuit of CbyC by means of model-driven methods and technologies. The
lessons learned show that when CbyC extends from the algorithmic and func-
tional dimension to extra-functional concerns, some of the strength of original
CbyC concept and its pull dilute. One of the possible causes of that phe-
nomenon, is that — in some situation — the assertive style of algorithm
refinement gives way to more tentative exploration of an unknown solution
space where the known truths are insuffcient to steer the development.

Keywords: Model-based development - Model transformation - Correctness by
construction - Formal methods - Contract refinement



Model-based Testing Strategies and Their
(In)dependence on Syntactic Model
Representations

Jan Peleska'” and Wen-ling Huang?

! Verified Systems International GmbH, Bremen, Germany
2 Department of Mathematics and Computer Science,
University of Bremen, Bremen, Germany
{jp,huang}@cs.uni-bremen.de

Abstract. Model-based testing (MBT) in its most advanced form allows for
automated test case identification, test data calculation, and test procedure gen-
eration from reference models describing the expected behaviour of the system
under test (SUT). If the underlying algorithms for test case identification operate
only on the syntactic representation of test models, however, the resulting test
strength depends on the syntactic representation as well. This observation is true,
even if syntactically differing models are behaviourally equivalent. In this paper,
we present a systematic approach to elaborating test case selection strategies that
only depend on the behavioural semantics of test models, but are invariant under
syntactic transformations preserving the semantics. The benefits of these strate-
gies are discussed, and practical generation algorithms are presented.

Keywords: Model-based testing - Equivalence class partition testing - Kripke
structures - Complete testing theories



Random Testing of Formal Properties
for Industrial Critical Systems

Thomas Arts

Quviq AB, Gothenburg, Sweden
thomas.arts@guvig.com

Abstract. QuickCheck is a tool that can automatically generate test cases for
software systems. These tests are generated from manually specified formal
properties or models that the system is supposed to conform to. The set of
possible tests for such systems is practically infinite. QuickCheck uses a random
selection strategy for generating test cases. Compared to other selection strate-
gies, QuickCheck can very quickly generate tests and more time is spent on
testing than on carefully selecting tests; this works best in situations where test
execution can be performed in seconds rather than days.

The result is a light-weight method for finding software faults in industrial
critical systems in the domain of telecommunication, automotive, database
systems, financial systems and medical devices. Compared to many formal
methods, this kind of light-weight formal testing is very cost effective for finding
faults.

However, if no faults are found, the obvious question is: “how well is the
software tested?”. We present some results based on measuring coverage. Code
coverage is a poor measure for correctness, as will be confirmed for line cov-
erage through MC/DC coverage.

As an alternative we look at requirement coverage and generate test suites
that cover all requirements. This again results in very poor fault detection. Even
after improving the notion of “covering requirements”, we see that random
testing detects more faults than carefully constructed tests that cover all
requirements.

By giving the user control over defining and measuring what has been
tested, we can increase the confidence in the models underlying the test gen-
eration. Nevertheless, more research is needed to find satisfactory criteria for
sufficient testing.
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Model-Based Testing Strategies and Their
(In)dependence on Syntactic Model
Representations

Jan Peleska (™) and Wen-ling Huang?

! Verified Systems International GmbH, Bremen, Germany
2 Department of Mathematics and Computer Science,
University of Bremen, Bremen, Germany
{jp,huang}@cs.uni-bremen.de

Abstract. Model-based testing (MBT) in its most advanced form allows
for automated test case identification, test data calculation, and test pro-
cedure generation from reference models describing the expected behav-
iour of the system under test (SUT). If the underlying algorithms for
test case identification operate only on the syntactic representation of
test models, however, the resulting test strength depends on the syntac-
tic representation as well. This observation is true, even if syntactically
differing models are behaviourally equivalent. In this paper, we present a
systematic approach to elaborating test case selection strategies that only
depend on the behavioural semantics of test models, but are invariant
under syntactic transformations preserving the semantics. The benefits
of these strategies are discussed, and practical generation algorithms are
presented.

Keywords: Model-based testing - Equivalence class partition testing -
Kripke structures - Complete testing theories

1 Introduction

Model-Based Testing. Model-based testing (MBT) can be implemented using
different approaches; this is also expressed in the current definition of MBT
presented in Wikipedia®.

Model-based testing is an application of model-based design for design-
ing and optionally also executing artifacts to perform software testing or
system testing. Models can be used to represent the desired behavior of a
System Under Test (SUT), or to represent testing strategies and a test
environment.

! https://en.wikipedia.org/wiki/Model-based _testing, 2016-07-11.

© Springer International Publishing AG 2016
M.H. ter Beek et al. (Eds.): FMICS-AVoCS 2016, LNCS 9933, pp. 321, 2016.
DOI: 10.1007/978-3-319-45943-1_1
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In this paper, we follow the variant where formal models represent the desired
behaviour of the SUT, because this promises the maximal return of investment
for the effort to be spent on test model development.

— Test cases can be automatically identified in the model.

— If the model contains links to the original requirements (this is systematically
supported, for example, by the SysML modelling language [10]), test cases
can be automatically traced back to the requirements they help to verify.

— Since the model is associated with a formal semantics, test cases can be rep-
resented by means of logical formulas representing reachability goals, and
concrete test data can be calculated by means of constraint solvers.

— Using model-to-text transformations, executable test procedures, including
test oracles, can be generated in an automated way.

— Comprehensive traceability data linking test results, procedures, test cases,
and requirements can be automatically compiled.

Testing Safety-Critical Systems. In this paper, we focus on MBT for safety-
critical embedded systems or cyber-physical systems. These need to be developed
and verified according to certain standards, such as the documents [2,8,18] which
are applicable in the avionic, railway, and automotive domains, respectively.
Moreover, these systems need to be certified by independent authorities before
entry into service.

Among other obligations, the completeness and the strength of the test suite
needs to be demonstrated in order to obtain certification credit. This is usually
performed by (1) tracing test cases back to requirements, showing that non have
been left untested, (2) measuring the code coverage achieved by the test suite,
so that no special cases specified in the requirements can be overlooked and
superfluous or unreachable code is detected, and (3) creating mutants of the
SUT or a simulation thereof and checking whether their erroneous behaviour is
uncovered by the test suite.

Objectives. As of today, the standards for safety-critical systems development
and verification do not yet cover all aspects of applying MBT in a safety-critical
context. It is obvious, however, that MBT is very attractive for this domain,
because

— due to the criticality of the systems, more time can (must) be invested into
formalised modelling of the required system behaviour — so formal models
already exist, and skilled personnel for modelling is available, and

— due to the higher degree of automation achieved by MBT, more test cases
can be created and executed than would be possible with manual test case
elaboration.

A further desirable effect of applying MBT in a safety-critical context would
be if it could be guaranteed that certain types of strategies for identifying test



Model-Based Testing Strategies and Their (In)dependence 5

cases in a model would come with guaranteed test strength, so that certifi-
cation credit could be obtained without having to perform mutation testing.
Unfortunately, this is generally not the case, because several strategies — such
as model transition coverage or MC/DC coverage — create different test cases
for different syntactic model representations, even if the underlying models are
semantically equivalent. The obvious reason for this is that these strategies just
parse the abstract syntax tree for obtaining test cases, without analysing the
models’ behavioural semantics.

The main topic to be investigated in this contribution is therefore to find
answers to the question

Is it possible to create practically applicable test strategies, such that they
— possess guaranteed fault coverage (i.e. well-defined test strength), and
— are transformation-invariant, as long as the transformed models are

semantically equivalent to the original one?

If this can be achieved, certification credit for test strength can be given
without further demonstrations, because the test suites resulting from the test
case generation strategies have the same strength, regardless of the concrete
representation of the model from which the tests have been generated.

Main Contributions. The main contributions of this paper are as follows.

1. We present a new model-independent theory for designing equivalence class
test suites. This theory is based on the language L(S) of the reference model
S alone — that is, its observable input/output behaviour. Therefore it is auto-
matically invariant under language-preserving transformations.

2. It is shown that the theory can be practically implemented for determinis-
tic and nondeterministic systems with potentially infinite input domains, but
finite (practically enumerable) internal state variables and outputs. This is
achieved by generating an initial test suite from an arbitrary reference model
S and abstracting the suite to the weakest one that still possesses the guar-
anteed fault coverage. It is shown that this weakest suite always exists and
is uniquely determined, and therefore invariant under language-preserving
model transformations.

3. With respect to fault coverage, it is shown that the resulting test strategy is
complete in relation to a given fault domain D. This means that every SUT
whose true behaviour is represented by a member S’ € D passes the generated
test suite, if and only if it conforms to the reference model S.

Overview. In Sect. 2, the problem is described in more detail and illustrated
by means of examples. The influence of representations on the test strength of
standard test case identification strategies is explained. In Sect. 3, the theoretical
foundations for a model-independent complete input equivalence class partition
testing method are described. This theory is applied in Sect.4 to modelling for-
malisms whose semantics can be expressed by so-called reactive I/O-transition
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systems. These are Kripke Structures over input, output, and internal variables,
whose domains may be infinite for the inputs, but must be finite (and enumer-
able in practical applications) for internal states and outputs. It is explained
how transformation-invariant input equivalence classes are calculated from an
arbitrary concrete model. In Sect. 5, conclusions are presented. Throughout the
exposition, we give references to related work where appropriate.

References to Complex Models and Applications. In this paper, the
example models have been deliberately chosen to be as simple as possible,
so that they just highlight a specific aspect of the discussion. It should be
emphasised, however, that the material presented here is applied in real-
world testing campaigns. Some complex models for MBT have been published
on the model-based testing benchmarks website www.mbt-benchmarks.org and
described in [1,6,7,12,13].

2 Problem Description

Syntactic Model-Based Test Case Identification. The following trivial
example illustrates the problem of syntax-based test strategies. Sample SYS-
TEM1 has input interface z with values in range {0, 1,2,3} and outputs y, z,
both with domain {0,1}, as shown in Fig. 1. It is supposed to output 1 on y if
and only if z = 1, and 1 on z if and only if x = 2.

y:{0,1}

z:{0,1,2,3}

—_— SYSTEM1

z:{0,1}

Fig. 1. Sample system SYSTEM1 — interface.

For describing the behavioural semantics of models we use state transition
systems (STSs) S = (S, s, R) with state space S, initial state s and transition
relation R C S x S. The state space S consists of valuation functions s : V. — D
over variables from V', to be evaluated in domain D. Finite variable set V is

partitioned into disjoint sets of input variables I = {z1,...,x,}, internal model
variables M = {m,...,m,}, and output variables O = {y1,...,y,}. We use
tuple notation © = (z1,...,2,), m = (m1,...,mp), and y = (y1,...,y,) and use

shorthand s(x) for (s(z1),...,s(zy)), s(m) for (s(m1),...,s(my)), and s(y) for
(s(y1),---,5(yq))- By Dr, Dar, Do we denote the crossproduct of input variable
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types, internal model variable types, and output variable types, respectively, so
s(x) € Dy, s(m) € Dy, and s(y) € Do.

The language L(S) of S is the set of all I/O-traces of S. An I/O-trace is a
finite sequence (1, Y,).(2,Ys) - .- (k, Yy) € (Dr x Do)*, such that there exists
a sequence of states s.51.52 ... sy satisfying

R(s,s1) A R(s1,82) A -+ A R(Sg—1, Sk)

and

si(@) = @1 ANsi(y) = yi A Ase(®) = @ Ask(y) = Yy
Its intuitive interpretation is that by changing the input valuation to x; when
residing in state s;_1, system S transits to state s;, such that (s;_1,s;) are
connected by the transition relation, and s; has input valuation x; and output
valuation y;.

Two state transition systems S, S are called I/O-equivalent (written &’ ~ S,
if and only if L(S") = L(S). &' is called a reduction of S (written &’ < §), if
and only if L(S") C L(S).

The expected behaviour of the SUT is modelled alternatively by the two
SysML state machines SM-TC1 and SM-TC2 shown in Figs.2 and 3. It is easy
to see that SM-TC1 ~ SM-TC2 (we will show below how the state machines can
be represented by their semantic state transition system models).

Let us now determine which test cases would be generated by a typical MBT
tool if the transition coverage strategy for test case generation were applied.

stm SM-TC1

[x<=0or3<=x] | State0 ) [x <= 0or3 <= x]

entry /y=0;z=0;

State2 ]
entry/y=0;z=1;J

[ Statel
lentry/y: 1, z=0;

J

Fig. 2. Sample state machine model SM-TC1 for discussion of transition coverage.
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stm SM-TC2

[x!=xi] /xi=x; y=Xx==1); z=(x==2); /y=0;z=0; xi =0;

f StateO

D ——

Fig. 3. Sample state machine model SM-TC2 equivalent to SM-TC1.

Recall that this strategy creates test cases such that every state machine transi-
tion is visited at least once in the model. Deriving transition coverage test cases
from reference model SM-TC1, results in a test suite like the following, which
performs a complete transition tour to cover all state machine transitions in a
single test case.

Test suite 1

No. | Test case (x1, (y1,21))-(2z2, (y2, 22)) - ..

1 (1,(1,0)).(0,(0,0)).(2,(0,1)).(1,(1,0)).(2, (0,1)).(3,(0,0))

For the equivalent reference model SM-TC2, a test suite achieving model
transition coverage could be already be realised with a single test case containing
a single stimulation, such as

Test suite 2

No. | Test case (z1, (y1,21))-(z2, (Y2, 22)) - . .
1 (1,(1,0))

Now consider a faulty implementation of SYSTEMI, as shown in Table1.
The bug injected in the right-hand side of the assignment to z would obviously
be revealed by Test Suite 1 derived from model SM-TC1, while the bug would
be overlooked when executing the transition coverage test suite generated from
the equivalent model SM-TC2. This example highlights the well-known fact that
test strategies derived from syntactic model representations alone may produce
test suites with different strength, depending on the syntactic representation of
I/0-equivalent models.

Semantic Model-Based Test Case Identification. Could we perhaps just
perform test case selection on the semantic model, in order to solve the problem
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Table 1. Faulty implementation of SYSTEMI.

int x,y,z; // Global I/0 variables shared with the
// environment, e.g. threads writing
// inputs to x and reading outputs from

// y and z.
void £() {
while (1) {
if (x!=xi) {
xi = x;
=(X==1);
= (x==23); // <- Bug
3}

illustrated above? From the extensive literature about test strategies with guar-
anteed fault coverage for finite state machines this is well-known to be possible
(see [3-5,9,14,15,17] for some of the most important FSM testing strategies):
given an FSM M in arbitrary syntactic representation, these test strategies cal-
culate test cases from the so-called prima machine of M, which is the minimal
observable FSM possessing the same language. Since the prime machine of M
is uniquely determined up to isomorphism, the test suites produced by these
strategies are therefore invariant under syntactic transformations preserving the
language of M.

At first glance, this approach looks quite easily extensible to more general
formalisms whose semantics is based on state transition systems. The STS rep-
resenting the behavioural semantics of SM-TC1 is shown in Fig. 4. For SM-TC2,
the STS diagram looks just like the one for SM-TC1, only with the ‘state’ vari-
able replaced by the internal model variable xi. It is trivial to see that when
covering every transition of the STS diagram shown in Fig.4, the bug in the
implementation from Table 1 will be uncovered, because the single test case of
Test Suite 1 above is a prefix of the single test case of Test Suite 3 which results
from performing a complete transition tour of the STS shown in Fig. 4.

Test suite 3

No. | Test case (z1, (y1, 21))-(z2, (Y2, 22)) . .
1

L1 (1,(1,0))-(0,(0,0)).(2 ( 1)).(1,(1,0))-(2 ,(0,1))~(3,(0,0))~(0,(0,0))-(1,(1,0))-
(3,(0,0))-(0,(0,0))-(3,(0,0))

Problems Resulting from Explicit Semantic Model Representations.
It is satisfactory to see that both models SM-TC1 and SM-TC2 produce the
same transition coverage suite when applying transition coverage to the semantic
model. This, however, is an explicit semantic model as it had been used in the
early days of global model checking. The state explosion problems associated
with explicit models are well understood. Moreover, some helpful syntactic model
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(x,state,y,z) = (0,0,0,0)

h

(1,1,1,0)

N

(2,2,0,1)

e

(3,0,0,0)

Fig. 4. State transition system representing the behavioural semantics of SM-TCL.

information may be lost when transforming the original model to its explicit
semantic presentation. As an example illustrating this general problem, consider
an extended domain for input variable z, which we will now assume to be of
type int128_t.

While the SysML state machine models shown in Figs.2 and 3 can remain
unchanged, the explicit semantic representation would be infeasible, since a node
(2,0,0,0) would have to be created for every int128_t-value z in range x <
0V 3 < z. Even if we were willing to invest into that amount of storage for
representing all these states, the number of resulting transition coverage test
cases would be impossible to test with acceptable effort. Having reached the
explicit semantic representation level, it would also be impossible to find hints
in the model which transitions could be aggregated to “somehow equivalent
ones”, so that it would only be necessary to test one representative of a class.

Alternative Approach. With these obstacles in mind, we propose another
approach which neither depends on syntactic model representations alone, nor
requires explicit representations of behavioural semantics, and is still invariant
under model transformations preserving the language. The theoretical founda-
tions for this approach will be outlined in the next section, its practical applica-
tion is described in Sect. 4.



Model-Based Testing Strategies and Their (In)dependence 11

3 A Model-Independent Method for Input Equivalence
Class Partition Testing

Languages and Equivalence. In our application context of embedded systems
testing, the fundamental notion of equivalence or refinement can be defined by
means of the traces of observable interface events. Let X' be such a set of events,
which we allow to be infinite, so that also real-valued physical observables like
time, speed, or temperature can be captured. For the moment, we do not dis-
tinguish between inputs and outputs, an event e € X' is just the occurrence of
an observable state change on some system interface. For test purposes, only
finite sequences of observations are of interest, so we focus on traces m € X*
and abstain from arguing about liveness properties which can only be verified
on infinite observation sequences.

We use the term language of a system for the set L of traces that may be
observed during system execution. Since observations already made cannot be
undone by consecutive observations, we require all languages under consideration
to be prefix-closed.?

Our objective is to find a definition for “equivalent behaviour” which is based
on the concept of languages alone, instead of referring to concrete models and
their syntactic representations. To this end, we observe that any equivalence
relation on observations, say ~C X x Y gives rise to an equivalence relation on
traces, by defining

Vo, e X in~n & (In| =7 ANMi=1,...,|7| : 7(i) ~ 7' (0))).

We are only interested in equivalence relations where either all traces equiv-
alent over X* are contained in the language or none of them. More formally,
given a language £ and an equivalence relation ~C X x X', ~ is L-closed if and
only if its extension to X* satisfies

v, e X (m~ 7' = (me Lo €L)).
L-closed equivalence relations are characterised by the following lemma.

Lemma 1. Given a language L, an equivalence relation ~ C X x X is L-closed
if and only if

Vo, 7€ X* 0,0 € X (a ~o = (roTel e no.Te E)) (1)
O

Intuitively speaking, events which are equivalent according to an L-closed
relation are exchangeable in the following sense: when inserted after an arbitrary
trace 7 of observations, 7.0 and 7.0’ have exactly the same continuations 7 in L.
So, regardless whether we pick o or ¢’ after having run through =, the future
according to £ will always be the same.

2 This is typically the first requirement for the axiomatic introduction of process alge-
bra semantics, see, e.g. [16].
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Conversely, it can be shown that any relation defined by
o~o & (VmreX*: (moTeL s no' TEL)) (2)

is an equivalence relation. By construction, it fulfils (1) and is therefore also
L-closed. Moreover, the construction guarantees that it is the coarsest L-closed
equivalence relation on X, and every other L-closed equivalence relation is a
refinement thereof, because it must satisfy (1) as well.

Distinguishing Inputs and Outputs. Now let us set X = D; x Dgo, so
that every observable event consists of the pair of most recent input and most
recent output. Given a language L over X, suppose that the coarsest L-closed
equivalence relation ~ on X has been constructed according to condition (2).
This induces a uniquely determined input equivalence relation ~j by setting for
z,x' € Dy

z~ra’ & (Vye Do (z,y) ~ (2,y)) (3)

Here the intuition is to consider two inputs as equivalent, if and only if their
combination with any output is equivalent according to the original equivalence
relation ~ over I/O-pairs. Obviously, ~; is the coarsest input equivalence relation
on D; which can be extended to an L-closed equivalence relation ~ on X

Example 1. As an example, consider the SysML state machine in Fig.5, to be
discussed in more detail in Sect. 4. For this example, the input z is real-valued,
and the output y is in {0, 1}. The associated language L is therefore a subset of
X* = (R x {0,1})*. We “guess” an equivalence relation ~ on X* as follows (in
Sect. 4, an algorithm for automated computation of ~ and ~; is presented).

Y(e,e),(c,e') e Rx{0,1}:
(c,e) ~ (' €) & (e=€ A(c,d €(—00,0] Ve, d €[20,00) Ve, € (0,20))

It is evident that equivalent I/O-pairs should have the same output values
in this example, because the outputs are discrete values in {0, 1}, and we do not
want output 0 to be equivalent to output 1. Regarding the inputs, it is easy to
see that ¢, ¢’ satisfying, for example, condition ¢, ¢’ € (—o0o, 0] has the same effect
on the system, regardless of its current state: when in STATEL, all inputs less
or equal to zero do not affect the system. When in STATE2, all of these values
trigger a transition to STATE1 while setting y to zero. Checking the behaviour
for ¢, ¢ € [20,00) and ¢, ¢ € (0,20) yields analogous results. As a consequence,
the input equivalence relation

c~rd & (e,d € (—00,0] Ve, d €[20,00) Ve, d €(0,20))

derived from ~ conforms to our intuition of equivalent inputs to a system. It
is shown in Sect.4 that the equivalence relations ~, ~; are indeed the coarsest
ones for the language generated by the SysML state machine from Fig. 5. a
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The following theorem formalises the intuitive understanding about equiva-
lence relations and languages: two languages with a joint language-closed equiva-
lence relation ~ coincide or are in subset relation, if and only if their equivalence
partitions resulting from ~ coincide or are in subset relation.

Theorem 1. Let L, L' be two languages over X, and ~ C X' X X an equivalence
relation which is both L-closed and L'-closed. Then L' = L if and only if L'/ =
L/~ and L C L if and only if L'/ C L/~. O

Model-Independent Testing Theory. Given a language £ over alphabet X
an abstract notion of test cases U can be introduced by defining U = (Upass, Utait)
by means of sets of pass traces Upass € 2™ and fail traces Upy € X*. This
definition of test cases is complemented by two notions of “passing a test”: an
SUT with language £’ over X satisfies

L pass, U if and only if L' NUi = 2.
The second pass-relation is defined by
L pass, U if and only if L' NUtait = @ A Upass € L.

Relation pass N signifies that the SUT’s language does not contain any unwanted
execution traces specified in Ug,;. Relation pass, signifies in addition that the
SUT can perform all the desired execution traces specified in Upgass.

Since the factorisation of language £ according to some L-closed equivalence
relation ~ is again a language, the concept of test cases and the definition of the
two pass-relations can be applied to £/~ as well. Pass and fail traces in £/,
however, are sequences of equivalence classes, that is, elements from (X/.)*.
Since every [n] € (X/.)* is just a set of concrete traces, pass and fail traces
from (X'/.)* can be mapped to concrete traces by selecting representatives from
each class [7].

Given a set W C (X/.)*, we call A(W) C X* a representative of W, if
and only if A(W) contains exactly one representative 7’ € [r] for every class
[r] € W. Given a test case U = (Upass, Utail) With Upass, Ugait C (X/~)*, it can
be shown that £/. passes U in each variant 1 or 2, if and only if £ passes the
test (A(Upass); A(Ugai)) with the same variant of the pass relation. This holds
independently on the selection of representative A.

A fault model F = (L£,<,D) consists of a reference language £ representing
the desired behaviour of implementations to be tested, the conformance relation
<e {=,C} denoting language equivalence or language containment, and the
fault domain D which is a set of languages conforming or nonconforming to L,
such that the true behaviour of the SUT is an element £ € D. A test suite TS
is a set of test cases. TS is called complete, if every implementation conforming
to the reference language (i.e. L < L) passes every test in TS, and every non-
conforming implementation (£’ £ L) fails at least one test case in TS.

These considerations lead to the main theorem of the testing theory about
complete test suites: any test suite that is complete on a fault model of languages
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factorised according to ~ gives rise to a complete test suite for the unfactorised,
concrete languages. To this end, a complete test suite is translated simply by
selecting representatives for each pass or fail trace [r] € (¥/.)* in each test
case.

Theorem 2. Let L be a language over X and ~ an L-closed equivalence rela-
tion. Let TS be a complete test suite for some fault model F' = (L/~,<,D').
Define a test suite translation by

A(TS) = {(A(Upass), A(Utair)) | (Upass; Ugair) € TS},

where A(Upqss), A(Ujqir) are suitable representatives for all sets of pass and fail
traces.
Then A(TS) is a complete test suite for fault model F = (L, <, D) with

D={L"| ~ is L' -closed and L'/ € D'}

I3

When testing for equivalence (< is =’) pass-relation pass, must be used. When
testing for language containment (< is ‘C’), pass, has to be applied.

4 Model-Based Transformation-Invariant Calculation
of Input Equivalence Classes

To illustrate the practical calculation of the equivalence classes and the associ-
ated abstraction to finite state machines, consider the SysML state machine SM1
in Fig.5, where we assume that input x has domain R, and output y domain
{0,1}. Tt is easy to see that the alternative model SM2 shown in Fig.6 looks
differently on the syntactic level, but really produces the same language as SM1.

Calculation of Input Equivalence Classes and DFSM Abstraction for
SM1. Following the algorithm described in [6], the IEC-generation starts with
calculating the transition relation of SM1 in some arbitrary propositional form.
A possible result for this is

Ri=(state=1Ay=0A(z<0V20<z)Astate’ = 1Ay =yA(z' <0V20 <))
(state=1Ay=0A(x <0V20<z)Astate’ =2Ay =1A0<z' <20)
(state=2Ay=1A0<z<20Astate’ =2 Ay =y A0 <z’ <20)
(state=2Ay=0A0<zAstate’ =2Ay =yA0 <)
(state=2Ay=1A0<z <20Astate’ =2Ay" =0A20 < 2)
(state=2Ay=0A0<zAstate’ = 1Ay =0Az <0)

(

\Y
\Y
\Y
\Y
\Y
V (state=2Ay=1A0<z<20Astate’ = 1Ay =0Az <0)
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stm SM1
Q
/y=0;
STATE1
[0<xandx <20] /y=1;
[x>=20andy==1]/y=0; [x<=0]/y=0;
[ STATE2 |

Fig. 5. Sample model SM1 for IECP calculation.

stm SM2

[0<xandx <10] /y=1; = =1:
STATEL [10<=xand x <20] /y=1;

[x<=0]/y=0;

[x<=0]/y=0;

[x>=20andy==1]/y=0;

[x >=20]/y=0;

Fig. 6. Sample model SM2 — I/O-equivalent to SM1.

Next, the transition relation is transformed into a normal form with structure

R= \/ (9ii(@) A (m,y) = (di,e;) A(m/,y') = (m,y) Agii(z)) Vv

1€IDX
\V  (gia(@) A (m.y) = (die) A (', y)) = (dj, e)) A gi ()

(i,9)€d
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where (1) g;,g:; are propositions with free variables from I only, (2) (m,y)
denotes the pair of internal state variable tuples and output variable tuples, that
is, M = {my,...mi}and m = (mq,...mg), O ={y1,...y¢e} and y = (y1,- .- ye),

(3) « = (x1,...,xp,) denotes the tuple of input variables, I = {z1,..

(4) (d;, e;),i € IDX is the enumeration of reachable pairs of internal state value
tuples d; and output value tuples e;. The input conditions g;; specify which
input changes are possible while staying in the quiescent state class specified
by gii A (m,y) = (d;, e;). The input conditions g; ;,¢ # j denote propositions
associated with transient state classes specified by g; ; A (m,y) = (d;, e;), and
leading to members of quiescent state classes specified by g; ;A (m,y) = (d;, e;).

Each condition g; ; A (m,y) = (d;, e;) induces a state class
Ai={se€S|s F giiN(m,y) = (di,e;)}

of I/O-equivalent quiescent states.

Applying this approach to SM1 and R; results in the following equivalent

proposition R for the transition relation.

R = (g1,1(2) A (state,y) = (1,0) A (state’, y') = (state,y) A g1,1(
V (g2,2(x) A (state,y) = (2,1) A (state’,y") = (state,y) A g2,2(
V (gs,3(z) A (state,y) = (2,0) A (state’, y') = (state, y) A g3,3(z"))
V (g1,1(2) A (state,y) = (1,0) A (state’, y') = (2,1) A g1,2(2"))
V (g2,2() A (state,y) = (2,1) A (state’,y") = (1,0) A g2,1(2"))
\Y (ggﬁg(I) A (state,y) = (2,1) A (state’,y’) = (2,0) A 9273(93/))
V (g3,3(x) A (state,y) = (2,0) A (state’,y") = (1,0) A g3,1(2"))
The propositions g; ; are specified as follows.
g1i1=r<0Vv20<z g12=0<2<20
g2 =0<2 <20 g1 =<0
g33=0<z go3=20<ux
g31=2<0

The state classes are calculated as follows.

Ay ={seS|sE ((<0V20<x)A (state,y) = (1,0))}
Ay ={seS|sE ((0<z<20)A (state,y) = (2,1))}
As={se S|s E ((0<z)A (state,y) = (2,0))}
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The normalised representation R now allows us to construct an input domain
partition Z = {Xj, ..., X,}. Following [6], the X; are identified by all conjuncts

3
O = /\ i, f (i) where f: {1,...,3} — {1,...,3} is bijective
i=1

which are satisfiable. For our example, the satisfiable @ are

D1 =g11Ng 1 Ng31 =2 <0
Do=g1,1Ngo3Ng33=20<x
D3 =g12Ngo2Ng33=0<x<20

Each member X;,i = 1,2, 3 of the input domain partition is specified by the set
of all inputs x satisfying proposition @;.

Now the state classes A; and the IECs X give rise to a well-defined FSM M
which is deterministic, since the original SysML state machine SM1 is determin-
istic as well. M has states Q = {41, Aa, A3}, inputs X = {X1, X2, X3}, and its
transition function and output function are given by the tables

0 ‘ X1 XQ X3 w ‘ X1 X2 X3
Al‘Al A1 A2 Al‘yzo y:O y—l
AQ‘Al A3 AQ AQ‘yZO yZO y:1
A3‘A1 A3 A3 Ag‘y—O y:O y—O

These tables have been created by observing that from every state in class A;,
with every input value ¢ € X, the system transits to a state in class §(A4;, X;)
with accompanying output w(A4;, X;). In this example, the DFSM is already
minimal, and its input alphabet does not contain any pair of inputs X, X’ having
the same effect (target state and output) in every state. It can be shown that
every DFSM produced according to the steps above, minimised and free of inputs
with equivalent effects induces the coarsest input equivalence class partitioning
that can be constructed for SM1 and its language equivalents.

Calculation of Input Equivalence Classes and DFSM Abstraction for
SM2. To illustrate the independence from the syntactic model representation,
we will now perform the same construction steps as above, but using now model
SM2 from Fig. 6. The construction first leads to four state classes

Al ={seS|s ):((x<0\/20<x)A(state y) = (1,0))}
Ay ={seS|sE ((0<z<20)A (state, y) (2,1))}

Ay ={se S|s E ((0<z)A (state,y) = (3,0))}
Ay={seS|s E ((0<z)A (state,y) = (3,1))}
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and to four input equivalence classes X1, ..., X} that are specified by
P =2<0
P, =20<ux

PL=0<x<10
P, =10<x<20

The associated DFSM has transition and output tables

§|X| X}, X} X, WX Xy X, X
AA AL Ay A Ay=0y=0y=1y=1
A’Q‘A’1 AL AL AL A’Q‘y:O y=0y=1y=1
Ay Ay AL AL AL Ayly=0y=0y=0y=0
Ay AL Ay AL A Ajy=0y=0y=1y=1

This DFSM can be minimised, because state A5 and A} are equivalent: for
both states, the transition function leads for each input to equivalent target
states, and the output function shows the same outputs for the associated tran-
sitions. The minimised machine has the following tables.

5 X X4 X, X, O XX, X, X,
Ay AL AL Ay Ay Ally=0y=0y=1y=1
94 Al Ay Ay, Ajy A’274\y:0 y=0y=1y=1
Ay (AL Ay A AL Ay ly=0y=0y=0y=0

Finally, we observe that IECs X4 and X always have the same effect (target
state and output) when applied to any source state. As a consequence, these two
classes can be combined to one class, and this results in the revised DFSM

1) ‘X{ X, XLuXj w’ ‘ X1 X} XéUXA/L
Ay A A Ay Al ly=0y=0 y=1
Ay AL AL ALy, Ay y=0y=0 y=1
Ay (AL Ay AL Ay ly=0y=0 y=0

This machine is now isomorphic to the one generated from SM1, and the
equivalence class partitioning is the same, because X|; = X, X), = Xo, and
X5 U X} = X3, because ¥ V ) & Ps.

This shows that the FSM abstraction is invariant under syntactic transfor-
mations preserving the language of the reference model.

Generation of a Complete Test Suite. As described in Sect. 3, a concrete
test suite for establishing I/O-equivalence, for example, is now generated by the
following steps.

At first, we apply an arbitrary complete DFSM test suite which verifies I/0O-
equivalence between finite state machines. Applying the Wp-Method as elabo-
rated in [9] (the algorithm described there is applicable to both deterministic
and nondeterministic FSMs), results in the following test cases. They are con-
structed under the assumption that the SUT operates with the same IECs and
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has an FSM abstraction that does not exceed the number (n = 3) of states of
the minimised FSMs above.

Test suite 4

No. | Test case (Xi,1,y1)-(Xi2,92) ...

1 (X3,y=1).(X2,y =0).(X3,y =0).(X3,y =0

2 (X3,y =1).(X2,y =0).(X2,y = 0).(X3,y =

3 | (Xs,y=1).(X2,y = 0).(X1,y = 0).(X2,y = 0).(X5,y = 1)
4 | (X3,y=1).X3,y=1).(X3,y=1)

5 (X3,y=1).(X3,y =1).(X2,y =0).(X3,y =0

6 | (Xs,y=1).(X1,9y=0).(X2,y =0).(Xs,y =

7 | (X2,y=0).(Xs,y=1)

8 |(X2,y=0).(X2,y=0).(X3,y=1

9 (X1,y=10).(X2,y =0).(X3,y =1)

A concrete test suite is now created by selecting an arbitrary input value x;
satisfying @;, whenever IEC Xj is referenced in Test Suite 4 above.

5 Conclusion

In this paper, the problems of purely syntactic test case generation strategies
were highlighted. As an alternative, strategies that are invariant under syntactic
transformations preserving the language, i.e. the behavioural semantics of the
model, were advocated. To this end, a model-independent complete input equiva-
lence class partition testing strategy has been presented. This strategy is derived
from the concept of languages alone, without the need to refer to specific model
representations. For reactive systems with potentially infinite input domains but
finite internal state values and outputs it has been shown how the concrete cal-
culation of test suites according to this strategy can be performed by starting
with an arbitrary model and calculating the coarsest input equivalence partition
by means of model abstraction to finite state machines with consecutive FSM
minimisation and aggregation of inputs with identical effects. The resulting FSM
is independent on the initial model representation. Complete test suites can be
derived by first generating symbolic test cases from the FSM, using a complete
testing theory for finite state machines. These test cases reference input equiva-
lence classes as inputs to the SUT. By means of a mathematical constraint solver,
concrete test data is determined by solving the constraints specifying each input
equivalence class. While the strategy has been exemplified in this paper using
deterministic models, the approach is also valid for nondeterministic systems.
The fault models guaranteeing completeness of the strategy depend on the
maximum number of states in the SUT’s FSM abstraction and the hypothesis
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that the SUT has a similar input equivalence class partition as the reference
model. Extensive experiments have shown that even if this hypothesis is not
fulfilled, the strategy described still has excellent test strength for SUTs outside
the fault domain [7,13].

The strategy has been implemented in the model-based testing tool RT-
Tester [11], and it is applied in industrial testing campaigns at Verified Systems
International GmbH.
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Abstract. In this paper we present how formal methods can be applied
to MATLAB programs. We apply a static analysis based on abstract
interpretation to derive reachable values and identify potential program-
ming faults fully automatically. Our verification is built on a formal-
ization and abstraction of matrices, structures and data types, such as
integers and IEEE-754 floats. Combined with previously presented static
analysis for Simulink, our tool can verify block diagrams with embedded
MATLAB code. We show the feasibility of our tool and compare our
solutions against a commercial tool, using real world applications.

1 Introduction

Nowadays, embedded systems are used in a variety of applications, automating
many processes, which have been done manually before. Due to their strong
links to the environment, embedded applications bear strong safety requirements.
Software failures may cause harm to humans, the surroundings and economic
success. Avoiding errors is crucial when selling cutting edge technology, which is
often designed using model-based approaches. The use of mathematical models
for the environment allows to test and improve the behavior of systems. Different
domain specific languages, such as Mathematica, Maple, MATLAB, Modelica,
SCADE, SciLab, Octave and more can be used for mathematical programming.
Since MATLAB is a widely used tool in the automotive domain [8] and used
to develop safety critical software, we focus on the identification of potential
modeling/programming flaws of MATLAB programs.

MATLAB is both a programming language and an interpreter. In this paper,
we generally mean by MATLAB the language unless stated otherwise. Rapid
prototyping is supported with many built-in functions for specific domains, such
as controls. Similar to other programming languages, primitive data types, cus-
tom structures and objects can be designed and reused. Control flow statements
include function calls, if-else and switch branches, for and while loops and exit
jumps, i.e. return statements.

In previous work [3], we have presented how to apply formal methods to
block diagrams, designed with Simulink. We have used abstract interpretation
with interval sets to prove the absence of certain errors, such as division by zero,
© Springer International Publishing AG 2016
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under-, overflows and dead paths. Thus, our proposal for code analysis intends to
improve our block diagram verification, since Simulink allows the user to specify
custom blocks with MATLAB code. Our technique has been implemented in
the artshop® framework, which is a model repository and provides external tool
adapters, different analyses and reporting capabilities.

1.1 Contribution

After the presentation of related work in Sect.2, we formalize the syntax and
concrete semantics of MATLAB programs in Sect. 3. Subsequently, Sect. 3 intro-
duces the formal description of the abstraction and the interpretation rules.
Section4 evaluates the presented approach by comparison with an industrial
tool before Sect. 5 concludes our work.

2 Related Work

Static Analysis and Abstract Interpretation. Static analysis describes procedures
to analyze programs or models without execution and derive properties automat-
ically. In this work, we focus on abstract interpretation [1] to compute reach-
able value ranges for variables at each program location. Over the last years,
much research effort has been gone to proposing new abstractions, such as inter-
vals [1], relational domains [13,14], congruences [9], digital filters [7] and more.
In abstract interpretation, domains and corresponding operations are defined
to create a mapping between concrete and abstract program states. With the
abstractions, it may be easier to prove properties in the abstract domain, which
can be transfered back to the concrete program. Suppose intervals as an abstrac-
tion and if there is no division by zero in the abstract domain, then there is none
in the concrete domain. Finally, abstract interpretation is a formal methods,
which has been applied to several large scale industry projects [2,17].

Analysis of MATLAB Code. To our knowledge, abstract interpretation with a
value range analysis has not been applied to MATLAB code to perform a value
range analysis so far, however several static analyses for MATLAB programs have
been investigated. In 2003 Elphick et al. [6] proposed a static analysis of MAT-
LAB code to derive types and dimensions of variables to improve computational
speed. Doherty et al. [5] investigated later in 2011 the mapping of identifiers to
functions and variables. Aiming at a formal verification of MATLAB programs,
Lu and Mukhopadhyay [12] designed one year later an algorithm to transform
MATLAB code into SAT modulo theory (SMT) for formal verification.

3 Abstract Interpretation of MATLAB

First we present briefly the syntax and semantics of MATLAB code. Afterwards,
abstractions for variables and control flow are shown.

! See https://artshop.embedded.rwth-aachen.de/.
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3.1 Syntax and Concrete Semantics

Similar to other programming languages, MATLAB code consists of function
definitions, expression statements and control flow commands. Table 1 presents
a simplified grammar, describing the syntax of MATLAB programs. Several
implementation specific parts have been simplified, bitwise and postfix operators,
while others have been omitted, such as sub reference expressions expri(exprs)
for array access or function calls. Additionally, we assume for brevity that each
statement is terminated with a semicolon, although statements can also be ter-
minated with an end of line symbol. Furthermore, we have omitted that boolean,
numeric and matrix expressions can be constructed by function calls. Neverthe-
less, all these constructs have been considered in our implementation.

Expressions can be constructed using unary (#), binary (0), relational (<)
and logical (logOp) operators. Note, unlike C, MATLAB uses the () operator
for both array access and function call, with array access having precedence.
Additional to scalar values, MATLAB allows matrix and tensor variables. In
fact, each scalar variable is treated as a 1x1 matrix. Further operators specifically
for matrices, such as matrix multiplication, inversion and least square (RDIV)
are available. Element wise binary operations can be specified with a dot prefix,
i.e. A.*B multiplies matrices A and B element wise.

Table 1. Simplified excerpt of the MATLAB program grammar

(program) = (stmts)
(stmits) ={ (stmt) ;’}
(stmt) = (expr) | {conditional) | {assignment) | (loop)
(expr) = (boolEzpr) | (numericExpr) | (matrizEzpr)
(boolEzpr) = (primaryEzpr) | (numericEzpr) > (numericEzpr)
| (boolEzpr) 1logOp (boolExpr)
(numericEzpr) = (boolExpr) | (numem’cExpr) (numericEzpr) | 4 (numericExpr)
(matrizEzpr) =" { { (ewpr) *y } ' { {expr) *, } } T'|
(eapr) [+ (eapr) ] " (eapr)
(assignment) = (identifier) =" (expr), ;
(varList) ="1{ (variable)’, }
(multiAssign) = (varList) * =’ (expr)
(conditional) =’if * (boolExpr) (expr) [ { 'elseif '(boolEzpr) (expr) } ]
[ ’else ’ (expr) | * end’
(loop) = (while) | {for)
(while) = 'while ’ (boolEzpr) { (stmts) } > end’
(for) = "for ’ (variable) =" (matrizEzpr) { (stmts) } > end’
(primaryEzpr) = (identifier) | {constant)
(functiondef) = ’function ’ (varList) ’ = (funName) ' { (variable) ’y } )
(><) :’>’|’>f |'< | <= | '=="| '"~=
() =N T {0)
(4) ="+ |~
(logOp) =& T | '~ (logOp)
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Limitations. Our intended use of the static value range analysis for MATLAB
code is the abstraction of embedded MATLAB-function blocks? in Simulink.
Simulink constraints the use of MATLAB code within embedded MATLAB-
functions to certain language constructs or restrictive use of such. These restric-
tions are necessary in order to be able to generate code out of and simulate
the Simulink diagram. Thus, we impose limitations and assumptions about the
MATLAB code to be analyzed, which are backed by the Simulink restrictions.
However, we target to abstract extrinsic functions for which MATLAB code
is provided and thus support some language features which Simulink does not
support, too.

A first restriction of our analysis relates to the inability to analyze recursive
functions or programs, which is also not supported by Simulink. Furthermore,
MATLAB objects which are no structures or cell arrays are also not supported
by the analysis. This includes objects such as control systems® and external
objects, for instance from Java. As such, user defined classes with events and
methods are not supported. Moreover, only integer enumerations without further
functionality can be used. External code, from C/C++ and Java, either compiled
or available as source code is stubbed and side effects are not considered. Error
handling, using try and catch clauses is neither supported. Finally, we assume
the absence of complex variables, anonymous functions and dynamic field access
with the z.(y) operator.

Types. The MATLAB language has a dynamic type system, in which variables
may change their type during execution. Primitive types for scalars are signed
and unsigned integers (8,16,32 bit), 32 and 64 bit floats and fixed point numbers.
Floating point numbers behave according to the IEEE-754 standard®. Structures
and cell arrays are further non primitive data types, which are considered. Let
the set of primitive data types be T, containing all integer types and floating
types, i.e. [ulintN, N € {8,16,32} and float32, float64. Furthermore, assume
S to be set of strings, representing all field names of all structures, then the type
set is D.

D:={7Tx..xT}repUDx...xDUS - D (1)

The left most part of the union defines matrices with a primitive type, so that
all elements in the matrix must have the same primitive type. Note the recursive
definition allows cell arrays (D x ... x D) to contain cell arrays or structures
themselves, which also holds for structures (S — D).

A MATLAB program consists of variables V and operations on these vari-
ables. A program state o assigns a concrete value to each variable of the program.
During a function call, special variable environments Vg, i.e. workspaces, are
created. The set of program states are all potential variable assignments for each
environment.

Y :={o|o: Ven, x V — D} (2)

2 See http://www.mathworks.com/help/simulink/slref/matlabfunction.html.
3 See http://www.mathworks.com /help/control /ref/tf.html.
4 As long as the used machine implements the IEEE-754 standard.
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With concrete values for each variable, expressions can be evaluated with the
val, function for a given state o.

valy : expr — D :a — val,(a) (3)

For scalar expressions, the valuation function is defined below for constant ¢ and
variable v € V.

val,(¢) := ¢ val, (#e) := ¢ val,(e) (4)
valy (v) := o (v) val, (e10ez) := val,(e1)0 val, (e2) (5)
For instance, val, (3%x+5) evaluates to (val,(3) x val, (z)) + val, (5) = 30(z) + 5.

Matrices. In addition to scalars, values can be grouped into matrices or tensors, leaving
a single type for all values within the matrix. Compared with scalars, matrices support
additional operations, such as matrix multiplication, inversion and least square opti-
mization. For element-wise unary and binary operations, the valuation function is also
applied element-wise, with © being the index vector.

val, (#A) := [val, (#as)], val, (AQB) := [val, (as0bs)], (6)
val, (¢ A) = u vals (A) valy (AQ M B) := val, (A)On val, (B) (7)

MATLAB provides a variety of functions to construct standard matrices, such as zeros,
ones and eye, which yield matrices filled with zeros or ones and the identity matrix for
given dimensions.

Structures. Since matrices cannot group values of different types, MATLAB pro-
vides structures, similar to structs in the C programming language. Each structure
has several fields representing an object. A field is accessed using the dot operator(.),
where the structure variable is on the left and field name is on the right hand side, i.e.
struct.fieldname. Consider a structure s with fields z, y and z. s.z would access the field
z within s. Element-wise operations are not allowed on structures. Since a structure is
mapped to a variable, the valuation function results also in a structure.

vals (s.z) := valy (valy(s).x) (8)

The inner valuation function resolves the structure variable to a concrete structure,
while the outer valuation extracts the object  within s.

Cell Arrays. Matrices compose scalars of the same type with a given dimension. Cell
arrays extend matrices by allowing, similar to structures, different types and dimensions
in each part. Thus, only structural operations, such as reshaping the matrix structure
can be applied. In the following listing, the variable a is a cell array in which the
element at position (1,1) is of type uint8, while the other matrices are of type double.

a = {uint8(eye(5)), ones(3,7); zeros(3,2), eye(2)};

A cell within a cell array can be accessed by the {, } operators, hence al,1 accesses
the element at position (1,1). The concrete value of a cell array are all elements within
the array.

vals ({co}) = {vals (c2)} (9)
Although MATLAB code in Simulink and code generation do not support cell arrays,
we define the correspondent abstractions. These can still be of use when extrinsic
function calls from Simulink to externally defined MATLAB functions are contained
within the model.
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Workspaces. During the execution of programs, variables are kept in a workspace.
Hence, the MATLAB developer interface itself has a root workspace and for each
function a new empty workspace is created. For function calls, the arguments, which
are passed as call by value, are stored in the workspace.

Furthermore, there are global variables, which are visible among several functions
and thus are decoupled from any local workspace. Persistent variables do not loose
their value after exiting a function. Hence persistent variables can be understood as
static variables of a certain function.

Functions. When resolving the parenthesis operator, the value on the left hand side
can either be a matrix or a function identifier. Functions can be specified in several
ways. Built-in functions are shipped with the MATLAB interpreter and are resolved
internally. User defined functions can either be specified by a MATLAB file (.m),
containing a function definition and code. External functions may be given in other
languages, such as C/C++ or Java. Generally, C/C++ functions can be compiled
from MATLAB with a compiler to a mex® file, for which the source code must not be
provided during run-time. Similarly, for functions programmed in Java, no source code
is necessary for execution.

Whether functions are executed or variables are addressed, depends on an internal
MATLARB algorithm. However, the following example makes it plausible, that variables
have priority.

>>zeros = ones (5);
>>zeros (3)
ans = 1

In the example, a variable zeros is created by calling the built-in function ones, yielding
a matrix filled with ones. When calling zeros in the second line, the variable zeros is
resolved, prior to the built-in function.

Type and Dimension Inference. So far, we have assumed that constants and declared
variables have a given type. However, MATLAB uses a type inference system, which has
previously been investigated [6]. Regarding our implementation, consider the following
example from the MATLAB console.

>>class(double(1.3) * uint8(3.5) * double(2.2))

ans = uint8

>> class(single(1.3) * uint8(3.5) * double(2.2))

Error using *

Integers can only be combined with integers of the same class, or scalar

doubles.
>> uint8(5) * double(0.2)
ans = 1

From this behavior, we have derived the following facts. First, expressions with double
are automatically casted up to double, which is also the default type for constants.
This simplifies building expressions of constants with other types, including matrices.
Second, after type inference, the result is casted down automatically. However, this
behavior is limited to double constants. For 32 bit single floats and other primitive
types, no automatic casting is performed. Thus, in our implementation, we infer double

5 See http://www.mathworks.com /help/matlab/ref/mex.html.
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constants by the closest defined expression. For assignments of fresh variables, we derive
the type of the right hand side expression.

Deriving dimensions of matrix expressions is solved by defining additional matrix
operations, such as addition or multiplication with scalars. In these cases, the scalar
value is applied element-wise. Corner cases, in which a variable has multiple dimen-
sions, but only contains a single element, such as [1,1,1] are also considered, i.e.
ones(1,1,1)*ones(5).

3.2 Abstract Semantics

For our abstraction, we use an interval sets [3] domain, i.e. an ordered set of IEEE-754
intervals [10] without overlapping intervals for each concrete scalar. With this app-
roach, we tend to increase precision, since unconnected intervals can be expressed.
For instance, the interval from [—1,1] without zero can be expressed by interval sets.
When applying binary operations, all resulting combinations of both sets are merged.
To avoid uncontrolled growth of intervals in the set, we limit the intervals per set to
a configurable number. If this number is exceeded, the intervals with the smallest dis-
tance between their bounds are merged to a single interval, as overlapping intervals are
in general. Depending on the primitive data type, several interval implementations are
used to capture the entire behavior of each type. Therefore, interval sets for unsigned
and signed 8,16 and 32 bit integers and 32 and 64 bit floats are implemented. For
floats, the user may specify an explicit IEEE-754 rounding mode to be applied when
performing IEEE-754 operations. Otherwise, the result of all rounding modes is merged
after each operation introducing an additional over approximation. Furthermore, spe-
cial handling for operations producing and using symbols, such as NaN and +oo have
been considered.

State Abstraction. For each abstract state p, there is an abstract valuation function,
yielding an abstract value for expressions.

val? : BExpr —Tp : a — valff (a) (10)

In addition, abstract unary 4% and binary (* operations can be carried out on the
abstract domain.

Valf (c) :=

= {[e, ]} val” (#e) := 4% val (e) (11)
valf(v) =p

(v) valf(eloeg) = valfé7£ (e1)0% valf (e2) (12)

The # denotes the corresponding abstraction of the operation on the abstract inter-
val set domain. For binary operations on interval sets IS; and IS2, we compute all
combinations of all intervals, i.e. IS107 1S, := Ur,e18;,15e18, 110112, where O is the
operation for intervals, as presented in [10].

For instance, val (3*x+5) evaluates to valy (3) * val? (z)) +7 val (5) = {[3, 3]} ¥
p(x) +# {[5,5]}. Similarly, relational > and logical operators logOp are abstracted.

Valf (e1 > e2) := Valf (e1) < Valf(eg) (13)
Val#((ﬂ logOp e2) = valf(el) logOp# valf(eg) (14)
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Matriz Abstraction. Similar to scalars, fixed size matrices can be abstracted.
val# (#4) = [valf(‘a@)]A val# (AOB) := [valf (a;,()bf,)]ﬂ (15)
val? (42, A) := &%, val? (A) val? (AQa B) = val? (A)0%, val? (B)  (16)

Although abstract matrices have in many cases a fixed length, the dimension of matrices
may depend on the run of the program. Consider Listing 1.1, where the length of x
depends on a random number.

Listing 1.1. Variable Size Variables

if( rand() > 0.5 )
x = [1 2 3];
else
x = [1 2];
end

In this case, the length of z is either two or three. Since the random number function
rand() is abstracted by an interval [0, 1], both paths have to be taken in the abstract
execution. For such cases, we use a matrix with the maximum dimension size, in this
case with three elements. Additionally, the potential sizes are stored in an interval set.
In case a statement yields potential access to an element of the matrix, a warning is
issued. However, the abstract interpretation is continued and correct access is assumed.
If our analysis can prove that an invalid access occurs, the algorithm is aborted and a
message is issued.

Structures. Structures are represented by abstract structures, mapping strings to
abstract values. Thus, the abstract valuation of a structure variable yields an abstract
structure. In order to extract a field, we extend the abstract valuation function.

valf(x.a) = Valf (valf (;c).a) (17)

Note, that the outer valuation function might yields an abstract object, which itself
might be an abstract cell array, structure or matrix.

Cell Arrays. As with matrices, cell arrays may also have a variable size during exe-
cution, for example, cell (uint8(rand() * 10)) yields a cell array with zero up to 10
elements. Therefore, we also store bounds on the size of a cell array. As with matrices,
our implementation issues warnings for potential out of bound accesses and continues
if possible, assuming a valid cell access. Our abstraction is a set of cell elements, which
are abstract objects.

val? ({¢s}) := {valf (cv)} (18)

Reshaping Operations. Matrices and cell arrays provide both structural operations,
which change the dimensions, while keeping elements untouched. Functions, such as
squeeze and reshape perform a rearrangement of elements. Assuming variable size
abstractions, we issue a warning if the reshape operation might be out of bounds and
assume a correct access and continue with the analysis.
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3.3 Abstract Interpretation

With data types and structures abstracted, interpretation rules for the program execu-
tion must be defined. These rules describe a transition relation, switching between two
states. Formalizations for these rules have been defined, for instance for the C program-
ming language [1,2]. Therefore, we focus in this part on differences to MATLAB code.

Built-in Functions. Since built-in functions cannot be analyzed, due to lacking MAT-
LAB code, we have defined abstractions for a certain set of functions. These individual
abstractions increase the precision of the analysis. However, we have derived the behav-
ior from the official documentation and experiments. Hence, there is no guarantee, that
our abstractions are correct. We have defined abstractions for matrix constructors, such
as zeros, ones, rand, eye, diag and math functions, such as sum, norm®
and class”.

, min, mazx, cell

Function Stubbing. External functions, for which no MATLAB source code is avail-
able, are stubbed, i.e. over approximated by the extreme values of the corresponding
type. By default, the type and dimensions are computed by type inference, however, if
this yields no result, a scalar function with type double is assumed. Nevertheless, in
practice the user could specify type and dimensions for unsupported functions.

Conditional Statements. For conditional statements, such as if(u > f(x)), we
improve the quality of the analysis by narrowing the intervals, based on the constraint.
If the expression might be true and has the form A\ v > expr where v € V, we
can improve the analysis by narrowing the interval set. With previously computed
intervals for all variables, a solution can be computed using interval arithmetic with
additional checks for special IEEE-754 behavior. Solutions for variables in disjunctions
are unionized, while conjunctions are cut. Although, we are limited in our current
implementation to these simple constraints, more advanced techniques, such as rela-
tional domains [13], interval linear programming [15] or symbolic methods [4,16] can
provide solutions for complex constraints. A similar and generally better approach has
been applied for different programming languages in other work [2].

In case the expression cannot be narrowed, our algorithm continues with the previ-
ously computed interval sets. We repeat the procedure for elseif parts, while for the
else branch the complement of the interval set is calculated®. Similar to other value
range analyses, we interpret both branches if necessary and merge the results.

Abstract interpretation for switch statements is processed in the same way, except
that MATLAB has a slightly different syntax here. Instead of having multiple case
statements without a break, MATLAB uses cell array notation. Furthermore, MATLAB
does not require a break statement during a switch, so that break commands always
refer to loop statements. For example, the following code assigns to y the value 1 if z
is 1,2 or 3, so there is no fall through after the first case statement. In fact, a break
statement within a switch would be associated to the outer while or for loop.

switch (x)
case {1,2,3} y = 1;
case 4 y = 2;

end

5 Only p vector norms and the 1,00 norms for matrices.
" Only for primitive types.
8 Which might include NaN values for floating point types.
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Loops. Not only switch statements have a special syntax in MATLAB, but also for
loops are more restricted, i.e. MATLAB requires loops with the for keyword to be of
finite length. In detail, a matrix has to be supplied with a finite number of elements,
since MATLAB only allows matrices to a user-defined maximum length®. Changes to
the iterating variable within the loop are executed, but do not affect the termination
condition of the for loop, i.e. in each iteration the next element from the vector is
taken. Consequently, our abstract interpretation checks whether the supplied vector
size is below a specified, but low, threshold and executes eventually all iterations.

In contrary, the condition of while loops is checked before each iteration. Hence
there is no guarantee of termination. In both cases, i.e. large for and while loops,
widening, as presented in [1] and adapted to interval sets in [3], is applied. Thus the set
of reachable values is widened to [—o0; 0o] after a configured number of loop iterations,
being a valid fix point for IEEE-754 values.

As for conditional statements, we narrow the interval set based on the same proce-
dure. Especially for for loops the union of all elements with the given matrix can be
used to shrink the interval set.

4 Evaluation

After having presented our approach to derive reachable value ranges for MATLAB
code, we evaluate it against an industrial tool.

We selected three MATLAB files from external sources to be used for evaluation
purpose. Those are a Kalman filter (KALMAN) implementation'®, an implementation
of ¢1 trend filtering (L1TF)[11]'" and the MATLAB implementation of the matrix
exponential function ezpm() of MATLAB R2014b (EXPM).

We intend to refine and extend our existing analysis of Simulink models (AV)
by abstract interpretation of MATLAB-function blocks (MATLAB code). Since the
Simulink Design Verifier (SLDV), which has been used for evaluation purpose in pre-
vious work, is able to analyze MATLAB-function blocks too, the SLDV is used for
evaluation purpose. Thus, we build Simulink models containing MATLAB-function
blocks implementing the examples mentioned above!?.

All constructed Simulink models are build of a MATLAB-function block contain-
ing one of the three identified examples, an outport block and either constant blocks
(indicated by modelnamecy) to provide input values to the MATLAB-function block
or inport blocks to provide free input (indicated by modelnamerpr). Since none of
the examples is intended to be used as code in embedded MATLAB-function blocks,
slight modifications due to the restrictive support of the MATLAB language inside
MATLAB-function blocks are necessary. These modifications are the conversion of
MATLAB scripts into functions with input and output parameters, the removal of

9 See http://www.mathworks.com /help/matlab/matlab_env/set-workspace-and-vari
able-preferences.html.

10 http://www.mathworks.com/matlabcentral /mlc-downloads/downloads/
submissions/37782/versions/1/previews/kalman.m/index.html.

" http://stanford.edu/~boyd/11_tf/.

12 Note that we use Simulink only to provide input to the MATLAB-function and do
not model relevant functionality for the analysis to work or causing additional over
approximation due to widening for loops in the Simulink model. Hence, the quality of
the results is not affected by the MATLAB-function being integrated into Simulink.


http://www.mathworks.com/help/matlab/matlab_env/set-workspace-and-variable-preferences.html
http://www.mathworks.com/help/matlab/matlab_env/set-workspace-and-variable-preferences.html
http://www.mathworks.com/matlabcentral/mlc-downloads/downloads/submissions/37782/versions/1/previews/kalman.m/index.html
http://www.mathworks.com/matlabcentral/mlc-downloads/downloads/submissions/37782/versions/1/previews/kalman.m/index.html
http://stanford.edu/{~}boyd/l1_tf/
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code parts which are responsible for visual and textual output, the elimination of
cell array use and the removal of variables with increasing or variable sizes by pre-
allocation. We succeeded to adapt the examples accordingly, resulting in executable
Simulink models. However, the modifications restrict the original functionality of the
examples, e.g. with regard to the applicability to arbitrary large matrices for EXPM,
which has been restricted to two dimensions. Since the KALMAN script contains two
method calls randn() to generate noise, which will cause analyses to assume return
values in the range [—o0;00], we construct an additional variation where randn() is
replaced by zeros (). The model variants with this modification are KALMAN¢;Z and
KALMANFE;Z respectively.

We perform the evaluation on a 64-bit Windows 7 operating system running on an
Intel i5 2.67 GHz CPU with eight gigabytes memory. The model files where constructed
with MATLAB R2014b and the imports of the models for AV and the SLDV analyses
performed with MATLAB 2015b. Since AV is implemented in Java, the 64 bit version
of Java 8 update 77 is used.

SLDV and AV allow the user to configure the analysis in various ways. We consider
two configurations (SLDVy and SLDVpy) for SLDV analyses. SLDVy is the default
configuration with additionally enabled option Out of bound array access for design
error detection. SLDVpy, is the same configuration as SLDVy but with enabled dead
logic detection. Since the activation of dead logic detection disables the detection of
other modeling flaws, such as potential divisions by zero, we analyze every evaluation
model using both configurations consecutively. As for evaluations in our previous work,
the default configuration of AV is used.

Besides the issued warnings, we compare the duration of the analyses AV and
SLDV. Since the SLDV excludes the duration of model opening, compilation and trans-
lation to internal intermediate representation from its time measurement, we exclude
the time required to start MATLAB, load the model and translate it to our interme-
diate abstract block diagram representation, too.

Table 2 shows the resulting time elapses and issued warnings for the computation of
the different analyses and their correspondent configuration for the evaluation models
and their variants. The X entries indicate that the correspondent analysis was unable
to analyze the model using the given configuration due to incompatibility although the
model is, due to the described adaptions, executable in Simulink. The SLDV states,

Table 2. Time elapse for analysis computation in seconds

Model Logical lines of | Time elapse (s) Warnings
MATLAB code | SLDVy | SLDVpy, | AV |SLDVy |SLDVpy, | AV

EXPMc¢; 80 X X 24 X X 1
EXPMprr 80 X X 1.4 |X X 50
L1TF ¢y 82 X X 0.8 | X X 10
LITFp; 82 X X 04 X X 20
KALMAN¢g; |44 37 37 0.4 |57 1 30
KALMANg; |44 116 44 0.7 |55 1 62
KALMAN¢;Z 44 44 42 0.9 |52 0 0
KALMANEg;Z 44 111 39 0.9 |51 0 57
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that the reason for the incompatibility regarding the EXPM model is its inability to
determine the size of the expressions

floor ((((j-1)*n\_m)+1)/2) : £loor ((((j-1)*n\_m)+n\_m)/2)
floor (((j*n\_m)+1)/2) :floor ((((j*n\_m)+n\_m)/2))

which were introduced as modified expressions to use matrices instead of cell arrays.
The L1TF model cannot be analyzed using the SLDV due to the use of logical indexing
with index variables negIdx1 and negIndx2, which is not supported by the SLDV inside
MATLAB-function blocks.

For EXPMc¢r, the AV issues a single warning regarding dead code in the MATLAB
program. In particular, the else branch of the if statement is detected to be unreach-
able, which is true since the constant input causes the condition to be always satisfied.
Allowing arbitrary two-dimensional input values (EXPMp;), AV detects two potential
divisions by zero, two potential divisions by ‘oo and 46 potential occurrences of NaN
(Not-a-Number). Because EXPMp; considers the input to the MATLAB-function to
be within the interval [—oo;c0] and values are computed based on the input, both
division operators cause each a warning about division by zero, oo and the potential
occurence of NaN as a result of the operation. Since NaN values are propagated along
operations, e.g. t+NalN = NaN, further warnings about potential occurring NaN values
are issued'®.

Regarding the models L1TF¢c; and L1TFp;, AV detects two false-positive warn-
ings, a potential overflow and a potential underflow for the statement status =
‘solved’;, which is a false positive. For both models, all other warnings are NaN
warnings. For the L1TFcr model with constant input, the NaN warnings are intro-
duced due to the over approximation of the contained for loop.

Before comparing the analysis results of AV with the results of SLDV, we take a
look at the warnings issued using SLDVpy for KALMANc;r and KALMANEg;. The
SLDV output report states for both model variants, that the MATLAB-function block
of the model is unsupported and thus, only partial results could be computed. Since
the SLDVpy, does not produce any other results, we will further focus only on SLDVy, .

Table 3 gives a detailed overview of the amount and types of warnings being pro-
duced by SLDVy . It can be seen, that although there is no division by zero due to
constant inputs for KALMAN¢c; and KALMANc;Z, both division operators in the
MATLAB program cause corresponding warnings. Considering free input, one division
by zero is detected and by * is indicated, that a further division by zero was unde-
cidable. Furthermore, the mentioning of an unsupported MATLAB-function blocks
originates from the over approximation of the randn() method call in KALMAN¢;
and KALMANFg;. There are several warnings about array bounds for all models. How-
ever, these are false-positive warnings in all cases since the array sizes and accesses are
all constant. Similar, the overflow warnings are of false-positive nature since all pro-
grams work only with the default type double. The use of randn() causes additional
overflow warnings, too.

Table4 presents the results using the AV analysis for the Kalman filter models.
Comparing the results obtained with AV and SLDVy,, it can be noticed that there are
no overflow warnings and considerably less array bound warnings. Because of the IEEE-
754 double type, data type overflows are impossible and thus not issued. Nevertheless,

3 The consecutive issuing of NaN warnings caused by NaN propagation can be disabled
in order to identify only the cause of potential NaN occurrences. However, this option
is disabled in the used default configuration.
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Table 3. Detailed overview of warnings being issued analyzing the Kalman filter exam-
ples with SLDVy

KALMANer KALMANpr KALMANerZ KALMANp Z
Division by zero 2 1* 2 1*
Division by do0 0 0 0 0
Overflow/underflow|31 31 27 27
Array bounds 23 23 23 23
Unsupported block | 1 1 0 0

Table 4. Detailed overview of warnings being issued analyzing the Kalman filter exam-
ples with AV

KALMAN¢; | KALMANg; [ KALMANe;Z | KALMANEg Z
Division by zero 0 1 0 1
Division by foo 0 2 0 2
Overflow/underflow | 0 0 0 0
Array bounds 2 2 0 0
Unsupported block 0 0 0 0
Result could be NaN |28 57 0 54

the detected potential array bound violations are false-positive results. Comparing the
division related warnings of both analyses, AV does not assume every division to be
a division by zero. However, for arbitrary inputs (KALMANpr;Z and KALMANp;Z)
potential divisions by zero and +oo are recognized.

As to expect, the amount of NaN related warnings increases for the models with
free input and the randn() method due to the assumed input or return values [—oo; 00|
and correspondent operations on +oo. Consequently, the model KALMAN¢;Z could
be proven to be safe with regard to divisions by IEEE-754 values NaN, +oo, array
access and data type overflows.

5 Conclusion

This paper provides a formal approach to derive reachable value ranges for MATLAB
programs based on abstract interpretation. Combined with an existing static value
range analysis for Simulink models, it enables the detection of potential modeling flaws
during model-based development of embedded systems within Simulink MATLAB-
function blocks. Evaluating our approach with three MATLAB programs, we were able
to show the support of Simulink functionality which is not supported by the Simulink
Design Verifier. Moreover, analysis time and false-positive warnings regarding divisions,
overflows and array accesses are reduced. Due to the sound abstraction of IEEE-754
floating point arithmetic, IEEE-754 related warnings such as potential occurrences of
NaN or divisions by +oco are detectable. Future work will focus on the reduction of
over approximations and the extension of supported MATLAB functionality.
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Abstract. The design and the analysis of business processes commonly
relies on workflow nets, a suited class of Petri nets. This paper evalu-
ates and compares two resolution methods—Satisfiability Modulo The-
ory (SMT) and Constraint Logic Programming (CLP)—applied to the
verification of modal specifications over workflow nets. Firstly, it provides
a concise description of the verification methods based on constraint solv-
ing. Secondly, it presents the experimental protocol designed to evaluate
and compare the scalability and efficiency of both resolution approaches.
Thirdly, the paper reports on the obtained results and discusses the
lessons learned from these experiments.

Keywords: Workflow nets - Modal specifications - Verification
method -+ Experimental comparison - Satisfiability modulo theory -
Constraint solving problem

1 Introduction

In recent years, the growing need by companies to improve their organizational
efficiency and productivity has led to the design and the analysis of business
processes. Workflows constitute a convenient way for analysts to describe the
business processes in a formal and graphical manner. Intuitively, a workflow sys-
tem describes the set of possible runs of a particular system/process. Further-
more, workflow analysts are required to express and to verify specific properties
over the workflows they designed to make sure that no undesirable behaviour is
present while performing the specified tasks.

Among existing workflow specifications, this paper focuses on modal speci-
fications that allow the description of necessary and admissible behaviours over
workflow nets, a suited class of Petri nets. As in [1], the validity of a modal
specification can be inferred from the satisfiability of a corresponding constraint
system, by using Constraint Logic Programming (CLP). Besides the theoretical
assessment of the approach, a proof-of-concept toolchain has enabled to suc-
cessfully evaluate its effectiveness and reliability. However, as advocated in [1],
these first encouraging experimental results need to be confirmed by extensive
experimentation, in particular to definitively assess the scalability and the effi-
ciency of the approach. This paper precisely investigates these issues: it aims to
empirically (1) assess the scalability, (2) evaluate the efficiency of the verification
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approach by (3) comparing two resolution methods: Satisfiability Modulo The-
ory (SMT) and CLP over Finite Domains to solve the Constraint Satisfaction
Problem (CSP) that represents the modal specifications to be verified.

On the one hand, using Logic Programming for solving a CSP has been
investigated for many years, especially using CLP over Finite Domains, writ-
ten CLP(FD). This approach basically consists in embedding consistency tech-
niques [2] into Logic Programming by extending the concept of logical variables
to the one of the domain-variables taking their values in a finite discrete set
of integers. On the other hand, SMT solvers are also relevant to solve the con-
straint systems (a conjunction of boolean formulas expressing the constraints)
since they can determine whether a first-order logic formula can be satisfied with
regards to a particular theory (e.g., Linear Arithmetic, Arrays theories). Basi-
cally, SMT solvers aim to generate counter-examples [3] by combining a SAT
solver, assigning a truth value to every atom composing the formula so that the
truth value of the latter is true, with a theory solver determining whether the
resulting interpretation can be met with regard to the theory used. The formula
is satisfiable if and only if at least one interpretation from the SAT solver can
be met by the theory solver.

Layout of the Paper and Contributions. Section 2 briefly recalls common concepts
and standard notations concerning workflow nets as well as the key aspects of
the formal method given in [1] for verifying modal specifications over workflow
nets. Afterwards, Sect.3 defines an experimental protocol designed, on the one
hand, to evaluate the efficiency of each resolution approach, and, on the other
hand, to compare their execution times when applied to a broad range of modal
specifications and workflow nets of growing size and complexity. To achieve this
goal, a mature toolchain has been developed to automatically produce, from a
workflow net and its modal specification, a constraint system whose satisfiability
can then be checked using either CLP or SMT. Section 4 reports on the exper-
imental results obtained using the experimental protocol. The lessons learned
as well as the reported feedback constitute the main contribution of this paper.
Finally, Sect. 5 suggests directions for future work.

2 Preliminaries

This section presents workflow nets [4], modal specifications as well as the veri-
fication method proposed in [1].

2.1 Workflow Nets

Workflow nets (WF-nets) [4] are a special case of Petri nets. They allow the
modelling of complex workflows exhibiting concurrencies, conflicts, as well as
causal dependencies of activities. The different activities are modelled by transi-
tions, while causal dependencies are modelled by places and arcs. For instance,
the Petri net depicted in Fig. 1 is a workflow net.
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Definition 1 (Workflow Net [4]). A Petrinet N = (P, T, F) is a workflow net
(WF-net) if and only if P is a finite set of places, T is a finite set of transitions,
F C(PxT)U(T x P) is a finite set of arcs, PNT =0, and N has two special
places i and o, where © has no predecessor and o has no successor.

Let g € PUT and G C PUT. We use i t, 0
the following notations: ¢* = {¢'|(9,9') € F},
*9={d'l(¢',9) € F}, G* = Ugec ¢°, and °G =
Ugeg *g. The state of a WE-net N = (P, T, F) ¢
is given by a marking function M : P — N that
associates a number of tokens to places. A tran- Fig. 1. An example of a WF-net
sition t is enabled in a marking M if and only
if Vp € *t,M(p) > 1. When an enabled transition t is fired, it consumes one
token from each place of *t and produces one token for each place of t®. Let M,

1 Py ]

and M, be two markings, and ¢ a transition of N, M, SR M, denotes that the
transition t is enabled in marking M,, and firing it results in the marking M.

Let 0 = t1,t2,..,tn_1 be a sequence of transitions of a Petri net N, M; % M,
tn—1

denotes that M; 4, M, ta, Inm2, M,,. We denote M; the initial marking (i.e.
M;(n) =11if n =1, and 0 otherwise) and M, the final marking (i.e. M,(n) = 1 if
n = o, and 0 otherwise). A correct execution of a WF-net is a transition sequence
o such that M; = M,.

The behaviour of a WF-net is defined as the set X' of all its correct executions.
Given a transition ¢ and an execution o, the function O;(o) gives the number of
occurrences of ¢ in ¢. In addition to ordinary WF-nets [4] (i.e. WF-nets with arcs
of weight 1), this paper deals also with the following well-known and popular
WEF-net classes whose expressiveness is based on structural features:

— State-Machines (SM) without concurrency, but with possible conflicts among
tasks (transitions): Vt € T, [ t* |=|*t |=1

— Marked-Graphs (MG) without conflict, but there can be concurrent tasks:
Vpe P |p*|=[*pl|=1

— Free-Choice nets (FC) where there can be both concurrency and conflict, but
not at the same time: Vp € P, (| p® |< 1)V (*(p°®) = {p}).

2.2 Modal Specifications

Modal specifications have been designed to allow loose specifications to be
expressed by imposing restrictions on transitions. They allow specifiers to indi-
cate that a transition is necessary or just admissible. In [1], modal specifications
allow specifiers to express requirements on several transitions and on their causal-
ities. The modal specifications of a workflow net N = (P, T, F') are specified using
the language S of well-formed modal specification formulae inductively defined
by: Vt € Tt is a well-formed modal formula, and given Ay, Ay € S, A1 A Ao,
AV Ay, and —A; are well-formed modal formulae. These formulae allow speci-
fiers to express modal properties about WF-nets correct executions. Any modal
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specification formula m € S can be interpreted as a may-formula or a must-
formula. A may-formula describes a behaviour that has to be ensured by at
least one correct execution of the WF-net whereas a must-formula describes a
behaviour that has to be ensured by all the correct executions of the WF-net.
Further, given a well-formed may-formula (resp. must-formula) m € S, a WF-
net N satisfies m, written N =0y m (resp. N =ppuse m), when at least one
(resp. all) correct execution(s) of N satisfies (resp. satisfy) m.

2.3 Modal Specifications Verification Method

This section provides an overall description of the verification method introduced
in [1] to verify modal specifications of workflow nets. This method, based on
the resolution of constraint systems, serves as a basis to compare SMT and
CLP resolution approaches. Basically, a constraint system is a set of constraints
(properties), which must be satisfied by the solution of the problem it models. To
achieve that, each variable appearing in a constraint of the system should take its
value from its domain. Such a system defines a Constraint Satisfaction Problem
(CSP). Formally, a CSP is a tuple 2 =< X, D, C' > where X is a set of variables
{z1,...,2,}, D is a set of domains {dy,...,d,}, (d; is the domain associated
with the variable x;), and C is a set of constraints {c1(X1), ..., cm(Xm)}, where
a constraint c; involves a subset X; of the variables of X.

A CSP thus models NP-complete problems as search problems where the
corresponding search space is the Cartesian product space dy X ... X d,. The
solution of a CSP {2 is computed by a labelling function £, which provides a
set v (called valuation function) of tuples assigning each variable z; of X to
one value from its domain d; such that all the constraints C' are satisfied. More
formally, v is consistent—or satisfies a constraint ¢(X) of C—if the projection of
von X is in ¢(X). If v satisfies all the constraints of C, then {2 is a consistent or
satisfiable CSP. In the rest of the paper, the predicate SAT(C,v) is true if the
corresponding CSP {2 is made satisfiable by v, and the predicate UNSAT(C) is
true if there exists no such v.

In our context, to verify a modal specification m of a WF-net N, the con-
straint system is composed of a set of constraints representing the correct execu-
tions of N completed with the constraint issued from m. This constraint system
can then be solved to validate or invalidate the modal specification m regarding
the WF-net N. Considering a WF-net N = (P, T, F), this method first models
all the correct executions leading from M, to My, i.e. all o such that M, Z M.
To reach that, the following constraint systems are defined:

Definition 2 (Minimum Places Potential Constraint System). Let N =
(P, T,F) be a WF-net and M,, M, two markings of N, the minimum places
potential constraint system (N, My, My) associated with it is (v : PUT — N
defines a valuation function):

Vp € Pw(p) = > v(t) + My(p) = >_ v(t) + Ma(p) (1)

tep® te®p
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The solution’s space of the constraint system from Eq. (1), Definition 2,
defines an over-approximation of the executions of a workflow net based on
the well-known state-equation [5]: If M, 5 M, then a valuation satisfying
©(N, Mg, M) exists.

Definition 3. Let 0(N) be the following constraint system associated with a
WF-net N = (P,T,F) (£: P — {0,1} defines a valuation function):

-~ VpEPVEE p. Y e, E(P) =2 E(p)
B ZpEP f(p) >0

This second constraint system from Definition 3 allows concluding on the
existence of a siphon—an important structural feature describing a set of places
G C P such that G # () and *G C G*—in a WF-net: IV contains a siphon if and
only if there is a valuation satisfying 8(N). Given a solution of the constraint
system in Definition 2, it is then possible to build a subnet composed of the places
(excluding places ¢ and o) and of the transitions of the modelled execution as
described in Definition 4.

Definition 4. Let N = (P, T, F) be a WF-net, M,, My two markings of N, and
v: PUT — N a valuation satisfying (P, My, My). The subnet sN(v) is defined
as (sP,sT, sF) where:

- sP={pec P\{i,o} | v(p) > 0}
~sT={teT|v(t) >0}
- sF={(a,b) e F|ac (sPUST)Nbe (sPUsT)}

By Theorem 1, the above constraint systems can be combined to model exe-
cutions of a workflow net.

Theorem 1. Let N = (P, T, F) be a WF-net, and M,, My, its two markings. If
there is v : PUT — N such that SAT (p(N, My, My),v) N\UNSAT(6(sN(v)))
AVn € PUT. v(n) <1 then M, % My, and ¥t € T. Oy(0) = v(t).

An execution modelled by the constraint system of Theorem 1 is called a seg-
ment. Further, any execution of a workflow net can be modelled by a succession
of segments as stated by Theorem 2, in which the constraint system is denoted
¢(N, My, My, k), where k is the number of segments composing the execution.

Theorem 2. Let N = (P, T,F) be a WF-net, and M,, My, its two markings.

9 (k)

M, % M, if and only if there exists k € N such that My = My --- Mj, —
My, where My = My, M1 = My and for every i, 0 < i <k, there is v; s.t.
SAT(QD(N, MiniJrl)aVi) AN UNSAT(H(SN(VJ)) AVne P xT. ui(n) < 1.

Our method to verify modal specifications relies on their expression by con-
straints. To build these constraints, for every transition ¢t € T', the corresponding
terminal symbol of the modal formulae is replaced by v(t) > 0, where v is the
valuation of the constraint system. Given a modal formula f € S, C(f,v) is the
constraint built from f, where v is a valuation of the constraint system.
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Theorem 3. Let N = (P, T, F) be a WF-net and (m, M) a modal specification.
The WF-net N satisfies the modal specification (m, M) if and only if:

— there is no v,k € N such that SAT(¢(N, M;, My, k) A —~C(m,v),v), and
— for every f € M, there exist v,k € N such that SAT(¢(N, M;, My, k) A

C(f,v),v).

By Theorem 3, using a fixed K, the K-bounded validity of a modal formula
(i.e. validity of the modal formula over correct executions formed by at most
K segments) can be inferred by evaluating the satisfiability of the correspond-
ing constraint system. Furthermore, it has been shown that for K sufficiently
large the K -bounded validity of a modal formula corresponds to its unbounded
validity [1].

3 Experimental Protocol

This section introduces the experimental protocol designed to evaluate the effi-
ciency and limitations of the compared resolution approaches, i.e. CLP and SMT,
applied to the verification of modal specifications as described in Sect. 2.3.

To empirically assess the scalability and the efficiency of both resolution
methods, and to be able to have convincing clues to compare them as objectively
as possible, we are interested in gathering the following abilities of the methods:

1. To assign a verdict about the (in)validity of the given modal specification;
2. To return such a response as quick as possible (and in an admissible time).

Moreover, to make conclusion and feedback relevant and credible, and to be able
to evaluate reliability as well as scalability of the methods, this information has
to be calculated from a broad range of modal specifications and workflow nets.
Indeed, the type of modal specifications shall be taken into account because,
to conclude about their validity, the verification method may require the com-
putation of the over-approximation of the workflow nets executions or a full
decomposition into segments. The size of the modal formula to be verified is also
important since a larger formula may constrain further the system to be solved.

The proposed experimental protocol thus considers workflow nets of realistic
size by evaluating workflow nets of size up to 500 nodes. Moreover, not only the
size of the workflow nets is considered but also their complexity by evaluating
workflow nets of classes with a growing expressiveness (cf. Sect. 2.1). Therefore,
to experimentally evaluate both resolution approaches over instances of growing
size and complexity, the following parameters are taken into account:

— Class of the workflow nets: e Type of modal specification:
e State machine, e Valid may-formula,
e Marked graph, e Invalid may-formula,
e Free-choice, and e Valid must-formula, and
e Ordinary nets e Invalid must-formula

— Size of the workflow nets: e Size of the modal formula:
e 50 % ¢ where ¢ € {1,..,10} e 5 and 15 literals
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For each combination of the above parameters, a corresponding modal for-
mula and a workflow net are randomly generated. This forms a data set of 320
instances of growing size and complexity. All the evaluations have been per-
formed on three different data sets, i.e. a total of 960 workflow nets and modal
specifications have thus been experimented. Moreover, in order to restrict the
total time needed to perform these experiments, a time-out of 10 min (arbitrary
admissible time) was fixed for each resolution call to the solvers. Finally, all the
executions have been computed on a computer featuring an Intel(R) Xeon(R)
CPU X5650 @ 2.67 GHz.

A complete and mature toolchain able to carry out this experimental protocol
has been developed. To evaluate the constraint systems produced by the method
in Sect. 2.3, this toolchain relies on either Z3 [6] version 4.4.0, an SMT solver,
which finished first during the 2014 SMT-COMP challenge® for solving non-
linear arithmetic problems, or SICStus Prolog [7] version 4.3.2, a CLP solver
which obtained the third place during the 2014 MiniZinc challenge?.

Figures2 and 3 illustrate the encoding used to model the constraints seen
in Sect. 2.3 respectively for the SMT-Lib and Prolog language. The constraints
correspond with the workflow N = (P, T, F') depicted in Fig.1. Let n € PUT,
we use the following conventions: An stands for M, (n), Bn for My(n), Pn for v(n)
when n is a place, Tn stands for v(n) when n is a transition, and Xn stands for
&(n), Min, M2n and M3n stand for M;(n), Ma(n) and M3(n). For example, Tt2
and M2p1 respectively denotes v(¢2) and Ma(pl).

The two next inputs allow to determine, using respectively Z3 and SICStus,
whether there exists a correct execution of the workflow in Fig. 1 made of three
segments such that both t1 and t2 are fired.

1

2 | (define—fun initialMarking ((Ai Int)(Ao Int)(Apl Int)) Bool (and (= Ai 1) (= Ao 0) (= Apl 0)))

3 | (define—fun finalMarking ((Bi Int)(Bo Int)(Bpl Int)) Bool (and (= Bi 0) (= Bo 1) (= Bpl 0)))

4 (define—fun stateEquation (

5 (Ai Int)(Ao Int)(Apl Int)(Bi Int)(Bo Int)(Bpl Int)(Pi Int)(Po Int)(Ppl Int)(Ttl Int)(Tt2 Int)(Tt3 Int)) Bool
6 (and

7 (>= Ai 0) (>= Ao 0) (>= Apl 0) (>= Bi 0) (>= Bo 0) (>= Bpl 0)

8 (>= Pi 0) (>= Po 0) (>= Ppl 0) (>= Ttl 0) (>= Tt2 0) (>= Tt3 0)

9 (= Pi Ai) (= Pi (+ Bi Ttl))

10 (= Po (+ Ao Tt3)) (= Po Bo)

11 (= Ppl (+ Apl Ttl Tt2)) (= Ppl (+ Bpl Tt2 Tt3))))

12 | (define—fun formula ((Ttl Int) (Tt2 Int)) Bool (and (> Ttl 0) (> Tt2 0)))

13 | (define—fun noSiphon (

14 (Ai Int)(Ao Int)(Apl Int)(Bi Int)(Bo Int)(Bpl Int)(Pi Int)(Po Int)(Ppl Int)(Ttl Int)(Tt2 Int)(Tt3 Int)) Bool
15 (not (exists ((Xi Int)(Xo Int)(Xpl Int))

16 (and

17 (> (+ Xi Xo Xpl) 0)

18 (>= Xi 0) (<= Xi 1) (>= Xo 0) (<= Xo 1) (>= Xpl 0) (<= Xpl 1)

19 (=> (or (> Ai 0) (> Bi 0) (= Pi 0)) (= Xi 0))

20 (=> (or (> Ao 0) (> Bo 0) (= Po 0)) (= Xo 0))

21 (=> (or (> Apl 0) (> Bpl 0) (= Ppl 0)) (= Xpl 0))

22 (=> (> Ttl 0) (>= (+ Xi) Xpl)) (=> (> Tt2 0) (>= (+ Xpl) Xpl)) (=> (> Tt3 0) (>= (+ Xpl) X0))))))
23 | (define—fun segment (

24 (Ai Int)(Ao Int)(Apl Int)(Bi Int)(Bo Int)(Bpl Int)(Pi Int)(Po Int)(Ppl Int)(Ttl Int)(Tt2 Int)(Tt3 Int)) Bool
25 (and

26 (stateEquation Ai Ao Apl Bi Bo Bpl Pi Po Ppl Ttl Tt2 Tt3)

27 (noSiphon Ai Ao Apl Bi Bo Bpl Pi Po Ppl Ttl Tt2 Tt3)))

Fig. 2. SMT-Lib code of a segment of workflow

! www.smtcomp.org.
2 www.minizinc.org/challenge.html.
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1 | initialMarking([1, 0, 0]).

2 | finalMarking ([0, 1, 0]).

3 | stateEquation ([Ai, Ao, Apll, [Bi, Bo, Bpll, [Pi, Po, Ppll, [Ttl, Tt2, Tt3]):—
4 domain ([Ai, Ao, Apl, Bi, Bo, Bpl, Pi, Po, Ppl, Ttl, Tt2, Tt3], 0, 10),

5 Pi #= Ai, Pi #= Bi + Ttl,

6 Po #= Ao + Tt3, Po #= Bo,

7 Ppl #= Apl + Ttl + Tt2, Ppl #= Bpl + Tt2 + Tt3.

8 | formula ([Ttl, Tt2]):— Ttl #> 0, Tt2 #> 0.

9 | subnetInit ([Ai, Ao, Apl]l, [Bi, Bo, Bpll, [Pi, Po, Ppll, [Xi, Xo, XplD):—

10 domain ([Xi, Xo, Xpll, 0, 1),

11 (Ai #> 0 #\/ Bi #> 0 #\/ Pi #= 0) #=> Xi #= 0,

12 (Ao #> 0 #\/ Bo #> 0 #\/ Po #= 0) #=> Xo #= 0,

13 (Apl #> 0 #\/ Bpl #> 0 #\/ Ppl #= 0) #=> Xpl #= 0.

14 | siphon ([Ttl, Tt2, Tt3], [Xi, Xo, XplD):—

15 Xi 4+ Xo + Xpl #> 0,

16 Ttl #> 0 #=> Xi #>= Xpl, Tt2 #> 0 #=> Xpl #>= Xpl, Tt3 #> 0 #=> Xpl #>= Xo,
17 labeling ([leftmost , step, upl, [Xi, Xo, Xpll).

18 | noSiphon ([Ai, Ao, Apll, [Bi, Bo, Bpl), [Pi, Po, Ppll], [Ttl, Tt2, Tt3]):—

19 subnetInit ([Ai, Ao, Apl], [Bi, Bo, Bpll, [Pi, Po, Ppl], [Xi, Xo, Xpll),

20 labeling ([leftmost, step, upl, [Ttl, Tt2, Tt3]),

21 \+ siphon ([Ttl, Tt2, Tt3], [Xi, Xo, Xpll).

22 | segment([Ai, Ao, Apl]l, [Bi, Bo, Bpll, [Pi, Po, Ppl]l, [Ttl, Tt2, Tt3]):—

23 stateEquation ([Ai, Ao, Apll, [Bi, Bo, Bpll, [Pi, Po, Ppll], [Ttl, Tt2, Tt3]),
24 noSiphon ([Ai, Ao, Apll, [Bi, Bo, Bpll, [Pi, Po, Ppll], [Ttl, Tt2, Tt3])

Fig. 3. Prolog code of a segment of workflow

(assert (initialMarking M1i Mlo M1pl))

(assert (finalMarking M3i M3o M3p1))

(assert (formula (+ T1t1 T2t1 T3t1) (+ T1t2 T2t2 T3t2)))

Z . . (assert (segment M1li Mlo M1pl M2i M2o M2pl P1li Plo P1pl T1tl T1t2 T1t3))
3 IHPUt~ (assert (segment M2i M2o M2pl M3i M3o M3pl P2i P20 P2pl T2t1 T2t2 T2t3))

(assert (segment M3i M3o M3pl M4i M4o M4pl P3i P3o P3pl T3tl T3t2 T3t3))

(check—sat—using smt)

(get—model)

initialMarking ([M1i, Mlo, M1p1]),

finalMarking([M4i, M4o, M4p1]),

SICS . . segment([M1i, Mlo, M1pl], [M2i, M2o, M2p1], [P1li, Plo, P1pl], [T1t1l, T1t2, T1t3]),
tus input: segment ([M2i, M20, M2p1], [M3i, M3o, M3p1], [P2i, P20, P2pl], [T2t1, T2t2, T2t3]),

segment ([M3i, M3o, M3p1], [M4i, M4o, M4p1], [P3i, P30, P3p1], [T3t1, T3t2, T3t3]),

S1 #= T1tl 4+ T1t2, S2 #= T2t1 + T2t2, formula([S1, S2]).

Both solvers give the following interpretation for the three segments:

1 | Mli= 1, Mlo= 0, Mipl = 0, M2i = 0, M2 = 0, M2pl = 1, M3i = 0, M3o = 0, M3pl = 1, M4i = 0, Mdo = 1, Mépl = 0,
2 | Pli=1, Plo=0, Plpl = 1, P2i = 0, P20 = 0, P2pl = 2, P3i = 0, P3o = 1, P3pl = 1,

3 | Titl = 1, T1t2 = 0, T1t3 = 0, T2tl = 0, T2t2 = 1, T2t3 = 0, 3tl = 0,

4 | T3t2 = 0, T3t3 = 1

These segments are given in Fig. 4, starting (resp. ending) in the initial (resp.
final) marking where only the input place i (resp. output place o) is marked.

‘ t, o
® ©,

ty Py Py Py ty

Fig. 4. The three segments of execution proposed by both solvers

Finally, let us precise that multiple combinations of labelling heuristics have
been experimented when using SICStus. Though some of them may marginally
improve the results on specific workflows, none was found to significantly and
generally improve all results. Therefore, all the experiments have been conducted
with the default options (i.e. [Lleftmost, step, up|). However, when using Z3,
since the SMT tactic improved all results, this strategy has always been used.
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4 Results and Feedback from Experiments

This section presents the experimental results obtained using the dedicated tool
applying the protocol introduced in the previous section. To provide relevant
feedback regarding the initial challenges given in Sect.1, the obtained results
are discussed by distinguishing two different categories of modal specifications:

— May-valid and must-invalid specifications;
— May-invalid and must-valid specifications.

Note that the algorithm given in Sect. 2.3 is applied to all generated workflows
and specifications, no matter what type of specification is being verified. Thus,
our implementation first checks if an over-approximation is sufficient to conclude
about the validity or the invalidity of a specification and, only if it is not the
case, computes an under-approximation before concluding. Indeed, using the
verification algorithm given in Sect. 2.3, most may-valid and must-invalid modal
specifications can be verified by using only an over-approximation of correct
executions of the workflow. This over-approximation is less complex than the
under-approximation that must very often be computed to verify may-invalid
and must-valid modal specifications.

In this context, even though may-valid and must-invalid specifications express
two different behaviours (i.e. a may-valid specification is not necessarily a must-
invalid specification), most of the specifications of this category may only require
the computation of over-approximations of correct executions of the workflow.
On the contrary, even though may-invalid and must-valid specifications express
two opposite behaviours (i.e. a may-invalid specification is never a must-valid
specification and vice versa), most of these specifications often require the costly
computation of under-approximations of correct executions.

We also categorise the results according to the different classes of workflow
nets considered in our experimental protocol. The average execution times given
in the following subsections have been computed without considering time-outs.
Thus, since time-outs may have occurred, similar average execution times do not
always induce similar performances from both solvers. Nonetheless time-outs are
stated an discussed separately. Finally, for clarity, all time-outs and singularities
have been withdrawn from the plots but systematically taken into account in
our feedbacks. The interested reader can also study the complete data sets and
results given at https://dx.doi.org/10.6084/m9.figshare.2067156.v1.

Tables 1, 2, 3 and 4 summarize the average verification times, number of
time-outs as well as the overall appreciation of the results obtained over the
different studied workflow net classes. Figures5, 6, 7, 8, 9, 10, 11 and 12 depict
the plots displaying the verification times spent by SICStus and Z3 for each class
of workflow nets and types of modal specifications.

The next subsections comment on these obtained results and indicate the
most important feedback for each class of workflow nets.
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4.1 Observation from State-Machine Workflow Nets Verification

May-Valid and Must-Invalid Specifications. Both solvers were able to con-
clude in a comparable and reasonable time. On average, Z3 execution time
was 332 ms whereas SICStus execution time was 704 ms. However, despite good
results for both solvers, it should be noted that 49.2 %(59/120) of SICStus exe-
cutions did not finish within 10 min, while Z3 did not suffer from any time-outs.
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Fig. 5. State-Machine - May-Valid and Must-Invalid modal specifications

Must-Valid and May-Invalid Specifications. Both solvers were able to con-
clude in a reasonable time. On average, Z3 execution time was 79 ms whereas
SICStus execution time was 43803 ms. These results clearly show that Z3 per-
forms better than SICStus on this type of modal specifications. Moreover, it
should be noted that 85.8 %(103,/120) of SICStus executions did not finish within
10 min, whereas Z3 did not suffer from any time-outs. Indeed, SICStus was not
able to conclude about workflow nets of size greater than 250.
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Fig. 6. State-Machine - Must-Valid and May-Invalid modal specifications

Synthesis. Over the class of State-Machines we conclude that SICStus is clearly
overwhelmed due to the high number of choice points arising from the structure
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of state-machine workflow nets of size greater than 100 nodes. We conclude from
these results that the SMT approach seems to be more suited for the modal
specifications verification over State-Machine workflow nets.

4.2 Observation from Marked-Graph Workflow Nets Verification

May-Valid and Must-Invalid Specifications. Both solvers were able to con-
clude in a reasonable and comparable time. On average, Z3 execution time was
635 ms whereas SICStus execution time was 767 ms. It should also be pointed
out that for large sized Marked-Graph workflow nets (greater than 400 nodes)
SICStus performs slightly better than Z3.
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Fig. 7. Marked-Graph - May-Valid and Must-Invalid modal specifications

Must-Valid and May-Invalid Specifications. Both solvers were able to con-
clude in a reasonable and fairly comparable time. On average, Z3 execution time
was 108 ms whereas SICStus execution time was 415 ms. Besides, notice that,
for this type of modal specifications, Z3 performs slightly better than SICStus.
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Synthesis. Over the class of Marked-Graph, we can conclude that SICStus and
Z3 performs similarly. However SICStus seems to perform better when verifying
May-Valid and Must-Invalid specifications while Z3 seems to perform better
when verifying Must-valid and May-Invalid specifications. A further investigation
has shown that, in general, Z3 is more effective than SICStus for the computation
of the over-approximation used by the verification method, while SICStus is
more effective than Z3 for the computation of the segments needed to conclude
whenever the over-approximation is not sufficient.

4.3 Observation from Free-Choice Workflow Nets Verification

May-Valid and Must-Invalid Specifications. Both solvers were able to con-
clude in a reasonable and comparable time. On average, Z3 execution time was
396 ms whereas SICStus execution time was 842ms. Beyond these conclusive
results for both solvers, it is important to underline that 25 %(30/120) of SICS-
tus executions did not finish within 10 min, whereas Z3 did not suffer from any
time-outs.
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Fig. 9. Free-Choice - May-Valid and Must-Invalid modal specifications

Must-Valid and May-Invalid Specifications. Over this type of modal spec-
ifications, Z3 clearly performs better than SICStus. On average, Z3 execution
time was 90 ms, while SICStus execution time was 45512 ms. We also note that
62.5 %(75/120) of SICStus executions did not finish within 10 min, whereas Z3
did not suffer from any time-outs. After investigation, these results stem from
the fact that the verification of such modal specifications mostly relies on the
results of an over-approximation for which Z3 performs far better off.

Synthesis. Over the class of Free-Choice workflow nets, we observe that 73
performs better than SICStus. We thus conclude from these obtained results
that the SMT approach seems to be more suited for the modal specifications
verification over Free-Choice workflow nets.
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Fig. 10. Free-Choice - Must-Valid and May-Invalid modal specifications

4.4 Observation from Ordinary Workflow Nets Verification

May-Valid and Must-Invalid Specifications. Both solvers were able to con-
clude in a reasonable and comparable time. On average, Z3 execution time was
985 ms whereas SICStus execution time was 10634 ms. Besides these results,
it should be underlined that 58.3 %(70/120) of SICStus executions and that
32.5%(39/120) of Z3 executions did not finish within 10 min.
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Fig. 11. Ordinary - May-Valid and Must-Invalid modal specifications

Must-Valid and May-Invalid Specifications. Both solvers were able to con-
clude in a reasonable time. On average, Z3 execution time was 107 ms whereas
SICStus execution time was 7717 ms. Despite these conclusive results for both
solvers, it is important to note that 58.3 %(70/120) of SICStus executions did
not finish within 10 min, whereas Z3 did not suffer from any time-outs. As for
the previous classes, Z3 indeed performs better than SICStus to compute the
over-approximation constraints, which were often sufficient to conclude.

Synthesis. Over the class of ordinary workflow nets, we observe that Z3 per-
forms better than SICStus, especially when verifying Must-valid and May-Invalid
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Fig. 12. Ordinary - Must-Valid and May-Invalid modal specifications

specifications. We can thus conclude from these results that the SMT approach
seems to be more suited for the modal specifications verification over ordinary
workflow nets. The next section summarizes the lessons learned and the benefits
noticed from these experiments according to the initial challenges.

4.5 Lessons Learned from Experience

Scalability. On the basis of the results, we can confidently state that the ver-
ification method proposed in [1] is scalable in terms of modal specification and
workflow net complexity, as well as regarding their size (up to at least 500 nodes).

Efficiency. The developed implementation of the method proposed in [1] and
the underlying constraint solvers (i.e. Z3 and SICStus) have shown to be very
efficient for the intended verification computation. Indeed, the toolchain was
always able to conclude about the validity of modal specification over workflow
nets of growing size and complexity within the alloted time of 10 min (for each
constraint system to solve, at least one resolution method was indeed able to
assign a verdict, and furthermore within only few seconds in almost all cases).
Furthermore, we observed that memory usage does not seem to be a limiting
factor because, for the biggest instance of workflow verification, the memory
usage for SICStus and Z3 was less than 350 MB.

SMT vs CLP. According to these experiments, we can infer that the SMT
approach (computed using Z3) generally performs significantly better than the
CLP one (computed using SICStus). However, they also highlight that the CLP
approach performs better, especially when verifying modal specifications over
Marked-Graph workflow nets. We indeed observed that the CLP approach is less
efficient than the SMT approach when the number of choice points increases as
shown by the results over State-Machine workflow nets. It stems from the labeling
done after constraints propagation by CLP solvers: an exponential number of
backtracking steps may occur w.r.t. the number of pending choice points.
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5 Related Work and Conclusion

On Workflow Nets Verification. Verifying properties over business processes
has been widely investigated using Petri-net-based approaches. Among them,
workflow nets constitute a suited class for modelling business process [4]. Thus,
approaches and tools [1,8,9] have emerged to verify properties over these work-
flow nets and, as a consequence, over the processes they model. However, regard-
ing verification of such WF-nets, the reachability problem, proved to be an
EXPSPACE problem in [10], is the key problem that all approaches are fac-
ing.

Regarding verification methods, some research results have also been pro-
posed to express and verify properties against a given system. Let us quote [11]
where the expression of properties with modalities is investigated for automata,/-
transition systems, and also [12] where they are studied for Petri nets. In this
context, the great expressiveness of modalities makes them popular and relevant
for precisely describing a possible or necessary behavior over a system.

Using Constraint Solving for Verification. Formal verification methods
based on constraints solving have been studied intensively, with most concrete
implementations using the SMT or CLP approaches. On the one hand, for exam-
ple, SMT has been used in [13] for checking the reachability of bounded Petri
nets, as well as in [14] for verifying properties of business processes where exe-
cution paths are modelled as constraints. On the other hand, CLP has been
also extensively experimented to verify business processes [15] as well as Petri
nets [9]. In a very similar way, a CLP approach has been used in [16] to detect
the presence of structures potentially leading to deadlocks in Petri nets. The
present paper has the originality to compare SMT and CLP resolution methods.

Conclusion. This paper has compared the SMT and CLP approaches to verify
modal specifications over WF-nets using constraint solving. For this purpose,
an experimental protocol has been designed and a mature toolchain has been
developed. Using the obtained experimental results over four classes of nets
with particular features, we have empirically demonstrated that the verifica-
tion method is efficient and scalable over workflow nets of size at least up to 500
nodes. In general, the SM'T approach performs significantly better than the CLP
approach, except when verifying modal specifications over conflict free workflow
nets, i.e. Marked-Graphs. As a future work, we plan to apply our approach to
real-life industrial workflows to confirm its efficiency, and to investigate innov-
ative strategies mixing both SMT and CLP methods in order to embrace the
benefits from each of them, and to take advantage of the potential synergy.
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Abstract. VeriFast is a sound modular formal verification tool for C
and Java programs. Based on separation logic and using symbolic exe-
cution, VeriFast can verify not only memory safety of programs but also
full functional correctness. Formal verification is a powerful way of ana-
lyzing code, but not yet widely used in practice. Source code has to
be annotated with formal specification mostly in the form of function
preconditions and postconditions. In this paper, we present Automated
VeriFast which is a new extension or an automation layer that lies on top
of VeriFast that, given a partially annotated program, offers to attempt
to incrementally improve the annotations, e.g. by inferring a fix to the
specification of a program fragment that fails to verify. Our thesis is that
such small, interactive inference steps will have practical benefits over
non-interactive specification inference approaches by allowing the user
to guide the inference process and by being simpler and therefore more
predictable and diagnosable.

Keywords: Annotations inference - Program verification - Separation
logic

1 Introduction

VeriFast [1], a sound modular verifier for C and Java programs, accepts programs
annotated with function preconditions and postconditions written in separation
logic [2,7] and verifies the correctness of the code with respect to these annota-
tions.

Separation logic allows VeriFast to formally prove some properties of pro-
grams that were not easy to be proven before, in particular those properties
related to pointer manipulations and the heap. However, the process of writing
formal annotations makes the verification of real large applications not an easy
task. Time and experience in the field of formal methods are required to pro-
vide such annotations which become sometimes more complex than writing the
source code itself. This motivates the idea of inferring programs’ specifications
and automating the process of writing the formal annotations. Of course, it is
crucial that the user checks that the generated top-level specifications match the
program’s requirements. Internal specifications need not to be checked.
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The Contributions. The contribution of this paper is presenting Automated
VeriFast which creates an interactive framework in which VeriFast has more
automation capabilities that allow users to choose for auto-generating predicates
and auto-fixing verification faults detected by VeriFast. The current approach
supports some simple linked list patterns, but can be generalized in the future
to include more complex data structures, such as doubly linked lists, trees, etc.

2 Architecture

Automated VeriFast is a new extension or an automation layer that lies on
top of VeriFast verification layer. This new automation layer does not affect in
anyway the verification core of VeriFast. This separation ensures that VeriFast’s
soundness is not affected.

When the user invokes the auto-fix feature after a verification failure, Auto-
mated VeriFast takes the verification error message and the symbolic path con-
taining the symbolic states encountered in this path combined with the heap
and the stack store in each state as an input. This input is the output of the
VeriFast Verification layer.

VeriFast is focused on fast verification, expressive power, and the ability to
diagnose errors easily rather than on automation [1]. To accomplish this, VeriFast
provides an IDE that facilitates the verification process by allowing users to use
the symbolic debugger in the IDE to diagnose verification errors and inspect the
symbolic state at each program point.

The user interface of Automated VeriFast is the same except that there are
two new buttons in the interface which trigger the new functionalities. One but-
ton is for generating the predicates; it should be pressed only once at the begin-
ning of the verification process. The other button is for auto-fixing a verification
failure.

Automated VeriFast follows the iterative incremental approach described in
[5] to simulate the same manual verification process that normally users of Ver-
iFast follow in solving verification errors. We could put the implementation of
the auto-fix within a loop, so one press of auto-fix would either solve all the ver-
ification errors at once or stop in a state where an error can’t be automatically
solved and a manual intervention is required. We did not do that to allow the
user to manually intervene at any time in the verification process.

3 An Inner Look at Automated VeriFast

In this section, we describe how Automated VeriFast works in more depth. As
mentioned above, there are two new functionalities that have been added to
normal VeriFast. The first is automatically generating predicates and the second
is auto-fixing errors.
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3.1 Auto-generating Predicates

A predicate is a named, parameterized assertion [3]. In normal manual verifica-
tion cases, users define predicates based on their understanding of the different
data structures used within the code. Predicates can be considered as a kind of
data abstraction where related data can be encapsulated together in one entity
which can be decapsulated later when the data is needed. Moreover, to describe
a data structure, such as a linked list or a tree, users of VeriFast have to define
recursive predicates which can invoke themselves.

We started in Automated VeriFast by supporting only some simple linked
list patterns as a first step. Automated VeriFast generates a predicate for each
struct, not only for recursive data structures. Consider you have the following
four structs, in Fig. 1, that are part of an implementation of a banking system.

struct bank { struct user_account {
int user_account__count; struct user__account *xnext;
struct user__account kuser_accounts; char xuser_name;
int bank_account_count; char xpassword;
struct bank_account xbank_accounts; int is_teller ;

H char xreal_name;
struct bank_account { ;

;
struct bank_account xnext; struct transaction {

char xid; struct transaction sknext;

struct user_account xowner; char xcounterparty_bank_account_id;
int balance; int amount;

int transaction_count; char xcomment;

struct transaction x* transactions ; }

Fig. 1. Banking system structs

Automated VeriFast will generate a predicate for each struct that appears in
Fig. 1. For example, user_account is a struct representing a linked list where each
node of the list represents one account containing data fields and a pointer to
the next account. Automated VeriFast will automatically generate a predicate
for the user_account struct that looks like:

/*@ predicate user_account (struct user_account skuser_account; int count) =
user_account == 0 ? count ==0:

user_account—>next |—> 7next &*&
user_account—>user_name |—> ?user_name &x*& string(user_name) &*&
user_account —>password | —> ?password &+& string(password) &+&
user_account— > is_teller |—> 7is_teller &x&
user_account—>real_name |—> ?real_name &x& string(real_-name) &*&
malloc_block_user_account (user-account) &:*&
user_account(next, ?countl) &*& count == countl + 1 &=*& count > 0;

Qx/

This predicate takes two parameters. The first is a pointer to the head of
the list; the second represents the length of the linked list. The predicate’s body
has a call to itself which is user_account(next, ?countl) that represents the tail
of the list encapsulated in a predicate of the same type. The ?countl is a fresh
variable denoting some unknown value representing the length of the list’s tail.
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1| struct bank {
2 /*@ owns @x/ struct user_account %user_accounts;

int user_account_count /#@ counts user_accounts ©@x/;
4 /*@ owns ©@x/ struct bank_account xbank_accounts;

int bank_account_count /+@ counts bank_accounts ©@x/;

Fig. 2. Bank struct with ownership annotations

The user_account predicate is generated without any input from the user,
but in some cases, Automated VeriFast requires some hints from users to cor-
rectly auto-generate predicates. Users may be required to define some rules
of ownership between different structs. As we can see in Fig. 1, a struct bank
instance owns the linked list of struct wser_account instances pointed to by
its field user_accounts. It also owns the linked list of bank_account instances
pointed to by its field bank_accounts. Furthermore, it has two counters that rep-
resent the length of both linked lists it owns, namely user_account_count and
bank_account_count. On the other hand, a struct bank_account instance doesn’t
own the linked list of struct user_account pointed to by its field owner of type
user_account within its body.

The user can define the ownership relations within the bank struct as illus-
trated in Fig. 2 where owns and counts are new keywords that clarify the owner-
ship relations between structs and allows Automated VeriFast to generate pred-
icates automatically.

3.2 Auto-fixing

Using VeriFast, both memory safety and full functional correctness of applica-
tions can be verified. Therefore, Automated VeriFast was implemented to expect
two kinds of errors. The first is memory errors, such as illegal access, buffer
overflow, memory leaks, and null pointer dereference; the second is functional
correctness errors.

VeriFast supports modular formal verification which means that each func-
tion is verified separately and, in case of function calls, VeriFast uses only the
callee’s contract not its body. To support such modularity, VeriFast implements
the frame rule introduced in separation logic which states that while reason-
ing about a behaviour of a command, it is safe to ignore memory locations not
accessed by this command. This allows VeriFast to divide the large heap into
small heaplets based on functions’ contracts. This concept of locality ensures
that any function starts with a heap consisting of what is asserted in the func-
tion precondition, which should be taken from the global heap, and at the end of
the function the resources asserted by the postcondition will be consumed and
returned to the global heap.

From Automated VeriFast’s point of view, this facilitates the generalization
of all memory errors into two categories: something is needed from the heap,
but it doesn’t exist in the local heap; something exists in the local heap, but
it is not needed. Taking the error message, produced by VeriFast, with other
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parameters, such as the state of the heap when the error occurred, the stack,
the execution context, and the assumptions made out of the specification so
far, Automated VeriFast tries to find a solution by generating an annotation.
Automated VeriFast can only produce annotations. It doesn’t make any changes
in the source code. If Automated VeriFast fails to produce any more annotations
and the program is not yet successfully verified, then there is either the need for
a manual intervention from the user or it may be the case that there is an error
in the written code and it can’t be verified.

Moreover, Automated VeriFast works on detecting the changes happening to
the length of the linked lists in order to infer not only memory specification but
also some of the functional properties of linked lists.

4 Automated VeriFast by Examples

In this section, we present some examples of using Automated VeriFast to infer
formal annotations for some programs manipulating linked lists.

4.1 Stack Example

The stack example describes how Automated VeriFast successfully infers formal
annotations for some functions that are part of the stack implementation. The
Implementation of the stack mentioned in this paper contains two structs. The
node struct contains a pointer field of its own type node that points to the next
node and it also contains an int value; the stack struct only contains a pointer
of type node pointing to the head node. See Fig. 3.

Users just need to add the owns keyword before the struct node *head in the
stack struct. The predicates shown in Fig.3 will be automatically generated in
the source code before the structs.

The generated predicates are precise. Precise predicates in VeriFast are sim-
ilar to precise assertions in separation logic in the sense that for any heap, given
a list of input arguments, there is at most one combination of a subheap and

1| struct node /%@

2 | { predicate stack (struct stack sstack; int count) =
struct node *next; stack—>head |—> ?head &*&
int value; malloc_block_stack(stack) &*&

node(head, count) &x& count >= 0;

struct stack

predicate node (struct node *node; int count) =
struct node xhead; node == 0 ? count == 0 :
o |} node—>next |—> 7next &*&
node—>value |—> ?value &*&
malloc_block_node(node) &*&
node(next, 7countl) &*&
count == countl + 1 &*& count > 0;
©x/

0

Fig. 3. The node and stack structs are on the left and the auto-generated predicates
are on the right
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a list of output arguments that satisfies the predicate. Precise predicates are

declared in VeriFast by writing a semicolon instead of a comma between input

parameters and output parameters in the predicate’s list of parameter.
Automated VeriFast uses precise predicates mainly for two reasons:

— In general, VeriFast requires the user to insert ghost commands to replace a
predicate occurrence by its definition (which is called opening the predicate)
or vice versa (called closing the predicate). If a precise predicate is included
in the postcondition, VeriFast tries to automatically open and close it.

— Precise predicates cause VeriFast to infer the predicate’s output parameters
which helps a lot in proving the functional correctness.

Moving to the use of the auto-fix functionality, verifying the stack_push func-
tion, appears in Fig. 4, using VeriFast, where both precondition and postcondi-
tion have empty heaps, raises an error in line no. 7 where VeriFast tries to access
the head field of the stack while no heap chunk representing this field exists in
the heap.

I | void stack_push(struct stack *stack, int value)
2 //@ requires true;
3 //@ ensures true;

5 struct node #n = malloc(sizeof (struct node));
6 if (n ==0) { abort(); }

7 n—>next = stack—>head;

8 n—>value = value;

9 stack—>head = n; }

Fig. 4. Push functions

Automated VeriFast solves the error by adding an annotation that represents
the stack and its fields encapsulated in a stack predicate in the precondition of the
function. If an error is produced during the verification of a call of this function,
then the responsibility will be on the caller not the callee. This preserves the
compositional nature of VeriFast and hence Automated VeriFast.

With the new added annotation, VeriFast will next fail to verify the function
with a memory leak error and a heap h consisting of node n and stack stack. To
overcome this error, the node fields will be encapsulated into a predicate node
and then encapsulated with the stack’s fields into a stack predicate. Finally this
stack predicate will be added to the postcondition of the function. The final
contract of the function will be as following:

//@ requires true &x*& stack(stack, ?count);
//@ ensures true &sx*& stack(stack, count + 1);

The Zcount is a fresh variable denoting some unknown value representing the
length of the stack. Automated VeriFast was able to figure out that the length
of the stack increased by one as can be seen in the postcondition.
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4.2 Bank Example

The source code of the Bank example is 397 line of code. Automated VeriFast
was able to provide annotations for the bank example, excluding the loop invari-
ant annotations, with very few interventions from the user. We will show some
examples of these required interventions. Look at the following function:

I | void socket_write_transactions_helper2 (struct socket xsocket, int count, struct transaction

* transactions )
2 | //@ requires true &=& transaction(transactions,?countl) &=& countl > 0 &*& socket(socket);

3 | //@ ensures true &x*& transaction(transactions,count) &x*& socket(socket);
|

Automated VeriFast was able to generate the shown pre/post-condition. The
user needs to change the countl > 0 condition in line 2 in the precondition and
writes instead count! == count and the function will be verified successfully.

Another example is the following function where the post-condition, auto-
generated by Automated VeriFast, has to be slightly modified by the user to be
successfully verified:

I | struct authenticate_result = authenticate_user (struct user_account xuserAccounts, char xuserName,
char spassword)

> | //@ requires true &s*& user_account(userAccounts,?count0) && stringl(userName) &*&
string1(password);

3 | //@ ensures true &x*& stringl(userName) & & stringl(password) &*&
user_account(userAccounts,count0) &:& authenticate_result(result);

if (userAccounts == 0) {
return 0;

To successfully verify this function, the user has to put the last part of the
post-condition authenticate_result(result) within a conditional statement like the
following: (result == 0 ? true : authenticate_result(result)). Other than these
kinds of possible interventions everything else is almost auto-generated except
for the loop invariant which still needs to be manually provided.

5 Related Work

Infer [4,8,10] is a static analysis tool based on separation logic. It performs a deep
heap shape analysis. Infer is able to automatically generate pre/post-conditions,
but it focuses on detecting only memory errors, ignoring still a wide range of
other possible functional errors. Our approach is different than the one followed
by Infer. We don’t claim to compete with it as we don’t have a static analysis
tool, but rather an automated verification tool. Static analysis tools’ main goal
is to find bugs, but our goal is to verify code.
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Some work that was already done with VeriFast to gain some automation
capabilities can be found in [5]. Automated VeriFast uses from this work the
auto-open and the auto-close, but it has more functionalities, such as auto-
generating predicates and inferring both the precondition and the postcondition.

Another work that shares the same aim which is inferring annotations auto-
matically for VeriFast, but with a different way of approaching that is presented
in [6]. They are using machine learning and dynamic analysis to capture some
behaviours of programs that allow them to automatically generate annotations
and feed it to VeriFast. Using dynamic analysis may end up giving good results
regarding the shape of data structures, but it is still a headache for users to gen-
erate test suites whose quality will definitely affect the results of the dynamic
analysis.

6 Conclusions and Future Work

The goal of our work is not to completely eliminate the need for user effort, but
to reduce the annotation effort required as much as possible. In this paper, we
presented Automated VeriFast which creates a framework in which the user can
use the auto-generate predicates and the auto-fix functionality to solve verifi-
cation errors, choose to write his own annotations manually, or combine both
automation with his experience in writing formal annotations.

The current approach of Automated VeriFast supports some simple linked list
patterns in which the linked list can be manipulated by adding or removing nodes
to and from the list. We are working now on extending it to support additional
patterns. We will work also on inferring the loop invariants. Furthermore, we
will focus on inferring more specifications that prove functional correctness for
more complex applications. The source code of Automated VeriFast is available
at [9].
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Abstract. Bounded model checking (BMC) with satisfiability modulo
theories (SMT) is a powerful approach for generating test cases or find-
ing bugs. However, it is generally difficult to determine an appropriate
unrolling bound k£ in BMC. An SMT formula for BMC might be unsat-
isfiable because of the insufficiency of k. In this paper, we propose a
novel approach for BMC using partial maximum satisfiability, in which
the initial conditions of state variables are treated as soft constraints.
State variables whose initial conditions are not satisfied in the solution
of a maximum satisfiability solver can be regarded as bottlenecks in
BMC. We can simultaneously estimate modified initial conditions for
these bottleneck variables, with which the formula becomes satisfiable.
Furthermore, we propose a method based on dual slicing to delineate
the program path that is changed when we modify the initial conditions
of the specified bottlenecks. The analysis results help us to estimate a
suitable unrolling bound. We present experimental results using exam-
ples from the automotive industry to demonstrate the usefulness of the
proposed method.

1 Introduction

The technique of bounded model checking (BMC) has a wide area of applications
in program analysis, including formal verification, bug finding, and test-case
generation. In BMC, the behavior of a program is expressed as a propositional
formula under the assumption that each loop in the program is executed at most
k times. We refer to k as an unrolling bound. The satisfiability of the formula is
then checked using a satisfiability (SAT) or satisfiability modulo theory (SMT)
solver. Large programs can be practically dealt with in the scheme of BMC by
virtue of the recent progress in SAT/SMT solving techniques.

One of the major concerns in applying the BMC approach is how to deter-
mine the unrolling bound k. Satisfiability solvers return unsatisfiable if k is too
small. On the other hand, the computation time for solving the satisfiability
problem increases as k becomes larger. Moreover, there is a possibility that the
formula is unsatisfiable regardless of the value of k. In other words, the formula
is unsatisfiable even if k is set to an infinitely large value. A common approach
for this problem is to start with a small k, and then gradually increase k until
the formula becomes satisfiable, or until k& reaches the predefined maximum or
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the computation runs into the timeout limit [15,17]. Such a strategy works well
when the required value of k is relatively small, though the computation time
becomes a problem when a large k is required. Furthermore, we never reach the
conclusion that the formula is unsatisfiable regardless of k.

In this paper, we propose a novel method to analyze the unsatisfiability
issue in BMC. The analysis results help us to estimate an appropriate unrolling
bound k, or enable us to argue that the formula is unsatisfiable regardless of the
value of k for a particular class of problems. Let us consider the situation in which
a formula becomes unsatisfiable in BMC. In the proposed method, we first apply
a partial maximum satisfiability solver in which clauses that are related to the
initial conditions of state variables are regarded as soft constraints. As a result, a
set of initial conditions is specified as a potential cause of unsatisfiability. At the
same time, candidate values for state variables in these initial conditions are also
estimated by the maximum satisfiability solver. We then prepare a program in
which the initial conditions are modified to the estimated ones. Dual slicing [19]
is applied to programs with and without the modifications to investigate why
the formula becomes satisfiable with the modified initial conditions.

We explain the proposed method using typical examples from embedded con-
trol software, for which selecting a proper unrolling bound is often of great con-
cern when applying the BMC approach. There are many applications of BMC for
embedded systems, such as unit testing [9], test-case generation [5,15], and muta-
tion testing [2]. The required unrolling bound tends to be very large when the
embedded control software includes state variables that correspond to counters.
Counter variables are often used in embedded control software, e.g., to manage
shifts between different control modes. A counter can be increased, decreased,
reset, or left unchanged depending on the input signals and current states of
the system. The control mode is switched to another mode when the value of
the counter exceeds a predefined threshold. Another example of counter usage
is to capture errors based on the duration of unexpected system behavior. For
example, “the system catches an error if the engine speed is less than 500 rpm
for 3 seconds,” in which a counter is used to represent the duration of the state
whereby the engine speed is less than 500 rpm. Another factor that makes the
required unrolling bound in BMC large is discrete-time integrators, which is
often used in control logic, whose values might change only gradually.

The remainder of this paper is organized as follows. In Sect. 2, we present an
overview of BMC for embedded control software and a motivating example. In
Sect. 3, a method for analyzing unsatisfiability in BMC using maximum satisfi-
ability is proposed. In Sect. 4, we introduce a dual slicing method for analyzing
the results obtained by a maximum satisfiability solver. In Sect.5, we present
a case study based on a practical example from the automotive industry. In
Sect. 6, we review existing methods related to our work in this paper. Finally,
we conclude the paper in Sect. 7.
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2 Background and Motivating Example

In this section, we first review BMC for embedded control software, and then
present a motivating example.

2.1 Bounded Model Checking for Embedded Control Software

Embedded control systems are generally time-triggered systems in which tasks
or procedures are repeatedly executed at given rates. Figure 1 illustrates an out-
line and the pseudo-code for embedded control systems. A salient feature of
embedded control software is its limitless main loop. Generally, all other loops
in the main loop have statically bounded iterations and can be fully unrolled in
BMC. Therefore, the unrolling bound k£ in BMC for embedded control software
implies an assumption on the number of main loop iterations.

Let v(9) be a vector of all variables in the software at the j-th iteration of the
main loop, including input, output, and state variables. The following formula
is used when applying BMC to embedded control software:

bp(v):=1 (v(0)> A /\ T (v(jfl),v(j)) A —P (v(0)7 ... ,v(k)> , (1)

Jj=1,..,

where v = (v(®,...,v(®).In (1), I denotes the initial condition of state variables
and corresponds to the initialize function in Fig. 1b, T denotes the transition
relation that is consistent with the procedure in the main loop, and P represents
a property to be proved. The satisfiability of @, is checked using a SAT or SMT
solver. If @y is satisfiable, a counterexample for which the property P does not
hold can be found. In contrast, if @ is unsatisfiable, there is no counterexample
that violates P up to the k-th iteration of the main loop. Note that we use R
instead of =P in (1) for the purpose of test-case generation, where R represents
a requirement that the generated test case must satisfy. The result that “@ is
satisfiable” then indicates that a test case that satisfies R has been successfully
generated.

void main() {
states s; inputs i; outputs o;
initialize(s);

(Trigger)—‘l' while(true) { // main loop
Inputs N Outputs . .
—_ — > i = read_inputs();
: Main Procedure : (ofs) = procedure(i,s);
L ) write_outputs(o);
| oo , | wait(); // wait for trigger
: States }
}
(a) Outline (b) Pseudo-code (from [15])

Fig. 1. Embedded control software.
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2.2 Example Model with a Counter

Simulink® [18] is a graphical programming tool that is often used to develop
embedded control software in the automotive and avionics industries. Figure 2
shows an example of some embedded control software written as a Simulink®
model. Although small, this model can reflect the essential difficulties in applying
BMC. The model in Fig. 2 has five inputs and two outputs, all of which are of
Boolean type. In executing a Simulink® model, the whole model is executed
repeatedly, which corresponds to the main loop in Fig. 1b. The unit-delay block
outputs the value that was input to the block in the previous execution, and
therefore works as a state variable. The initial value of the unit-delay block is
used as the first output. Setting the state variable of a unit-delay block to its
initial value corresponds to the initialize function in Fig. 1b, and is therefore
represented as I in (1).

The model in Fig. 2 includes two unit-delay blocks, Unit Delay A and Unit
Delay B, both of which are initially set to 0. Hence, the model has two state
variables. The state variable contained in Unit Delay A is used as a counter in
the model. The counter is incremented up to 10000 if either Inl or In2 is true,
and is reset to 0 if either In3 or In4 is false in each execution of the model. The
model output depends on whether the counter value exceeds a threshold of 5000
(see Fig.2). Such counters are frequently used in embedded control software,
e.g., to manage shifts between control modes or to detect errors based on the
duration of unexpected behavior, as mentioned in Sect. 1. The threshold value
can be extremely large in practical embedded control software.

2.3 Motivation

We first consider the problem of generating a test case for the model in Fig. 2
such that Outl will finally be true. Applying the BMC approach to this problem,
@, becomes unsatisfiable for k < 5000, and we fail to generate a test case. If we

aO—
Ini OR In5 1
O 1
In2 z

Unit Delay B
InitValue=0 AND

Count Up
N\ min Reset Counter Outt
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Fig. 2. Simulink® model with a counter.
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use k > 5000, @, becomes satisfiable and a test case is successfully generated.
Next, let us consider the problem of generating a test case for the same model
such that Out2 will finally be true. In fact, it is impossible to generate such a
test case, and @y, is therefore unsatisfiable regardless of the value of k. These
examples raise the following challenges in BMC, in which “test case” can be
replaced with “counterexample”:

1. How do we determine whether there is any possibility of finding a test case
by increasing k7
2. How large should k be if there is any possibility of generating a test case?

If the model is small, as in Fig.2, estimating an appropriate unrolling bound
may not be a serious problem. However, the estimation is very hard when we
deal with a practical model of embedded control software, because the model
often consists of thousands of blocks and hundreds of state variables, including
multiple counters. In the following sections, we propose a novel approach to
address these challenges using both maximum satisfiability and dual slicing.

3 Initial Condition Analysis Using Maximum
Satisfiability

We consider the situation in which @; becomes unsatisfiable for a certain &k in
BMC. In the proposed method, we try to identify the initial conditions of state
variables that might cause a bottleneck in BMC on the basis of partial maximum
satisfiability. We first briefly introduce maximum satisfiability with SMT solvers,
and then explain the proposed method.

3.1 Max-SMT

SMT is a decision problem for logical formulas, and SMT solvers are actively
developed in many research institutions. Let us consider the SMT formula:

F(x) = /\ fi(z),

where f;(z) (i =1,...,n) are also SMT formulas. The purpose of ordinary SMT
is to find an assignment of x such that F(x) is satisfied. SMT solvers return
the state “unsatisfiable” if F'(x) cannot be satisfied with any assignments of x.
In contrast, maximum satisfiability modulo theories (Max-SMT) aim to find an
assignment of  that satisfies as many f;(x) (i = 1,...,n) as possible. Max-SMT
solvers therefore obtain some assignment of x for F'(z) that is unsatisfiable using
ordinary SMT.

Partial Max-SMT (PMax-SMT) is an extension of Max-SMT in which the
following form is considered:

G(z) = g(x) A | /\ gi(x). (2)
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The goal of PMax-SMT is to find an assignment that satisfies as many g;(z) (i =
1,...,m) as possible under the condition that g(z) must be satisfied. We refer
to g(z) and g;(z) (i = 1,...,m) in (2) as the hard constraint and the soft
constraints, respectively. Max-SMT can be viewed as a special case of PMax-
SMT in which the hard constraint g(z) := T. Note that PMax-SMT solvers
return “unsatisfiable” if the hard constraint itself is unsatisfiable.

Solving Max-SMT with an SMT Solver. There are few SMT solvers that
can directly deal with Max-SMT problems in the present situation, though
it is possible to solve Max-SMT or PMax-SMT problems with existing SMT
solvers [1]. For example, we can solve PMax-SMT for G(x) in (2) using an SMT
solver as follows. We prepare the following formula G/, in which a set of auxiliary
variables b = {b; € {0,1} | i =1,...,m} is introduced:

where w is a non-negative integer that controls the number of formulas that are
not necessarily satisfied in {g;(x) | ¢ =1,...,m}. Solving PMax-SMT for G(z)
then corresponds to finding the following @:

@ := argmin (w | G, (x,b) is satisfiable). (3)

w=0,....m

Note that & does not exist if G, (x,b) is unsatisfiable for w = m, which indicates
that PMax-SMT for G(z) is unsatisfiable. Let (Z,b) be an assignment that is
obtained by solving G%(x,b) with an SMT solver. Then, & becomes a solution
of PMax-SMT for G(z). Moreover, {g;(z) | b; = 1,b; € b} are soft constraints
that are not satisfied in the solution. There are several strategies for finding @.
The simplest one is to check the satisfiability of G,(x,b) with w = 0, and then
increment w until GJ,(x,b) becomes satisfiable or until w reaches m. It is also
possible to start with w = m, and then decrement w as long as G (z,b) is
satisfiable. Several techniques have been proposed in the literature, including
those based on unsatisfiability cores [4].

3.2 Analyzing Initial Conditions with a Partial Max-SMT Solver

As mentioned in Sect. 2.2, v() denotes a vector of all variables at the j-th iter-
ation of the main loop in Fig. 1b. Let & be an index set that corresponds to the
state variables in v(7), that is, ’UZ(J) (E v(j)) represents a state variable if i € S.
We assume that the initial condition I in (1) is given in the following form:

1 (v(o)> = /\ (UZ(O) = ci> , (4)

€S
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where ¢; denotes the initial value for the i-th state variable. For example, the
initial condition for the software represented by the model in Fig. 2 is

I (v(o)) = (vff) = O) A (vg) = 0) , (5)

where v4 and vp represent state variables that are inherent in the Unit Delay A
and Unit Delay B blocks, respectively. From (4), &y, in (1) can be transformed to

O (v) = /\ (UZ(O) = ci) A /\ T (v(j_l),v(j)) A —P (v(o), . .,v(k)) . (6)

€S j=1,....k

In the proposed method, we apply a PMax-SMT solver to @, in which vgo) =
¢i (i € §) are regarded as soft constraints. Hereafter, we refer to this PMax-SMT
problem as [A] for simplicity. The result of [A] can be interpreted in the following

three ways.

Case 1: [A] Is Satisfiable and the Soft Constraints Are All Satisfied.
This suggests that &y is satisfiable in terms of the ordinary SMT. Hence, the

assignment obtained by the PMax-SMT solver can be used as a counterexample
in BMC.

Case 2: [A] Is Satisfiable, but Some of the Soft Constraints Are Not

Satisfied. Let §'(C S) be the index set of soft constraints that are not satisfied
in the PMax-SMT solution. The initial conditions v\ = ¢; (i € &) are then
considered to be bottlenecks in BMC. Moreover, the values assigned to vgo) (i e
S’) in the PMax-SMT solution can be used as estimates for these state variables.
In other words, there is a possibility of finding a counterexample in BMC with &
if the specified state variables reach the estimated values.

Case 3: [A] is Unsatisfiable. In this case, the hard constraint in [A], which is
/\ T(v(j_l),v(j)> A-P (’U(O),...,U(k)) ) (7)
J=1,0k

is shown to be unsatisfiable. It follows from this that the following formula, which
is obtained by replacing v¥) (j = 0,...,k) in (7) with o(Z+9) (5 = 0,... k),
respectively, is also unsatisfiable for any non-negative integer L:

A 1O D0) Anp (o0, )
J=L+1,...,L+k
It also follows from this result that the following formula is unsatisfiable:
T (Um)) AN T (vofl)’v(j)) A
j=1,...,L

/\ T(v(j_l)w(j)) A =P (U(L),...,U(L+k)) . (9)
j=L+1,...,L+k
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Consequently, the result that [A] is unsatisfiable indicates that there is no coun-
terexample of length L+k that violates P (U(L), . ,v(L”“)) for any non-negative
integer L. In particular, if P is given in the form

P (U(O), e ,v(k)) = /\ q (v(j)> 7

§=0,...k

the unsatisfiability of [A] indicates that ¢(v(?)) holds for any j, in which g often
represents a safety property that must always be satisfied.

3.3 Example of Analyzing Initial Conditions

For the model in Fig.2, we try to generate a test case such that “Outl will
finally be true.” If we set &k = 10 in BMC, &}, becomes unsatisfiable in terms
of the ordinary SMT, as described in Sect.2.3. Applying the proposed method
to this problem, we obtain an assignment v from a PMax-SMT solver in which

) _
o=

the initial condition v 0 is not satisfied. At the same time, we have an

assignment of vff) from ©. In this case, a value greater than 4990 is assigned to
US)), e.g., vf) = 6500, because the counter represented by va can exceed the
threshold 5000 within k£ = 10 steps by starting from such an initial value. These
results suggest that the initial condition of state variable v4 may be a bottleneck
of this problem, and test-case generation may be possible if the state variable v 4
reaches 6500. Moreover, if we know that v,4 is a counter, k = 6500 can be used
as an estimate for the unrolling bound of this problem in BMC. To generate a
test case for the same model such that “Out2 will finally be true,” a PMax-SMT
solver returns “unsatisfiable” in the proposed method. This means that there is
no chance of generating a test case, regardless of the value of k, for the latter
problem in BMC.

3.4 Limitations

By using the method proposed in this section, we can specify the initial condi-
tions of state variables that are possible bottlenecks in BMC, and can estimate
required values for these state variables. However, there is no guarantee that
there exists a program path in which the state variables reach the estimated val-
ues from their original initial values. Therefore, the estimated bottlenecks may
not be useful in some cases. Nevertheless, it can be very informative for a class
of problems. In Sect.5, we provide a case study from the automotive industry
in which the bottleneck estimation is shown to be beneficial to investigate the
cause of unsatisfiability in BMC.

The proposed method is powerful in that it can directly estimate required
values for state variables that are specified as bottlenecks. For example, we can
easily estimate the required value for a counter in the model in Fig. 2, even if
the threshold value of the counter were extremely large, which is often the case
in embedded control software. However, the estimated value obtained by the
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proposed method can be unnecessarily large, because no restriction is placed on
these variables when solving PMax-SMT. We can add some constraints to obtain
better estimations, though it is generally difficult to specify such constraints.

4 Causal Path Analysis Using Dual Slicing

In this section, we propose a method to analyze the result obtained by PMax-
SMT more deeply on the basis of dual slicing. This analysis helps us to under-
stand why @, becomes satisfiable when we change the initial conditions specified
by a PMax-SMT solver.

4.1 Dual Slicing

Dual slicing is a variant of program slicing. Given a program and two execution
traces, dual slicing aims at identifying the statements in the program that con-
tribute to the difference between two execution traces at a given point of interest
in the program. Starting from the given point, dual slicing finds a consecutive
set of statements, in which two execution traces differ, according to data and
control dependencies [14]. Weeratunge et al. [19] originally proposed dual slicing
for analyzing concurrency bugs. They dealt with the situation in which there
are two program schedules for a concurrent program, one of which causes a fail-
ure. Johnson et al. [7] proposed the similar approach of differential slicing for
analyzing vulnerabilities in security software, whereby two execution traces of a
program are examined to find the root cause of a vulnerability.

4.2 Causal Path Analysis

We consider the situation in which solving Problem [A] with a PMax-SMT solver
results in Case 2 in Sect. 3.2. We then have a set of initial conditions vgo) =c¢ (i€

S’) that are not satisfied in the PMax-SMT solution. We also have assignments
of v\” (i € &) in the solution, which we denote as ¢ (i € S"). Now, let M

i
represent the model for the original software. We prepare a model in which

o = ci (i € §) are replaced with o[

b = ¢ (i € &), respectively, in M,
which we denote by M. Note that M and M are identical except for some of
the initial conditions of state variables. We denote the set of variables used in
property P by v,. We propose a method to delineate the program path that is
substantially affected by modifying the initial conditions specified as bottlenecks,

which involves the following steps:

Step 1: Generate an input case of length k that violates property P in M. Such
an input case exists because the initial conditions in M are modified so as to
make @y, which represents the BMC formula for M, satisfiable. Furthermore, it
is possible to extract such an input case from the assignment that is obtained
by solving PMax-SMT for &, because the assignment inevitably satisfies @y.
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Step 2: Execute each of M and M with the input case generated in Step 1,
and record the execution logs of all variables in each model.

Step 3: Execution logs from M and M must be different with respect to the
variables in v, as property P is violated in M but is not violated in M. As
the input cases used to execute M and M are the same, the differences in Vp
must have been caused by the differences in the modified initial conditions. We
compare the execution logs in the backward direction from the variables in v,
according to data and control dependencies [14], and extract that part of the
model in which the execution logs from M and M are inconsistent.

Figure 3 illustrates an outline of the proposed method, in which &’ is assumed
to be {a,b}. Step 3 in the above procedure corresponds to dual slicing, though
this is slightly different from existing applications such as [7,19], in which dual
slicing is mainly used to debug a program using two execution traces. Instead, our
aim is to analyze the effect of modifying a program using a single input case. It
is crucial to extract the causal path in the backward direction from v, in Step 3,
because forward analysis from the modified conditions would include parts that
are different in terms of the execution logs, but are not necessarily essential. The
details of comparing the execution logs from M and M are explained in the
next section.

Original model M |:| Blocks with state variables

(e.g. Unit Delay)

1.Generate an input
case that violates _

the property for M

;

Init value Cgq

\/

:

2.Record
execution

) logs
In1 In3 Init value Cp
In2
e Modified model M
—

Init value Cg

Init value 5}7

Property

L

.Extract the program path
in which differences occurred

3
—{ in the backward direction

------ Property

Fig. 3. Outline of the causal path analysis.
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4.3 How to Compare Execution Logs

We denote the execution log of the i-th variable at the j-th iteration of the
main loop in M and M by wfj ) and zbfj ), respectively. Note that wl(j ) and G)Ej )
correspond to one another, because M and M are identical other than for the
initial conditions of state variables. We use the notation w; = (wgl), e ,wgk))
and w; = (1171(1), . ,wg’“)) to indicate the execution logs for the i-th variable.
To apply dual slicing in Step 3 in the previous section, we need a criterion to
determine whether w; and w; are different. We consider there to be a significant

difference between w; and w; if the function:

0 (w5, 57) = 0 ifw? =a (j=1,...,) (10)
oo 1 otherwise,
is equal to 1, where A is an integer given by:
— ; ") £ =060
A= i/elpr;?/ale,...,k (]/ ’ it # oy ) ’ (1)

in which I, denotes the index set of variables used in property P. It follows
from (11) that X indicates the maximum iteration step of the main loop in which
the execution logs related to property P are different in M and M. In (10), we
assume that w; and w; are not significantly different as long as ng ) = “71(] ) for
j=1,...,\ because we wish to identify the difference between execution logs

that leads to the difference in property P.

4.4 Example of Analyzing the Causal Path

We provide an illustrative example using the model in Fig. 4. The model includes
a unit-delay block that corresponds to a counter whose initial value is 0. We
consider the problem of generating a test case such that the output of the model
will finally be true. The BMC formula @, for this problem is unsatisfiable if we
use k < 1000. The counter is then specified as a bottleneck by using the PMax-
SMT-based technique proposed in Sect. 3. By applying the method proposed in
this section, the bold line in Fig. 4 is specified as the causal path. The causal path
delineates the relationship between the unit-delay block, which is specified as a
bottleneck, and the output of the model, which is used in the definition of the
property. By tracing the causal path, we can easily investigate why the test-case
generation becomes possible when the initial condition of the unit-delay block is
modified. From the causal path in Fig. 4, we can see that it is essential to increase
the counter to a value above 1000 to generate a test case for this problem. It is
worth mentioning that the counter is also compared to a threshold of 2000 in
Fig. 4, though this part is not included in the causal path, because the counter
does not necessarily exceed this threshold for the problem considered here.
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Fig. 4. Bold line indicates the causal path specified by the proposed method.

5 Case Study

We evaluated the proposed method using practical embedded control software
taken from the automotive industry, which was implemented as a Simulink®
model. For confidentiality reasons, we cannot give full details of this model,
though we believe that the results described in this section will demonstrate the
usefulness of the proposed method in practical situations. The experiment was
performed on an Intel® Core " i7 CPU (3.20 GHz) machine with 64 GB RAM,
running Microsoft® Windows® 7.

5.1 Outline of the Model and Problem Setting

The model used in the experiment consists of about 17000 blocks and has 58
inputs and 51 outputs. The model includes 745 state variables that are repre-
sented by blocks such as the unit-delay block, all of which have predefined initial
values. In BMC, the initial condition for this model can therefore be expressed
in the form of (4). The model consists of several subsystems, each of which have
a different execution period. The model has some control modes in each of which
different control logic is employed. The current control mode is determined by
the preceding sequence of inputs. We attempt to generate a test case for the
model such that the control mode shifts from the initial mode, Mode X, to the
target mode, Mode Y, using the BMC methodology.

We used STP [6] as an SMT solver. Although the original version of STP does
not support maximum satisfiability, we have extended it so as to solve PMax-
SMT based on the method described in Sect.3.1. In the experiment, we also
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employed techniques such as program slicing [14] and function abstraction [12]
to improve the scalability of test-case generation. We note that the problem
considered here was provided by an automotive company as a practical example
that cannot be solved with existing products on the market.

5.2 Results

We applied the BMC with k& = 17, which was selected so that every subsystem
in the model is invoked at least once, to generate a test case that induces a mode
shift from Mode X to Mode Y. Formula &, then turned out to be unsatisfiable.
Therefore, we applied the proposed method in which @, is analyzed by PMax-
SMT. As a result, we detected three of the 745 state variables in the model to be
bottlenecks. We denote these as {vq, v3, v, }. We then applied causal path analy-
sis to reveal the relationship between these state variables and the mode shift
from Mode X to Mode Y. The computation times needed to solve PMax-SMT
for @, and extract the causal path were about 3 min and 1 min, respectively.
By tracing the causal path obtained by the proposed method, it was found
that both v, and vg correspond to counters in the model, and it was necessary
to increase each of these counters above a certain threshold. We also discovered
that the remaining state variable v, is not a counter, but is used to reset v,,
that is, v, is forced to reset to 0 unless v, = 1. The initial condition of v.,

v.(yo) = 0, was therefore specified to be a bottleneck. From these observations, we
found that it may be possible to generate a test case that induces a shift from
Mode X to Mode Y by setting & = 3000! in BMC. However, the formula for @
with £ = 3000 was computationally intractable. Thus, we tried to generate a test
case by: (1) generating an input of length 1 such that both v, and vg increase,
(2) executing the model repeatedly using the generated input until v, and vg
exceeded their specified thresholds, (3) from the resulting state, generating a test
case that shifts the control mode from Mode X to Mode Y using an ordinary
BMC with small k. As a result, we successfully generated a test case for the
problem. Such an approach can be viewed as a problem reduction process.

We also attempted to generate test cases that achieve shifts between control
modes other than Mode X and Mode Y. The SMT formula @, became unsat-
isfiable with small & in each problem. A few state variables in each problem
were then detected as being bottlenecks by the proposed method, and all of
these included some counter variables. We succeeded in generating test cases
using the problem reduction approach described above for most of these prob-
lems, although some could not be solved in this manner. Whether such problem
reduction is effective depends on the characteristics of the problem. However, we
think that some practical problems can be handled by such a strategy. There-
fore, the proposed method is not only useful for estimating the required unrolling
bound in BMC, but also for working out the problem using an approach such as
problem reduction.

! This is not the actual number estimated from the real model. However, the order of
the unrolling bound required for the real model was the same.
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6 Related Work

As mentioned in Sect.1, a common approach used in BMC is to start with a
small value of k, and then solve the satisfiability problem repeatedly by grad-
ually increasing k£ until the formula becomes satisfiable or a timeout limit is
reached. Schrammel et al. [15] proposed a method to improve the efficiency of
such iterative solving of satisfiability problems in BMC using incremental SAT
techniques. The runtime of BMC is reduced by an order of magnitude by the
incremental approach, as reported in [15], though there still remains a difficulty
in dealing with problems for which very large k values are required. In contrast,
the method proposed in this paper does not require a satisfiability solver to be
invoked multiple times. Instead, we solve a maximum satisfiability problem once
with a fixed k, and then apply dual slicing to analyze the program.

Acceleration is a technique for summarizing loops. The effect of k iterations
of a loop is represented in a closed-form in terms of k, then the loop is replaced
or attached with its closed-form to enable model checkers to skip the loop in one
step. Kroening et al. [10] proposed an acceleration method in which a closed-
form of iterating a path through the loop body is estimated to skip the multiple
iterations of the path. Their method was shown to enhance the performance of
model checkers on a benchmark suite of C programs that consists of manually
sliced versions of open source programs. Acceleration methods are expected to
work well if the loop body is relatively small and not very complicated. However,
in the case of embedded control software, the most part of the program lies inside
the loop body, as mentioned in Sect.2. The model used in our experiment, for
example, has thousands of Simulink® blocks in its loop body. The number of
possible paths through the loop body can then be extremely large. Consequently,
it is difficult even to find out a suitable path in the loop body to accelerate. There
is a possibility that the causal path, which is obtained by the method proposed
in this paper, can be informative for selecting a path to accelerate.

Clarke et al. [3] discussed the completeness threshold (CT) for BMC. CT is
an unrolling bound with which a linear temporal logic (LTL) property is proved
in an unbounded manner in the scheme of BMC. Kroening and Strichman [11]
proposed a method to calculate CT for a class of LTL properties. The calculation
of CT for a general LTL property is shown to be at least as hard as proving
the property using ordinary LTL model checking [3]. Moreover, even if CT is
obtained, it is often impractically large, as reported in [15]. The aim of the
proposed method is not to calculate CT, but to estimate an unrolling bound
that is sufficient to generate a counterexample or a test case.

Several methods that extend BMC to unbounded model checking have been
proposed, such as k-induction [16] and the Craig interpolation-based algorithm
[13]. These methods prove that the formula is unsatisfiable for & = oo based on
inductive reasoning from the fact that the formula is unsatisfiable for k = k(<
00). In general, the value of k is gradually increased until the inductive reasoning
is accepted or a counterexample is found. Such methods are very powerful if the
inductive reasoning can be completed for relatively small k. However, it will take
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a long time to find a counterexample if the formula becomes satisfiable for some
very large k, which is the situation considered in this paper.

7 Conclusion and Future Work

In this paper, we have proposed a method for analyzing BMC formulas that are
unsatisfiable in the ordinary sense of BMC using maximum satisfiability. We also
proposed a method to delineate the causal path between state variables specified
as bottlenecks and the desired property in BMC on the basis of dual slicing. A
case study with a practical embedded control system taken from the automotive
industry was presented to demonstrate the usefulness of our approach.

It is a future challenge to examine how the proposed method works in appli-
cation domains other than embedded control software. There have been several
applications of maximum satisfiability in software analysis. It is worth consider-
ing applying the causal path analysis presented in this paper to other applica-
tions of maximum satisfiability. Jose and Majumdar [8], for example, proposed
a method for localizing a potential cause of program bugs with a maximum sat-
isfiability solver, in which a patch for the bug is also estimated. It would be
possible to extract the causal path from the suggested patch for the bug, which
would help us to investigate why the bug is fixed by the patch.
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Abstract. Weibull distributions can be used to accurately model failure
behaviours of a wide range of critical systems such as on-orbit satellite
subsystems. Markov chains have been used extensively to model relia-
bility and performance of engineering systems or applications. However,
the exponentially distributed sojourn time of Continuous-Time Markov
Chains (CTMCs) can sometimes be unrealistic for satellite systems that
exhibit Weibull failures. In this paper, we develop novel semi-Markov
models that characterise failure behaviours, based on Weibull failure
modes inferred from realistic data sources. We approximate and encode
these new models with CTMCs and use the PRISM probabilistic model
checker. The key benefit of this integration is that CTMC-based model
checking tools allow us to automatically and efficiently verify reliability
properties relevant to industrial critical systems.

Keywords: Satellite systems - Weibull distribution - Continuous-time
markov chains + Semi-markov chains - Probabilistic model checking

1 Introduction

Satellite systems are complex due to the fact that they consist of a large number
of interacting subsystems (e.g., gyro/sensor/reaction wheels; control processors
(CPs); and telemetry, tracking, and command (TTC)), which ensure redundancy
without an unnecessary increase in power or mass requirements. Each subsystem
may itself have complex and different failure modes. The failure modes are more
complex than for conventional systems because of the limited opportunities for
repair except through reconfiguration. A satellite subsystem can suffer whole
or partial failures, which may belong to a variety of failure classes. It has been
shown that Weibull distributions are able to properly model on-orbit failure
behaviours of satellite subsystems [1,2].

Y. Lu—This research was partially supported by the EC project “ETCS Advanced
Testing and Smart Train Positioning System” (FP7-TRANSPORT-314219). The
author Yu Lu was funded by the Scottish Informatics and Computer Science Alliance
(SICSA).

© Springer International Publishing AG 2016

M.H. ter Beek et al. (Eds.): FMICS-AVoCS 2016, LNCS 9933, pp. 81-96, 2016.
DOI: 10.1007/978-3-319-45943-1_6



82 Y. Lu et al.

Failures in satellite subsystems are conveniently modelled using Weibull dis-
tributions. Unfortunately such distributions are not amenable to continuous time
model checking tools, such PRISM, that mainly support CTMCs with exponen-
tially distributed sojourn time. It has also been shown that it is possible to
approximate many common distributions using phase-type distributions such as
Erlang distributions and a sum of many exponential distributions (the hyper-
exponential distribution), although this has proved computationally difficult [3].
Given the maturity of a CTMC solver such as PRISM, and its focus on minimis-
ing state spaces, this difficulty is less of an issue. The aim is to investigate how
Weibull distributions can be approximated so that PRISM can be effectively
used for model checking based reliability analysis of satellite systems.

Simulation is a commonly used and powerful analysis technique for reliability
engineering. It is flexible since it supports arbitrary normal distributions (such
as Pareto, Weibull, or Lognormal distributions). However, simulations may take
a long time to run as the events (e.g., failure) that we are trying to model may
be very rare. In addition, it involves the complex design of valid simulation
models and interpretations of simulation results. Probabilistic model checking
is a formal method for the specification and verification of complex systems
with stochastic behaviours. It allows the additional inclusion of probabilities on
transitions, and so gives us the ability to check probabilistic properties, such
as, “what is the probability of a failure within 5 years?” The automation of the
PRISM is essential for analysing reasonably large and non-trivial Markov models
with exponential distributions. CTMC models have been used widely to model
reliability and performance of engineering systems or applications. However, the
exponentially distributed sojourn time of CTMCs can be unrealistic to model
satellite systems that exhibit Weibull failures. PRISM is useful for analysing
realistic satellite subsystems, and we can obtain results with high accuracy if
good approximations of Weibull distributions can be made without resulting in
a state space that is too large to yield to feasibly check.

Model checking of semi-Markov chains is more complicated than that of
Markov chains. Techniques for model checking semi-Markov chains have been
developed [4,5], whereas the methods are practically negative or infeasible. In
recent years, applying practical probabilistic model checking tools to analyse
non-Markov models has attracted a lot of attention. In [6], the authors analyse
disk reliability of reasonable sized systems (such as RAID4/5/6) based on non-
exponential distributions in PRISM [7]. Approximations of Weibull models are
considered in [8], using an M-stage Erlang model, and in [9] where 3-state Hid-
den Markov Models (HMMs) are used. In both cases, results are contrasted with
those obtained via simulation. In [10], a stochastic performance model is con-
structed and the hyper Erlang distribution of real-world data used in PRISM to
analyse a public bus transportation network in Edinburgh. In [11], phase-type
distributions are used to analyse a collaborative editing system in PRISM.

Our paper is organised as follows. In Sect. 2, we define semi-Markov models
that specify failures of satellite subsystems based on the Weibull distributions,
while in Sect. 3 we give technical background on CTMCs and PRISM. In Sect. 4,
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we summarise our technique to approximate the Weibull distributions. In Sect. 5,
approximations of these semi-Markov models as CTMCs are developed in PRISM
and their benefits are investigated. Finally, in Sect.6 we conclude and outline
directions for future research.

2 Multi-state Failure Mode in Satellite Subsystems

We propose an approach to building semi-Markov models for reliability analysis
of satellite subsystems using a real-world database. The main data source consists
of 1584 Earth-orbiting satellites which were launched between January 1990 and
October 2008, and are provided by the SpaceTrak database!. The SpaceTrak
launch and satellite analytical system and its database are used by most global
key launch providers, satellite manufacturers, insurance companies, and satellite
operators. It provides a variety of data and important information about satellite
on-orbit failures and unexpected behaviour, and also launch attempts from 1957.
This has enabled us to predict and analyse failure rates.

One of the problems with stochastic approaches on-orbit is the lack of prior
validation given the specialised nature of many designs. Common core compo-
nents e.g. NOAH and the DoD have a core platform that is then configured but
many components and architectures are unique. The database used here is likely
to provide a conservative base case but is not tailored to specific missions.

The database contains several satellite subsystems. In this paper, we only
consider 11 subsystems (as shown in Fig.1). These are: (1) Gyro / sensor /
reaction wheel, (2) thruster / fuel, (3) beam / antenna operation / deployment
(4) control processor (CP), (5) mechanisms / structures / thermal, (6) payload
instrument / amplifier / on-board data / computer / transponder, (7) battery
/ cell; (8) electrical distribution, (9) solar array deployment (SAD), (10) solar
array operating (SAO), (11) telemetry, tracking and command (TTC), and one
additional category, which is (12) unknown: when the subsystem causing the
failure of the satellite could not be identified.

Unlike traditional binary models of reliability analysis for which satellite
subsystems are considered to be either fully operational or suffering a com-
plete failure, additional intermediate states which characterise partial failures
are introduced (as shown in Fig.2). This multi-state modelling approach pro-
vides more insights into the failure behaviours of a satellite system and their
relationship to total failure through a finer level abstraction. These states are
also defined in the SpaceTrak database, and their meanings are summarised as
follows:

— State 1: satellite subsystem is fully operational;
— State 2: minor, temporary, or repairable failure that does not cause a sub-
stantial and perpetual effect on the operation of the satellite subsystem;

! http://www.seradata.com/.
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@ Gyro/reaction wheels

% Eontrol processor (CF) O (® Structures/thermal . ®s tenna/t itter/receiver
SIS @ Telemetry, tracking and command (TTC)

@ Thruster/fuel @ Structures/thermal

@ Battery . (® Payload instrument Electrical distribution

@ Solar array deployment/operation (D/O)

Fig. 1. An overview of key satellite subsystems

5
Total
failure redundancy failure failure

Fig. 2. Multi-state transitions for failure behaviour of satellite subsystems

— State 3: major or non-repairable failure that results in loss of redundancy? to
the operation of the satellite subsystem on a permanent basis;

— State 4: major or non-repairable failure that influences operation of the satel-
lite subsystems on a permanent basis;

— State 5: drastic failure results in satellite retirement, which implies total fail-
ure of the satellite.

2 Redundancy: the duplication of critical components or functions of a satellite sub-
system.
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3 Preliminaries

3.1 Continuous-Time Markov Chains

Satellite failure events occur with a real valued rate. It is therefore natural for
us to model our systems as continuous time Markov chains (CTMCs). In a
CTMC, time is continuous and state changes can happen at any time. The
formal definition of a CTMC is given in Definition 1. This definition is from [12].

Definition 1. Let AP be a fized, finite set of atomic propositions. Formally, a
continuous-time Markov chain (CTMC) C is a tuple (S,Sinit,R,L) where:

- S ={s1,82,...,8,} is a finite set of states.
— Sinit € S is the initial state.
- R: §x8 — Rxq is the transition rate matriz.

~ L: S — 247 s a labelling function which assigns to each state s; € S the
set L(s;) of atomic propositions a € AP that are valid in s;.

where R(s;,s;) specifies that the probability of moving from s; to s; within ¢
time units is 1 — e~ (%))t an exponential distribution with rate R(s;, sj). We
approximate the semi-Markov chains in Fig.3 using the underlying semantics
of CTMCs. A semi-Markov chain is a model in which state holding times are
governed by general distributions, which is a natural extension of CTMCs.

In Fig. 3, not all transitions exist between states for most subsystems as they
are not present in the database. For example, no transition from a minor failure
(state 2) to a total failure (state 5) of thruster/fuel was ever recorded on orbit
for this subsystem in the database. Other transitions also do not occur in the
database, so the total number of transitions is reduced. For this reason, they are
not subject to formal analysis.

3.2 The PRISM Model Checker

We use the model checker PRISM [7] to obtain CTMC approximations of our
multi-state failure models. It supports the analysis of several types of proba-
bilistic models: Discrete-Time Markov Chains (DTMCs), CTMCs [13], Markov
Decision Processes (MDPs) [14], and Probabilistic Timed Automata (PTAs) [15],
with optional extensions of costs and rewards. PRISM models are expressed using
the PRISM modelling language, which is based on the Reactive Modules formal-
ism [16]. A PRISM model consists of the parallel composition of a number of
modules. Each module is declared in the following way:

module name ... endmodule

A module consists of a list of variable declarations and a list of commands. At
any moment, the state associated with a PRISM model is a valuation of all of
the variables in the specification. A variable declaration consists of a variable
name together with a list of possible values and an initial value. E.g.:

x : [0.4] init 0;
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p'14DFR %14 DFR

%13DFR

5 O 3 4 5

(b) Thruster / fuel

(f) Payload instrument / amplifier / on-board data /
computer / transponder

51, DFR UP"zJ DFR Uu“;wDFR Uu“u OFR

(k) Telemetry, tracking and command (TTC) (1) Unknown

Fig. 3. Semi-Markov chains for multi-state failure mode of satellite subsystems: dotted
arrows represent transitions following an exponential distribution (Exp) or Weibull
distribution with increasing failure rate (IFR), and solid arrows represent transitions
following a Weibull distribution with decreasing failure rate (DFR)

Every command consists of a guard and a non-deterministic choice of updates.
Each update has an associated real-value rate. For example:

[syncLabel| guard — rate; : update; + rates : updates + ...

Note that the initial label (syncLabel in this example) is optional, and allows for
multi-module synchronisation.
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3.3 Continuous Stochastic Logic

In this paper, we use Continuous Stochastic Logic (CSL) [17] to specify prop-
erties. There are two types of formulae in CSL: state formulae, which are true
or false in a specific state, and path formulae, which are true or false along a
specific path. One of the most important operators is the P operator, which is
used to reason about the probability of an event. The P operator is applicable
to all types of models supported by PRISM. It is often useful to compute the
actual probability that some behaviour of a model is observed. Thus, a variation
of the P operator to be used in PRISM, i.e., P_¢[pathprop|, which returns a
numerical rather than a Boolean value (i.e., the probability that pathprop is
true). For example, we might wish to calculate the probability that j = 1 is true
within the first T time units. This can be specified as P_»[F < T j = 1], where
F is the “eventually” temporal operator.

4 Approximation of Weibull Failure Models

4.1 Weibull Distributions

In systems engineering, the Weibull distribution [18] is one of the most exten-
sively used lifetime distributions for reliability analysis. It includes two parame-
ters: (1) the shape parameter v and (2) the scale parameter «, together with
key formulas such as cumulative density function (CDF) and probability density
function (PDF). A Weibull PDF is expressed as:

i

t tyy
ftra)= () e @ 120,70 0 o

and a Weibull CDF as:

F(tiy,0) =1 — ") (2)

We abbreviate {(t) and F(t) as the PDF and CDF of the Weibull distribution
i
proportional to a power of time t. The shape parameter, v, is equal to this
power plus one.

The semantics of the Weibull distributions (also known as the bathtub curve)
with different v can be shown in Fig. 4 and explained as follows: (1) v < 1 means
that the failure rate decreases over time (decreasing failure rates). This occurs
whenever a clear infant mortality® exists, and the failure rate decreases over time
as the failure is discovered and the subsystem removed; (2) v = 1 means that
the failure rate is constant at any time. This is the useful life of the satellite; (3)
~ > 1 means that the failure rate increases with time (increasing failure rates).
It occurs whenever a wear out exists, or a subsystem failure becomes more likely
over time.

Generally, the ways to approximate the Weibull distributions is non-trivial.
The simple technique of phase-type distributions is useful in some cases. Thus,

The failure rate is

respectively, then the instantaneous failure rate is

3 Infant mortality: a subsystem fails early due to defects designed into or built into it.
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infant mortality normal life wear out

A

decreasing failure rate
increasing failure rate

constant failure rate

\ e

v=1

instantaneous failure rate

v

time t

Fig. 4. Semantics of the Weibull distribution (the bathtub curve)

we follow this line of work that Weibull IFR approximated by a M-stage Erlang
distribution and Weibull DFR by a hyper-exponential distribution since there
are intuitive and strong justifications for the model [3,8]. Further, these general
distributions provide simple mathematical structures such that the their under-
lying semi-Markov chains can be included in the Markov model framework.

4.2 Increasing Failure Rates (IFR)

A simple technique for the realisation of approximations to the Weibull distrib-
ution models is matching moments, where the mean is the first moment and the
variance the second. We first consider the approximation of a Weibull distrib-
ution modelling increasing failure rates (IFR) using an M-stage Erlang distrib-
ution [19], which belongs to the class of phase-type distributions. The M-stage
Erlang PDF can be expressed as:

)\]VI
(M)

f(t; M, \) = aM=1e™2 >0 1> 0 (3)

The Erlang CDF can be expressed as:

M-1
FEM A =1—e )"

n=0

(At)"
n!

According to [8], we have the first two moments of the M-Erlang:

M MM +1
m1:77m2:% (5)
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Table 1. Difference between the Weibull distribution with IFR and its approximation
as an Erlang distribution: ¢ is the index of the semi-Markov chain for the corresponding
satellite subsystem, and zy is the transition from state x to state y

Pzi.y Weibull distribution with IFR | Erlang distribution
0% «a k A
Pl | 1.1593 17 2 0.1239
Pl 1.1229 664 2 0.0031
Pis | 1.0366 15 2 0.1353
PS, | 1.2452 16 5 0.3352
P | 28.6487 9 20 2.2652
Pl | 2.8232 23 3 0.1464
As a result, we have:
m% my
M = 5 A= 5 (6)
mo —my mo — My

where m; and msy are equal to the first two moments of the Weibull distribution
with IFR, and are given as follows:
my) = aF(LH), me = a2F(L+2) (7)
v v

The value of M is rounded to the nearest integer and the value of \ recalcu-
lated depending on this rounded value, so that the mean is matched.

For example, we consider Weibull parameters for the control processor. The
Weibull parameters for the reliability of this subsystem are given by: v = 1.4560,
a = 408 (years). Then, according to Egs.6, 7 and 8, M = 2 and A = 0.0054
for the M-Erlang distribution. Using the Erlang distribution, the approximation
result of the Weibull distribution with increasing failure rate for the relevant
satellite subsystems is given in Table 1.

4.3 Decreasing Failure Rates (DFR)

The procedure for approximating the Weibull distribution with decreasing fail-
ure rates (DFR) by hyper-exponential distributions [20] can be summarised as
follows, for details see [3].

First, we choose the number k of exponential components and k arguments:
mp > .. > m; > mypp > ... > myg, for which the ratios - - have to be

M1
sufficiently small (e.g., =2 > 10).

Mi41
Second, we choose the number n such that for all i, 1 < n < mLil

Then, for the Weibull distribution CDF (see Eq. (3)), we have a complemen-
tary CDF (CCDF) given by:

Fe(t;y,0) = 1= F(t;vy,0) = e &) (8)
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and we choose A and p; to match the CCDF F¢(t;v, ) (we abbreviate F°(t; v, a)
as F(t)) at the arguments m; and nm;, so we solve the following equation:

pre” MM = F¢(my), pre” ™M™ = FC(nmy) 9)

for p; and Aq. As a result, we obtain:

A= 1) ln( Fe(m) ) , p1 = FC(my)eM™ (10)

(n—1)my Fe(nmy)

Then, for 2 < i < k, we have:
Ff(m;) = F(my) ij L F (nmyg; ) = FC(nmy) ZP je M (11)

and similarly, we solve the further equation:
pie N = B (m), pie™ "™ = Ff(nm,) (12)
for p; and \; when 2 <7 < k — 1. As a result, we obtain:

o 1 n Ff(mi) Pl e}\imi
A (n— l)mil (Ff(nmi)) » pi = Fy(mi) (13)

Finally, for i = k, we can have:

k-1
_ 1 Dk
—1— . Ak — e A = —In [ 25 14
Pk ]E:lpp Pre i (M), Ak - n <ch( k)> (14)

Using the hyper-exponential distribution, the approximation result of the
Weibull distribution with decreasing failure rate for the relevant satellite sub-
systems is given in Table2. For clarity, we only give the distribution for the
subsystem (1), which is Gyro/sensor/reaction wheel.

Table 2. Difference between the Weibull distribution with DFR and its approximation
as a hyper-exponential distribution: ¢ is the index of the semi-Markov chain for the
corresponding satellite subsystem, and xy is the transition from state x to state y

P;y Weibull distribution with DFR | Hyper-exponential distribution
vy o P1 A1 D2 A2 p3 A3 D4 A4

Pll2 0.4482 12,526 0.8149/0.0001170.12580.0038 | 0.0384 | 0.0433 | 0.0210 | 0.8802
P113 0.4334 | 80,050 0.9074]0.000052 | 0.0630 | 0.0037 |0.0189|0.0434|0.0108 | 0.9015
Pll4 0.3815|210,126 0.9133/0.000039 | 0.0548 | 0.0038 |0.0188|0.0444 | 0.0131|0.9903
Pll5 0.5635 | 65,647 0.9518|0.000045 | 0.03770.0034 | 0.0077 | 0.0408 | 0.0028 | 0.7348
P213 0.8229 |59 0.0933/0.007895|0.63830.0132|0.2326 | 0.0458 | 0.0359 | 0.5320
P214 0.5600 | 4,003 0.7852]0.000218 |0.1631 | 0.0037 |0.0378 |0.04110.0139 | 0.7382
Pe}s 0.7115| 221 0.3461|0.001866 | 0.5000 | 0.0058 |0.1258 | 0.0404 | 0.0281 | 0.6022
P415 0.4703 | 135 0.2068 | 0.000988 0.41330.0058 | 0.2396 | 0.0466 | 0.1404 | 0.8653
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5 Encoding the Weibull Models with CTMCs in PRISM

5.1 Encoding the Weibull Distribution with IFR

The approximation of the non-exponential sojourn time distributions can be
realised via the insertion of one or more intermediate states between any existing
deterioration transition. We approximate a Weibull IFR with an Erlang distri-
bution. In Fig. 5(a), § is the time taken for transition from state A to state H.
Thus, in order to approximate the interval, the total number of existing deterio-
ration transitions is k — 1 = 7. The transition rate is proportional to k, ensuring
a constant total transition time.

Consider the PRISM model in Fig. 6. Labelled action sync occurs with an
Erlang distribution with scale p and shape k. For the purpose of the analysis,
the CSL formula used is: P—7[F < T j = 1], expressing the probability that a
satellite subsystem will fail in T years. In Fig. 7, we show the probability curve
of the sojourn time for various values of k, where k = 1,2, 5,10, 100.

Figure 7 shows the results of using PRISM (on our CTMC model) to
approximate the probability distribution with a constant sojourn time (i.e. of
P_;[F < T j = 1] for various values of k, where k = 1,2,5,10,100) for both
100 years and 15 years. This is useful for modelling failure rates with multiple
states, while guaranteeing the Markov property. In addition, a significant trade-
off exists between the accuracy and the underlying expansion in the state space
of the model. For example, when k = 100, we can see from Fig.7(a), that the
approximation is very close to the actual distribution. However, increasing k by
a factor of 100 increases the size of the underlying model by 100.

To understand the differences better, we compare the CDF of the original
Weibull IFR distribution with its approximation as an Erlang distribution and
its implementation as a CTMC model in PRISM. As shown in Fig.8(a), the
difference between Weibull and the other two curves apparently tends to zero,
indicating the approximation and implementation both to be accurate for right
long tail probabilities. In Fig.8(b), we see that the difference is at most 0.05,
this is due to the fact that we lose a little accuracy in order to reduce the size
of the state space associated with our PRISM model.

(a) Modelling the Weibull distribution with IFR (b) Modelling the Weibull distribution with DFR

Fig. 5. Modelling the Weibull distribution with CTMCs



92 Y. Lu et al.
ctmc
const int k;
const double mu = 10/k;
module erlang
i [1..k+1];
[1i<k->1/mu : (i’ =1 + 1);
[syncl i =k -> 1/mu : (i’ =i + 1);
endmodule
module weibull_ifr
j [0..1];
[sync] j =0 -> (37 = 1);
endmodule
Fig. 6. Encoding the Weibull distribution with IFR in PRISM
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Fig. 8. Comparison between the Weibull distribution with IFR, its approximation, and
PRISM encoding
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5.2 Encoding the Weibull Distribution with DFR

We approximate a Weibull DFR with an hyper-exponential distribution, which
is a mixture of exponential distributions. The hyper-Erlang distribution is also a
generalisation of the hyper-exponential distribution. So, the hyper-exponential
distribution also belongs to the class of phase-type distributions. In general, it
can be represented with respect to the time until absorption in a CTMC. For
instance, a hyper-exponential distribution having four branches ((p1,A1), (p2,A2),
(p3,A3),(p4,\1)) can be represented by a CTMC model as shown in Fig. 5(b).
Dotted arrows indicate instantaneous probabilistic transitions, and solid arrows
transitions with exponentially distributed durations.

In Fig.9, we encode the behaviour of the CTMC in Fig. 5(b) using PRISM.
For CTMC, updates in commands are labelled with positive-valued rates, rather
than probabilities. Since there are four transitions leaving state 0 which are all
instantaneous, if we make the probabilistic choice between them, the states with
instantaneous transitions can be removed to construct the underlying CTMC.

Figure 10 shows the results of using PRISM (on our CTMC model — see
Fig.9) to approximate the probability distribution of a constant sojourn time
(i.e. of P¢[F < T s = 5] for k = 2,3,4,5 for both 100 years and 15 years).
Although there is trade-off between the accuracy and the size of the resulting
state space between k = 2 and k = 4, the difference is not so obvious between
k = 4 and k = 5. Therefore, we consider k& = 4 to be a good approximation
parameter for the implementation of Weibull DFR in PRISM.

For the same purpose, we compare the CDF of the original Weibull DFR
distribution with its approximation in a hyper-exponential distribution and its
implementation with a CTMC in PRISM. As shown in Figs.11(a) and (b), for
a time scale (o = 5000 years), the difference between the Weibull DFR and
the other two curves in the left short head is at most 0.01, and in the right long
tails apparently becomes zero, indicating the approximation and implementation
both to be accurate for a short scale for both left short head and right long
tail probabilities. Though for a large scale (o = 50000 years) in Fig.11(c), we

ctmc
const double pl, p2, p3, p4, lambdal, lambda2, lambda3, lambda4;
module weibull_dfr
s : [0..5] init 0;
[ s=0->p1:(s2=1) +p2: (s’ =2) +p3 : (s’ =3) +
p4 : (s’ = 4);

[T s =1->1lambdal : (s’ = 5);

[1] s =2 ->1lambda2 : (s’ = 5);

[1] s =3 ->1ambda3 : (s’ = 5);

[1 s =4 ->1lambdad : (s’ = 5);
endmodule

Fig. 9. Encoding the Weibull distribution with DFR in PRISM
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Fig. 11. Comparison between the Weibull distribution with DFR, its approximation,
and PRISM encoding

can see that the difference can be very large in the right long tails. However, in
Fig. 11(d), for T < 15 years, the approximation and implementation both appear
to be accurate for large scale and left short head probabilities.
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6 Conclusion and Future Work

We have shown that difficulties in modelling the Weibull distribution for satel-
lite failures can be handled if appropriate approximations and modelling meth-
ods are considered. We have also proposed novel non-exponential models that
characterise failure behaviours, based on Weibull failure modes (both increas-
ing failure rates and decreasing failure rates) inferred from real-world datasets.
We have approximated and encoded these new models with CTMCs in PRISM,
and shown their approximation is accurate in matching a Weibull distribution
in isolation.

The key contribution of this work is that the CTMCs-based formalisms come
equipped with mature model checking tools, such as PRISM and so allow a
wide range of analyses relevant to industrial critical systems to be performed
automatically and efficiently. In future work, it would be interesting to see how
their approximation matches the true distribution when multiple distributions
are combined, e.g. when constructing a model for an entire satellite or a subset
of subsystems. Another interesting direction is to use various techniques such as
symmetry reduction [21,22] for reducing the state space of the approximation.
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Abstract. Deductive Cause Consequence Analysis (DccA) is a model
checking-based safety analysis technique that determines all combina-
tions of faults potentially causing a hazard. This paper introduces a
new fault modeling and specification approach for safety-critical systems
based on the concept of fault activations that decreases explicit-state
model checking and safety analysis times by up to three orders of mag-
nitude. We augment Kripke structures and LTL with fault activations
and show how standard model checkers can be used for analysis. Addi-
tionally, we present conceptual changes to DccA that improve efficiency
and usability. We evaluate our work using our safety analysis tool S#
(“safety sharp”).

1 Introduction

Safety-critical systems have the potential to cause hazards, i.e., situations result-
ing in economical or environmental damage, injuries, or loss of lives [17]. Deduc-
tive Cause Consequence Analysis (DCCA) is a model-based safety analysis tech-
nique [7,12] that uses model checking to compute how faults such as component
failures or environmental disturbances (the causes) can cause such hazards (the
consequences): From a model of a safety-critical system that describes the sys-
tem’s nominal behavior as well as the relevant faults, DcCA determines all min-
imal critical fault sets, i.e., the smallest possible combinations of faults that can
cause hazards, allowing the evaluation of the system’s overall safety. DCCAs are
conducted automatically by tools like S# [13] or VECS [20]; the Fsap/COMPASS
toolsets [6,7], ALTARICA [4], and BT Analyser [19] perform similar safety analy-
ses. Alternatively, compositional safety analysis approaches and tools such as
HiP-HOPS or Component Fault Trees [10,26] allow for faster analyses at the
expense of requiring explicitly modeled fault propagations between components.
Model checking-based techniques, by contrast, deduce these propagations auto-
matically, albeit requiring additional states and transitions for each fault which
reduce model checking efficiency exponentially [7,12].

This paper’s first contribution is a fault-aware modeling and specification
approach for safety-critical systems that decreases explicit-state analysis times
by up to three orders of magnitude. We augment Kripke structures and Linear
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DOI: 10.1007/978-3-319-45943-1_7
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Temporal Logic (LTL), making them aware of fault activations [2] within the ana-
lyzed systems: Faults are activated when they can in fact influence the system’s
behavior, preventing model checkers from considering possibly many situations
with irrelevant active faults during analyses. We show how the extended for-
malisms can be mapped back to the classical ones for analysis with standard
model checkers such as LTSMIN [18]. We demonstrate the efficiency improve-
ments over the traditional fault modeling approach, showing that explicit-state
model checking becomes feasible for safety-critical systems that incorporate
faults.

The second contribution is a conceptual change of DcCA formalized using
LTL instead of Computation Tree Logic (CTL). It improves the model checking
workflow as witnesses are generated to explain how critical fault sets can cause a
hazard, which is more useful in practice than witnesses showing how non-critical
fault sets cannot do so. We also formalize another DCCA variant that reduces
analysis times in many cases.

2 Model-Based Safety Analysis

Throughout this section, we assume models of safety-critical systems to be given
as Kripke structures K = (P, S, R, L, I) consisting of a set of atomic propositions
P, a set of states 9, a left-total transition relation R C S xS, a labeling function
L: S — 2P and a non-empty set of initial states I C S [9]. Kripke structures
are a well-known modeling formalism that established model checkers such as
LTSMIN, SPIN, or NUSMV [8,14,18] are based on. Consequently, tools built
for formal safety analyses [6,7,13,19,20] either implicitly or explicitly transform
their models to Kripke structures for model checking, while their actual modeling
formalisms are higher-level.

Figure 1 gives a description of the running example used throughout the paper
that is based on the fault tree handbook’s pressure tank case study [28]. The
system is safety-critical because of the hazard of tank ruptures that might injure
nearby people. Ruptures only happen when both suppression faults —is full and
—timeout occur; consequently, there is only one minimal critical fault set for the
hazard that consists of these two faults. For more complex systems with more
faults, however, minimal critical fault sets are not as easily deduced. Instead,
model-based safety analysis techniques such as DCCA are required to compute
these critical sets automatically and rigorously.

2.1 Fault Terminology

Safety analyses consider situations in which faults cause system behavior that
would not have occurred otherwise. In accordance with common terminology [2],
these situations represent fault activations; that is, a fault is activated when it
influences the system, affecting its behavior or state in a concealed or observable
way. Faults are dormant until they are activated and become active, turning
dormant again when they are deactivated. A fault’s persistence constrains the
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Fig. 1. A schematic overview of the running example: the fluid contained in the pressure
tank is refilled by the pump that is activated and deactivated by a controller. The
pressure sensor signals the controller when the pressure limit is reached or the tank
is empty, causing the controller to deactivate or activate the pump, respectively; once
the tank is empty, a new refill cycle begins. To tolerate pressure sensor faults, the
controller disables the pump after 60s of continuous operation as it would risk a tank
rupture otherwise. For time measurements, the controller uses the timer. The pressure
sensor has two suppression faults: It might not report that the pressure limit is reached
(—is full) or that the tank is empty (—is empty). The timer might not signal a timeout
(—timeout) and a fault of the pump (—pumping) prevents it from filling the tank.

transitions between its active and dormant states. Transient faults, for instance,
are activated and deactivated completely nondeterministically, whereas perma-
nent faults, while also activated nondeterministically, never become dormant
again. Fault activations result in effects that change the internal state of affected
components, thereby causing errors. Errors are deviations of the components’
states from what they should have been. Errors propagate through the compo-
nents, causing other errors. Eventually, errors might result in failures where the
errors manifest themselves in a way that is externally observable. Failures either
provoke faults in other components or they represent system hazards; safety
analyses are conducted for the latter to determine all faults causing them.

2.2 State-Based Fault Modeling

VECs, CoMPASS, FsAP, and other safety analysis tools [6,7,19,20] share a com-
mon, state-based fault modeling approach: For each modeled fault, the tools’
high-level modeling formalisms require at least one additional Boolean variable
where changes of the variable’s value represent fault activations and deactiva-
tions. These variables increase both the number of reachable states as well as
the number of transitions of the Kripke structures generated from the high-level
models [6,12]. Transient faults represent the worst case as they occur completely
nondeterministically: n additional transient faults increase the generated Kripke
structure’s reachable state space by a factor of 2" and each state has an addi-
tional 2" successor states. Permanent faults, by contrast, have an overall lower
number of possible successor states compared to transient faults, so the amount
of reachable states and transitions might not increase as noticeably; model check-
ing and safety analysis efficiency is reduced significantly with each additional
fault in both cases.
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The running example’s pressure sensor modeled with S# in Listing1, for
instance, is a high-level representation that can either be checked using the clas-
sical state-based fault modeling approach or the fault-aware one introduced in
this paper. In the former case, the Kripke structure generated for the model
would be similar to the one shown in Fig.2(a), whereas fault-aware modeling
would eventually result in a significantly smaller classical Kripke structure sim-
ilar to the one in Fig.2(b). Figure2(a) shows a part of the running example’s
Kripke structure shortly before the tank is fully filled and either the pump is shut
off or the tank ruptures. After 56 s of pumping, neither fault has any observable
effect on the system. During the next step, only the activation of —is full has an
observable effect, namely that pumping continues even though it should have
stopped. If pumping is not stopped by the sensor, the pump is shut off only if
—timeout is not activated, otherwise the tank ruptures. The Kripke structure
shown in Fig. 2(b) can be seen as an abstraction of the one in Fig. 2(a). It unifies
states that are equivalent modulo active faults, thereby reducing both the state
and the transition counts significantly; the states where —is full is active cannot
be unified due to the cyclic nature of the model. The Kripke structure is mini-
mal in the sense that irrelevant active faults are omitted while all system states
remain reachable, including, in particular, the hazard. The notion of minimality
is based on the observation that the exact points in time in which faults become
active are irrelevant as long as they do so before or when they can affect the
system. Inspired by partial order reduction [3], fault-aware modeling and speci-
fication is a fundamental change of model-based safety analysis that inherently
considers only minimized Kripke structures similar to the one in Fig. 2(b).

9 [ 57 ][ sof ][pisesfit]
v v v v v
o rord M
(a) The Kripke structure resulting from state-based (b) The activation-minimal Kripke struc-
fault modeling has redundant states and transitions ture has no state or transition redundancy
where faults are active without any observable effects. by considering relevant active faults only.

Fig. 2. Partial view of the running example’s Kripke structures resulting from state-
based fault modeling (a) or fault-aware modeling (b). States are labeled with P when
the pump is running; the number represents both the tank’s pressure level and the
timer’s counter. The faults —is full and —timeout are active in states that show their
respective labels f and t. For reasons of brevity, the other two faults are omitted and
—is full and —timeout are assumed to be permanent.
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3 Fault-Aware Modeling and Specification

Instead of the commonly used state-based fault modeling approach, we focus
on fault activations, making them central to the models and specifications of
safety-critical systems as well as the safety analysis techniques. Our approach is
event-based where events are fault activations and deactivations; we exclusively
consider the former only, as we have not yet found a use case that requires
the latter. The significant state and transition count reductions demonstrated
by Fig. 2(b) make the potential advantages for model checking efficiency evident.
We augment the classical notion of Kripke structures and LTL to incorporate
fault activations explicitly, allowing us to more conveniently formalize DCCA,
fault injection, and fault removal in the remainder.

3.1 Fault-Aware Kripke Structures

Fault-aware Kripke structures explicitly denote the faults that can affect the
system they represent. They highlight states in which faults can be activated by
labeling their outgoing transitions with sets of activated faults as can be seen
in Fig. 3(a): The transition relation of the running example’s fault-aware Kripke
structure is activation-minimal in the sense that no transitions can be removed
without affecting the Kripke structure’s behavior or losing system states; in
particular, there are no transitions labeled with —is full or —timeout between the
two shown states as these two faults obviously cannot be activated when the
tank is empty. The Kripke structure in Fig.2(a), on the other hand, has many
superfluous states and transitions that can safely be removed without losing
any system states or behavior. The actual state and transition count reductions
made possible by activation minimality depend on how often a fault can be
activated: —timeout, for instance, is only activatable right before the hazard
occurs, resulting in a significant state space reduction; —pumping, by contrast,
is activatable in roughly 50 % of all states and therefore does not profit as much
from fault-aware modeling and specification.

Definition 1 (Fault-Aware Kripke Structures). A fault-aware Kripke
structure K = (P,F,S,R,L,I) consists of a set of atomic propositions P; a
set of faults F; a set of states S; a transition relation R C S x 2F x S labeled
with fault activations that is

— left-total, i.e., Vs € .38 € S, ' C F.(s,I,s') € R and
- activation-minimal, i.e., (s1, 1, s2) € RA(s1,1",85) € RAI C I — s9 # sb;

a labeling function L : S — 2F indicating the set of atomic propositions holding
in a state; and a non-empty set of initial fault activations and states ) # I C
2F xS that is also activation-minimal, i.e., (I'1,81) € I A (Is,80) € INT} €
Iy — 81 # s9. We also write P(K) for P, F(K) for F, etc. A fault-aware
Kripke structure K is finite if P(K), F(K), and S(K) are finite.
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(a) A fault-aware Kripke structure explicitly la- (b) The classical Kripke structure generated
bels its transitions with the minimal amount of from the fault-aware one to the left requiring
possible fault activations to avoid any state or additional states labeled with actual and po-
transition redundancy. tential fault activations.

Fig. 3. Part of the running example’s fault-aware Kripke structure where the tank
is empty, which the sensor should report to start the pump. Activations of either
—pumping or —is empty prevent the system from doing so. State label P indicates that
the pump is running; the number represents the pressure level. Labels e and p indicate
activations of —is empty and —pumping, respectively, whereas €? and p? denote potential
activations of these faults when leaving the state.

For a fault-aware Kripke structure K, a path fragment ¢ = Igsglysy ... of
K is an infinite, alternating sequence of fault activations I; C F(K) and states
s; € S(K) such that (s;, [i41,8i+1) € R(K) for all i > 0. We write g[i], r[i],
and ¢s[i] for (I3, s;), I, and s;, respectively. A path of K is a path fragment ¢
of K with ¢[0] € I(K); the set of all paths of K is denoted by paths(K). The
reachable states R(K) are given by {ss[i] | s € paths(K) Ai > 0}. The following
notion of path equivalence modulo faults I" allows us to compare the paths of
two fault-aware Kripke structures, ignoring activations of faults f € I":

Definition 2 (Path Equivalence). Two fault-aware Kripke structures K1 and
K5 are path equivalent modulo faults F', denoted as K1 =p Ko, if for all ¢ =
Tosolisy ... with s; € S(Kl) US(KQ), I; C F(Kl) UF(KQ), and I;NF = 0 fO’I’
all i > 0, ¢ € paths(K7) if and only if < € paths(Ks3). K1 =¢ Ko is abbreviated
as K1 = Ks.

In order to use standard model checkers such as LTSMIN, a fault-aware Kripke
structure K = (P, F,S,R,L,I) can be converted to a classical Kripke struc-
ture K/ = (P',S",R', L', I): We encode actual and potential fault activations
into atomic propositions I" and I'?, respectively; the latter indicates that the
faults I' are activated by at least one outgoing transition of a state. We have
P =PUFU{r’ |IF CF}; 8" =2FxS; R = {((I,s),(I",s") | (s,I",s") € R};
and L'(I',s) = TUL(s)U{I"" | 3s' € S.(s,I",s') € R}. While S’ is much larger
than S, most additional states are not reachable due to activation minimality and
are thus irrelevant for explicit-state model checkers such as LTSMIN; with state-
based fault modeling, even more additional and often superfluous states would be
introduced, most of which would be reachable and thus slow down model checking
unnecessarily. Figure 3(b) shows the classical Kripke structure generated from the
fault-aware one in Fig. 3(a). The additional states are required to support fault-
aware LTL; they are unavoidable without fault-aware model checkers.
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3.2 Fault-Aware Linear Temporal Logic

Fault-aware Kripke structures only model fault activations, disregarding any per-
sistence constraints. Instead, we assume the constraints to be encoded into the
checked LTL formulas to filter out paths violating any of them. The following
definition of fault-aware LTL is based on the classical variant with both future-
and past-time operators [3,21]. The past modalities do not increase the expres-
siveness of the logic, but make some formulas exponentially more succinct [21]
while in many practical cases still allowing for efficient model checking [27].
Compared to classical LTL, fault-aware LTL provides two additional operators
related to fault activations: Formula I" requires that at least the faults in I" were
activated to reach a state, that is, it checks whether a state was reached because
of the activations of all f € I'; and potentially more, during the last transition.
Formula I' therefore allows a glimpse into the immediate past, whereas the other
new operator supported by fault-aware LTL conceptually looks into the immedi-
ate future: Formula I'” checks whether exactly the fault set I" might potentially
be activated when leaving a state, i.e., it allows to check whether precisely the
faults f € I" can be activated to reach the next state. The I'* operator therefore
considers multiple distinct futures that are possible instead of one single future
as is usually the case with LTL; the operator is conceptually similar to EX in
CTL. Fault-aware LTL is unable to directly express that a fault is active or
dormant, which we found of little practical use.

Definition 3 (Fault-Aware LTL). Fault-aware LTL formulas ® over a set P
of atomic propositions and a set F' of faults are formed according to the following
grammar, where @, p1, and s are fault-aware LTL formulas over P and F,p €
P,and I' C F:

Gu=true|p| I | I [=p |1 Apa | Xo | 01Ups [Pl p1Ses

Propositional connectives are defined as usual; we write F ¢ for trueUyp, G ¢ for
- F—p, Op fortrueS ¢, and Hy for - O —p. Additionally, o1 U= @9 abbrevi-
ates p1U(p1 Apa). A fault-aware LTL formula ¢ € @ is valid at a position i > 0
of a path fragment s of a fault-aware Kripke structure K, written as ,i = ¢, if:

G,i = true S,iFEDp iff p € L(K)(ssi])
i iff I C cpli]

Si =T iff (ssli], I, s) € R(K) for some s € S(K)

GilE—e  affsilEe S,i w1 A2 iffs,i = @1 and s, i = w2

iEXe iffs,i+lEg@

¢, i =1 Uy iff there is a k > i with ¢,k = @a and 6,5 = ¢1 foralli < j <k
GiEP iffi>0ands,i—1FE¢p

S, i = 1S s iff there is a k < i with ¢,k |= @2 and c,j = 1 for allk < j <i
¢ = ¢ abbreviates ¢,0 = . ¢ is valid in K, written as K = ¢, if ¢ = @ for all
S € paths(K).
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For all faults f € F, we generally require that they do not have to be acti-
vated in an initial state, i.e., K [~ f with f abbreviating {f}. Fault-aware
Kripke structures violating this assumption always start with at least one acti-
vated fault, making their adequacy questionable. Additionally, a transient fault
f € F must be activated completely nondeterministically. The corresponding
persistence constraint is G'\/ remgd '?: There always is a transition where f
is not activated; otherwise, f’s activation would be deterministically enforced.
Permanent faults I" C F' behave like transient ones until the first time they are
activated: A\ pcp G A Njer: O f) — X I7) ensures that all subsets I C I’
of the faults are indeed activated whenever they are activatable and all faults
f € I'" have already been activated at least once.

To determine whether a formula ¢ € @ holds for a fault-aware Kripke struc-
ture K with K & f for all f € F(K), we check K | (A\ycp ) — ¢ for a
set of persistence constraints ¥; such formulas are similar to fairness conditions
in that they can only be expressed in LTL but not in CTL [3]. The extended
formula might result in a more complex Biichi automaton; however, constraints
for transient faults are both the common and the general case with a simple
single-state Biichi representation. Therefore, transient faults no longer represent
the worst case as with state-based fault modeling, but the best case instead.
The transformation of fault-aware LTL to classical LTL is straightforward by
making formulas I" and I"” propositions; the Kripke structures generated from
fault-aware ones contain the required state labels for I" and I"°.

3.3 Fault Injection

The intended behavior of a safety-critical system is commonly modeled first
with the faulty behavior injected later in a separate step [6]. State-based fault
modeling requires additional states, labels, and transitions for injected faults
just to distinguish the faults’ active and dormant states. For fault-aware Kripke
structures, however, injecting a fault can only add new transitions when the fault
is actually activated; additional states, labels, and transitions are only required
to model a fault’s effects on the system. Formally:

Definition 4 (Fault Injection). Injecting the faults F’' into K =
(P,F,S,R,L,]I) yields the set of extended fault-aware Kripke structures K<F’,
where for all K' = (P, FUF S R L')I'Y ¢e K«F,P C P ,6SCJY,
L(s) C L'(s) for all s € S, R C R’ such that for all (s,I,s') € R'\ R,
s€S—INF #0, and I CI' such that for all (I',s) € I'\I, T NF' # (.

The definition reflects the fact that there are many possible ways of injecting
faults F” into a model by yielding a set of extended fault-aware Kripke structures
incorporating F’. For reasons of adequacy, the model including the faults is
required to be an extension of the model without these faults; that is, fault
injection may add but can never remove behavior. We can formally show that
the original Kripke structure and all possible extensions are path equivalent as
long as the injected faults are never activated:
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Proposition 1 (Conservative Extension). For a fault set F' and fault-aware
Kripke structures K and Kp € K<F, K =p Kp.

Fault injection is purely additive, as new behavior can only be reached by
activations of injected faults; until then, the system behaves as before. The high-
level models of the safety analysis tools typically guarantee conservative exten-
sion syntactically [6,13].

4 Deductive Cause Consequence Analysis

By model checking a series of formulas, DCCA uncovers cause consequence rela-
tionships between faults (the causes) and hazards (the consequences): For each
hazard, DccA computes all minimal critical fault sets I' that can cause the
occurrence of the hazard. We assume a finite fault-aware Kripke structure K
representing the system to be analyzed with a hazard H given as a propositional
logic formula over K not referencing any faults f € F = F(K). A fault set I is
critical for a hazard H if and only if there is the possibility that H occurs and
before that, at most the faults in I" have been activated. The following original
definition [12] of the criticality property uses CTL, which could be extended to
fault-aware Kripke structures similar to fault-aware LTL. The usage of CTL,
however, limits DCCA’s applicability to Kripke structures with a single initial
state, since a CTL formula is only valid on a Kripke structure if it holds in all
initial states.

Definition 5 (Minimal Critical Fault Sets). Let |I(K)| = 1. A fault set I C
F' s critical for hazard H if K |= (only EUT H), where onlyp :< Npeppf-
A critical fault set I’ is minimal if no proper subset I'" C I' is critical.

The CTL formula checks whether there is a path ¢ € paths(K) on which
the hazard H occurs and before that, none of the faults f ¢ I' are activated;
conversely, at most the faults f € I' are activated. The use of the EU= operator
guarantees that the transition leading to the state where the hazard occurs
still enables at most the faults f € I'; if EU was used instead, there could be
activations of faults f € F'\ I" right before the hazard occurs, which is obviously
unintended. Activation is only (implicitly) required for minimal criticality, but
not for criticality: Any superset I O I' of a critical fault set I" is also critical
as additional fault activations cannot be expected to fix other faults and thus
to improve safety. In practice, the criticality’s monotonicity with respect to set
inclusion [12] often allows for significant reductions in the number of checks
required to find all minimal critical fault sets; otherwise, all subsets of F' would
have to be checked for criticality. DCCA’s worst-case complexity, however, is in
fact exponential.

Dcca determines all minimal critical fault sets for a hazard; it is a complete
safety analysis technique [12] in the sense that the hazard cannot occur as long
as at least one fault of each minimal critical fault set is never activated. For-
mally, K = (Arca = Ajer F f) — G —H always holds where A is the set of all
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minimal critical fault sets for H determined by conducting a DccA for H over
K. Dccea is always complete, regardless of whether faults were injected into the
Kripke structure in accordance with Definition4 or added in some other, arbi-
trary way. Adequacy, however, is only guaranteed for fault-aware Kripke struc-
tures with injected faults. Only then is the check for criticality of the empty fault
set equivalent to a check of functional correctness, namely whether the hazard
can already occur even without any fault activations.

4.1 Conceptual Improvement: Safe Fault Sets

Similar to fairness conditions, persistence constraints cannot be enforced while
checking the criticality of a fault set due to the use of CTL [3]. We therefore base
DccaA on the dual of critical fault sets instead, which can indeed be formalized
using fault-aware LTL:

Definition 6 (Safe Fault Sets). A fault set I' C F is safe for hazard H if
and only if K = —(only U= H) with only as in Definition 5.

A fault set I' is considered safe for a hazard H if it is impossible that at
most the activations of faults f € I" result in an occurrence of H. Intuitively, a
fault set should be critical if and only if it is not safe. This correlation, however,
does not hold as criticality assumes Kripke structures to have a single initial
state only, whereas for safe fault sets, we do not make this assumption. For
multiple initial states, the original definition would classify critical sets as safe
in certain cases. To establish the correlation, we from now on consider a fault
set I' C F to be critical for H if and only if there is some path ¢ € paths(K)
with ¢ = only, U= H. The monotonicity property and DCCA’s completeness
guarantee continue to hold for the new definition of criticality; the proofs are
similar to the original ones [12]. Additionally, for any safe fault set I, any subsets
I'" C I are safe as well: Under no circumstances is it possible that less fault
activations make a system less safe.

Dcca is model checker-independent, whereas other techniques similar to
Dcca are tied to certain model checkers such as NUSMV or BT Analyser [5,7,
19]. In contrast to Dcca, some of these techniques [5,7] are only able to assume
monotonicity or require permanent persistence [19]; with DccA, monotonicity
is guaranteed regardless of the analyzed model and all kinds of persistence con-
straints are supported. Using safe fault sets to conduct DccCAs results in three
notable usability improvements: Firstly, DcCA now supports multiple initial
states, avoiding workarounds that construct a unique pseudo initial state by
changing both the model and the analyzed formula. Ironically, LTSMIN only
supports a unique initial state, forcing us to work around this limitation never-
theless. Secondly, both LTL and CTL can be used to conduct DCccCAs, enabling
broader model checker support; with CTL, a fault set is safe if and only if
K E —(onlyEUT H). Thirdly, the model checker now generates a counter
example when a fault set I is not safe, i.e., it constructs a witness that explains
why I is critical and how it causes the hazard. Consequently, the model checking
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Fig. 4. Illustration of the relation of fault injection and fault removal that enables
fault removal DCCA: starting with a fault-aware Kripke structure K and two disjoint
fault sets F1 and F3, path equivalent fault-aware Kripke structures can be obtained by
either injecting the relevant faults Fy only or by first injecting all faults F; W F> and
subsequently removing the irrelevant faults F.

workflow is improved as witnesses for safe fault sets showing how a hazard is not
caused are typically of no interest in practice.

4.2 Efficiency Improvement: Fault Removal

Formal safety analysis tools can automatically conduct complete DccAs. Instead
of using a series of LTL formulas to check for safe faults sets within a model,
the tools could alternatively change the model to make the checks more efficient:
Faults F'\ I" are not allowed to be activated during a check of I" due to only -, so
they could just as well be removed from the model entirely as outlined by Fig. 4,
reducing the model’s state space. Thus, instead of checking multiple formulas on
the same model, the same simplified formula can be checked for multiple reduced
models. We formalize a fault removal variant of DCCA based on this idea, which
generalizes an ad hoc approach to conduct Dccas within the SCADE tool [11].
We first define the notion of activation independence that is required to show
that DccA always computes the same minimal critical fault sets, regardless of
whether the multiple formulas or multiple models approach is used. We consider
a fault set to be activation independent if activations are never forced, that is,
there is always an alternative future or initial state in which none of the faults are
activated; trivially, transient and permanent faults are activation independent.

Definition 7 (Activation Independence). A fault set I' C F(K) of a fault-
aware Kripke structure K is activation independent in K if K = I' # OAT and

KEGVpcpmnr I

In particular, the following set of reduced fault-aware Kripke structures is
non-empty if and only if an activation independent fault set is removed, as acti-
vation independence preserves left-totality for all reachable states R(K) during
fault removal:

Definition 8 (Fault Removal). Removing the fault set F' C F from a fault-
aware Kripke structure K = (P,F,S,R,L,I) yields the set of reduced fault-
aware Kripke structures K \\ F', where for all K' = (P',F\ F',S',R', L', I') €
K\F,PPCP,RK)CSCS, R={(s,I,s)eR|s,s€S"NNF =0},
L'(s)=L(s) foralls€ S, and I' ={(Is) eI |s€S"AT'NF =0}.
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In contrast to fault injection which is a creative activity, fault removal is
mechanic and can therefore be done automatically by a tool. All K’ € K \\ F’
have identical sets of paths as they can only differ in irrelevant details such as
unreachable states or transitions. Similar to fault injection, fault-aware Kripke
structures are path equivalent before and after fault removal as long as the
removed faults are never activated:

Proposition 2. For fault set F C F(K) and fault-aware Kripke structures K
andK\F EKXF, K=r K\F

In general, we can only infer that K \ I # () when removing an activation
independent fault set I' C F'(K) from a fault-aware Kripke structure K. When
removing previously injected faults, we trivially obtain a fault-aware Kripke
structure that is path equivalent to the original one. Fault-aware LTL can also
be used to effectively remove an activation independent fault set I" C F(K)
from a fault-aware Kripke structure K, similar to how persistence constraints
suppress undesirable fault activations or deactivations: For K\ € K \\ I" and
¢ € @ expressible over both K and K\r/, K = (G A\;cp —f) — ¢ if and only
if K\ = ¢ by Proposition 2. In particular, while conducting a Dcca, all faults
whose activations are suppressed by the only  part of the safe fault sets formula
can be removed from the checked model, thereby replacing checks of multiple
LTL formulas on a model with all faults by a series of reachability checks of
multiple reduced models:

Theorem 1 (Fault Removal Dcca). Let K be a fault-aware Kripke structure
with faults F = F(K), I' C F be a fault set, and K\(p\py € K\ (F\I'). I is
safe for hazard H if and only if K\(p\ry F G —~H.

The proof of Theorem 1 generalizes and completes the one given for SCADE-
Dcca [11]. Overall potential analysis time reductions depend on the model adap-
tation overhead and the size of the minimal critical fault sets; as the latter are
usually rather small, efficiency can improve significantly. The following propo-
sition establishes the adequacy of the fault removal optimization for injected,
activation-independent faults IV C F(K), i.e., the criticality of I' = F(K) \ I’
can be determined by either removing I or by injecting only I" in the first place.
That is, it is not even necessary to construct the complete fault-aware Kripke
structure containing all analyzed faults and subsequently to remove the faults
that the analyzed DccA formula would suppress anyway; instead, only the ana-
lyzed faults can be injected into the model, avoiding any potential analysis tool
overhead when carrying out the fault removals. More generally, the following
proposition summarizes the formal justification for the equivalence at the bot-
tom of Fig. 4, allowing only the smaller fault set to be injected in the first place;
a similar result can be obtained for the reverse direction.
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Proposition 3. For fault sets F and F' C F and all fault-aware Kripke struc-
tures K, Kp € K<F, and (Kp)\p» € Kp \ I, there is a Kp\pr € K<(F'\ I)
such that KF\F’ = (KF)\F’

5 Tool Support and Evaluation

Fault-aware modeling and specification is implemented in the S# modeling and
analysis framework for safety-critical systems [13]. The following gives a brief
overview of S#’s high-level modeling language, its fault modeling capabilities,
and its integration with the explicit-state model checker LTSMIN [18]. S#’s effi-
ciency is contrasted with the explicit-state and symbolic model checkers SPIN
and NUSMV [8,14] as well as the safety analysis tools VECS and COMPASS
[20,23]. In particular, we highlight S#’s analysis efficiency improvements over
previous versions of S# for three case studies which result from the use of fault
removal DCCA as well as fault-aware Kripke structures. The latest version of
S# as well as documentation about its installation and usage are available at
http://safetysharp.isse.de. Detailed descriptions of the case studies as well as the
S# case study models are also available there, including interactive, S#-based
visualizations that support visual replays of model checking counter examples.

5.1 The S# Modeling and Analysis Framework for Safety-Critical
Systems

The S# modeling and analysis framework conducts Dccas fully automatically
for system models authored in the ISO-standardized C# programming language
and .NET runtime environment [15,16]. Its modeling language and the under-
lying model of computation put particular emphasis on flexible system design
variant modeling and composition capabilities as well as support for fault mod-
eling and automated fault injection which guarantees conservative extension.
While S# models are represented as C# programs, they are still models of the
safety-critical systems to be analyzed; the running example’s tank, for instance,
is part of the model even though it is not software-based in the real world. Even
the software parts of S# models are not intended to be used as the actual imple-
mentations; these are typically done in C or C++ for reasons of efficiency. Thus,
S# is best regarded as an executable, text-based extended subset of SYSML [24]
even though no automated transformations between the two exist. The under-
lying model of computation is a series of discrete system steps, where each step
takes a clock tick. As shown by Listing 1, S# components are represented by C#
classes, instances of which correspond to S# component instances. Methods are
considered to be either required or provided ports; inheritance, interfaces, gener-
ics, lambda functions, etc. are fully supported by S#. To instantiate a model,
the appropriate component instances must be created, their initial states and
subcomponents must be set, and their required and provided ports must be
connected.
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class PressureSensor : Component { // incomplete due to space restrictions
int Max;
public PressureSensor (int max) { Max = max; }

public extern int GetPhysicalPressure() ;
public virtual bool MaxReached() { return GetPhysicalPressure() >= Max; }

PermanentFault NotIsFull = new PermanentFault () ;

[FaultEffect (Fault = nameof (NotIsFull))]
class NotIsFullEffect : PressureSensor {
public override bool MaxReached() { return false; }

}

Listing 1. A partial S# model of the running example’s pressure sensor. The provided
port MaxReached checks the required port GetPhysicalPressure against the Max
value set via the constructor to determine whether the maximum pressure level is
reached. The permanent fault —is full is represented by NotIsFull; its effect is
modeled by the nested class NotIsFullEffect marked with the FaultEffect
attribute that links the effect to the fault. The effect overrides the original behavior of
MaxReached such that it always returns false when the fault is activated, regardless
of the actual pressure level; the port’s original implementation is invoked only when
the fault is dormant.

S#’s unified model execution approach [13] integrates the explicit-state model
checker LT'SMIN [18]: Instead of model transformations typically employed by
safety analysis tools such as VECs, Compass, and ALTARICA [4,20,23], S# uni-
fies simulations, visualizations, and fully exhaustive model checking by executing
the models with consistent semantics regardless of whether a simulation is run
or some formula is model checked. During model checking, all combinations of
nondeterministic choices and fault activations within a model are exhaustively
enumerated, the generated transitions are minimized with regard to the faults
they activate, and a fault-aware Kripke structure is generated on-the-fly and
subsequently transformed into a classical one for LTSMIN. However, S# is not
a software model checker such as Java Pathfinder or Zing [1,29] as it does not
analyze states after every instruction; only state changes between individual,
more coarse-grained system steps are considered. Additionally, heap allocations
or threads are unsupported during model checking.

5.2 Evaluated Case Studies

S#’s analysis efficiency with fault removal DccA and fault-aware Kripke struc-
tures is evaluated with three case studies. The first two case studies were previ-
ously analyzed using hand-written NUSMV models [12,25]; the safety analysis
results obtained with S# match those from previous analyses, the main improve-
ments over them lie in S#’s modular, high-level modeling language and flexible
model composition capabilities based on C# that, for instance, no longer require
manual work for composing system design variants. Additionally, S#’s unified
model execution approach not only generates and checks the required DccA for-
mulas fully automatically, but also allows for interactive visualizations and visual
replays of model checking counter examples based on the same underlying S#
model without sacrificing analysis efficiency unacceptably.
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Radio-Controlled Railroad Crossing. The radio-controlled railroad crossing
replaces sensors on the track by onboard computations of the train position and
radio-based communication between the train and the crossing [12]. The hazard
is a train passing an unsecured crossing, potentially resulting from faults such as
lost communication messages or the crossing’s barrier getting stuck. Being model
checking-based, DCCA is automatically able to cope with temporal dependencies
inherent to the case study: Simultaneous occurrences of multiple faults might be
safe, while consecutive occurrences might not due to the communication inter-
play between the train and the crossing.

Height Control System. The height control system [25] of the Elbe Tunnel
in Hamburg, Germany, tries to prevent overheight vehicles from entering the
tunnel at unsuitable locations to avoid collisions with the tunnel’s ceiling. The
antagonistic hazards of collisions and false alarms must be balanced, taking
failures of various sensors into account. The system’s design space is restricted
by the physical properties of the sensors as well as the road layout; the “best”
designs strike a balance between the two aforementioned hazards. S# supports
modular modeling of different design variants and their composition in order to
analyze the safety of all modeled design variants.

Hemodialysis Machine. The third case study is a hemodialysis machine [22],
consisting of several physical components such as tubing valves, pumps, drip
chambers, and the dialyzer itself. To adequately express the causal dependencies
between these components, it is necessary to model the fluid flows that inter-
connect them. The analyzed hazard is that of contaminated blood entering the
patient’s vein.

5.3 Evaluation Results

S#’s latest version makes use of fault removal DCCA and automatically generates
fault-aware Kripke structures for explicit-state model checking with LTSMIN.
Compared to previous versions of S# that employed explicit-state model checking
with state-based fault modeling, analysis efficiency improves by up to almost
four orders of magnitude depending on the case study as outlined by Table 1.
S# is generally faster than the established explicit-state model checker SPIN:
In the worst case of valid formulas where the model’s entire state space must
be enumerated, S# and LTSMIN take 68.8 s for the height control model. SPIN,
by contrast, takes 553s to check a hand-optimized, non-modular version of the
model that semantically corresponds to the S# version. On a quad-core CPU,
LTSMIN achieves a speedup of 3.7x, bringing the analysis time down to 18.6s
whereas SPIN scales by a factor of 1.5x only. Fault awareness makes S# more
efficient than SPIN, causing it to compute less transitions while still finding
all reachable states. For the height control case study, activation minimality is
partially encoded into the SPIN model; general and automated support would
require changes to SPIN’s model checking algorithms, however.

For the height control case study, BDD-based symbolic analysis with
NUSMYV is faster than using S#: For a hand-written, very low-level and
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Table 1. The results of the S#-based evaluation of the explicit-state efficiency improve-
ments, comparing fault-aware modeling and specification with state-based fault mod-
eling in (a). A comparison of both DcCA variants is shown in (b). Three S# case
studies were evaluated on a 3.4 GHz quad-core CPU: The height control system (T),
the radio-controlled railroad crossing (R), and the hemodialysis machine (H), checking
the hazards of tunnel collisions, trains on unsecured crossings, and contaminated blood
entering the patient’s vein, respectively.

State-Based Fault-Aware Fault-Aware
States‘ Trans‘Time States‘Trans‘Time Faults‘MCS‘Std Time‘FR Time
T (249 [1219724| 1.5d|| 1.3 | 57 [14.2s]|9127x T 11 3|  3010s 33.1s||91x
R|[116 10564| 12m|| 2.5 8.5| 1.9s|| 379x R 7 6 23s 1.4s|[16x
H 0.6 152| 3m|| 0.05| 0.9|10.1s|| 18x H 8 4| 1040s 15.9s||65x

(a) Comparison of both fault modeling approaches. (b) Comparison of both DCCA variants.
The “States” columns show the models’ approximate  “Faults” lists the number of faults, “MCS”
amount of reachable states in millions, “Trans” the ap-  the amount of minimal critical sets. The
proximate amount of reachable transitions in millions,  time columns show the times of standard
and “Time” the time to enumerate all states. The last  and fault removal DCCA; the speed-up is
column shows the analysis speed-up. shown on the right.

non-modular NUSMYV model that is approximately equivalent to the S# model,
the entire state space is generated almost instantly, despite state-based fault
modeling. By contrast, the railroad crossing case study is more efficiently checked
by S# or SPIN than by NUSMYV, so the relative efficiency of explicit-state and
symbolic model checking is case study-specific and independent from S#. In gen-
eral, highly nondeterministic models seem to profit more from symbolic tech-
niques. Fault awareness can partially be encoded into NUSMV models using
input variables [5], slowing down analysis noticeably in some cases, however.

6 Conclusion and Future Work

Fault-aware modeling and specification of safety-critical systems has two main
advantages over the commonly used state-based fault modeling approach: Explic-
itly denoting faults and their activations simplifies the descriptions and formal
definitions of safety analysis techniques like DCCA and of safety-related concepts
such as fault injection and fault removal. Moreover, model checking efficiency in
general and safety analysis times in particular are improved significantly such
that explicit-state model checking becomes competitive with symbolic techniques
when analyzing safety-critical systems. Some case studies still have higher analy-
sis times with S# compared to NUSMV; this tradeoff seems acceptable, however,
when considering the step-up in modeling flexibility and expressiveness as well as
the guarantees of semantic consistency and conservative fault injection that S#
provides over SPIN, NUSMYV, or, in parts, VECS. Compared to other approaches
for safety modeling and analysis like ComMPASS, VECS, ALTARICA, or HiP-HOPS,
S# has a competitive edge by tightly integrating the development, debugging,
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and simulation of models with their formal analysis with no or only minor sac-
rifices in analysis efficiency. In general, however, fair comparisons between these
tools and S# are hard to achieve due to their different models of computation.
For instance, it took us about 740 lines to create a scaled down COMPASS ver-
sion of the railroad crossing model that is semantically similar to the S# version
written in 400 lines of C# code. COMPASS performs a safety analysis that is
equivalent to DCCA in 21 min using NUSMYV instead of the 1.4s it takes S# to
do the same. Of course, the comparison is unfair as forcing COMPASS semantics
onto S# might likewise slow down analyses.

While S# and DccCA only compute the minimal critical fault sets for a haz-
ard, the actual hazard probability is also of interest. We are therefore working
on fault-aware probabilistic model checking; preliminary results are promising,
bringing the achieved analysis time reductions for non-probabilistic analyses to
probabilistic ones. Additionally, we plan to explore (semi-)automatic abstrac-
tions from irrelevant environment states to decrease analysis times similar to
partial order reduction [3]: S# models always contain parts of the system’s phys-
ical environment for reasons of adequacy [13], for which the system’s sensors
might readily serve as abstraction functions.
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Abstract. Model driven engineering is widely used in the development
of complex and safety critical systems. Systems’ designs are specified
and validated in domain specific modeling languages and software code
is often produced by autocoding. Thus the correctness of the final sys-
tems depend on the correctness of those tools. We propose an app-
roach for the formal verification of code generation from dataflow lan-
guages, such as SIMULINK, based on translation validation. It relies on the
BLOCKLIBRARY DSL for the formal specification and verification of the
structure, semantics and variability of the complex block libraries found
in these languages. These specifications are then used here for deriving
model and block-specific semantic contracts that will be woven into the
generated C code. We present two different approaches for performing
the block matching and weaving step. Finally, we rely on the FrRAMA-C
toolset and state-of-the-art SMT solvers for verifying the annotated code.

Keywords: Translation validation - Deductive verification + Data flow
languages - Block libraries + Why3 toolset - Frama-C toolset

1 Introduction

Automatic code generators (ACG) are nowadays used for the development
of most safety-critical systems in order to avoid human-related programming
errors, and ensure both quality standards conformance and efficient maintenance
cycles. As these tools replace humans in a key software production step, their
design or implementation flaws usually result in errors in the generated software.
Safety critical software development must usually satisfy certification/qualifica-
tion standards like the DO-178C for avionics which is one of the best known
and most stringent one. One key requirement in its Model Based Software Engi-
neering (MBSE) and Formal Methods (FM) supplements (DO-331 & DO-333)
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Fig. 1. The process for the formal specification of block libraries and the use of these
specifications for the verification of automatically generated code

is to provide a precise, complete and unambiguous specification of the input and
output languages for ACG.

Overview of the Approach. Figurel gives an overview of the elements in our
specification and verification process. In [3,4] we proposed a Domain Specific
Language (DSL) for writing and formally analyzing specifications for config-
urable function blocks in dataflow languages. We refer to this as the BLOCK-
LIBRARY specification language. In the current contribution it is used for the
formal verification of automatically generated code from dataflow models. The
WHY3 toolset [2] is first used for the formal verification of the well-formedness
and semantic consistency of the specification. Then these specifications are used
for the verification of generated source code from dataflow models by weaving
model-specific formal annotations into the generated source code. The annotated
code is then verified using the FRAMA-C toolset'. Both verification steps are in
turn relying on SMT solvers and proof assistants as a formal backbone.

Dataflow Languages. Dataflow languages are widely used for specifying control
and command algorithms. SIMULINK? is the most used in the industry but there
exist other similar graphical formalisms, such as SCADE, Scicos, Xcos and
textual languages such as LUSTRE and SIGNAL. The main constructs in dataflow
models are blocks (computation nodes) and signals (data connections). The con-
crete execution of dataflow models is divided into three phases: an initialization
phase, where the memories of all the blocks in the model are initialized; followed

! http://frama-c.com.
2 http://www.mathworks.com /simulink.
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by a recurring cycle alternating the compute and update phases. During the for-
mer each enabled block produces data to its outputs according to data at its
inputs, previous state(s) and configuration parameters. The computed data is
immediately available for the following blocks. The order of these computations
is defined statically by a sequencing algorithm such as [9], formalized in [7]. The
update phase updates the memories of all sequential blocks according to the data
at their inputs, previous values in memory and configuration parameters.

Use Case. Our final goal is the verification of the generated code for a com-
plete dataflow model with respect to requirements for the system expressed as
top level software contracts that are either manually written or generated from
a specification model (e.g. dataflow system observer). This part is not directly
addressed in the current work. However, the semantics of the model that imple-
ments this top level specification is given by the semantics and configuration of
the blocks it relies on. We propose to weave the generated code with seman-
tic contracts derived from the BLOCKLIBRARY specifications for two purposes:
(a) verify that the generated code for each block matches its specification and
(b) help the deductive verification tools in proving the top level contracts. We
illustrate our proposal with the specification of the IntegerDelay block and the
verification of its code as generated by the GENEAuTO ACG [17].

Organization of the Paper. This paper is organized as follows: Sect. 2 provides an
overview of the BLOCKLIBRARY language and associated verification technique.
Section 3 focuses on the verification of the low-level requirements for an ACG
relying on a translation validation approach. Section 4 applies this approach on
a use case. Section 5 compares our approach to related works. Planned future
extensions and a conclusion are given in Sect. 6.

2 Formal Specification of Blocks in Dataflow Languages

Besides the core principles of data flowing through signals from output ports to
input ports, the semantics of dataflow languages is mainly determined by the
semantics of elementary blocks that compute data on their outputs depending
on data on their inputs, memories and parameters. Tools such as SIMULINK have
large block libraries with highly configurable blocks. The BLOCKLIBRARY DSL
proposed in [3,4] relies on the core concepts of Software Product Line Engineer-
ing (SPLE) adapted to the domain of block libraries to handle this variability.
This DSL is expressed as a metamodel in MOF (OMG Meta Object Facility
standard) capturing the concepts required for the specification of both the struc-
ture (ports, parameters and memories) and the semantic phases (initialization,
computation and memory update) of dataflow blocks. Each structural element
is parameterized by data types and constraints expressed in the OMG stan-
dard Object Constraint Language (OCL) describing the set of allowed values
for valid instances of each structural elements. A semantic specification element
contains the specification of the behavior of one specific configuration of the
block expressed either in an axiomatic style using pre/post-conditions or opera-
tionally by giving the function’s definition. One can also provide both, since the
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two styles offer different possibilities for automatic verification. The pre/post-
conditions are specified using OCL. Operational specifications are specified using
the BLOCKLIBRARY Action Language (BAL).

The next section illustrates the specification for a block family with an
emphasis on the variability management relying on the SIMULINK IntegerDelay
block. The verification technique for the block specification is then summarized
(the interested reader can find more detailed information in [3,4] and on the
project’s website http://block-library.enseeiht.fr/html). Finally, we will elabo-
rate on the verification of loop constructs.

2.1 Example of Block Specification: IntegerDelay

Listing 1.1 provides a partial specification of the IntegerDelay block that delays
data flow by a given number N of clock cycles. Such blocks are often used in
control and command algorithms for writing recurrent equations (the discrete
equivalent of difference equations). This block is one of the simplest, but its
Simulink version is nevertheless highly variable with multiple semantics varia-
tions. The number of delayed clock cycles is specified statically as a parameter.
As the block delays its input values by N clock cycles, it is mandatory to provide
the first N values to be used for the block’s output. These initial values IV are
either provided by a static parameter or via an input of the block. The block has
other parameters and inputs making this block representative of the typical vari-
ability of SIMULINK blocks. In the complete specification also N can be provided
via the block’s input and there can be yet another input to dynamically reset the
block’s state (according to 4 different activation algorithm variants — rising edge,
falling edge, zero crossing and level). Finally, the specification provided here only
handles scalar and vector values of the double data type for the input and output
ports, whereas the full specification also allows integer (signed, unsigned, 8, 16
or 32 bits) and boolean data types, as well as matrices of all of those types. The
full specification of this block family has 144 distinct configurations.

1 1library BlockLibrary {
type signed reallnt TInt32 of 32 bits
type realDouble TDouble
type array TArrayDouble of TDouble [-1]
blocktype IntegerDelay {
6 variant DelayParameter {
parameter N : TInt32 { invariant ocl { N.value > 0 } } }
variant IOScalar {
in data Input : TDouble
out data Output : TDoublel}
11 variant IVScalarParam extends IO0OScalar {
parameter IV isMandatory : TDouble}
variant IVScalarInput extends IOScalar {

in data IV : TDouble }
variant IOVector {
16 in data Input : TArrayDouble

out data Output : TArrayDouble}
variant IVVectorParam extends IOVector {
parameter IV isMandatory : TArrayDouble }
variant IVVectorInput extends IOVector {
21 in data IV : TArrayDouble}
variant ScalarValues extends ALT(IVScalarParam, IVScalarInput)
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variant VectorValues extends ALT(IVVectorParam, IVVectorInput)
variant ScalarOrVectorValues extends ALT(ScalarValues,
VectorValues)
variant Mem extends AND(ScalarOrVectorValues, DelayParameter) {
26 invariant ocl { Input.size = Output.size }
invariant ocl { IV.size = N.value }
memory Mem {
datatype auto ocl { Input.value }
length auto ocl { N.value }}}
31 mode DelaySemantics implements Mem {
definition bal = init_Delay {
postcondition ocl { Mem.value = IV.value }
Mem.value := IV.value;}
definition bal = compute_Delay {
36 postcondition ocl { Output.value = Mem.value }
Output.value := Mem.value[0];}
definition bal = update_Delay {
postcondition ocl { Mem.value->last() = Input.value }
postcondition ocl {
41 Mem.value := (Mem.value@pre)->subList(2,N.value)
->append (Input.value)}
Vector_Shift_Left (Mem.value, 1, Input.value);}
init init_Delay
compute compute_Delay
46 update update_Delay}}

Listing 1.1. Partial specification of the IntegerDelay block

2.2 Specifying a Block Family

A block family is a set of possible configurations for a given block (a product line
of blocks in the “feature modeling” or FODA methodology and terminology from
Kang et al. in [8]). A block family specification in the BLOCKLIBRARY language
starts with the definition of block’s structure. The structure can be decomposed
using BlockVariants and BlockModes. BlockVariant is a basic specification unit
that defines a subset of structural or semantic elements. BlockVariants can be
reused in the specifications of different block types. They can be extended and
combined into larger units by using inheritance. A BlockMode, on the other hand,
is associated to a particular subset of the complete block configurations whose
behavior can be captured with a similar algorithm. Each BlockMode implements
one or more BlockVariants and inherits the elements defined in those. The spec-
ification of a block type thus consists of a structural variation graph (DAG)
whose roots and inner nodes are BlockVariants and leafs are BlockModes.

Two kinds of inheritance: AND and ALT, both n-ary operators, are available.
For AND, respectively ALT, the inheriting node inherits the definitions and con-
tracts from all, respectively exactly one, of the inherited nodes. AND is similar
to multiple inheritance as found in many object oriented languages. In our case,
we require that all the inherited elements are distinct (i.e., no overloading or
overlap is allowed). This relation is thus unambiguous and commutative. Line
25 of Listing 1.1 is an example of AND, and line 22 an example of ALT. This
last one specifies that, in one configuration of the Delay block, the initial value
is provided as a static parameter and, in the other, it is provided via an input.

From a BLOCKLIBRARY specification we can extract the set of all valid block
configurations. Each configuration has exactly one BlockMode and one or more
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BlockVariants. Figure?2 displays the block configurations extracted from the
specification in Listing 1.1. In a well-formed dataflow model, all block instances

must match to exactly one configuration in the respective block family.

Configuration 1

Configuration 2

Configuration 3

Configuration 4

Semantics specification
DelaySemantics

Semantics specification
DelaySemantics

Semantics specification
DelaySemantics

Semantics specification
DelaySemantics

Structural specification
Mem
ScalarOrVectorValues
DelayParameter
ScalarValues
IVScalarParameter
IOScalar

Structural specification
Mem
ScalarOrVectorValues
DelayParameter
ScalarValues
IVScalarInput
IOScalar

Structural specification
Mem

ScalarOrVectorValues
DelayParameter
VectorValues
IVVectorParameter
IOVector

Structural specification
Mem
ScalarOrVectorValues
DelayParameter
VectorValues
IVVectorInput
IOVector

Fig. 2. Configurations extracted from the specification of the IntegerDelay block

2.3 Verification and Validation of Block Specifications

The block specifications written in the BLOCKLIBRARY language are formally
assessed using a translation into the WHY property and WHYML behavior spec-
ification languages [2]. These generated specifications can be verified using the
dedicated WHY3 toolset relying either on automated proofs by SMT solvers
or manual ones using proof assistants such as CoqQ. The structural part of the
BLOCKLIBRARY specifications, including the variability aspects are translated
to WHY. The blocks’ semantics are translated to WaHYML. This translation is
currently written in Java and relies on the modeling support in EMF?. BLOCK-
LIBRARY models are translated to WHY and WHYML models that are serial-
ized using the XTEXT toolset*. It is not the aim of this paper to assess the
correctness of this translation. On the one hand, it defines the semantics of the
BLOCKLIBRARY language. On the other hand, it enables writing accurate specifi-
cations for the blocks in the chosen languages (e.g., SIMULINK). This translation
is being validated using various testing strategies.

Verification of Structure and Variability. For each block configuration extracted
from a BLOCKLIBRARY specification, we generate a WHY theory containing the
definitions for each structural element contained in its structural specification
altogether with a set of predicates expressing the: (a) explicit constraints defined
as invariants of the structural elements; (b) implicit constraints related to the
structural elements’ data types; and (c) global invariants constraining the Block-
Variant and BlockMode elements.

Two properties, completeness and disjointness, are used to assess the well-
formedness of the structure and variability of the specification. The first one
states that for all the well-formed instantiations of the block there exists at least

3 https://eclipse.org/modeling/emf/.
4 https://eclipse.org/Xtext/.
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one suitable configuration in the specification. This covers both the fact that,
all BlockVariants are used and that no contradictions are present in the set of
associated constraints. The second one ensures the unambiguous interpretation
of any configuration of a block. Both properties are automatically converted to
goals relying on the previously generated predicates.

The verification is performed using the WHY3 platform and SMT solvers.
In our experiments it was performed in a few seconds for most of the blocks
on a common modern laptop. Some block specifications with more variability
require more time (with a time factor of up to 100 in our experiments) for fully
automated verification. This cost is generally not an issue as this verification
must be done only once for each block specification.

Verification of Semantics. If the block’s semantics is specified both axiomatically
and operationally, then the consistency of these definitions can be verified. The
specification of the three execution phases (in Listing 1.1 the resp. sections are
following: initialization lines 32-34, computation lines 35-37 and update lines
38-43) are translated to distinct WHYML functions. The body of each function
is a direct translation of the respective semantic function of the block in this
mode. This function is given a contract consisting of the pre/post conditions
specified in the axiomatic semantics and an additional pre-condition computed
based on the structural properties that hold in this particular mode.

The verification of the WHYML functions is done as previously by relying on
the WHY3 platform and SMT solvers. While this verification can be straightfor-
ward for the specifications of simple blocks, it can require additional annotations
for code with more complex data types (vectors, matrices) or algorithmically
more complex blocks. In practice, fully automatic proofs are often only possi-
ble, when additional annotations are given in the form loop invariants, variants
and even ghost code. The BAL language allows one to write such annotations
and our transformation tool translates them into annotations in the generated
WauYML function body. If a consistent specification is provided, the verification
is usually handled automatically in a short time (a few tenths of a second) by
the SMT solvers. As the number of configurations can grow exponentially, the
verification of a complete block library specification can still take some time but,
as previously stated, this verification is only done once for a given library.

Validation of Specifications. While it is important to verify the specifications for
well-formedness and consistency, it is also necessary to validate that they ade-
quately capture the intended semantics of the corresponding blocks, e.g., that is
in the existing reference library implementations. The validation strategy that we
have planned and are currently implementing for the specifications of SIMULINK
blocks relies on the translation of all configurations of all blocks to correspond-
ing MATLAB code. That code is executed and the execution result is compared
to the result of the simulation of a correspondingly configured SIMULINK block.
Test vectors for block inputs and parameters can be automatically generated
based on the block specifications. This work is currently ongoing and the results
will be reported in the future.
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2.4 Handling Loop Constructs

Programs containing loops are the main difficulty in the automated deductive
verification. Loops usually must be annotated with complex invariants and vari-
ants. Loops are very common programming constructs that occur especially
often in mathematical computations, including the ones done in dataflow blocks.
However, in this context, loops have often a very regular structure with similar
annotations. Thus, the specification designer should be relieved from the writ-
ing of these annotations. This topic has been addressed by many authors and
various solutions have been proposed. For example, Furia and Meyer [6] propose
a technique to generate invariants for certain loop patterns automatically, when
larger program units such as routines have explicit post-conditions which is also
the case in our context. The technique in [6] was partly implemented in the
Boogie tool. Unfortunately, in the general case such methods are also limited
due to undecidability. Recent work by Wiik and Bostrom [19] targets contract-
based verification of MATLAB-style matrix programs making this work very
relevant to ours. The authors propose a solution for efficient encoding of a sub-
set of MATLAB’s built-in matrix functions for deductive verification. However,
the specification of loop invariants is still required. According to the authors’
experiments, k-induction can be used to remove some, but still not all of these
invariants. The work currently addresses partial correctness only. Fillidtre and
Pereira [5] have presented an approach that can be applied to different iteration
paradigms including non-deterministic and infinite iterations as well as itera-
tions with side-effects. It does not completely remove the need to specify loop
invariants, but it allows encapsulating and hiding the implementation aspects of
iterators. Thus, simplifying considerably the specification left to the “users”.
In our context loop specifications occur in two places: specifications of the
blocks operational semantics and annotations of generated code. Given the
state of the art, we have chosen the following strategy to deal with them. As
explained earlier, the operational specification of blocks semantics is optional
and is not needed for the translation validation. However, it can be beneficial
otherwise. The BAL language contains for and while-style loop statements with
both invariant and variant annotations that the user can explicitly specify. How-
ever, explicit loop constructs can be in many cases avoided by using polymorphic
operators with implicit support for non-scalars and/or using higher order iter-
ators. For instance, element-wise operations on non-scalars can be specified in
terms of an elementary operation and a higher-order map operator and collaps-
ing operations using a fold operator (i.e., catamorphism). Other operations, such
as matrix product, require more specific encoding. The Vector_Shift_Left binary
operator used in line 43 of Listing 1.1 is another example. It is applied on a vec-
tor or a matrix. In case of a vector, it shifts all the values in the vector by one
position downwards, starting from the second element, and inserts a specified
new value as the very last element. If the first argument is a matrix, it applies
the same operation to each row of the matrix. The last argument should be a
vector in this case. Line 43 of Listing 1.1 is automatically expanded to Listing
1.2. The specification of these operators in BAL and their translation to WHY
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var iter = 0;
ghost { var i = 0; }
while (iter < (N.value - 1)){
invariant ocl { 0 <= iter < N.value }
invariant ocl { 0 <= i and i < iter and
Mem.value->subList(1,i) = (Mem.value@pre)->subList(2,i+1) }
variant ocl { N.value - iter %}
Mem.value[iter] := Mem.valuel[iter + 1];
iter := iter + 1;}
10 Mem.value[N.value - 1] := Input.value;

ot

Listing 1.2. Expanded version of the Vector_Shift_Left operation

and WHYML are currently in progress. This work relies largely on earlier work
performed in GENEAUTO [17] and its successor project QGEN® on specifying the
semantics of the embeddable subsets of MATLAB and SIMULINK and can benefit
also from the formalization presented in [19]. The difference in our work is that
the invariants and variants for such operators will be generated based on the
static parameters of concrete block instances.

The same loop annotations are required in the translation validation context
for verifying the correctness of the generated code. The BAL language supports
such annotations and it would be thus possible to specify them manually. How-
ever, this is rather laborious. We could try to weave these annotations into the
generated code just like the pre- and post-conditions. However, this can be sig-
nificantly more complex. First, it would make the existence of the operational
specification mandatory for semantic functions containing loops. Secondly, it
would require the generated low-level code to be structurally very close to the
operational specification and prohibit the usage of more abstract operators in
the specifications or the generation of optimized code. One solution is to let the
ACG itself generate annotations for primitive operators involving loops. This
might seem to jeopardize the intent of translation validation. However, if applied
with care, it does not. It is a similar situation to the Assertion Inference Para-
dox stated in [6]. The pre- and post-conditions of the larger program units (here
code sections generated from block instances) are not generated by the untrusted
ACG whose output is under verification. The intent of the intermediate anno-
tations derived from the primitive operators is to help the verification tool in
proving the satisfaction of the main contracts. If these annotations do not intro-
duce any axioms to the axiom base used by the deductive verification toolset,
then they cannot contribute to a false claim of correctness. In our case no axioms
would be generated. However, generally, it must be separately ensured.

The generated C code for the Vector_Shift_Left operator corresponding to
Listing 1.1, together with the generated annotations, can be seen in lines 32-42
of Listing 1.3. Note that in case the block’s semantics is not implemented using
operators supporting automatic annotation generation and uses general loop
constructs instead, the current deductive verification tools might not be able to

5 http://www.adacore.com/qgen.
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automatically prove the correctness of the code. Thus, it would be necessary to
use a proof assistant for proving these parts or add some annotations manually
in the generated code.

3 Verification of the Correctness of Generated Code

Automatic code generation is one of the key benefits of MBSE for critical sys-
tems. The correctness of the code can be assessed by verifying the correctness
of the ACG or by verifying that the code has the expected properties. For
both approaches there are many techniques available. The assurance gained by
classical methods like testing or code reviewing has well-known limits. Formal
methods can provide a much higher level of confidence but they have a higher
entry barrier that requires good tool support and well integrated development
processes.

We will detail below our approach for the formal verification of automati-
cally generated code relying on the Translation Validation (TV) methodology
proposed by Pnueli et al. in [15]. In TV the transformation (code generation)
workflow is complemented by an independent verification workflow. The lat-
ter relies on the common formalization of the input and output languages and
must establish whether the input and output data of a given transformation run
conform to the expected equivalence relation or not. In our case we rely on the
formalization of dataflow blocks in the BLOCKLIBRARY language and use that to
derive formal contracts for code generated from block instances in a given input
model. In particular ACSL [1] annotations for C code. The same principle can
also be applied for other languages providing Design By Contract or annotation
facilities like SPARK/ADA 2012, Spec#, JML, B method, Eiffel, etc.

The annotated code is passed to the FRAMA-C toolset and its weakest pre-
condition plugin generating proof obligations that are then verified using SMT
solvers. This can be done either directly through FRAMA-C or through the WHY3
toolset. In many cases the verification can be performed fully automatically.
When this cannot be achieved, one can use proof assistants to complete the veri-
fication manually. Yet another option is to manually add additional annotations
such as loop invariants and ghost code into the generated code to assist the ver-
ification tools. This option is, however, undesirable, since it is rather laborious
and requires modifying the generated code, which impairs the whole process.

3.1 Semantic Annotation of the Generated Code

In order to derive appropriate semantic contracts for the block instances in the
input model the model must be first analyzed and the block instances and their
configurations must be identified. Secondly, the concrete (ACSL) contracts must
be generated and woven into the (C) code generated by the ACG. This involves
a number of technical steps. We have considered two alternatives for that.
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White Box Approach. If the ACG source code is available, then a light-weight
option is to encode the annotation generation directly into the ACG, e.g., by
hand-writing the annotation generation functions for each block type. This is
rather laborious. Alternatively, these functions could be automatically generated
from the BLOCKLIBRARY specifications and integrated with the ACG source
code. However, this approach still isn’t true translation validation as it relies a
lot on the ACG internals. Also, according to DO-330, this extra verification-
oriented code must be qualified with the same stringency as the rest of the tool as
it may introduce errors into the code generation. We have considered this option
as a compromise allowing one to concentrate on the BLOCKLIBRARY specific
aspects and paving the way for the more complete approach explained next.

Black Box Approach. In this case an external tool must parse the input model,
generate the annotations and weave them into the generated code. Regarding
DO-330, such a separate verification tool must be also qualified in order to gain
certification credit for using it. However, the qualification process is much lighter
as the tool cannot have any direct impact on the generated code.

3.2 Verification Using the Frama-C Toolset

We decided to target C code annotated with ACSL as: (a) this language is
widely used in the safety-critical systems industry, (b) the GENEAUTO ACG has
mainly been used and evaluated in this context, and (c¢) the ACSL annotation
language is supported by formal analysis tools such as the FRAMA-C framework.
Similar work could have also been done based on most of the other alternatives
mentioned earlier.

The FrRAMA-C framework targets the analysis of C code in order to extract
information provided by various plugins. These plugins allow for the static analy-
sis of the source code to extract information like variables’ ranges and scope, code
metrics, detect dead code, and many others®. Verification of ACSL annotations
expressed on the source code is done through the WP plugin implementing a
weakest precondition calculus generating proof obligations to be verified. Those
are directly assessed using SMT solvers or sent to the previously presented
WHhY3 platform to rely both on a wider range of SMT solvers or, when needed,
on proof assistants. Proof assistants are used in order to manually tackle difficult
proofs when the automatic SMT solvers fail to achieve the proof.

White Box FExperiment Using the Open Source GENEAUTO ACG. We have
extended GENEAUTO with the support for annotation manipulation?. For this
purpose, we developed a metamodel based on a subset of the ACSL specification
including annotations, ghost code and function contracts. We relied on the EMF

6 Visit the FRAMA-C framework website for detailed information: http://frama-c.org.

" This work has been performed in partnership with Timothy Wang from the Georgia
Institute of Technology and has been partly used in the context of the verification
of automatically generated code presented in [18].
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framework to generate the corresponding JAVA classes that we integrated into
the GENEAUTO source code. We also implemented printing facilities for ACSL
annotations. Finally, we implemented the annotation generation functions. As a
possible future alternative, the current version of FRAMA-C also accepts anno-
tations written directly in WHY3 instead of ACSL.

Black Box Proposal Through FRAMA-C. For the full translation validation we
are considering a following approach. The FRAMA-C toolset provides C code
manipulation facilities and is extensible using plugins. It is thus possible to define
a new FRAMA-C plugin to conduct automated annotation of the generated code.
This plugin must extract data from both the dataflow (SIMULINK) model, as
well as from BLOCKLIBRARY specifications. Developing a parser for these two
formalisms directly in the plugin would be very time-consuming. Instead, we plan
to develop or reuse a separate parser for dataflow models and provide within the
BLOCKLIBRARY toolbox a transformation exporting the derived contracts as a
data structure that would be easier to use within the FRAMA-C plugin. The
plugin must then weave the contracts into the generated code. It is reasonable
to simplify that part by relying on minimal traceability information provided by
the ACG relating blocks and corresponding code sections. ACGs used for the
development of critical software must anyhow provide such links for traceability.
For instance, GENEAUTO provides them in the form of code annotations.

4 Translation Validation of IntegerDelay

As example, an instance of the IntegerDelay block is embedded in a small model
containing an Inport block Inl and an QOutport block Outl. Such models can also
be generated automatically from BLOCKLIBRARY specifications. In this example,
the block’s input and initial conditions are scalars, and the delay length N is 2.
Listing 1.3 shows the code and annotations generated for this example.

The code for the initialization phase is defined in the system_init function
while the computation and update phases are together in the system_compute
function. While the initialization code is straightforward, the code for the two
other phases requires some explanation. The compute function starts with the
assignment of the Delay2 block’s output, since it only depends on the value of
the block’s memory (lines 14-17). Then the output of the Inl block is computed
based on the current input to the system (lines 18-21), and the output of Qut1 is
computed (lines 22-25) based on the output of Delay2 computed earlier. Finally,
the memory of Delay2 is updated (lines 32-42).

Each code section generated for a block needs to be annotated with pre/post-
conditions (in the example, only post-conditions are used) derived from its
BLOCKLIBRARY specification. These are the ensures annotations surrounding
each block code. These annotations are currently generated and inserted into
the code using the ACG and the white box approach. Whereas in the black box
approach they would be generated directly from the BLOCKLIBRARY toolset and
woven into the code using the weaver plugin that relies just on the traceability
annotations provided by the ACG.
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While these annotations make the core for the semantic verification of the
generated code, some additional annotations are required in order to ensure
that the generated code is embedded in a suitable environment: these annota-
tions specify properties like memory independence of the data structures (the
separated annotations) and correct instantiation of the previously described
data structures (the valid annotations). These annotations make explicit the
implementation choices made by the ACG for the generated code. The anno-
tated code in Listing 1.3 is verified automatically using the FRAMA-C toolset
and the ALT-ErRGO® and Spass® SMT solvers in a few seconds.

/*@ requires \valid(_state_->Delay2_memory+(0..1)); */
void system_init (t_system_state *_state_) {
/* START Block: <SequentialBlock: name=Delay2> */
/*@ ensures _state_->Delay2_memory[0] == 2;
5 ensures _state_->Delay2_memoryl[1] == 3;x*/
{ _state_->Delay2_memory[0] = 2;
_state_->Delay2_memory[1] = 3;}
/* END Block: <SequentialBlock: name=Delay2> */
}
10 /#@ requires \separated(_state_->Delay2_memory , _io_);
requires \valid(_io_);
requires \valid(_state_->Delay2_memory+(0..1)); */
void system_compute(t_system_io *_io_, t_system_state *_state_) {
/* START Block: <SequentialBlock: name=Delay2> */
15 /*@ ensures system_Delay2 == _state_->Delay2_memory[0]; */
system_Delay2 = _state_->Delay2_memory[0];
/* END Block: <SequentialBlock: name=Delay2> */
/* START Block: <SourceBlock: name=Inl> */
/*@ ensures system_Inl == _io_->Inl; */
20 system_Inl = _io_->Inl;
/* END Block: <SourceBlock: name=Inl> x/
/* START Block: <SinkBlock: name=0utl> */

/*@ ensures _io_->0utl == system_Delay2; */
_io_->0utl = system_Delay2;
25 /* END Block: <SinkBlock: name=0utl> *//
/* START Block memory write: <SequentialBlock: name=Delay2> */
/*@ ensures append: _state_->Delay2_memory[1] == system_Inil;
ensures sublist: \forall integer i; 0 <= i < 1 ==>
_state_->Delay2_memory[i] ==
30 \old(_state_->Delay2_memory[i+1]);
*/
{/*@ loop invariant \forall integer i; 0 <= i < iter ==>

_state_->Delay2_memory[i] ==
\at(_state_->Delay2_memory[i+1],LoopEntry);
35 loop invariant 0 <= iter < 2;
loop assigns iter, _state_->Delay2_memory [0];
loop variant 1 - iter; x/
for (int iter = 0; iter < 1; iter++){
_state_—>Delay2_memory[iter] = _state_—>Delay2_memory[iter+1];
40 }
_state_->Delay2_memory[1] = system_Inil;}
/* END Block memory write: <SequentialBlock: name=Delay2> */
}

Listing 1.3. Annotated code for a small subsystem containing the IntegerDelay block

8 http://alt-ergo.ocamlpro.com/.
9 http://www.spass-prover.org,/.
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5 Related Work

Our work relies on translation validation as introduced by Pnueli [15]. This
technique has suffered in its early years from scalability issues as the verification
was mostly done using model checking. This has improved with the use of modern
automated provers (SMT) and proof assistants. However, for complex blocks
handling complex data types, it still seems mandatory to rely on intermediate
annotations to avoid relying on proof assistants too often.

Recent examples of translation validation are found in the work of Ryabtsev
et al. [16] for the verification of the code generated from SIMULINK models and
[12] for the proof of preservation of clock related properties on generated code.
The BLOCKLIBRARY language allows for a simple specification of the blocks
semantics and its formal verification that was a missing point in Ryabtsev app-
roach. Our approach differs as we do not interpret the generated code in order
to compare its semantics to the one of the input model, but we rather rely on
code verification tools to check that the generated code complies with the input
model semantics specified as code annotations.

O’Halloran [13] reports on the successful use of the CLAWZ system for trans-
lation validation from a subset of SIMULINK to ADA independently from any
concrete ACG. This work relies on a SIMULINK formalization effort using the
7 notation performed over many years. The author reports that, in the last
versions, the translation validation can be performed fully automatically using
the PROOFPOWER toolset which is a significant achievement. The Z notation
is a very general formalism that requires a sophisticated methodology to reach
fully automated proofs. Our BLOCKLIBRARY DSL is designed to model only
block families. Thus, it permits meta-level analysis such as the completeness
and consistency of specifications or automated generation of validation tests.
Inspection and testing techniques for the verification of implementations could
have been preformed also using a formal specification language such as SOFL
CDFD [10], but the specification of the blocks variability would suffer from the
same limitations.

Our proposal can also be related to proof-carrying code by Necula and Lee
[11] as the generated code contains annotations required to verify safety prop-
erties. But, in their setting the purpose of the carried proof was to ensure the
correctness of the executed code dynamically and to replay the proof during
execution. We do not have such need in our work as the correctness proof can
be performed once and for all prior to the compilation of the generated C code.

A similar approach was proposed by Pires et al. in [14] for the verification
of hand-written code. The system specification is written using the UML and
OCL languages. The implementation is hand written as the models are not
low level enough to generate the whole software. The generated annotations are
not sufficiently low level either to ensure the automatic verification of the user
code and the user may need to provide intermediate annotations and conduct
the proof. We believe and partly experimented that relying on formally verified
specification such as provided by the BLOCKLIBRARY language is providing a
higher level of automation and thus eases the verification task.



Block Library Driven Translation Validation for Dataflow Models 131

6 Conclusion and Future Work

To summarize, we have advocted the advantages brought by the formal specifica-
tion of an existing complex language such as SIMULINK. We designed the BLOCK-
LiBRARY DSL for capturing the specific complex features of block libraries and
have shown how to use that for verifying the correctness of generated code in
a formal translation validation style approach. The verification technique has
been demonstrated here on a simple block, but the white box strategy has been
experimented on a representative subset of the SIMULINK blocks selected by the
industrial partners of the GENEAUTO project.

In the close future, we plan to prototype the black box annotation generation
process including the generation of loop annotations to simplify writing speci-
fications of complex blocks. The BLOCKLIBRARY specification language will be
used as a source for the automatic generation of a reliable set of test cases for
the verification of the ACG implementation. The test cases will be used for both
simulation and code generation. The results will then be compared for the ver-
ification and validation of the ACG. Another application direction is using the
block-level annotations in conjunction with top-level formal contracts expressed
for the entire system to aid proving the functional correctness of the latter. Our
current experiments have been performed mainly using the GENEAUTO ACG.
We are currently extending the whole work and, among other things, are adapt-
ing it for the industrial DO-330 conformant qualification process of the QGEN
ACG that is a successor of GENEAUTO.
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Abstract. Over the years, schedulability of Cyber-Physical Systems
(CPS) has mainly been performed by analytical methods. Those tech-
niques are known to be effective but limited to a few classes of scheduling
policies. In a series of recent work, we have shown that schedulability
analysis of CPS could be performed with a model-based approach and
extensions of verification tools such as UPPAALL. One of our main contri-
bution has been to show that such models are flexible enough to embed
various types of scheduling policies that go beyond those in the scope of
analytical tools. In this paper, we go one step further and show how our
formalism can be extended to account for stochastic information, such
as sporadic tasks whose attributes depend on the hardware domain.

1 Introduction

Cyber-Physical Systems (CPS) are software-implemented control systems that
control physical objects in the real world. These systems are being increasingly
used in many critical systems, such as avionics and automotive systems. They
are now integrated into high performance platforms, with shared resources. This
motivates the development of efficient design and verification methodologies to
assess the correctness of CPS. Among the panoply of existing techniques to
respond to these challenges, one distinguishes between those that rely on an
analytic approach, using tools like CARTS [10], from those that rely on formal
models and tools such as UPPAAL [2], or SpaceEx [8].

In this paper, we mainly focus on schedulability for CPS. Over the years,
schedulability has mostly been performed by analytical methods [12]. Those
techniques are known to be effective but limited to specific classes of scheduling
policies and systems. In a series of recent work, we have shown that schedulability
analysis of CPS could be performed with a model-based approach and extension
of verification tools such as UPPAAL. One of our main contribution has been to
show that such models are flexible enough to embed various types of scheduling
policies that go beyond those in the scope of analytical tools. In addition, we
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proposed a hierarchical approach that allows us to reduce the complexity of this
computation [3,4]. This approach is well-suited to perform worst-case analysis
of scheduling systems, and even average performance analysis via a stochastic
extension of timed automata. This extension allows us to make hypothesis about
time at which tasks are scheduled. However, high-performance hardware archi-
tectures, as well as advanced software architectures, have more unpredictable
behaviors. This makes the verification of these real-time systems much harder,
in particular the schedulability analysis, that is essential to evaluate the safety
and reliability of mission-critical systems. For this reason, designers are still
reluctant to use lower-price hardware components with higher capabilities, such
as multi-core processors, for these mission-critical systems.

In this paper, we propose a stochastic extension of our scheduling framework
that allows us to capture tasks whose real-time attributes, such as deadline,
execution time or period, are also characterized by probability distributions.
This is particularly useful to describe mixed-critical systems and make assump-
tions on the hardware domain. These systems combine hard real-time periodic
tasks, with soft real-time sporadic tasks. Classical scheduling techniques can only
reason about worst-case analysis of these systems, and therefore always return
pessimistic results. Using tasks with stochastic period we can better quantify
the occurrence of theses tasks. Similarly, using stochastic deadlines we can relax
timing requirements. Finally stochastic execution times model the variation of
the computation time needed by the tasks. These distributions can be sampled
from executions or simulations of the system, or set as requirements from the
specifications. For instance in avionics, display components will have lower crit-
icality. They can include sporadic tasks generated by users requests. Average
user demand will be efficiently modelled with a probability distribution. Tim-
ing executions may vary due to the content being display and can be measured
from the system. This formal verification framework is embedded in a graphical
high-level modeling tool developed with the CINCO meta tooling suite [9]. It is
available at http://cinco.scce.info/applications/.

2 Background

Given a set of clocks C, a function v : C — Rxq is called a clock valuation.
A stopwatch is a vector s : C — {0,1} that distinguishes between a set of
running clocks and a set of frozen clocks. For a delay d € R>( and a stopwatch
s, let v + s - d denotes the clock valuation assignment that maps all x € C to
v(x) + s(z) - d. A clock constraint on C' is a finite conjunction of expressions of
the form z ~ k where z € C, ~€ {<,<,>,>}, and k € N. Let B(C) denote the
set of all clock constraints on C. A clock valuation v satisfies the clock constraint
g € B(C), written v E g, iff g holds after all the clocks in g have been replaced
by their value v(c).

A Stopwatch Automata (SWA) [6] is a tuple (L, 1y, X, C,—, 1, 5), where
L is a finite set of locations, [y € L is the initial location, X is an alphabet of
actions, C is a finite set of real-time clocks, =C L x B(C) x X x 2¢ x L is the
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set of discrete transitions, I : L — B(C') associates an invariant constraint to
each location, S : L — {0,1}“ is the location stopwatch. A state s = (I,v) of a
SWA consists in a location ! and a clock valuation v.

An execution of the SWA is an alternating sequence of discrete and continuous
transitions. Continuous transitions update the clock valuation in a location by
the same value d € R>( for all running clocks in S(I), provided that v+ S(1)-d F
I(1). Discrete transitions switche from one location to another, if there exists
a transition (l,a,g,7,l') € E with v E g, and it resets the clocks in r to 0. We
distinguish between internal and communication transitions. There are two types
of communication transitions, the input ones (noted with ?) to receive a message
and the output ones (noted with !) to send a message. As classical transition
systems can do, SWA can be combined in networks of SWA by synchronizing
inputs and outputs in a broadcast manner. This means that when a SWA executes
one output, all those SWA that can receive it must be synchronized.

In Fig. 1a, we illustrate the concept with an abstract real-time task modeled
via SWA. The task execution time is measured by a clock x, that can progress
in location Executing (we denote 2’ = 1 the fact that the stopwatch is running)
but is stopped in location Ready (denoted ' = 0). It starts its execution when
receiving the event schedule?. It sends an event done! as soon as the clock x has
reached the best case execution time (bcet) and before reaching the worst case
execution time (wcet), or goes to location MissingDeadline if the clock exceeds the
deadline. Finally it returns to location JobDone for the next execution round. The
running task at location Executing can be preempted when receiving the event
not_schedule?, in which case it returns to the location Ready.

Probabilistic Timed Automata (PTA) [1] is an extension of SWA that adds
discrete probabilities to the transitions. Thus the transition relation is replaced
by —C LxB(C) x X x Dist(2¢ x L), where Dist(2° x L) is a discrete probability
distribution over clock reset and next location.

This extension is useful to initialize the parameters of a model with random
values e.g., to specify that the period or the deadline of a task depends on some
random information. The simple PTA in Fig. 1b allows to select two values for
the period of the task: 10 with probability 1/3 and 15 with probability 2/3. In

x>=period

JobDone ready!

x<=period (O

Ready
x'==0

eriod=10

schedule? g /,—7@

. . . . -7

MlssngeadIlCn; Executing \.‘ -

x<=wcet period=15. _

&& X'== 1 @

(a) SWA for a simple real-time task (b) PTA for a task dis-
patcher

x><pcet

donel not_scheg

x>deadline

Fig. 1. (Probabilistic) stopwatch automata
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what follows, we will call this automaton a dispatcher. It is worth mentioning
that UPPAAL, the tool we use to model SWA and PTA, can also model global
variables and parameters. Such parameters can be modified either via internal
transitions, or via output transitions. In that example the period is a shared
variable, initialized by the dispatcher and read by the task. This semantics of PTA
still exhibits nondeterministic behaviors, because several probabilistic transitions
may be enabled at the same time, and the time at which transitions can happen
is not randomized. Therefore it can only be used to analyze best case or worst
case scenario.

It is however of great interest to analyze scheduling systems with average
scenario generated by a fully stochastic semantics. This will allow us to quantify
performance analysis. In our early works [5,7], we have proposed a stochastic
semantics for networks of priced timed automata, an extension of SWA. The
stochastic semantics associates probability distributions on both the delays one
can spend in a given state, as well as on the transitions between states. In
UpPAAL uniform distributions are applied for bounded delays and exponential
distributions in the case a component can remain indefinitely in a state. In a
network of PTA the components repeatedly race against each other, i.e. they
independently and stochastically decide on their own how much to delay before
outputting, the “winner” being the component that chooses the minimum delay.

Model-checking queries are represented via a subset of the Computational
Tree Logic (CTL) as defined by the model-checker UPPAAL. More precisely, we
consider ¢ :: = A[][P | A<>P | E[]P | E<>P. A and E are path operators, mean-
ing respectively “for all paths” and “there exists a path”. [] and <> are state
operators, meaning respectively “all states of the path” and “there exists a state
in the path”. P is an atomic proposition that is valid in some state. For example
the formula “A[] not error” specifies that in all the paths and all the states on
these paths we will never reach a state labelled as an error. For schedulability
analysis, an error state is one where a task has missed a deadline.

Statistical model-checking queries require a time bound. The following
query for instance “Pr[<=maxTime](<> error)” asks to compute the probability
of reaching an error state before maxTime.

UpPPAAL model-checker (MC) [2] is used to verify SWA and UPPAAL statis-
tical model-checker (SMC) [5] is used to verify PTA. Moreover, if PTA are used
with UpPAAL MC, all stochastic information is discarded and replaced by non-
determinism (probabilistic transitions are replaced by a corresponding discrete
transition for each specific value of the distribution).

3 Formal Model-Based Compositional Framework
for Hierarchical Scheduling Systems

We first introduce the formal model used to represent scheduling units. This for-
malism extends the one in [3,4] with probability distributions on task’s features.
Then, we show how formal tools such as UPPAAL MC and UprpPAAL SMC can
be used to solve queries such as deadlock or schedulability.
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3.1 Automata-Based Models for a Scheduling Unit

In our framework, a scheduling unit is composed of a set of real-time tasks, a
scheduler, that implements a scheduling algorithm, and a queue, that manages
jobs instantiated by tasks. Additionally we provide each scheduling unit with a
resource supplier that allocates the resource (CPU time) for a given amount of
time. As explained in [11] and illustrated in Sect.3.2 such a resource supplier
can be used to perform scheduling of complex systems in a hierarchical manner.

Tasks and Stochastic Dispatcher: We use two types of tasks: 1. a classi-
cal task model as presented in [4], implemented with SWA; 2. a new stochastic
task model whose real-time attributes (period, delay, execution time) depend
on a probability distributions, and are dynamically chosen by a stochastic dis-
patcher. This stochastic feature is of interest to model the variation of execution
time with respect to the computation logics and the capability of the execution
environments (CPU, memory, I/O and caches, etc.). Such real values can be
obtained by sampling the execution times from the real world system (and this
objective is out of scope of this paper). Observe that other task’s parameters,
such as deadline and period, are determined according to the timing require-
ments of the functionality implemented by a set of tasks. For instance, some
video decoder/encoder would update the deadline and period of tasks according
to the frequency of input streams. For those reasons, they can also be represented
by probability distributions.

@ Init setTaskAttribute(tid, task), DlylOffset
x<=tstat[tid].ioffset
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ready_to_run[tid]!
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&& t_efftid]'== tstat[tid].status = READY

tstat[tid].status = WAITING

req_sched[tstat[tid].pid]!
enque_tid(tstat[tid].pid, t|d

. . tstat[tid].status
t_rtftid] <= tstat[tid].prd - . . .
&& trstltid]'== = isSchedSuped(tstat[tid].pid, tid)

&& t_etftid]'== urgrestart_job[tid]?
setJobAtt(tid)

WaitEndofMINIntv

t_et[tid] >= tstat[tid].bcet

fin_job[tid]! tstat[tid].status != isSchedSuped(tstat[tid].pid, tid)
deque_tid(tstat[tid].pid, tid), urgentdrive!
tstat[tid].status = SUSPENDED tstat[tid].status ¥ isSchedSupef(tstat[tid].pid, tid)
Executin
. 9 J

MissingDeadline
t_rt[tid] > tstat[tid].deadline
error =1,
tstat[tid].status = MISSDLINE

10000 T t_et[tid]'== isSchedSuped(tstat[tid].pid, tid)
&& t_et[tid] <= tstat[tid].wcet

Fig. 2. SWA model of a stochastic task
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Figure2 shows the SWA for the stochastic task model. From the Init loca-
tion, a job is initialized with real-time attributes obtained by setTaskAttribute
(and assigned by the dispatcher as explained below). This job is queued for
execution at location DIlyPOoffset. There it requests the scheduler to assign a
CPU, which is granted by the synchronisation on the channel req_sched(pid), and
reaches location Executing. Its execution can be stopped and resumed according
to the availability of the CPU resource. This is implemented by a stopwatch
clock t_et[tid]. The clock progresses only when the CPU is available, that is when
the function isSchedSuped returns 1. Finally, the job exits from location Execut-
ing when it has completed its execution time. This releases the CPU resource
using function deque_tid(tstat[tid].pid, tid). The SWA waits the end of the minimal
inter-arrival time (WaitEndofMINIntv) and then waits for a new job instantiated
by the stochastic dispatcher (JobWait).

The stochastic dispatcher, presented in Fig.3, configures the real-time
attributes of the tasks at each individual execution round.

Scheduler: The scheduler SWA (Fig.4) implements the scheduling policy of
the scheduling unit. We use two types of scheduling policy: earliest deadline
first (EDF) and fized priority (FP). These schedulers synchronize with the task
model on the channel req_sched.

Resource Supplier: The resource supplier is responsible for supplying a
scheduling unit with the resource allocated from another scheduling unit. We
adopt the periodic resource model (PRM) [11]. It supplies the resource for a
duration of © time units every period II. To speed up the schedulability analysis
using model checking techniques, it only generates the extreme cases of resource
assignment: either the resource is provided at the beginning of the period (from
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Fig. 4. EDF (left) and FP (right) schedulers

0 to ©) or at the very end (from IT — @ to IT). The choice between the two
assignments is non-deterministic. The PRM automata communicates with the
task model through a shared variable isSupply that is set to true during the sup-
ply period. We also use the probabilistic supplier model presented in [4]. Instead
of using a fixed budget ©, it uses a range of values specified between an interval.
This will allow to perform a parameter sweep with SMC by selecting uniformly
a value of the budget and help determining the optimal budget.

3.2 Formal Analysis of Hierarchical Scheduling Systems

A hierarchical scheduling system (HSS) is a set of scheduling units orga-
nized in a tree structure. It allows to dispatch a common CPU resource to dif-
ferent scheduling units with the help of resource suppliers. As presented in [11],
HSSs can be analyzed in a compositional manner by analyzing each scheduling
units individually. Below, we present different types of real-time properties in
the format of the tool UPPAAL MC and UppPaAL SMC.

Absence of Deadlock: We check that the formal models have been correctly
designed, because they cannot reach a deadlock state in which time is blocked
and no action is available. We use UPPAAL MC to analyze this query with the
following CTL formula A[] not deadlock.

Schedulability: The main objective of analyzing a scheduling unit and an HSS
is to determine whether the tasks are schedulable. In our formal models we
analyze this property by searching for error states in tasks, that correspond to
the tasks missing their deadline. All these error states are identified by a single
Boolean variable error, set to true when a task misses a deadline.

The schedulability can be analyzed by UpPAAL SMC using the following
probabilistic query: Pr[<=runTime|]( <> not error). It computes the probability
that not error state is found within runTime t.u. This probability must be 1
to assert that the scheduling unit is schedulable. We can also performed the
exhaustive analysis of the SWA model with UpPAAL MC. In that case, we use
the CTL formula A[] not error.

Maximum Response Time: Performances of the HSS are measured by ana-
lyzing the maximum response time of tasks, that is to say the maximum time
between a job instantiation and its completion. We measure this property using
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UprpPAAL SMC with the following query: E[<=100000;1000](max:t-rst[2]). It asks
for 1000 simulations of 100’000 t.u. and it computes the average value over these
simulations of the maximum response time of the task with ID 2 (the response
time of task 2 is measured in the variable t.rst[2]).

Budget Estimation: We use the probabilistic supplier to specify a range of
values between an interval for the budget ©. Then we can use UrPAAL SMC
to randomly select a value within this range and check whether the scheduling
unit it schedulable with this value. We use the following probabilistic query:
PrlestBudget[1]<=runTime|(<>globalTime>=runTime and error). It computes the
probability distribution of all the possible budget values that are not schedu-
lable. By looking at the support of this distribution we can determine the min-
imum budget whose probability is zero, that is the minimum budget necessary
to schedule all the tasks of the scheduling unit.

Simulate Queries: Additional parameters of the model can be observe during
random simulations with UPPAAL SMC. Results can be displayed in a graph.
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Abstract. The Android OS supports multiple communication methods
between apps. This opens the possibility to carry out threats in a collabo-
rative fashion, c.f. the Soundcomber example from 2011. In this paper we
demonstrate an effective attempt to detect collusion via model-checking
a set of apps utilising the K framework.

1 Introduction

Malware has been a major problem in desktop computing for decades. With the
recent trend towards mobile computing, malware is moving rapidly to smart-
phone platforms. Smart-phones pose a particular security risk because they hold
personal details (accounts, locations, contacts, photos) and have potential capa-
bilities for eavesdropping (with cameras/microphone, wireless connections).

Android is an open source software stack for a wide range of mobile
devices. The Android operation system supports multiple communication meth-
ods between apps. This opens the possibility to carry out threats in a collabora-
tive fashion, c.f. the Soundcomber example from 2011. Potential threats include
information theft, money theft, or service misuse, to name just a few. In recent
work, we have discovered app collusion in more than 5000 mobile app installation
packages [4].

In this paper we discuss our approach to detect colluding Android apps by
model checking based on the K framework [13] — c.f. Fig. 1. We start with a set
of apps in the form of an Application Package File (APK) which accommodates
all application code in the Dalvik Executable format DEX, resources, assets and
a manifest file. The DEX code in each APK file is disassembled into the Smali
format with open source tools. The Smali code of the apps is parsed by the K tool.
Compilation in the K tool translates the K representation of the Android apps
into a rewrite theory in Maude [7]. Finally, the Maude model checker searches
the transition system compiled by the K tool to provide an answer if the input
set of Android apps colludes or not. In the case when collusion is detected, the
tool provides a readable counter example trace.
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Fig. 1. Work-flow for the Android formal semantics in the K framework.

Formalising Dalvik Byte-code in K poses a number of challenges: there are
about 220 instructions to be formalised, the codes object oriented, it is regis-
ter based (in contrast to stack based, as Java Byte-code), it utilises callbacks
and intent based communication, see [2]. We provide two different semantics for
DEX code, namely a concrete and an abstract one. While the concrete semantics
has the benefit to be intuitive and thus easy to be validated, it is the abstract
semantics that we employ for app model checking. We see the step from the
descriptive level provided by [2] to the concrete, formal semantics as a ‘control-
lable’ one, where human intuition is able to bridge the gap. In future work, we
intend to justify the step from the concrete semantics to the abstract one by
a formal proof. Our implementation of both Android semantics in K is freely
available!. The code of the colluding apps discussed in this paper is accessible
via an encrypted web-page. The password is available on request?.

1.1 Related Work

A frontal attack on detecting collusion of pairs, triplets, and larger sets of
Android apps is not practical given the search space. Filters to isolate potential
app sets which require further examination are discussed in [3].

As detecting malware in single apps is well developed, it suggests itself to
tackle collusion by merging apps into a single one [9]. There are also dynamic
approaches. For instance, TrustDroid [6] classifies apps into logical domains and
forbids app communication between different domains. In contrast, we analyse
sets of apps by unfolding their executions while looking for colluding patterns.

Static approaches to detecting collusion are closest to our work. The tool
Epicc [11] reduces the collusion detection to an inter procedural data flow prob-
lem, where communication is analysed by a subsequent tool, IC3 [10]. The FUSE
tool [12] builds a multi-app information flow graph on which collusion can be
detected. We propose a similar approach, namely to track (sensitive) information
flow and to detect app communication via model checking.

The K framework was proposed in [13] as a rewrite-based formalism to facili-
tate design and analysis of programming languages. A number of languages have
already been defined in K, including C [8] and Java [5], facilitating their program
analysis, e.g., using a Maude back-end. We contribute to the pool of K defined
real languages by giving formal semantics to Android byte code.

1 http://www.cs.swan.ac.uk/~csmarkus/ProcessesAndData/androidsmali-semantics-k.

2 http://www.cs.swansea.ac.uk/~csmarkus/ProcessesAndData/sites/default/files/uploads/
resources/code.zip.
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2 A Collusion Definition on the Android Level

Android OS is designed with several security features. These include application
sand-boxing, i.e., each app runs in isolation, and access control based on per-
missions, i.e., permissions for each app to access system resources are granted at
installation time. However, Android also offers horizontal app interaction pro-
viding inter-app communication via intents, and vertical ones by using API calls
to access suitable system resources. Such inter-app communication mechanisms
can be exploited by app coalitions to carry out attacks which they could not
perform on their own which can be seen as a camouflage mechanism. We call
this form of security breach collusion.

Collusion refers to the ability of a set of apps to produce malware in a collab-
orative fashion via inter-app communication, c.f. [3]. Such malicious behaviour
can be described by a number of actions executed in a certain order where (A)
actions are operations provided by Android API such as record audio, access file,
write file, send data, etc. (let Act denote the set of all actions); (M) a malicious
behaviour m = (A, <) is a partially ordered set with A C Act and < specifying
the execution order; and (C) Com C Act is a set of actions producing interac-
tions such as intent based communication, e.g., a broadcast intent). Let u denote
the set of all possibly malicious behaviours®, Ex((4, <)) denote the set of all
possible ways of realising the malicious behaviour (A, <), i.e., all possible total
extensions of (4, <).

Definition 1. A set S of at least two apps is colluding if there exists some
m € u such that the apps in S together execute a sequence A € Act™ with: (i)
there exists a sub-sequence A’ of A such that A’ € Ex(m), i.e., together the apps
in S realise m; (ii) each app in S executes at least one action in A’, i.e., A’ is
collectively executed involving all apps in S; and (i) there exists a non-empty
sub-sequence C' of A such that C' € Com™, i.e., some communication is involved

(Fig. 2).

Location Shared ) Network
Access Combass_age Preferences Radio_app Access

Fig. 2. An example of colluding apps

Ezample: Consider the two apps Compass_app (with only a permission to access
the device location) and Radio_app (with only a permission to access the net-
work). Obviously, individually none of these two apps poses a threat of pub-
lishing location information. However, by forming a coalition using inter-app

3 We refrain to define what malicious behaviour might be and assume that the security
community already has classified (sets of) apps to be malware. For example, our
industrial partner Intel Security does so on a daily a basis for single apps.
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communication, they may produce malware: the Compass_app reads the device
location and passes (parts of) this data to the Radio_app, which sends the
(part of) this data to a remote, unauthorised server via the internet. Using
our collusion definition we can describe the actions performed by these two
apps as: ACtCompass,app = {aread,location} and ACtRadio,app = {asend,ﬁle}- The
malicious behaviour m is given by A = {areqd_iocations @send_file} and by defin-
INg Gread_tocation < Gsend_file- The set of inter-app communications includes
Com = {Sendshared,prefm recvshared,prefs}-

3 The K Framework

The K framework [13] proposes a methodology for the design and analysis of pro-
gramming languages; the framework comes with a rewriting-based specification
language and tool support for parsing, interpreting, model-checking and deduc-
tive formal verification. The ideal work-flow in the K framework starts with a
formal and executable language syntax and semantics, given as a K specification,
which then is tested on program examples in order to gain confidence in the lan-
guage definition. Here, the K framework offers model checking via compilation
into Maude programs (i.e., using the existing reachability tool and LTL Maude
model checker).

A K specification consists of configurations, computations, and rules, using
a specialised notation to write semantic entities, i.e., K-cells. For example, the
K-cell representing the set of program variables as a mapping from identifiers
Id to values Val is given by (Id — Val)yas. Configurations in K are labelled and
nested K-cells, used to represent the structure of the program state. Rules in K
are of two types: computational and structural. Computational rules represent
transitions in a program execution and are specified as configuration updates.
Structural rules provide internal changes of the program state such that the
configuration form can enable the application of computational rules.

4 Concrete Android Semantics

The concrete semantics specifies system configurations, Smali instructions, and
a number of Android API calls in K closely following their explanation as given
at [1]. Configurations are defined in K style as cells which might contains sub-
cells. Top of a concrete configuration is a “sandboxes” cell, containing a “broad-
casts” sub-cell abstracting the Android intent broadcast service and possibly
multiple “sandbox” cells capturing the states of the installed apps, c.f. Fig. 3.
Each sandbox cell simulates the environment in which an application is isolated.
It contains the classes of the application, the current instructions left to be run
in a “k” cell, the content of the current registers in a “regs” cell and the mem-
ory storing the objects that have been instantiated so far. Classes and Method
cells can be defined similarly. We categorise Smali instructions into four groups:
invoke/return includes instructions that call methods and return method results,
control consists of instructions that might change the value of a program counter
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broadcasts Classes| activities| K regs| callback objects!
.List B .Map .List

Fig. 3. Android configuration.

non-trivially (such as goto or if-then), read/write includes instructions that allow
access and modify objects in memory, and, finally, arithmetic is for instructions
that handle arithmetic operations. The semantics of each group is defined in a
separate K module. Additionally, there are two K modules, namely loading and
starting. The former defines the semantics for constructing the initial configura-
tion. The later specifies the initialisation and running of component objects as
described in the app manifest.

Android API classes and methods come together with Android OS on an
Android device. Hence, they are not included in an app’s DEX code. On pos-
sibility to deal with APIs would be to obtain their Smali code. However, this
would significantly increase the size of the Smali code to be analysed in K and,
consequently, increase the state space of the obtained models. Therefore, based
on their description [1], we directly implement the semantics of some of these
classes and methods in K rules. In particular, we have implemented a number
of APIs, including the modules Location, Intent, Broadcast, and Apache-Http.
Other API classes and methods can be implemented similarly. For those modules
that are not (yet) implemented in K, we provide a mechanism that a call to any
of them returns an unknown result, i.e., the “K” value.

We detect information theft via collusion by annotating any “object” cell
with two additional values: “sensitive” and “created”. Sensitive is a Boolean
value indicating if the object is sensitive (e.g., device locations, contacts, private
data, etc.). Created is a set of app ids that initialise the object. Information theft
collusion is detected when an API method is called that semantically exports
some sensitive object out of the device.

5 Abstract Android Semantics

The abstract semantics takes a far less detailed view on configuration and tran-
sitions in order to gain efficiency for model checking whilst maintaining enough
information to detect collusion. The abstract configuration has a cell structure
similar to the concrete configuration except for the memory cell: instead of cre-
ating actual objects, in the abstract semantics we just record their information
flow by propagating object types and constants. Structurally, the K specification
for the abstract semantics is organised in the same way as the concrete one. In
the following we describe the differences that render the abstraction.

In the “read/write” module the abstract semantics neglects the memory-
related details as follows: The abstract semantics for instructions that create
new object instances (e.g., “new-instance Register, Type’) sets the register to
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the type of the newly created object (rather than to the reference to the new
object as it is done in the concrete semantics). The arithmetic instructions define
only a data dependency between the source registers and the destination register.
The move instruction, that copies one register into another, sets the contents of
the source register into the destination. Similarly, instructions that copy from
or into the memory are abstracted into data-dependencies. We exemplify this
latest class of instructions with the abstract semantics of the iget instruction
that, in Smali, copies the value of field F' from the object indicated by register
R2 into register R1:

(igetRi:Register, Ro:Register, F:Fieldld ) (-~ Ri+— _  Ror LK ~)regs

—~—

. L

As our abstract semantics is field insensitive, the iget instruction only stores
the information L of type K as present in the register R, in register R;.

The module “invoke/return” contains the most significant differences
between abstract and concrete semantics. All “invoke” instructions add infor-
mation to the data-flow as follows: the object for which the method is invoked is
made dependent on the parameters of the invoked method. Similarly, the “move-
result” instruction defines data-dependence between the parameters of the latest
invoked method and the register to which the result is written. The data-flow
abstraction allows us to see an API call just as an instruction that produces a
data dependency. Hence, there is no need to treat APIs individually — as it is
the case in the concrete semantics.

In the abstract semantics, the rules for branching, i.e.,“if-then” instructions,
are always considered non-deterministic. The rules for the “goto” instruction
check if the goto destination was already traversed in the current execution.
If this is the case, the jump to the destination is replaced by a fall through.
Consequently, loops are traversed at most once since the data-flow collection
only requires one loop traversal.

Detecting collusion with the abstract semantics works as follows: When an
APT accessing sensitive data is invoked, the data-flow is augmented with a special
label “secret”. If the “secret” flows into the parameters of a publish invocation of
a different app than the one that produces the “secret”, we discover a collusion
pattern for information theft.

The price paid for the abstract view taken by our abstract semantics that we
consider an over-approximation of an app’s behaviour. In principle, this could
lead to false positives in collusion analysis.

6 Model Checking for Collusion

We demonstrate how collusion is detected using our concrete and our abstract
semantics on two Android applications, called LocSender and LocReceiver.
Together, these two apps jointly carry out an “information theft”. They consist
of about 100 lines of Java code/3000 lines of Smali code each. Originally written
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to explore if collusion was actually possible (there is no APK of the Soundcomber
example), here they serve as a test for our model checking approach.

LocSender obtains the location of the Android device and communicates it
using a broadcast intent. LocReceiver constantly waits for such a broadcast. On
receiving such message, it extracts the location information and finally sends it
to the Internet as an HTTP request. We have two variants of LocReceiver: one
contains a while loop pre-processing the HTTP request while the other does
not. Additionally, we create two further versions of each LocReceiver variant
where collusion is broken by (1) not sending the HTTP request at the end, (2)
altering the name of the intent that it waits for — named LocReceiverl and
LocReceiver2, respectively. Furthermore, we (3) create a LocSenderl which
sends a non-sensitive piece of information rather than the location. In total, we
will have eight experiments where the two firsts have a collusion while the six
lasts do not?. Figure 4 summarises the experimental results.

. Concrete Abstract

Appl App2 Loop|Collusion Runtime[Detected Runtime[Detected
LocSender |LocReceiver v 55s v 30s v
LocSender |LocReceiver v v time-out 33s v
LocSender |LocReceiverl 1m13s 31.984s
LocSender |LocReceiverl| v/ time-out 34s
LocSender |LocReceiver?2 53s 32s
LocSender |LocReceiver2| Vv time-out 33s
LocSenderl|LocReceiver Imlls 32s
LocSenderl|LocReceiver v time-out 34s

Fig. 4. Experimental result.

Our experiments indicate that our approach works correctly: if there is col-
lusion it is either detected or has a timeout, if there is no collusion then none
is detected. In case of detection, we obtain a trace providing evidence of a run
leading to information theft. The experiments further demonstrate the need for
an abstract semantics, beyond the obvious argument of speed: e.g. in case of
a loop where the number of iterations depends on an environmental parame-
ter that can’t be determined, the concrete semantics yields a time out, while
the abstract semantics still is able to produce a result. Model checking with the
abstract semantics is about twice as fast as with the concrete semantics. At least
for such small examples, our approach appears to be feasible.

7 Concluding Remarks and Future Work

We have presented two implementations of Android Byte-code semantics within
the K framework, namely a concrete and an abstract one. We demonstrated that

4 All experiments are carried out on a Macbook Pro with an Intel i7 2.2 GHz quad-core
processor and 16 GB of memory.
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both semantic approaches are — in principle — able to successfully model check
for app collusion realising the threat of information theft. Here, naturally the
abstract semantics outperforms the concrete one. Though it is still early days,
we dare to express the following expectation: we believe that our approach will
scale thanks to its powerful built-in abstraction mechanisms.

In future work, we aim to establish a formal simulation relation between the
two semantics. By establishing a simulation relation, we can be sure that our
abstraction design does not go astray and stays sound. Furthermore, we would
like to address further collusion properties, such as money theft or service misuse.

Acknowledgement. The authors would like to thank our colleagues in ACID for the
good cooperation in the project, and Erwin R. Catesbeiana Jr. for excellent guidance
through the Android ecosystem.
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Abstract. We give an overview of the S# (pronounced “safety sharp”)
framework for rigorous, model-based analysis of safety-critical systems.
We introduce S#’s expressive modeling language based on the C# pro-
gramming language, showing how S#’s fault modeling and flexible model
composition capabilities can be used to model a case study from the
transportation sector with multiple design variants. Fully automated for-
mal safety analyses are conducted for the case study using the explicit-
state model checker LTSmin. Analysis efficiency is evaluated in compar-
ison with other safety analysis tools and model checkers.

1 Introduction

Safety-critical systems have the potential to cause hazards, i.e., situations result-
ing in economical or environmental damage, injuries, or loss of lives [11]. Deduc-
tive Cause Consequence Analysis (DCCA) is a model-based safety analysis tech-
nique that uses model checking to compute how faults such as component failures
or environmental disturbances (the causes) can cause such hazards (the conse-
quences) [7]: From a model of a safety-critical system that not only describes
the system’s nominal behavior but also the relevant faults, DCCA determines all
minimal critical fault sets, that is, combinations of faults that can cause hazards,
allowing the evaluation of the system’s overall safety.

The S# modeling and analysis framework [6] conducts DCCAs fully automat-
ically for system models authored in the ISO-standardized C# programming lan-
guage and .NET runtime environment [10,12]. This paper provides an overview
of modeling and analyzing safety-critical systems with S#, using a well-known
case study from the transportation sector [20]. It discusses the core concepts of
S#’s modeling language and the underlying model of computation; particular
emphasis is placed on S#’s flexible system design variant modeling and compo-
sition capabilities as well as its support for fault modeling. Additionally, this
paper introduces S#’s unified model execution approach based on an integration
of the explicit-state model checker LTSmin [13] into S#: Instead of model trans-
formations typically employed by safety analysis tools such as VECS, Compass,
and AltaRica [3,17,18], S# unifies simulations, model-based tests, visualizations,
and fully exhaustive model checking by executing the models with consistent
semantics regardless of whether a simulation is run or some formula is model
© Springer International Publishing AG 2016
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checked. S#’s explicit-state model checking and safety analysis efficiency is eval-
uated using the case study, comparing it with the analysis times of hand-written
models for the explicit-state model checker SPIN as well as the symbolic model
checker NuSMV [5,9]. The safety analysis tools VECS and Compass [17,18] are
also briefly compared with S#.

S# and its usage documentation are available at http://safetysharp.isse.de.
The S#, SPIN, and NuSMV models of the case study are also available there,
including an interactive, S#-based visualization for replays of model checking
counter examples.

2 Case Study: Height Control System

Figure 1 shows a schematic overview of the height control system of the Elbe
Tunnel in Hamburg which raises alarms and closes the tunnel when it detects
overheight vehicles trying to enter the old tube, risking collisions with the tun-
nel’s ceiling. Overall, the height control consists of five sensors: Two light barriers
Ib; and Ib, as well as three overhead detectors od,, od|, and ods; the sensors are
grouped into the pre, main, and end control. The light barriers span the entire
width of both lanes, whereas each overhead detector is positioned hovering above
only one of the lanes. Consequently, the light barriers can only report that an
overheight vehicle passes by, but cannot determine the lane they drive on; it is
physically impossible to install the light barriers in a way that would allow this
distinction. The overhead detectors, on the other hand, can in fact distinguish
between the lanes, but they cannot differentiate between overheight vehicles and
regular, non-overheight ones; they are, however, not triggered by passenger cars.
By contrast, the light barriers are positioned high enough to ensure that they
are only triggered by passing overheight vehicles. The height control therefore
has to combine the data of both types of sensors to determine the positions of
overheight vehicles in the observed area.

[ new tube old tube

Fig. 1. A schematic overview of the case study: there are two lanes entering and exiting
the two tunnel tubes at the bottom, with the arrows indicating the driving direction;
overheight vehicles are only allowed to enter the new tube on the right lane. The height
control consists of a pre, main, and end control that use light barriers and overhead
detectors to monitor approaching vehicles.
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Height Control Mechanism. When no overheight vehicles approach the tun-
nel, only the pre control is active, that is, the sensors of the main and end con-
trols are deactivated. When Ib; detects an overheight vehicle, the main control is
activated, enabling its sensors and starting its timer. Additionally, a counter is
increased that counts the number of overheight vehicles assumed to be between
the pre and main control. The main control is deactivated when a vehicle is
reported by Iby and od, or od; and the counter reaches zero, or the main control’s
timer times out. If the main control discovers an overheight vehicle driving on
the left lane, the tunnel is closed immediately. Otherwise, the end control is acti-
vated, enabling its sensor and starting its timer. When the end control does not
detect a high or overheight vehicle before its timer runs out, it is deactivated;
otherwise, the tunnel is closed. Due to the road layout, vehicles cannot switch
lanes after passing ods.

Faults & Hazards. Two failure modes are considered for each sensor: Misde-
tections and false detections. Misdetections are false negatives, that is, omission
faults preventing a sensor from reporting a vehicle passing by that it should
detect. False detections, by contrast, are false positives, i.e., a sensor detects
something that is not a vehicle, but, say, a bird. There are two antagonistic haz-
ards: On the one hand, the height control system is designed to prevent collisions
by closing the tunnel whenever an overheight vehicle is about to enter the wrong
tube. On the other hand, false alarms should be prevented, as unnecessary clo-
sures cause traffic jams and economical losses. The system design is intended to
strike an acceptable balance that minimizes both hazards as far as reasonable.

Design Variants. Previous analyses revealed that collisions and false alarms
can happen without any sensor fault occurrences [20]. Design alternatives that
add additional sensors or remove the main control’s counter to reduce false alarms
were proposed to fix the problem, necessitating additional safety analyses to
check for newly introduced safety issues. Prior work [20] discusses the design
variants in greater detail, with each analyzed variant requiring manual changes
to a copy of the model. In this paper, by contrast, S#’s support for variant
modeling and automated composition of different design variants can be lever-
aged to more conveniently model the different and partially orthogonal variants
in a modular way, automatically composing all combinations together for fully
automated safety analyses based on DCCA.

3 Modeling Safety-Critical Systems with S#

Safety-critical systems typically follow the control-theoretical system partition-
ing into plants and controllers [16]: The controllers constantly and continuously
interact with their plants to prevent potentially bad plant behavior that might
result in hazards. A controller internally has an implicit or explicit model of its
plant, using sensors to predict and actuators to affect the plant’s state and future
behavior. Discrepancies can emerge between the controller’s perceived plant state
and the plant’s actual state: Due to faults such as component failures or environ-
mental disturbances, sensors can provide incorrect data or actuators can have
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unintended effects on the plant. Subsequently, the controller is likely to mispre-
dict the plant’s future behavior, omitting control actions or unknowingly issuing
destructive actions that potentially result in hazards. Models of safety-critical
systems must contain both plants and controllers in order to adequately represent
such control failures for formal safety analyses. In the case study, for instance,
the vehicles constitute the plants with the hazards of collisions and false alarms
specified over the vehicles’ positions as well as tunnel closures; false alarms are
control failures that the height control is unaware of, making it necessary to
model the vehicles: The hazard of false alarms can only be adequately expressed
over the state of the vehicles as the height control is completely unaware of its
control failure; had it known that no overheight vehicles are on the left lane, it
would not have closed the tunnel in the first place.

The case study model is iteratively decomposed into less complex subcom-
ponents to increase modularity and composability, also enabling variant mod-
eling; Fig.2(a) gives an overview using SysML block definition diagrams [19].

bdd Height Control Case Study/
«controller»
«block» ¢ 15 HeightControl
Model
1 1 1 1
1$ «block,abstract» «block,abstract» «block,abstract» «actuator»
«plant» PreControl MainControl EndControl TrafficLights
VehicleSet X i
{incomplete} {incomplete} {incomplete}
operations «block» «block» «block»
prov ObserveVehicles( PreControlOriginal MainControlOriginal EndControlOriginal
VehicleDetector) : bool
0.1
*$ 0.1 «block»
«block» 1 3 i Timer |73
Vehicle
«sensor,abstract»
operations VehicleDetector 1 <blocks
prov IsAtPosition(int) : bool - LightBarrier
prov Height() : Height operations )
prov IsCollided() : bool prov IsVehicleDetected() : bool {incomplete}
prov DetectsVehicle(Vehicle) : bool «block»
reqd ObserveVehicles(VehicleDetector) : bool OverheadDetector

(a) A partial block definition diagram of the case study showing some of the blocks’ ports and
operations. The model consists of the plant, i.e., a set of vehicles, and the actual height control
system. The latter is subdivided into three subcontrollers which are abstract to support variant
modeling. Only the blocks for the original controller designs are shown for reasons of brevity.

ibd PreControl Vehicle Detection/

ObserveVehicles detector :

o
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(b) A partial internal block diagram showing the connection of the preControl’s detector to the vehi-
cles. While the ObserveVehicles ports are connected, the VehicleSet directly calls the DetectsVehicle
port on the VehicleDetector instance passed to ObserveVehicles as shown in Listing 1.

Fig. 2. A partial overview of the case study’s structure and composition using SysML
notation.
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The leaves of the hierarchy represent components for which further decompo-
sition is not required: Either the components are modeled in sufficient detail
for implementation in hardware or software, or they are standard off-the-shelf
components such as light barriers that can be bought from third-party vendors
and incorporated into the final system. Dependencies between a component and
its parent, siblings, or subcomponents are broken up with behavioral encapsu-
lation: Components expose provided and required ports that allow component
interactions but hide actual component implementations. For the case study, the
vehicle detectors are abstracted away behind a common VehicleDetector block to
increase modularity and the PreControl, MainControl, and EndControl abstract
blocks are introduced in order to facilitate variant modeling. The SysML internal
block diagram in Fig. 2(b) illustrates the interdependencies between the vehicles
and the preControl.

3.1 Model of Computation

S# models are discrete-state, discrete-time. While the case study’s controller is
software-based and thus inherently discrete, the vehicles, by contrast, move con-
tinuously in reality; for the case study, standard numerical procedures for solving
ordinary differential equations such as the Euler method [4] can adequately dis-
cretize vehicle behavior. Such discretizations are a form of abstraction that is
often possible for safety-critical systems; for the case study, in particular, the
sensors can only observe the vehicles at very few locations. The model of com-
putation embraces the zero execution time assumption for reactive systems [15]:
Systems execute a sequence of macro steps at fixed points in time tg, ¢y, to, .. .,
with each macro step taking zero time to execute a finite amount of micro steps.
Macro steps describe externally visible system behavior while the intermediate
micro steps are internal and thus unobservable from the outside. Between two
consecutive macro steps, time At passes such that t; = tg + i - At as illustrated
by Fig. 3. However, S# completely abstracts from time, allowing the models to
assume a At to pass between two consecutive marco steps that suits them best.

S#’s model of computation implicitly considers two separate components syn-
chronously concurrent when their actions have no effect on each other within the
same macro step, like the vehicles in the case study; as asynchronous concurrency
can be modeled explicitly, neither modeling flexibility nor adequacy is limited.

macro step macro step macro step

Plant Controller At Plant Controller Plant Controller At

PN 2 o | At Lo

Fig. 3. Each macro step is not only subdivided into a finite sequence of micro steps, it
also separates plant behavior from controller behavior, with the plant behavior always
executed first. The controller’s last micro step ends the macro step, causing time to
pass and a new macro step to begin; no time passes between the plant and controller
parts of a macro step.




Unified Simulation, Visualization, and Formal Analysis 155

Algorithm 1. Macro Step Execution in Two Phases

function MACROSTEP(plants : Component[*], controllers : Component[*])
for p in plants do SIGNAL(p, Update) end for
for ¢ in controllers do SIGNAL(c, Update) end for

end function

As illustrated by Fig. 3, however, macro steps linearize plant and controller exe-
cution, conceptually allowing the controllers to immediately react to changes in
their plants’ states: During a macro step at time ¢,,, the plants change their state
in zero time through a sequence of micro steps. Within the same macro step, the
controllers observe these changes through their sensors, compute the appropri-
ate control actions, and update their actuators, all in zero time as well through
multiple micro steps. Subsequently, the macro step ends and a new macro step
begins at time ¢,,,; in which the plants are influenced by the control actions
from the previous step. Sensors therefore observe the most recent plant states
within a macro step, whereas actuator effects are delayed to the next step. Algo-
rithm 1 conceptually illustrates macro step execution, sending Update signals to
all components; Update signals trigger a component’s autonomous macro step
behavior, if it has any.

3.2 The S# Modeling Language

S# provides a domain specific modeling language embedded into the C# program-
ming language and the .NET runtime environment [10,12]. While S# models are
represented as C# programs, they are still models of the safety-critical systems
to be analyzed; for the case study, for instance, the vehicles are part of the model
even though they are not software-based in the real world. Even the software
parts of S# models such as the preControl of Fig.2(b) are not intended to be
used as the actual implementations; these are typically done in C or C++ for
reasons of efficiency. Additionally, the S# models are typically abstractions of
the real controller software to make model checking-based safety analysis feasi-
ble. Thus, S# is best regarded as an executable, text-based extended subset of
SysML, though there currently is not automatic conversion between the two.
S# inherits C#’s language features and expressiveness and can use third-
party .NET libraries and tools, in particular during model composition and
initialization. However, some restrictions apply during simulations and model
checking: No heap allocations are allowed, for instance, and the only source
of nondeterminism can be S#’s own Choose function; threads, in particular,
are unsupported. S# components are represented by C# classes, instances of
which correspond to S# component instances. Listing 1 declares the abstract
VehicleDetector component from Fig.2(a) as a class derived from S#’s
Component base class. All of its methods are considered to be either required
or provided ports; required ports are marked as extern and have no implemen-
tation. Class inheritance, interfaces, generics, lambda functions, etc. are fully
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supported; for example, LightBarrier derives from VehicleDetector, overrid-
ing the abstract provided port DetectsVehicle as necessary using C#’s short-
hand syntax => for simple expression-returning methods. The hierarchical system
structure is established by defining fields that are of a Component-derived type;
in Listing 1, for instance, the VehicleSet component has multiple subcompo-
nents of type Vehicle because of the _vs array field.

enum Lane { Left, Right } enum Height { Regular, High, Over }
abstract class VehicleDetector : Component {

public Fault Misdetection = new TransientFault();

public Fault FalseDetection = new TransientFault();

public virtual bool IsVehicleDetected() => ObserveVehicles(this);
public abstract bool DetectsVehicle(Vehicle vehicle);
public extern bool ObserveVehicles(VehicleDetector detector);

[FaultEffect (Fault = nameof (Misdetection))]
abstract class MisdetectionEffect : VehicleDetector {
public override bool IsVehicleDetected() => false;

[FaultEffect (Fault = nameof (FalseDetection))]

abstract class FalseDetectionEffect : VehicleDetector {
public override bool IsVehicleDetected() => true;

}

class LightBarrier : VehicleDetector {
int _pos;
public LightBarrier (int pos) { _pos = pos; }
public override bool DetectsVehicle(Vehicle v) =>
v.Height == Height.Over && v.IsAtPosition(_pos);
}
class VehicleSet : Component { // other members omitted due to space
restrictions
Vehicle[] _vs;
public bool ObserveVehicles(VehicleDetector d) =>
_vs.Any(d.DetectsVehicle);
¥
class Vehicle : Component { // other members omitted due to space
restrictions
int _pos; int _speed; Lane _lane; const int StepTime = 1;

public extern bool IsTunnelClosed();
public bool IsAtPosition(int pos)
=> _pos - _speed * StepTime <= pos && _pos > pos;
public bool IsCollided() => Height() == Height.Over && _pos >=
Model.TunnelPosition && _lane == Lane.Left;
protected virtual Lane ChooselLane() => Lane.Right;
protected virtual int ChooseSpeed() => MaxSpeed;

public override void Update() {
if (IsTunnelClosed()) return;
if (_pos < Model.EndControlPosition) _lane = ChooseLane();
_speed = ChooseSpeed(); _pos += _speed * StepTime;

[FaultEffect] public class DriveLeft : Vehicle {
protected override Lane ChooselLane() => Choose(Lane.Right, Lane.Left);

[FaultEffect] public class SlowTraffic : Vehicle {
protected override int ChooseSpeed() => ChooseFromRange (MinSpeed,
MaxSpeed) ;

}

Listing 1. Parts of the S# model for Fig.2(a); the remaining parts of the model are
omitted for reasons of brevity but are available online. The abstract VehicleDetector
base type declares two provided ports IsVehicleDetected and DetectsVehicle. The
former simply passes the detector instance to the required port ObserveVehicles that is
connected to the ObserveVehicles provided port of a VehicleSet instance (cf. Listing
2 and Fig. 2(b)). The VehicleSet uses .NET’s standard Any function to invoke the given
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detector’s DetectsVehicle port for each Vehicle instance in _vs. LightBarriers, for
instance, detect such a Vehicle if it is overheight and passes the light barrier’s position;
the position the detector is installed at is specified via the component’s constructor.
The Vehicle’s IsAtPosition provided port hides the effects of positional discretization,
because of which the vehicles might never reach a detector’s exact position. Vehicles,
by default, drive on the right lane with their maximum speed (see also Listing 2);
different Vehicle instances conceptually execute their discretized movement behavior
concurrently as they have no interdependencies. The IsCollided port is used to check
for collision hazards.

To instantiate a S# model, the appropriate component instances must be
created, their initial states and subcomponents must be set, and their required
and provided ports must be connected. All C# language features and .NET
libraries can be used to compose model instances; S#’s limitations for heap allo-
cations, etc. only apply during simulations and model checking. The case study
uses reflection to automatically instantiate all design variants of the model as
shown in Listing 2; alternatively, valid model configurations could also be read
from a database, for instance. A total of 16 different design alternatives result
from the four main control variants and the two variants of the pre and end
controls each; of these 16 variants, four are not analyzed in detail as their main
controls ignore the improved detection capabilities of their pre controls, which
makes them unrealistic. While the model supports an arbitrary amount of vehi-
cles, their number has to remain constant during model checking, i.e., a model
instance cannot create or remove vehicles while it is analyzed. Therefore, a fixed
amount of Vehicle instances must be created and initialized during model com-
position. By default, model instances contain two overheight vehicles and one
high vehicle which turned out to be sufficient to find all minimal critical fault
sets for the analyzed hazards.

IEnumerable <Model> CreateVariants() {

var preControls = GetVariants<PreControl>();
var mainControls = GetVariants<MainControl>();
var endControls = GetVariants<EndControl>();

return from preControl in preControls
from mainControl in mainControls
from endControl in endControls
where IsRealisticCombination(preControl, mainControl, endControl)
select new Model(preControl, mainControl, endControl);

}

IEnumerable<Type> GetVariants<T>() => from type in
typeof (T).Assembly.GetTypes ()
where type.IsSubclassO0f (typeof(T)) && !'type.IsAbstract select type;

void BindDetectors(VehicleSet s, VehicleDetector[] ds) {
foreach(var d in ds) Bind(nameof(s.0ObserveVehicles),
nameof (d.0ObserveVehicles));
}

void VehicleFaults(VehicleSet s, Fault leftOHV, Fault leftHV, Fault
slowTraffic) {
left0OHV.AddEffects<Vehicle.DriveLeft>(s.Where(v => v.Height () ==
Height.0Over));
leftHV.AddEffects<Vehicle.DriveLeft>(s.Where(v => v.Height () ==
Height .High));
slowTraffic.AddEffects<Vehicle.SlowTraffic>(s);

Listing 2. Partial overview of model initialization; the full code is available online:
The CreateVariants method instantiates all 12 realistic design variants of the case
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study using reflection and C#’s language integrated query functionality, filtering
out unrealistic variants using the IsRealisticCombination method (not shown).
BindDetectors sets up the connections between the vehicles and the detectors as
illustrated by Fig.2(b). VehicleFaults programmatically adds the two Vehicle fault
effects for slow-moving and left-driving vehicles to three faults using S#’s AddEffects
method and .NET’s array filter method Where in combination with some C# lambda
functions: When either 1eftOHV or leftHV is activated, overheight or high vehicles are
allowed to drive on the left lane, respectively. slowTraffic allows all vehicles to drive
slower than assumed during system design.

3.3 Fault Modeling

Safety analyses consider situations in which faults cause system behavior that
would not occur otherwise. Fault behavior must therefore be part of the ana-
lyzed models as illustrated by the Misdetection and FalseDetection faults
in Listing 1, for example. In accordance with common terminology [2], faults
are activated when they somehow affect and influence actual system behavior.
They are dormant until they are activated and become active, turning dormant
again when they are deactivated. A fault’s persistence constrains the transi-
tions between its active and dormant states. Transient faults, for instance, are
activated and deactivated completely nondeterministically, whereas permanent
faults, while also activated nondeterministically, never become dormant again.
In the case study, all faults are modeled with transient persistency.

Fault activations trigger effects, represented by the nested classes
MisdetectionEffect, FalseDetectionEffect, DriveLeft, and SlowTraffic
in Listing 1, which cause errors or failures, i.e., internal or externally observ-
able deviations of the components’ behaviors from what they should have been,
respectively. Faults therefore affect the internal state of a component or the
behavior of one or more of its ports. The two fault effects of the VehicleDetector
component, for instance, immediately result in component failures whenever
their corresponding faults are activated. Failures either provoke faults in other
components or they represent system hazards; S# deduces such propagations
automatically using DCCA.

False detections of the VehicleDetector component in Listing 1 cause the
detector to incorrectly report the presence of a Vehicle: The field False-
Detection of type Fault is initialized with a TransientFault instance, activat-
ing and deactivating the fault completely nondeterministically. The fault’s local
effect on the component is modeled by adding the nested class FalseDetection-
Effect that is marked with the FaultEffect attribute to link the effect to the
fault. The effect overrides the original behavior of the IsVehicleDetected pro-
vided port; when the fault is activated, the port always returns true, regardless
of the actual Vehicle positions. The port’s original implementation is invoked
only when the fault is dormant; if both the false detection and misdetection
faults of a detector are activated simultaneously, S# chooses one of the fault
effects nondeterministically.

As high or overheight vehicles on the left lane violate traffic laws and slow-
moving vehicles violate basic design assumptions about traffic flow that influ-
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ences the choice for the durations of the timers, left- and slow-driving vehicles
are modeled using faults. To demonstrate S#’s flexibility in fault modeling, these
faults affect multiple Vehicle instances: It is generally irrelevant which over-
height vehicles drives on the left, hence there is only one single fault, 1eft0OHV
in Listing 2, whose activation allows all overheight vehicles to switch lanes. For
false alarms, it is important to differentiate between high and overheight vehicles
on the left lane, however, hence there is also a leftHV fault; slowTraffic, by
contrast, can affect all kinds of vehicles. Due to the use of S#’s nondeterministic
Choose function in DriveLeft and SlowTraffic, each Vehicle instance decides
independently whether it is actually affected by a fault activation.

S# Compiler compiles S# Model

initializes | executes

S# Model Checker

| S# Simulator £ S# Runtime FL
LTSMIN
Tuses
R L replays enerates
| Visualization | ﬂ>| Counter Example |<—g|

Fig. 4. Illustration of S#’s execution-centric architecture: The runtime initializes S#
models compiled by a slightly extended version of the C# compiler to ensure the desired
S# semantics of required ports and faults. Both the simulator and the model checker
use the runtime to execute a model. The only difference between simulation and model
checking is that the latter is exhaustive, checking all combinations of nondetermin-
istic choices within a model whereas the former considers a single combination only.
Counter examples generated by the model checker can be replayed by the simulator
for debugging purposes. Model visualizations build upon the simulator.

4 Analyzing Safety-Critical Systems with S#

S# unifies LTSmin-based, fully exhaustive, explicit-state model checking and
non-exhaustive simulations as shown in Fig.4: In both cases, the S# runtime
executes a model compiled with the S# compiler, ensuring the correct execution
semantics of faults and required ports. During model checking, all combinations
of nondeterministic choices and fault activations within a model are exhaustively
enumerated. S# is not a software model checker such as Java Pathfinder or
Zing [1,22], however, as it does not analyze states after every instruction; only
state changes between macro steps are considered.

4.1 Execution Semantics of S# Models

The Model class shown in Fig.5 captures S#’s model execution semantics. It
consists of a hierarchy of Component instances, each having fields that form
the component’s state. Fields are allowed to be of most .NET types, including
arrays, delegates, object references, and classes comprised of any of these like
List<T>; e.g., the state of a Vehicle instance from Listing 1 consists of _pos,
_speed, and _lane. For efficient storage and comparison, Component states are
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serialized and deserialized to and from fixed-sized byte arrays, represented by
the State class. The set of State instances has to be finite, therefore object cre-
ation and other forms of heap allocations during model checking and simulation
are unsupported; during model initialization, on the other hand, no such restric-
tions exist. The method Model::Ser stores Component states in a State instance,
whereas Model::Deser does exactly the opposite. S# generates these two meth-
ods dynamically at runtime via reflection, tailoring them to a specific Model
instance to guarantee maximum efficiency with respect to serialization time and
state storage size.

Model Simulator
PinsAdapter
Init() : State[*] Replay(CounterExample) : void
Init() : void Exec(State) : State[*] Next() : void
Next(State) : State[*] Step() : void FastForward(steps : int) : void
Eval(State, int) : bool Eval(State, Formula) : bool Rewind(steps : int) : void
Ser() : State
Deser(State) : void
V2 l
| LTSmin FaultEffect |é-| Component H Formula | | State
| Ay )
I ChoiceResolver
| 9| Choice H CounterExample |
Choose(count : int) : int
| A
|

NextChoices() : bool |

Fig. 5. A UML class diagram showing the classes required to simulate and model check
S# models. The Model class is responsible for Formula evaluation and model execution
with the intended S# semantics; in particular, it uses a ChoiceResolver instance to
determine all combinations of nondeterministic choices and fault activations. Therefore,
the Simulator class and LTSmin are decoupled from Model execution semantics, only
requiring them to take care of State management.

The method Model::Init generates all initial states of a Model instance while
Model::Exec computes all successors of a state as shown by Algorithm 2: For all
combinations of nondeterministic choices and fault activations determined by
ChoiceResolver::NextChoices, the given state is deserialized using Model::Deser so
that Model::Step can allow all Component instances to compute their successor
states, which are subsequently serialized using Model::Ser and then returned.
Model::Step is conceptually equivalent to Algorithm 1. The Formula class repre-
sents state formulas that evaluate arbitrary Boolean C# expressions over Compo-
nent instances. The evaluation is expected to be terminating, deterministic, and
side effect free; otherwise the exact behavior is unspecified. Model::Eval evaluates
a Formula instance for a given serialized state.

The only allowed source of nondeterminism within a Model are Fault instances
and invocations of ChoiceResolver::Choose; the latter records the number of
choices that can be made at a specific point during the execution of Model::Step
and returns the index of the chosen value. Other sources of nondeterminism,
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Algorithm 2. Model::Exec (s : State) : State[*]

var successors : State[*] = ||

while choiceResolver.NextChoices() do Deser(s); Step(); successors += Ser() end
while

return successors

such as race conditions of threads, are not captured by S#; S# does not analyze
the code it executes for illegal nondeterminism. There are two reasons why a
state might not have any successors at all: Either Model::Step does not termi-
nate or its execution is aborted abnormally due to an unhandled exception, for
example. Both cases indicate bugs in the model or in the S# runtime that are
readily discoverable.

4.2 Model Checking S# Models

LTSmin allows S# to execute a Model using Model::Exec during model checking.
In order to enable the integration of various modeling languages into LTSmin,
the so-called PINS interface written in C [13] is provided that S# makes use of.
S#’s integration of LTSmin takes about 250 lines of C++/CLI code, a Microsoft-
specific variant of C4++ that integrates into the .NET framework, allowing for
easy interoperability between C/C++ and C#. The PinsAdapter class maps
LTSmin’s C-based PINS interface to the C# interface of the Model class: Pin-
sAdapter::Init initializes and sets up LtsMin, which in turn repeatedly calls Pin-
sAdapter::Next to compute all successors of a serialized state using Model::Exec.
PinsAdapter::Eval prompts S# to evaluate a Formula instance identified by its
index for some serialized state by calling Model::Eval.

For a S# model m : Model, a Kripke structure K is generated on-the-fly such
that K = (m.Formula, State, R, L, m.Init()) where R = {(0,0’) | 0’ € m.Exec(0)}
and L(o) = {f € m.Formula | m.Eval(o, f)}. If there are no bugs that cause the
S# model to get stuck in an infinite loop or to throw an unhandled exception,
exploration of the Kripke structure terminates as soon as all reachable states are
encountered. S# models always generate Kripke structures without any deadlock
states, consequently all paths through the Kripke structure are of infinite length.
It is the responsibility of LTSmin to do the actual model checking, that is, to
check whether an LTL formula or an invariant is satisfied by an induced Kripke
structure. In the case study, for example, the LTL formula checking whether
there either is no tunnel closure or no collisions occur before the tunnel is closed
is specified as
G(!model.TunnelClosed ()) ||

U(model.Vehicles.All(v => !v.IsCollided()), model.TunnelClosed())
in S#; the formula obviously does not hold as faults are indeed able to cause sit-
uations in which collisions occur before any tunnel closures. The two operands of
the LTL until operator used above are two C# expressions that are represented
by two Formula instances and evaluated during model checking; similarly, the
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operand of the globally operator is also such a Formula instance. Both LTL oper-
ators and their disjunction are also converted into Formula instances that are
subsequently transformed for interpretation by LTSmin which in turn invokes
the contained C# expressions at the appropriate times. If LTSmin detects a vio-
lation of the Formula instance that is checked, it generates a CounterExample
that consists of a sequence of State instances, which are trivial to deserialize
back into sequences of Component states using Model::Deser. For later replay,
a CounterExample also captures the nondeterministic choices that the ChoiceRe-
solver made during the generation of the CounterExample, which also include
fault activations.

4.3 Simulating S# Models

Simulations of S# models work similar to model checking except that only a
single path of the induced Kripke structure is explored. Simulator instances are
either guided or unguided: Unguided simulations do not follow a predetermined
path through the Kripke structure, whereas guided ones are used to replay the
CounterExample instance passed to Simulator::Replay by forcing the nondeter-
ministic choices made by the model checker upon the simulator. Consequently,
counter examples cannot only be stepped through state by state, but also allow
debugging each transition, giving insights into why and how some possibly unde-
sired successor state is reached from some source state. A simulation stores all
computed states, allowing it to be fast forwarded or rewound by some number
of steps using Simulator::FastForward and Simulator::Rewind. In contrast to Algo-
rithm 2, Simulator::Next computes only one successor of the current state using
the sequence of method calls Model::Deser, Model::Step, and Model::Ser based
on a set of predetermined choices. Both simulation-based model tests as shown
in Listing 3 as well as visualizations can be implemented on top of the Simulator
class. In the interactive visualization of the case study, for instance, the user
can spawn high and overheight vehicles and change their speed and lanes using
the mouse or touch; visual replays of counter examples help to understand the
situations in which hazards occur.

var model = new Model(new PreControlOriginal(), new MainControlOriginal(),
new EndControlOriginal());

SuppressAllFaultActivations (model);
new Simulator (model).FastForward(steps: 20);
foreach (var vehicle in model.Vehicles)

Assert.IsFalse(vehicle.IsCollided());
Listing 3. A model test based on a S# simulation of the case study’s original design
with all faults suppressed by the helper method SuppressAllFaultActivations (not
shown), i.e., dormant the entire time. The test asserts that after the first 20 simulated
steps, no vehicles collide with the tunnel, as all vehicles drive on the right lane without

any fault activations.

4.4 Evaluation of S# Model Checking Efficiency

Many safety analysis tools such as VECS, the Compass toolset, or AltaR-
ica [3,17,18] rely on the standard approach of model transformations to use
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model checkers like SPIN or NuSMV [5,9]. By contrast, S# unifies simulations,
visualizations, and fully exhaustive model checking by executing the C# models
with consistent semantics regardless of whether a simulation is run or some for-
mula is model checked with LTSmin. Consequently, no model transformations
are necessary, avoiding significant implementation complexity while retaining
competitive model checking efficiency. S# only has to execute C# code instead
of understanding and transforming it, supporting most C# language features
without any additional work; transformations, by contrast, would require large
parts of the .NET virtual machine to be encoded for model checking or to forgo
many higher level C# features such as virtual dispatch or lambda functions.

The two main challenges of S#’s LTSmin integration were efficient state seri-
alization and efficient handling of nondeterminism. The algorithm that allows
ChoiceResolver to handle and track all combinations of nondeterministic choices,
however, turned out to require only around 40 lines of C# code. Generating
low overhead serialization methods, by contrast, is more involved, taking about
700 lines of C# code to generate the appropriate serialization methods at run-
time. For the case study, serialization causes only around 5 % of overhead during
entire model checking. The serialized states are smaller than the state vectors
of a hand-optimized SPIN model of the height control, taking only 12 instead
of 24 bytes per state. Another S# case study, the hemodialysis machine, has 71
variables but only requires 112 bytes per state.

In the worst case of valid formulas, S# and LTSmin have to enumerate the
model’s entire state space, taking 68.8 seconds for the case study’s 950,249 states
and 40,197,857 transitions. SPIN, by contrast, takes 553 seconds to check a hand-
optimized, non-modular version of the model that semantically corresponds to
the S# version. On a quad-core CPU, LTSmin achieves a speedup of 3.7x, bring-
ing the analysis time down to 18.6 seconds whereas SPIN scales by a factor of
1.5x only. One reason for S#’s superior performance are automatic symmetry
reductions [8] that allow S# to ignore irrelevant fault activations more efficiently
than SPIN, causing it to compute less transitions while still finding all reach-
able states. These symmetry reductions enable S# to provide smaller models
to LTSmin for model checking, increasing model checking efficiency noticeably;
however, they can only be partially encoded into SPIN models, for full support,
changes to SPIN would be required. For the case study, symbolic analysis with
NuSMYV, on the other hand, is faster than using S#: For a hand-written, very
low-level and non-modular NuSMV model that is approximately equivalent to
the S# model, the entire state space is generated almost instantly. However,
some other S# case studies are more efficiently checked by S# or SPIN than by
NuSMV, so the relative efficiency of explicit-state and symbolic model checking
is case study-specific and independent from S#; in general, highly nondetermin-
istic models seem to profit more from symbolic techniques.

S# models have a much higher level of expressiveness than either SPIN or
NuSMV models, allowing variant modeling and analysis in a way that is not
supported by either model checker directly. Additionally, S#’s explicit support
for fault modeling guarantees conservative extension [7], i.e., faults only add or
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suppress system behavior when they are activated but cannot do so while they
are dormant, which is important for adequate modeling and safety analyses.
SPIN, NuSMV, or Zing, by contrast, cannot give this guarantee at a language
level. While S# is more efficient than SPIN due to its fault optimizations, the
increase in analysis time compared to NuSMV seems acceptable given the step-
up in modeling flexibility, expressiveness, and fault modeling adequacy.

4.5 Safety Analysis of the Height Control Case Study

S# automatically conducts DCCAs to compute all minimal critical fault sets
for a hazard H given as a Formula instance, i.e., an arbitrary C# expression
that is interpreted as a propositional logic formula over the induced Kripke
structure K: For faults F' contained in K, S# individually checks all combinations
of faults I' C F', determining whether I" does or does not have the potential
to cause an occurrence of H [7]. I' is a critical fault set for H if and only if
there is the possibility that H occurs and before that, at most the faults in I
have occurred. More formally, using LTL: I' C F is safe for H if and only if
K | —(onlyp(IUH), where onlyp(I') < Ajep\p—f- A fault set is critical
if and only if it is not safe. A critical fault set I" is minimal if no proper subset
I'" C I is critical; a complete DCCA computes all such minimal critical fault
sets. For any critical fault set I', any superset I D I is also critical because, in
general, additional fault activations cannot be expected to improve safety. The
criticality property’s monotonicity with respect to set inclusion [7] trivially holds
regardless of the actual model as the LTL formula above does not require any
critical faults f € I' to be activated; instead, it only suppresses the activations
all other faults f € F'\ I'. In practice, monotonicity often allows for significant
reductions in the number of checks required to find all minimal critical fault
sets; otherwise, all subsets of F' would have to be checked for criticality. As seen
in Listing 4, S# automatically takes advantage of monotonicity, significantly
reducing the amount of fault sets that have to be checked for criticality; in
particular for the hazard of false alarms, only 3% of all possible sets have to
be analyzed for criticality. In the worst case, however, DCCA does indeed have
exponential complexity.

DCCA Results: Collisions (866 seconds)
Minimal Critical Sets (4453 fault sets had to be checked; 54
(1) { leftOHV, slowTraffic }
{ leftOHV, misdetectionLB2 }
(3) { leftOHV, misdetectionLB1 }
{ leftOHV, misdetectionODF, misdetectionODL }
{ leftOHV, falseDetectionLB2, falseDetectionODR, misdetectionODF }

DCCA Results: False Alarms (44.5 secomnds)
Minimal Critical Sets (261 fault sets had to be checked; 3
(1) { leftHV }
(2) { falseDetectionODF }
(3) { falseDetectionODL }
(4) { falseDetectionLB2 }
(5) { misdetectionODR }

Listing 4. Overview of the DCCA results for both hazards using the case study’s
original design. S# automatically analyzes a total of 13 faults; exploiting the
monotonicity of the criticality property is especially effective for the hazard of false
alarms, significantly reducing analysis times.
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Listing 4 shows the DCCA results for the original case study design; for
collisions, specified in S# as m.Vehicles.Any(v => v.IsCollided()) for a
Model instance m, at least one overheight vehicle must drive on the left lane,
hence the 1leftOHV fault of Listing 2 is contained in all minimal critical fault
sets. For instance, the fault set {leftOHV, slowTraffic} is critical for colli-
sions because two overheight vehicles can pass the pre control’s light barrier
simultaneously while one is faster than the other: The faster vehicle deacti-
vates the main control, and the slower vehicle can pass the end control when
it is already deactivated again. {leftHV} is minimal critical for false alarms,
specified as m.HeightControl.IsTunnelClosed() && m.Vehicles.All(v =>
v.DrivesRight ()), because of a high vehicle passing the main control’s left
overhead detector when an overheight vehicle passes the main control’s light
barrier at the same time. Safety analysis times for some design variants are sig-
nificantly higher than the ones in Listing 4 due to the larger number of faults
that have to be checked. S# therefore allows incomplete analyses up to a maxi-
mum fault set cardinality; for fault sets containing at most three faults, safety
analyses of all 12 valid design variants take around 400 seconds for false alarms
and 852 seconds for collisions.

5 Conclusion and Future Work

S# provides an expressive C#-based modeling language for safety-critical sys-
tems and conducts fully automated DCCAs over these models to determine the
minimal critical fault sets for all hazards. S#’s model execution approach not
only has competitive analysis efficiency but also unifies model simulation and
model checking to guarantee semantic consistency. The safety analysis results of
the case study match those from previous analyses [20]; the main improvements
over them lie in S#’s modular modeling language and flexible model composi-
tion capabilities based on C# and .NET that no longer require manual work for
composing multiple modeled design variants. Additionally, S#’s unified model
execution approach not only generates and checks the required DCCA formu-
las fully automatically, but also allows for interactive visualizations and visual
replays of model checking counter examples based on the same underlying S#
model.

S# has a competitive edge over other approaches for safety modeling and
analysis like Compass or VECS [17,18] by tightly integrating the development,
debugging, and simulation of models with their formal analysis. Our findings,
however, are solely based on our own experience with other modeling languages
and other case studies analyzed with S#. For example, the railroad crossing
case study available online in the S# repository is faster to check with S# than
with NuSMV or VECS, the latter of which is a small abstraction over NuSMV.
In general, however, fair comparisons between these tools and S# are hard to
achieve due to their different models of computation. For instance, it took us
about 740 lines to create a scaled down Compass version of the railroad crossing
model that is semantically similar to the S# version written in 400 lines of C#
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code. Compass performs a safety analysis that is equivalent to DCCA in 21 min
using NuSMV instead of the 1.9 seconds it takes S# to do the same. Of course,
the comparison is unfair as forcing Compass semantics onto S# might likewise
slow down analyses.

S#’s model execution approach opens up new possibilities in the context of
runtime safety analysis of self-organizing systems [6] that are simply not possi-
ble or at least harder to achieve with transformation-based or symbolic analy-
sis approaches: We plan to use the systems’ actual reconfiguration mechanisms
based on constraint solving during safety analyses, requiring the integration of
constraint solvers into the model checking process [6]. Additional ideas for future
work include analysis efficiency improvements based on automated abstraction
of plant behavior by using the controller’s sensors as abstraction functions as
well as combined analysis of entire families of design variants [21]. Moreover, we
are already working on supporting probabilistic hazard analysis, allowing S# to
compute the occurrence probabilities of hazards with the help of the MRMC
model checker [14]. Preliminary results are promising, benefiting from S#’s and
LTSmin’s efficient state space enumeration capabilities.
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Abstract. In this paper, we integrate inductive proof, bounded model
checking, test case generation and equivalence proof techniques to ver-
ify an embedded system. This approach is implemented using the Sys-
terel Smart Solver (S3) toolset. It is applied to verify properties at sys-
tem, software, and code levels. The verification process is illustrated on
an anti-collision system (ARP for Automatic Rover Protection) imple-
mented on-board a rover. Focus is placed on the verification of safety and
functional properties and the proof of equivalence between the design
model and the generated code.

Keywords: SAT - Safety critical system - S3 - Bounded model
checking - Inductive proof - Equivalence proof - Test case generation

1 Introduction

Even though significant progress has been made towards the integration of for-
mal methods in the industry of safety critical systems, their usability is still
impaired by their cost. Nevertheless, the hope is that once the initial integra-
tion is done, subsequent verifications can be achieved at significantly lower costs.
In this paper, we show how this could be achieved using a formal verification
toolset, Systerel Smart Solver (S3)!, and draw some lessons from our experience.

S3 [8] is built around a synchronous language and a model checker (S3-core)
based on SAT [4] techniques. As the proof engine, S3-core relies on Bounded
Model Checking (BMC) [3] and k-induction [6,16] techniques. S3 supports dif-
ferent activities of a software development process: property proof, equivalence
proof, automatic test case generation, simulation, and provides necessary ele-
ments to comply with the software certification processes. It can be applied on
designs expressed in SCADE [7]/Lustre [11] (including floating-point arithmetic)
and implementations coded in C and Ada, and has been used for the formal ver-
ification of railway signaling systems for years by various industrial companies
in this field.
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In this work, we apply S3 on an anti-collision system (ARP for Automatic
Rover Protection) that is deployed on a three-wheeled rover. Focus is placed
on three main activities: (1) Formal specification of the critical functional and
safety requirements, (2) Verification of expected properties using appropriate
formal techniques, (3) Proof of the equivalence between the design model and
the generated code. An additional purpose is to make the ARP use case publicly
available to the research community.

This paper is organized as follows: Sect.2 presents the S3 toolset; Sect. 3
describes the ARP use case; Sect. 4 exposes the verification of safety and func-
tional properties using inductive proof, BMC, and test cases generation tech-
niques; Sect. 5 illustrates the process of equivalence proof for the verification of
the generated code; Sect.6 draws some lessons from the verification activities,
and Sect. 7 gives some concluding remarks and discusses perspectives.

2 The S3 Toolset

S3 is composed of the following main elements:

— A synchronous declarative language similar to the Lustre language [11], called
HLL (High Level Language) that is used to model the system, its environment
constraints as well as its properties. As an example, Fig. 1 presents an HLL
model that calculates the population count (popcount) of an input boolean
table of size N. The boolean elements of the input table are constrained to
be conjunctively true. The function counter () is defined as the algorithm of
popcount. Finally, the proof obligation clause expresses one expected property
on the result.

Constants: int N := 10;

Inputs: bool in[N];

Constraints: SOME i: [0, N-1] (in[i]);
Declarations:

int unsigned 10 counter (int) ;
int unsigned 10 cnt_num;

Definitions:
counter (1) := 1if 1 == -1 then 0
else if in[i] then counter(i-1)+1 else counter(i-1);
cnt_num := counter (N-1);
Outputs: cnt_num;

Proof Obligations: cnt_num <= N & cnt_num >= 1;

Fig. 1. Example of HLL Model

— Several translators to convert models or code (Scade, Lustre, C and Ada) to
HLL models.

— An expander to translate HLL models into a bit level language, called LLL
(Low Level Language) that only contains boolean streams and is restricted to
three bitwise operators: negation, implication and equivalence.



Formal Verification of a Rover Anti-collision System 173

A SAT-based proof engine, named S3-core, to check LLL models.
Tools to build equivalence proof between models, or between models and code.
Tools to animate and debug models.

S3 supports the following activities of a typical development process:

Static detection of runtime errors and standard conformance check,
including array bounds check, range check, division by zero check, over and
underflow check, output and constraint initialization check, etc. Proof oblig-
ations are also generated to ensure that the generated HLL models show no
undefined behavior with respect to the semantics of the source language.
Property Proof: Figure2 presents the workflow of property proof. The
design model, e.g. Lustre, is translated into an HLL model. Combined with
properties expressed in HLL as well, it is then expanded to a LLL model that
is fed to the S3-core. If a property is falsifiable, a generated counterexample
can be simulated at the HLL level. This activity will be detailed in Sect. 4.

Propertie Design-+-
q_\ expander Property

HLL \T/ -

Design Model Design Model Design Model s3 Properties valid?
Translator -core YES / NO
HLL

Fig. 2. Process of Property Proof

Equivalence Proof: Figure3 presents the process of proving the equiva-
lence between the design model, e.g. Lustre, and the generated/implemented
code, e.g. C code. Models and code are translated into HLL models. The HLL
models are then expanded to LLL models using diversified expanders?. Equiv-
alence models are respectively constructed at the HLL level and the LLL level.
Equivalence proof is performed on one of the equivalence models or both. This
activity will be detailed in Sect. 5.

Test Case Generation: Test scenarios are generated from properties
expressed as test goals using BMC. This activity will be detailed in Sect. 4.3.

The architecture of S3 facilitates the construction of formal verification solu-

tions compliant with certification standards, e.g. DO178C [10]. Towards this
goal, S3 is organized in a set of small, independent components, from which the
most critical ones - an equivalence model constructor, and a tool to verify the
validity of the proof - are developed according to the highest integrity levels. The
performance of the proof engine allows users to manage the proof of industrial
size problems: the size of those models routinely attains ten millions variables

2 The diversified expanders are designed and implemented by different teams using

different programming languages.
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Fig. 3. Process of Equivalence Proof

and several hundred millions clauses. Verification of designs using floating-point
arithmetic (FPA) compliant with IEEE Standard for FPA (IEEE 754) [1] are
addressed by means of bit-blasting® [8].

3 Specification and Design of the ARP Use Case

3.1 The Context of Use Case

TwlIRTee is a three-wheeled rover used to experiment and evaluate various meth-
ods and tools in the domain of hardware/software co-design, virtual integra-
tion of equipments, and formal verification within the INGEQUIP project*.
TwIRTee’s architecture and its software and hardware components are repre-
sentative of typical aeronautical, spatial and automotive systems [9]. The over-
all system is composed of a unique stationary supervision station and a set of
TwIRTee rovers moving in a controlled environment (Fig.4). The architecture
of rover is composed of a mission and a power control subsystems. The power
control subsystem is in charge of power supply, motor control and sensor acqui-
sition. The mission subsystem is composed of a pair of redundant channels A
and B. Each channel contains a monitoring unit (MON) in charge of monitoring
the data and a command unit (COM) in charge of calculating commands for the
rovers. The mission and power control systems communicate via CAN bus.

In the nominal case, each rover moves autonomously on a set of predefined
tracks so as to perform its missions, i.e., moving from a start waypoint to a target
waypoint under speed and positioning constraints. In this system, the ARP
function is aimed at preventing collisions between the rovers. It generates the
maximal accelerations and minimal decelerations that are taken into account by
the rover trajectory management function. The communication between rovers
are carried out via WIFIL.

Here, we introduce several terms used in the paper. A mission is defined by
a list of waypoints to be “passed-by”? by the rover. A segment, defined by a

3 Bit-blasting is a classic method that translates bit-vector formulas into propositional
logic expressions.
4 The INGEQUIP project is conducted at the IRT Saint-Exupéry.
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Fig. 4. Overview of the TwIRTee System

couple of waypoints on the track, corresponds to a straight path. Segments only
intersect at waypoints. The set of all waypoints and segments constitutes a map.
Dedicated monitoring mechanisms ensure that if the rover gets out of the track,
it is placed in a stopped safe mode and the supervisor is alerted. Accordingly,
we consider that all displacements of rovers comply with the map. In the use
case, we consider 3 rovers moving on a map of 45 segments and 150 waypoints.
A mission contains at most 20 waypoints.

3.2 System-Level Safety and Functional Requirements

The requirements of ARP use case comes from the industrial partners of the
INGEQUIP project. The ARP is expected to ensure system-level safety require-
ment (REQ-SAF-1) stated in Table2 in the Appendix. REQ-SAF-1 states that
at any time, the minimal distance between the centers of two rovers shall be
greater or equal to 0.4m. It is split in two subsets of requirements: one about
the exclusive access to segments (REQ-SAF-1-1) and several others about the
design of a map (IR-F1, IR-F2 and IR-F3). Compliance with the requirements
of map data is under the map supplier’s responsibility.

Table 3 in the Appendix presents other system-level requirements. The func-
tional ones (REQ-F1 and REQ-F2) are mainly about excluding trivial imple-
mentations that would prevent collisions by, e.g., freezing all rovers. In the same
manner, REQ-QoS-1 is introduced to guarantee the performance of the design,
and to prevent trivial solutions of anti-collision, e.g., by performing missions
sequentially. Note that the ARP is not to schedule the movement of the rovers
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but to ensure safety. Accordingly, if missions are schedulable, they shall remain
schedulable with the ARP.

3.3 System Design Choice

Missions are elaborated off-line and transmitted via the supervision station. They
are considered to be validated on-board (according to the REQ-F1 in Table 3 in
the Appendix). To ensure the main safety requirements, separation of rovers is
implemented as follows: a rover may only enter a segment if it has been granted
exclusive access to both the beginning and the end waypoints of the segment. As
waypoints are global resources shared by all rovers, their reservation is ensured at
system-level. Our system is designed as globally asynchronous and locally syn-
chronous. Usually the synchronous programming schema used in synchronous
languages, such as Lustre and HLL, supposes that time is defined as a sequence
of instants. To preserve determinism, these languages use the concept of instan-
taneous broadcast [2] when several processes in parallel communicate, which
means that message reception is synchronous (or simultaneous) with their emis-
sion. To comply with this execution semantics, we consider the PALS approach
proposed in [13] where system-level clock synchronization is used to provide a
global logical synchronicity.

3.4 High-Level Software Requirements and Software Design

During the software design process, the system-level requirements are refined into
High-Level software Requirements (HLRs), given in Table4 in the Appendix.
The HLRs represent “what” to be implemented, while the Low-Level Require-
ments (LLRs) represent “how” to implement it. In this work, the LLRs are
expressed by a Lustre model®. Some figures about the size of the design are
provided. For an ARP system containing 3 rovers and missions of at most 20
waypoints performed on a map of 45 waypoints and 150 segments, there are
about 50 variables and 1700 lines of code in the Lustre model. For space rea-
sons, the Lustre model is not presented in the paper®. We briefly describe some
of its key points.

The ARP is split in two parts: one that manages segments reservation and one
that calculates the speed and position of the rover with respect to the reservation
decision. As mentioned in Sect. 3.3, the problem of reserving a track segment can
be reduced to the problem of managing access to critical sections in a distributed
system. In our design, this problem is solved by decomposing time into “time-
slots” and allocating a dedicated reservation slot to each rover: so that only one
rover at a time can perform a reservation. Each time slot is split in four sub-slots

5 With respect to the DO178, the Lustre model is considered to express LLRs, since
the source code is directly generated from the model with no other interpreta-
tion/refinement.

5 Contact the authors for the specification document, design model and formal prop-
erties.
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respectively for request, reply, reservation and empty tasks. For example, if there
are two rovers (R; and Ry) in the system, the first time slot (sub-slots t0 - t3) is
assigned to Ry, while the second time slot (sub-slots t4 - t7) is assigned to Ra.

4 Property Verification

We have specified the system and produced a candidate Lustre design model
in Sect. 3. Before generating C code from the Lustre model, one needs to check
whether the model actually complies with its specification. With S3, this prop-
erty verification process combines inductive proof, BMC, test case generation
and equivalence proof techniques. The first three techniques are used to verify
properties of the design model. The equivalence proof technique is used to verify
that the generated code is equivalent to the model, which implies that the prop-
erties verified in the design model are also satisfied in the code. We illustrate the
property verification in this section and present the equivalence proof in Sect. 5.

4.1 The Workflow of Property Verification

Figure 5 presents the property verification workflow. The Lustre model is trans-
lated into an HLL model, to which properties and environment constraints
expressed in HLL are concatenated”. The full HLL model is then expanded
to the LLL model used as the input of the S3-core. This verification workflow
can be split in two phases: first, the properties are checked for a certain time
length n. If no property is violated, n is increased until either a counterexample
(cex) is found, or some pre-known upper bound of n is reached. In case a safety
property® fails, a cex in the form of a sequence of states is generated, where the
last state contradicts the property. The cex trace is then directly exploited to
debug the property or the design model.

The BMC represents a partial decision procedure for a model checking prob-
lem, which is not complete. The completeness of a safety property can be
achieved with k-inductive proof based on strengthening inductive invariants (also
referred to as lemmas hereafter) if needed”?. The k-induction relies on an iter-
ative process to search for lemmas by analyzing the repeatedly produced step
counterexamples, until the proof is complete. Examples of k-induction proofs
and BMC verification are given in Sects. 4.2 and 4.3 respectively.

4.2 K-Inductive Proof of Safety Property

Recent works have shown that k-induction often gives good results in practice
when implemented by SAT or SMT based model checking [6,16]. Mathematical

" It’s the verifier’s duty to translate the natural language properties to HLL.

8 Usually, the safety referred by requirements means the system is safe, while the safety
referred by properties is related to the deterministic process. Here is the latter case.

9 Lemma searching is not a must. It is possible that a property is k-inductive.
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induction is the classical proof technique that consists of proving a base case
(Eq.1) and an inductive step case (Eq. 2). Let a transition system S be specified
by an initial state condition I(x) and a transition relation T'(x,z’) where z,
x’ are vectors of state variables. A state property P(z) is invariant for S, i.e.,
satisfied by every reachable state of S, if the entailments in Eq. 1 and 2 hold for
some k > 0.

I(:L'()) A T(:C(),xl) A A T(ZEk_1,ZCk) '= P(w()) A A P(ka) (1)
T(xg,z1) A+ AT (zg, xp11) A P(aog) A+ AP(xg) E P(xgs1) (2)

A counterexample trace for the base entailment indicates that the property
P is falsifiable in a reachable state of S. This is similar to the counterexamples
produced by BMC, but a counterexample trace for the induction step entailment
may start from an unreachable state or an over-approximated reachable state of
S. In Fig. 6, we distinguish the reachable part of the state space and the over-
approximated reachable state space. The transition T(x,, x,+1) starts from an
over-approximated reachable state in step n, and ends in a unreachable state in
step n + 1. One way to rule out such step counterexamples is to increase the
depth k of the induction. However, some invariant properties are not inductive
for any k. So, instead of increasing k, the method to enhance k-induction of a
property is to strengthen the induction hypothesis using new lemmas to reduce
the over-approximation of the reachable state space.

Many recent efforts are dedicated to the automatic generation of invariants
(used as lemmas in this work): automatic invariant checking based on BDDs [15];
unbounded model checking using interpolation [12]; property-directed reachabil-
ity (PDR) [5]; quadratic invariant generation using templates based on abstract
interpretation [14]. S3 provides a lemma generation tool based on a specula-
tion strategy that searches for equivalent variables at bit-level. According to
our experience, it is still very difficult for those tools to generate all necessary
lemmas for an arbitrary system, and manual elaboration of lemmas to complete
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Fig. 6. Step Counterexample in Inductive Proof

the proof remains important. So, to keep the approach as generic as possible,
we do not apply invariant generation methods. Instead, we show how lemmas
can be found “manually” on the basis of the step-counterexamples. We pick the
property HLR-06-1 in Table 4 as an example to illustrate the process of inductive
proof.

Example 1. HLR-06-1 states that the rover position shall be in front of or at the
initial position of the reserved area. It is formally expressed in Eq. 3, where, at
time ¢, pos,(t) is the position of the rover r, and pos, (init,s,,t) is the initial
position of the reserved area of rover r. The corresponding property expressed
in HLL is given in Eq.4, where i is the id of rover r, and the F LT _ge() is the
floating point greater-or-equal operator. The notion of time cycle does not appear
in Eq.4, because it is implicit in the HLL model. To simplify the explanation,
we suppose that the mission of each rover contains at most 5 waypoints.

Vr € Rovers, t € Time (pos;(t) > pos; (initssv, t)) (3)
FLT _ge(pos;, init_rsv;) == true; (4)

Following the workflow defined in Fig.5, BMC is executed first, with no
counterexample found within a time length of 20 cycles. Then k-induction is
executed. With k = 1, a step counterexample is found in the next inductive
depth (depth = 2), shown in Fig.7. The FPA-lib of S3 follows the IEEE 754
FPA standard, thus a variable of float type (here variables posl and init_rsvl) is
composed of a sign, an exponent, and a mantissa. To facilitate the explanation,
the converted decimal values of floating numbers are given in Fig. 7. The boolean
variable rsv1[i] represents the reservation status (by the local rover) of waypoint
i of a rover’s mission. Values of variables posl, init_rsvl and rsvl are given for
steps 0-3, where a step-counterexample is produced in step 2.

This step-counterexample contradicts the property HLR-06-1 because of posl
(=0.75) < init_rsvl (=1.20) in step k=2. This means that the rover locates out-
side the reserved area. The reserved area is in fact a set of continuous'® reserved

10 As explained by the REQ-01-4 in Table4 in the Appendix, we use continuous (con-
tinuity) hereafter for the fact that each waypoint has a unique precedent waypoint
in a mission or in a reserved area, except that it is the initial one.
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waypoints of rover’s mission, therefore the calculation of init_rsvl depends on
the reservation status of the waypoints (variable rsvl). We notice that in step
k=1, the waypoints PO and P2 in the mission are reserved (i.e., rsv1[0] =t and
rsvl[2] =t), but the waypoint P1 is not (i.e., rsv1[1] =f), which means that the
reserved area is not continuous. This step-counterexample does not indi-
cate a design error. Indeed, HLR-09 in Table 4 requires that any positive reply
to a reservation request shall contain a set of continuous waypoints. Unfortu-
nately, we cannot use it as lemmas of this property because its inductive proof
also produces step-counterexamples and needs to be analyzed. We thus have two
solutions: (1) express and prove a property about the continuity of the reserved
area, if valid, use it as a lemma to prove HLR-06-01; (2) investigate the step-
counterexamples of HLR-09 to make it proved, and then use HLR-09 as a new
lemma to prove HLR-06-1.

For the first solution, the added lemma is expressed in HLL as Eq.5, where
N is the number of waypoints in a mission. Using this additional lemma, HLR-
06-1 as well as all other indeterminate!! properties are proved by l-induction.
Although this step-counterexample is not due to any missing or wrong property
in the specification, we still suggest to report it to the designer. Then s/he
might decide to add the new lemma as a complementary requirement about
the continuity of reserved areas in the specification. This may reduce the re-
verification effort. In this case, as the designer thinks this implicit property is
important, and he decides to add it in the specification as a derived requirement
from the development process.

ALLi:[0,N—=3],j:[2,N—1] (rsvl[i] Arsvi[i+ 1] Ai+j < N—1—rsvi[i+j]); (5)

[depth 2] > posl [dept.h 2] > rsvl .

$1: posl is 0.45 0.55 [0.75] 1.05 rsvl is a composite
$28*: rsv1[0] istt [f] f
$29: rsvi[1]isff[f] t

[depth 2] > init_rsv1 $30: rsvi[2]istt[t]t

$2: init_rsv1is 0 0 [1.20] 0.60 $31: rsv1[3] is £ [f] £
$32: rsvi[4]isff[f]

Fig. 7. Step-counterexample of Property HLR-06-1

For the second solution, we can first consider HLR-09 as an axiom. Inductive
proof demonstrates that even if HLR-09 were proved, HLR-06-1 would remain
indeterminate and a step-counterexample similar to the one in Fig. 7 would be
produced again. Following the same idea, we assume all indeterminate properties
except HLR-06-1 are valid, all the step-counterexamples indicate that the step
k + 1 contains non-continuous reserved areas. This leads the verifier to add the
same lemma as the one in the first solution.

1 Tpdeterminate means neither valid nor violated.
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4.3 BMC and Test Case Generation

In general, properties are classified as safety or liveness properties. The former
declares what should not happen (or should always happen), while the latter
declares what should eventually happen. The vast majority of properties in the
ARP system are safety ones, except the system-level functional property REQ-
F2 in Table3 and the software-level functional property HLR-13 in Table4 in
the Appendix.

Ezample 2. REQ-F2 states that at any time, if the definition of schedulable
massions are free of deadlock, a deadlock shall not occur due to the ARP. HLR-
13 states that the ARP shall ensure that the schedulable mission is completed
within worst case mission time (WCMT).

HLR-13 is a bounded liveness property because an over-approximated
WCMT can be used as the upper bound of checking. Hence it is a good can-
didate for BMC. If no counterexample'? is found before the time bound, the
property is valid. In the case of HLR-13, a counterexample is easily produced
using BMC. A precondition of HLR-13 is REQ-F2, because a rover may not
complete its mission when deadlocks occur. The validation of REQ-F2 requires
that missions are schedulable, otherwise it is possible that deadlocks occur, and
HLR-13 fails. As we cannot check these two properties considering the actual
mission schedules, we use BMC to generate test case scenarios containing dead-
locks due to unschedulable missions. These test cases can be used later to check
the verification tool of mission schedules.

To explain the generation of deadlock scenarios, we consider a system with
two rovers. REQ-F2 is satisfied if the property expressed in Eq. 6 is false, where
rovers r; and r; are stopped, r; (r;) requests waypoint p; (p;), but p; (p;) is
reserved by r; (r;). Both rovers wait for a locked resource.

Vp; € Mis;, p; € Misj, 11,15 € Rovers, t € Time (i # j A state(ri, t) = STOPA
state(rj,t) = STOP A req(ri, pj, t) A req(rj, pi, t) A rsvd(ri, pi, t) A rsvd(rj, pj, t)) (6)

We launch BMC for this property for some time length, and test case sce-
narios are extracted from the generated counterexamples.

4.4 Safety Property and Map Data Validation

Once the design is delivered to the verifier, it is the verifier’'s duty to express
and verify the properties. S/He might have several ways to express one property.
Some safety properties can hardly be verified by induction or BMC. In that case,
we may take benefit of divide and conquer strategy by decomposing the property
into a set of simpler ones, even static ones. Take the REQ-SAF-1 in Table?2 as
an example.

2 The counterexample of liveness property is a path to a loop that does not contain the
desired state. This implies that with an infinite loop path, the system never reaches
the specified state.
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Example 3. REQ-SAF-1 states that at any time, the minimal distance between
the centers of two rovers shall be greater or equal to 0.4 m.

This property can be verified by calculating the distance between two rovers
at any time and then checking its value, unfortunately this solution is expensive
due to the nonlinear floating-point arithmetic. To alleviate this problem, REQ-
SAF-1 is split in another safety property about the reservation of waypoints
(REQ-SAF-1-1) and a set of properties about the map data (IR-F1, IR-F2 and
IR-F3), see Table 2. REQ-SAF-1-1 is proved by k-induction using similar process
as described in the Sect.4.2. IR-F1, IR-F2 and IR-F3 are requirements about
the length of segment, the distance between a waypoint and a segment, and the
absence of intersection between segments. In this work, the map data are modeled
in Lustre, as same as the software. Beside the advantage of using a unique
toolchain, this approach allows to reuse directly the properties expressed on the
map data in the verification process of the software. In fact, these static map
data could be easily checked using a dedicated verification program. However,
when these map properties are used as sub-properties of the safety property
REQ-SAF-1, they need in any case to be re-verified in the Lustre model.

4.5 Property Verification Results

The safety, functional and performance properties of ARP are formally
expressed. As shown in Table 1, some safety properties can be directly proved
by 0 or l-induction, while some others need additional lemmas. REQ-QoS-1 is
a system-level performance property. It is difficult to verify it at system-level
without having software design, it is thus expressed as HLR-12 and verified at
software-level by inductive proof.

Table 1. ARP property verification results

Verification REQ-ID Verification results
techniques
Inductive IR-F1, IR-F2, IR-F3, REQ-F1, Valid by 0-induction
Proof HLR-01, HLR-03, HLR-04,
HLR-05, HLR-07, HLR-08, HLR-11
REQ-SAF-1-1, HLR-10 Valid by 1-induction
HLR-02, HLR-06-1, HLR-06-2, Valid by 1-induction using
HLR-06-3, HLR-06-4, HLR-09, additional lemmas
HLR-12 (REQ-QoS-1)
Data REQ-SAF-1 (IR-F1, IR-F2, IR-F3) Valid
Validation
BMC and HLR-13, REQ-F2 Test cases generated
Test Case
Generation




Formal Verification of a Rover Anti-collision System 183

5 Equivalence Proof Between Design and Generated
Code

The property verification activities depicted in Sect.4 demonstrate that the
design model complies with its specification. However, there is still a gap between
the design model and the code embedded in the system. The code can be either
implemented by the developer or be generated automatically from the Lustre
model. In our case, we use the lus2c translator'® to generate the C code from
the Lustre model. However, as this translator is not qualified™, it is still unknown
whether this C code satisfies the specification.

To prove the code is correct, two approaches are applicable. The first one
follows the strategies presented in Sect. 4. We first translate the C code into the
HLL model using a C2HLL translator, and verify that this HLL model satisfies
all requirements defined in Sect. 3. The second approach demonstrates that the
code is equivalent to the design model, i.e., the same inputs generate the same
outputs. This guarantees that the properties (related to inputs and outputs)
satisfied by the design model will be satisfied by the code.

Figure 8 presents several verification activities (A) in the process of equiva-
lence proof: Al generates C code from Lustre model with a qualified translator;
A2 translates Lustre models into HLL models, where properties are combined
and verified; A3 translates C code into HLL models, where properties are com-
bined and verified; A4 proves that the HLL models generated from the Lustre
model and the C code are equivalent; A5 proves that the LLL models generated
from the Lustre model and the C code (through the HLL model) are equivalent.

Property
Proof

®

LLL LLL

Lustre

quivelance
Proof

—{ HLL —>(HLL to LLL LLL
© ©
|
@ Povery |00
L

Fig. 8. Activities in the Process of Equivalence Proof

Based on different development contexts and the activities in Fig. 8, we sum-
marize a set of strategies (S) for the verification of the C code, as follows:

13 The translator lus2c is provided by Lustre v4 toolset.
14 Qualification is a requirement in getting a system certified.
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S1: The code generator is qualified as a development tool at the same level
as the application. Properties are verified on the Lustre model (A2). Thanks
to the qualified translation (A1), properties are preserved in the generated C
code.

S2: The code generator is not qualified at the same level as the application.

e S2a: Properties are directly verified on the C code (A3).

e S2b: Properties are verified on the Lustre model (A2). The C code is proved
to be equivalent to the Lustre model (A4 or A5). Thanks to the equivalence
proof, properties are preserved by the C code.

* S2b1: The equivalence is proved at HLL level (A4).
* S2b2: The equivalence is proved at LLL level (A5).
e S2c: Properties are verified at both Lustre and C code level (A2 and A3).

In our case study, we have proved the equivalence between the Lustre model

(including the map data) and the generated C code. The strategy S2b has been
applied for the following reasons:

1.
2.

6

6.

The C code generator lus2c is non-qualified. (rule out S1)

It is reasonable to assume that only a subset of the requirements will be
formally expressed and verified. One will probably use other more classical
approaches, such as testing. The cost of test increases as the abstraction level
decreases, thus test is less expensive at Lustre level than at C level. (rule out
S2a and S2c)

Specific formal verification techniques can be applied on Lustre thanks to its
abstract semantics, which is lost once the C code is generated. This implies
that proving properties at Lustre level is simpler than at C level. (rule out
S2a and S2c¢)

. S2b supports two complementary approaches of equivalence proof S2b1l and

S2b2. S2b1 allows debugging counterexamples at the HLL level, but might
need additional lemmas for some cases. S2b2 automatically searches and adds
necessary lemmas using speculation techniques, but counterexamples are still
difficult to exploit. Usually S2b2 is performed first; if a property is falsifiable
or indeterminate, the S2bl is used to analyze the (step-)counterexample.
(keep S2b)

Lessons Learned

1 Proof of Generated Code

The strategies of equivalence proof discussed in Sect. 5 have pros and cons. One
can select appropriate strategies under the development contexts and the avail-
able resources.

S1 requires a qualified code generator. This was not an option in our case, but
this is the usual strategy in the domain of safety critical applications where
the cost of a failure largely exceeds the cost of qualification. A qualified code
generator saves a lot of effort, but is very expensive.
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— S2a and S2c require to express and verify properties and lemmas at code level.
As the code is less abstract and more complex than the Lustre model, property
verification requires more effort.

— S2¢ seems redundant as property proofs are performed at both Lustre and
C level. However, it might be useful to determine the origin of an error: a
property satisfied in Lustre but falsifiable in C reveals probably an error during
translation.

— S2b is “S1 without qualified generator”. The equivalence proof between Lustre
model and C code ensures that the generated C code implements exactly the
properties expressed in Lustre. S2b does not need expensive qualified genera-
tor, but needs more effort to carry out equivalence proof. Each time the Lustre
model is modified and the new code is generated, the equivalence needs to be
re-proved.

6.2 Proof-Driven Design Guidance

The formal verification of a system could fail because of the complexity of the
system, the lacking of complete requirements to support formal verification, etc.
For instance, in Sect. 4.2, the HLR-06-1 is proved by k-induction after searching
and adding a lemma. If we consider that the verifier has not a complete or
deep knowledge about the design, s/he reports a scenario that contains the
step-counterexample to the designer. If necessary, the designer may then decide
to add a complementary requirement derived from this lemma in the initial
specification, in order to reduce the cost of subsequent verification. The other way
round, the verifier may ask the designer to state as many detailed requirements as
possible about the system. These properties may be written as comment and/or
assertions to be checked at runtime.

Sometimes, a lemma may not be provable from the initial hypotheses. This
might be the case that some environment hypotheses have been considered as
granted by the designer without ever being explicitly expressed. This case could
be handled either by a modification of the requirements to make the hypothesis
explicit or by a modification of the design to make it independent from these
hypotheses.

7 Conclusion and Perspective

This paper shows how multiple formal verification techniques (inductive proof,
BMC, test case generation, and equivalence proof) can be integrated to verify
an actual system with an industrial grade toolset. Some significant activities of
a typical verification process have been addressed, from the specification and
design to the formal verification. Focus has been placed on the verification of
safety and functional properties and on the equivalence proof between the design
model and the generated code. We have drawn some lessons about the equiv-
alence proof and the proof-driven design guidance from this experiment. This
verification process is classic when the proof of property is based on SAT/SMT
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solvers. The main effort lies in searching for lemmas for the property proof using
k-induction. This needs good understanding of the proof techniques. As our ver-
ification tool provides step-counterexamples feedback, the debug process can be
seen as an engineer work. This case study is built on the Lustre modelling lan-
guage and S3 toolset. Similar property proof process can be applied to other
modelling languages and SAT/SMT tools.

Appendix
Table 2. System-level safety requirements

REQ-ID REQ

REQ-SAF-1 | Minimal separation: At any time, the minimal distance
between the centers of two rovers shall be greater or equal to
0.4m

REQ-SAF-1-1 | Exclusive access to segment: The ARP shall consider that it
has been granted exclusive access to a segment

IR-F1 Length of segment: The length of a segment shall be greater or
equal to 0.4 m

IR-F2 Distance between waypoint and segment: The distance
between a segment and a waypoint on a non-continuous
segment shall be greater or equal to 0.4 m

IR-F3 No intersection: There shall not be any intersection between

two segments

Table 3. System-level functional and performance requirements

REQ-ID REQ

REQ-F1 Missions shall be structurally deadlock free

REQ-F1-1 | The initial waypoints of missions shall not be the same

REQ-F1-2 | The end waypoints of missions shall not be the same

REQ-F1-3 | The end waypoint of a rover’s mission shall not exist in the
missions of other rovers

REQ-F2 No deadlock: At any time, if the definitions of scheduled
missions are free of deadlocks, a deadlock shall not occur due
to the ARP

REQ-QoS-1 | Fairness: At any time, any rover shall be given the opportunity

to move
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Table 4. High-level software requirements

REQ-ID

REQ

HLR-01

Mission validation: The ARP shall validate the missions to be executed. A
mission is an ordered set of waypoint indexes. (HLR-01-1) The mission shall
have a starting waypoint. (HLR-01-2) The mission shall refer to existing
waypoints in the map. (HLR-~01-3) The mission shall not successively refer to
the same waypoint. (HLR-01-4) Each waypoint in a mission shall have
unique precedent waypoint except the starting waypoint (referred to as
continuity in this document)

HLR-02

Motor Request: The ARP shall control the motor using one command out of
emergency braking, acceleration, and deceleration

HLR-03

Emergency braking: The ARP function shall send a non-null emergency
brake request to the motor control if the distance to the end of the reserved
area is less than or equal to [D_.BRK] and the reserved end is not the mission
end, or if the rover is at the reserved end

HLR-04

Deceleration: The ARP function shall send a non-null deceleration request to
the motor control subsystem if the distance to the end of the reserved area is
less than or equal to [D_.DEC] and greater than [D_BRK], and the reserved
end is not the mission end

HLR-05

Acceleration: The ARP function shall send a non-null acceleration request to
the motor control if the distance to the end of the reserved area is greater
than [D_DEC], or if the distance to the end of the reserved area is less than
or equal to [D_-DEC] and the reserved end is the mission end

HLR-06

Inside Reserved Area: The ARP shall only allow a rover to enter an area
that has been previously reserved. (HLR-06-1) The rover position shall be in
front of or at the initial position of the reserved area. (HRL-06-2) The rover
position shall be behind or at the final position of the reserved area.
(HLR-06-3) The initial waypoint of the reserved area shall be reserved.
(HLR-06-4) The final waypoint of the reserved area shall be reserved

HLR-07

Desired Reservation Zone: At any time, the ARP shall require segments
that enclose a zone of length [D_RSV] in front of the rover

HLR-08

Request of waypoints: The ARP shall send reservation request for all the
waypoints in the desired reservation area

HLR-09

Reply to requests: The ARP shall reply to reservation requests sent by other
rovers. It shall acknowledge positively (accept) a reservation for a waypoint if
and only if the waypoint it not currently reserved by the local rover. The
acknowledgement shall contain a continuous set of waypoints

HLR-10

Reservation of waypoints: The ARP shall reserve a waypoint once it has
received positive reservation acknowledgement from all other rovers

HLR-11

Release of waypoints: The ARP shall release the waypoints of a segment as
soon as the segment is on longer in its reserved area

HLR-12

Fairness of reservation: The ARP shall send waypoint reservation requests
when its reservation slot is activated. The APR shall have the possibility to
perform a reservation if the required waypoint is not reserved by other rovers

HLR-13

End of mission: The ARP shall ensure that the scheduled mission is
completed within worst case mission time (WCMT)
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Abstract. Today, automotive software is getting increasingly complex
while at the same time development cycles are shortened due to time
and cost constraints. For the validation of electronic control unit soft-
ware, this results in a major challenge. Especially for safety critical soft-
ware, like automotive software, high quality must be guaranteed. Formal
verification of automotive software architecture models enables early ver-
ification of safety constraints, before the complete system is assembled
and ready for simulation. One option for formal verification of safety
critical software is modeling and verification using timed automata. In
this paper, we present a method for the verification of AUTOSAR soft-
ware models by transforming the software architecture as well as the
corresponding AUTOSAR timing constraints into timed automata.

1 Introduction

Complexity of electronic control units (ECUs) and controller algorithms in cars
increases, for example due to more comfort functionalities and more complex
controllers for electric vehicles. Therefore development and test of these types
of systems becomes time consuming. Late availability of prototype ECUs hin-
ders the early validation of the overall system. One necessary condition for the
integration of various controller functionalities from different vendors into a com-
bined system is to have a standardized description of the software architecture
and integration methodology. In this regard, AUTOSAR [1] has become the de
facto standard in the automotive domain as it provides a common infrastructure
for automotive systems of all vehicle domains based on standardized interfaces.

The company dSPACE!, in which this work has been carried out, is the
world’s leading provider of solutions for developing ECU software and mecha-
tronic controls. The dSPACE product area Virtual Validation comprises tools
for using virtual (i.e. software-based) ECUs for testing and validating ECU soft-
ware throughout the whole development process by a PC-based simulation. By
using virtual validation, development, verification and validation tasks can be
performed much earlier and also reduce the number of additional tests, prototype
systems and ECU prototypes needed. Virtual Validation needs a virtual ECU
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(V-ECU) for the PC-based simulation. Therefore in a first step, the V-ECU has
to be configured, generated and compiled out of an existing AUTOSAR software
architecture. However, this step takes some time to execute. Furthermore, when
errors in the simulation are detected, it is necessary to repeat this step. Another
point is that all controller algorithms have to be fully implemented, but in early
validation phases this case is rather rare.

Therefore for the early validation of an AUTOSAR architecture, analysis
methods have to be investigated, which exclusively rely on the existing software
architecture, because controller software is not available. Furthermore model
properties exist which even cannot be validated by elaborated simulation sce-
narios. This applies for example for timing requirements which have to be met
under all possible circumstances. The validation of timing requirements there-
fore needs special analysis methods, which cover all possible corner cases. An
established method for verification of timed systems is modeling and verification
of the system as a network of timed automata and the specification of properties
with the help of temporal logic.

This work presents an approach for the transformation of AUTOSAR archi-
tecture models into a network of timed automata. Furthermore, AUTOSAR
timing constraints as part of the AUTOSAR model are transformed. By exclu-
sively considering the architecture model and not the controller functionalities,
analysis can be performed early in the development process. Model checking
of timed automata in addition can prove correctness of the architecture with
respect to the timing requirements.

Related Work. There are different methods for the analysis of timing require-
ments. Besides the modeling and verification of timed systems via timed
automata, methods exists that are based on scheduling analysis methods. In
the works presented in [2,3] a compositional scheduling approach based on tradi-
tional scheduling theory in real-time systems is presented. The approach assumes
that signals can arrive at components only in a restricted fashion, e.g. with fixed
frequency and maximum jitter. The arrivals are specified in event functions. If
signal arrivals do not match the predefined models, timing analysis becomes
imprecise [4]. Real-Time Calculus is a framework for performance analysis of
real-time systems, which is based on the network calculus [4]. By specification
of an Fvent Stream Model a signal flow through a system can be analyzed. This
is a more generic framework than the one in [2]. Both methods apply a different
sort of abstraction on analysis level than our method. Furthermore, we directly
apply our method to AUTOSAR timing extensions, while other methods only
partly describe the application onto the AUTOSAR, standard. A similar app-
roach described in the work presented in [5] also utilizes timed automata for the
analysis of AUTOSAR architectures. In contrast to this approach, the transfor-
mations enable general timing error detections, but do not apply transforma-
tions to the AUTOSAR Timing Constraints, which is nessessary for the analy-
sis of timing requirements. Further approaches for timed automata suggest the
method of constructing test automata (or Scenario-Automata) for the specifica-
tion of requirements [6], but also do not consider AUTOSAR Timing Extensions.
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In the work presented in [7] tool support for the verification of AUTOSAR tim-
ing requirements is presented. The requirements are verified by comparing them
against specified timing guarantees. For this approach, timing guarantees have to
be specified, which is not necessary in our approach. Besides methods for timing
analysis of software architectures there is a lot of work dealing with timing based
on single program tasks available as code snippets or binary artifacts [8]. These
methods can determine upper bounds for the Worst-Case Execution Time and
thus are a necessary prerequisite for the analysis on architecture level, where the
artifacts are assembled.

2 Background

This chapter discusses the foundations of AUTOSAR and the integrated timing
extensions, because most of the software in automotive contexts is currently
AUTOSAR-based. Furthermore, foundations of timed automata are treated.
Timed automata are used for the verification of the AUTOSAR architecture.

2.1 Introduction to AUTOSAR

AUTOSAR? is short for AUTomotive Open System ARchitecture and is the
established standard for the development of automotive software. AUTOSAR
defines the architecture and interfaces of the software as meta-model as well
as the file format for data exchange. Furthermore, the standard defines its own
development methodology. The concepts of this paper are based on the current
AUTOSAR version 4.2.

On the outer level AUTOSAR software is structured as layered architecture
(see Fig.1). There are three different layers:

— The application layer is the upper software layer. It contains the actual con-
troller software, which includes mostly controller algorithm implementations
in the automotive domain. Inside of this layer software is structured in a
component-based architecture. Therefore software components are modeled,
which can communicate via ports and connections.

— The Runtime Environment layer (RTE) administrates the communication
between software components, and furthermore the communication between
software components and basic software parts (see below). It realizes a stan-
dardized interface for the software on application level.

— The basic software layer incudes modules for basic functions of ECUs. The
basic software layer is subdivided into a Service Layer (purple), an ECU
abstraction layer (green) and a Microcontroller Abstraction Layer, MCAL
(red) (see Fig. 1). The service layer contains the main ECU services like oper-
ating system, ECU state management, services for diagnosis, memory services
and communication services. The ECU abstraction layer realizes an abstrac-
tion between ECU hardware for the upper layers and contains modules for the

2 http://www.autosar.org.
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Application Layer

Runtime Environment

E==u

Fig. 1. AUTOSAR layered architecture taken from [9] (Color figure online)

Microcontroller

access of hardware peripherials. The MCAL provides low level driver modules
and acesses the hardware directly. A detailed description of all modules can
be found in [9].

The AUTOSAR Authoring Tool SystemDesk®. SystemDesk®? is the tooling
environment for AUTOSAR models from dSPACE. It supports sophisticated
and extensive modeling of AUTOSAR architectures by providing a rich graphi-
cal user interface as well as code generation for virtual ECUs. Graphical model
representations are available for important elements. For example software com-
ponents, ports and connections within a software composition can be visualized
in a Composition Diagram. Furthermore, single software components with their
ports, interfaces and data types can be visualized in a Component Diagram.
Other model elements are ordered hierarchically in a tree structure.

Example 1. In the following we will consider a simple example AUTOSAR soft-
ware architecture, which manages the left and right direction indicators of a
vehicle. The application layer consists of several software components, which
comprise several so-called runnable entities, which contain executable software.
The example architecture is shown in Fig. 2. The two software components on
the left read in sensor data and check for errors before forwarding the signal data
to the next software component. The IndicatorComposition software component
receives the raw sensor values and encapsulates several runnable entities for pre-
processing of the signal values as well as the logic of the system. The actuator
software components on the right are responsible for activating the left respec-
tively right bulb of the direction indicator. Furthermore, the example contains a
configuration of the RTE, and on the basic software layer the configuration for
the Operating System. Other basic software modules are not considered in this
example.

3 http://www.dspace.com/en/pub/home/products/sw/system _architecture_software,/
systemdesk.cfm.
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Fig. 2. Example software architecture

2.2 Timed Automata

While AUTOSAR specifies a formal syntax defined as an OMG meta model,
its semantics is only described in a textual manner. To formally verify timing
requirements on AUTOSAR, we need to define a formal semantics for the tim-
ing relevant meta model elements. Here, we employ timed automata as they
are capable of formally describing timing behavior. Timed Automata were first
introduced 1994 by Alur and Dill [10]; in the following, we follow the notation
of [11].

Definition 1 (Timed Automata). A timed automaton is a tuple A =
(L,B,B*X,I,U, E, I,;;;) with a finite set of locations L, a set of signals commu-
nicating via handshake B, a set of signals communicating via broadcast channels
B*, a set of clocks X, an assignment of invariants to locations: I : L — &(X), a
mapping for the locations whether they are urgent (so that time is not allowed to
increase) : U : L — {true, false}, a set of edges labeled with an action, a guard
and a set of clocks, which need to be reset: E C Lx BUB* x #(X) x P(X) x L,
and an initial location I;,; € L.

Here, ¢(X) specifies a set of clock constraints (like z < 3, see [11]). A con-
figuration of a timed automaton is a pair of a location and a clock valuation
v: X — Time, where Time € R(Z% are the real numbers. We use v |= ¢ for
a clock constraint ¢ € @(X) if the constraint is true for the clock valuation. In
Fig.4 an example automaton is shown.

Definition 2 (Semantics of Timed Automata). The operational seman-
tics of a timed automaton A is defined as a labelled transition system T(A) =
(Conf(A),—,Cini), where Conf(A) = {(l,v) | I € Liv : X — Time,
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v = 1(1)}, an initial configuration Cini = {{lini, Vini)} and a transition relation
— C Conf(A) x (Time U B) x Conf(A) with two different types of transitions:

— delay-transition: (I,v) 5 (Lv+t) if v+t = IV € [0,) AVl € L:U(l) =
false

— action-transition: (I,v) = (I',v") iff (I,,¢,Y,l') € E with v |= ¢ and V' =
vlY :=0] and V' = I(l')

Single timed automata can be combined using parallel composition resulting in a
network of timed automata. In the network, automata can communicate in two
ways: synchronously via handshake communication (like in the process algebra
CCS [12]) or in a broadcast manner. The sender in a broadcast communication
can communicate with an abitrary number of receivers, namely all of those which
are currently enabled for a communication. In the following, we will use synchro-
nous communication as a means of synchronising the behaviour of components
in the AUTOSAR architecture while we use broadcast for synchronisation with
test automata modelling timing requirements.

To express properties on Timed Automata the query language Timed Com-
putation Tree Logic (TCTL) is used. It allows specifying real-time constraints on
Timed Automata, which can be checked in tools like UPPAAL* [13]. In TCTL,
different types of formulas can be expressed: In state formulas properties on
states can be specified, while path formulas quantify over paths or traces of the
model [13,14].

3 Transformation of AUTOSAR Models

In this section we describe the transformation of AUTOSAR meta-model ele-
ments into timed automata. The AUTOSAR meta-model is very large. However,
many model elements do not influence the dynamic behavior of the system. Fur-
thermore, many specialized classes exist, but only for some of them the specified
transformations are performed. Therefore we only give an introduction for timing
relevant meta model elements and afterwards give a simplified formalization of
the meta model. In this work we focus on the timing of ECUs and abstract from
bus communication. As there is no formal semantics defined for AUTOSAR, we
cannot prove the correctness of the transformations.

Timing on Application Layer. The AUTOSAR application layer consists of
application software. Software is encapsulated in so-called RunnableEntities
(abbreviated: runnable). For modeling timing behavior on application layer
it is necessary to represent the runnables, variable accesses and their inter-
connections by appropriate timed automata. We abstract from the concept
of software components and ports as it is not relevant for the timing whether
two runnables in different software components are connected via ports or
directly in a single software component as we assume that all software com-
ponents are mapped onto a single ECU.

4 http://www.uppaal.org.
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Timing on RTE Layer. The RTE-Layer is a standardized interface for the soft-
ware on application layer and is responsible for triggering runnables as speci-
fied in the operating systen, which is located on the basic software layer. The
operating system has a scheduler and maintains the execution of resources
by OSTasks. For this reason runnables have to be mapped onto OSTasks to
specify the execution order of runnables. This is done in the RTE config-
uration using the so-called RTEFEventToTaskMapping, which maps events,
representing the triggering of a runnable, onto tasks.

Timing on Basic Software Layer. On the basic software layer AUTOSAR
specifies many modules, which can be specified for every ECU. Most impor-
tant for the runtime behavior are the modules which have influence on the
execution order of the runnable entities. This is mainly the AUTOSAR oper-
ating system, which is based on the OSEK standard®.

We consider the following parts of an AUTOSAR architecture during transfor-
mation.

Definition 3 (AUTOSAR Architecture). The simplified formal AUTOSAR
architecture AR = (R, C, VA, T, TRM) consists of

1. a set of VariableAccess elements VA,
2. a set of RunnableEntities

R C {(VAsead, VAwrite, weet, beet) | VAreaa € VA, VAyrite C VA, beet < weet}

with VAyeaq a set of variable read accesses, VAyrite a set of variable write
accesses With VAyeqqd N VAwrite = 0, weet € N the worst case and becet € N
the best case execution time,
3. a set of AssemblyConnections C C {(left, right) | left € VA, right € VA},
which connect two variable access elements,
a set of periodically triggered tasks T with period p and
a Task-Runnable-Mapping TRM : R — T mapping runnables to operating
system tasks.

Sihe

3.1 Transformation

For the verification of timing requirements in AUTOSAR, a mapping from
AUTOSAR models onto timed automata was modelled, where the AUTOSAR
model contains the software architecture and timing requirements, which are for-
mulated as AUTOSAR timing extensions. The AUTOSAR software architecture
is transformed into a network of timed automata, while each timing requirement
is transformed into a test automaton and a TCTL-query (see Fig.3). In the
resulting overall network test automata and architecture automata communi-
cate via broadcast channels.

For a given AUTOSAR model AR = (R,AC, VA, T, TRM) a network of
timed automata N = (4; || .. || An) is constructed. Below the transformations
are described in a bit more detail, where we — due to lack of space — however
cannot formally define all parts.

5 http://osek-vdx.org/.
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Fig. 3. Transformation of AUTOSAR models into a set of timed automata and TCTL
queries

RunnableEntities. RunnableEntities represent the code fragments which are
integrated into the architecture. Triggering is controlled by the RTE. Further-
more, runnables have access to a defined set of variables. Variables with reading
access are read directly when a runnable is started, while write accesses are
executed before termination®. Execution of runnable code requires time.

For every RunnableEntity in the analysis model a timed automaton is gen-
erated, which considers the variable accesses as well as the runtime behavior. In
the case that all software components are executed on the same ECU, it is neg-
ligible whether the runnable entities communicate via interrunnable variables
in a single software component or via ports. The generation of locations and
transitions is therefore identical for ports and interrunnable variables.

For every RunnableEntity » € R with r = (VA,eqd, VAwrite, weet, beet) a
timed automaton A = (L,B,B*,X,I,U, E, I;,;) is generated. Let VA, cqq =
{r-VAseadys---,7-VArecad, } be the set of read accesses (VA rite analogously). In
the following, we use an arbitrary ordering 1 to n of these sets.

— Locations: L = {r_readyloc,r_runningloc} U {r_Va,eqqloc | Vareaa €
VAread}
U {T—Vawrite—loc | Vayrite € VAwrite}a
— Handshake Communication: B = {r_start,r_finished},
— Broadcast Communication: B* = {r teaq | Varead € VAread}
U {r—vawm‘te ‘ Vawrite € VAwrite}
— Clocks: X = {z}, Invariants: I(r_running-locc) = {x <= wcet},
— Urgency: YVa € VA, eqa U VAyrite : U(r_Va) = true,
U(r-ready) = false,U(r_running) = false,
— Edges: E = {(r_ready, r_start?, 0, {z},7-Vareaq, ),
(r-Varead, s T-Vareaq, ', 0,0, r_running) } U
{(T—Va'readjar—vareadj!; 07 Q]v T—Vareadj+1)|1 < ] < |VAread| - 1} U
{(T—Va/w'ritej ) I'-VQwrite; 10,0, T—Vaw'ritej+1)|1 <j< |VAwrite| - 1} U

6 This is called implicit variable access and in this work only implicit access will be
considered, while there is also an explicit access method where the access is not
controlled by the RTE.
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{(rorunning, r Vayrite, |, {x > beet}, r Vayrite, )} U
{(r_-Vawrite, ,r-finished!, 0,0, r_ready) },
— Initial location: I;,,; = r_ready.

The generated timed automaton consists of at least the locations ready and run-
ninng (prefixed by the name of the runnable). The automaton is in location
ready when the RunnableEntity is currently not running and in location run-
ning otherweise. Initially, the RunnableEntity is in location ready. Every implicit
variable access of a RunnableEntity is also represented as a location. Identifi-
cation of the access is done by signals on the transitions. These signals are not
only used for synchronization, but also, if available, for existing test automata,
which need to detect the data flow in the architecture. Therefore channels (for
communication) are defined as broadcast channels.

Figure 4 exemplifies a transformed runnable with one incoming and two out-
going variable accesses. It shows the runnable TssPreprocessing located in the
software component IndicatorLogic (see Fig. 2), which reads the raw turn switch
sensor value tss_value, preprocesses it and writes its results in tss_status. Fur-
thermore wcet and bcet are assumed to be 5ms and 2 ms respectively.

AssemblyConnections. AssemblyConnections C' = (left, right) connect write
and read accesses of variable access elements. For every AssemblyConnec-
tion a timed automaton is generated which describes the data flow between
runnables. There is one location, and for the variable accesses left and right,
there is a transition to track the connections in the software architecture.
Thus, for each AssemblyConnection C' = (left, right) we get a timed automaton
A=(L,B,B*,X,I,U,E, I;;;) with:

Locations: L = {ac_start}, Signals: B = {left, right}, B* = {},

— Clocks: X = (), Invariants I : @, Urgency: U(ac_start) = false,

Edges: E = {(ac_start, left?, 0,0, ac_start), (ac_start, right?, 0,0, ac_start)},
— Initial location: I;,,; = ac_start.

TaskRunnableMapping. For the correct execution order of runnables in the
analysis model, a timed automaton A is generated for every OsTask. This
automaton triggers the contained runnables in an OsTask in the defined order.

tss_value_loc

tss_value!

TssPreprocessing_start? TssPreprocessing_running

TssPreprocessing_ready x<=5

tss_status!
TssPreprocessing_finished!

tss_status_loc

Fig. 4. Timed automata for the runnable preprocessing turn switch sensor values



198 S. Beringer and H. Wehrheim

The automata sends Start-signals to the receiving runnable automata. After-
wards the runnable is set to running-location and it leaves the running-location
when the runnable automaton sends the finish-signal back to the runnable map-
ping automaton. Since no time passes between starting and stopping, the corre-
sponding locations are marked as wurgent locations.

Let T be the set of all OsTasks and for every OsTask t € T, let R; = {r €
R | TRM(r) =t} be the set of all RunnableEntities, which are triggered by the
OsTask ¢. Again we impose an arbitrary ordering on the set Ry, using indexes 1
to n. Then for every OsTask t € T', a timed automaton A in the analysis model
exists with

L = {t_ready, t_running} U {t_r_start,t_r_stopped | r € R;}
— B = {t_run, t_processed} U {t_r_start,t_r_finished | r € R,}, B* = {},
— Clocks: X = {}, Invariants: I(t_running) = {z == 0},
— Urgency: Vr € Ry : U(t_r_finished) = true, U(t_running) = true,
- E ={(tready,t-run?, 0,0, t_running),
(t_running, t_ry_start!, 0,0, t_r _running),
(t_r,_stopped, t_processed!, 0, 0, t_processed),
U{(t_r_stopped, t r_start!, 0,0, t_r_running),
(t_r_running,t_r_finished?, 0,0, t_r_stopped) | r € Ry},
— Initial location: I;,,; = t_ready.

0S Tasks. Every AUTOSAR-based ECU includes an AUTOSAR-compliant
OSEK operating system, which maintains the execution of OsTasks on the ECU.
OSEK differentiates between Basic-Tasks, which can only be interrupted by the
operating system itself, and Eztended- Tasks. Extended tasks can be interrupted
and set into waiting state. For this work we focus on basic tasks. Basic tasks
have states suspended, ready and running. A task is in state ready, if it can be
scheduled by the scheduler. If the scheduler selects the task for running, it is set
in running state. After termination, but before the timing period is passed, the
task is set to state suspended.
For every OsTask t € T a timed automaton A is generated:

— L = {t_ready, t_starting, t_running, t_terminating, t_suspended},
— B = {t_startTask,t_run,t_processed, t_terminateT ask,t_isNotReady},
B =} X = {a,
— I(torunning) = {x <= p}, I(t_suspended) = {x <= p},
— U(ready) = false, U(starting) = true, U(running) =
false, U(terminating) = true,U(suspended) = false,
- E ={(tready,t_startTask?,0,0,t_starting),
(t_starting,t_run!, 0,0, t_running),
(t-running, t_processed?, 0, 0, t_terminating),
(t_terminating, t_terminateTask!, 0, ), t_suspended),
(t_suspended, ¢, {x == p}, {z},t_ready),
(t_suspended, t_isNotReady!, ), t_suspended)},
— Lin; = t_ready.
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The behavior of an OsTask is modeled by generation of locations for ready, run-
ning and suspended and additional (urgent)-locations for sending and receiv-
ing multiple signals for synchronization with the RunnableToTask-Mapping-
automaton. The OsTask starts in the ready-location and can be triggered by the
Task Scheduler. By receiving the signal startTask the EventToTaskMapping is
signaled and the OsTask is set to running. Afterwards the EventToTaskMapping
is executed, i.e. all RunnableEntities have been executed, the signal processed is
received and the signal terminate Task is sent to the Scheduler. The OsTask then
stays in suspended until the period of the OsTask is due. In between the automa-
ton only synchronizes via the signal isNotReady to the scheduler. Afterwards the
OsTask is set back to ready and can again be executed by the scheduler.

4 AUTOSAR Timing Extensions

The transformations described before cover the behavior of the AUTOSAR sys-
tem. To verify timing constraints on the system, the requirements also need to
be formalized. To this end, for each timing requirement specified as AUTOSAR
timing constraint, a test automaton as well as a TCTL-query for checking the
requirement are created.

We start with explaining timing requirements. AUTOSAR Timing Exten-
sions extends the AUTOSAR meta model with timing annotations for different
model elements [15]. A TimingEztension contains a set of TimingDescriptions
and TimingConstraints. TimingDescriptions are elements that describe events
and event chains within a system, whereas TimingConstraints formulate timing
requirements and timing guarantees for these events.

4.1 Timing Events

Formally, the set of Timing Events E C (RUVAUT) is a subset of the AUTOSAR
model elements, for which the dynamic behavior needs to be observed. Thus,
runnables, variable accesses and tasks can be observed.

Requirements for Data Latency on Events. A LatencyTimingConstraint des-
cribes the latency requirement from the start to the event of a sequence of events.

Formally, a LatencyTimingConstraint is defined as lc = (chain, mazimum)
where
— chain = (eq,...,e,) is an ordered sequence of events,

— maximum € N is the maximum time for the constraint.

In the transformation of the TimingFxtension with LatencyTimingConstraint
the event chain is transformed to a test automaton, which models the event
chain as chain of locations. In between every location a transition is generated
which receives the corresponding signal defined in the event chain. Verification of
the required latency is achieved by a clock which measures the time spent in the
event chain and which is reset when the event chain is due. Maximum latency
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is checked by a TCTL-query which checks the maximum clock value in the test
automaton. Hence for every LatencyTimingConstraint lc, a timed automaton A
is generated as follows:

— Locations: L = {lcele € chain}, Signals: B* = {ele € chain}, Clocks:
X = {a,

— Invariants I(lc_e;) = {z < 1},

E = {(lcej,e;?,0,0,lc.ej41)|1 < j <n—1}

U{lc_en, en, 0, {x},lc.e; U{(lceer,e1?,0,{z},lcer)},

Initial location: I;,; = lc_e;.

In the first location lc_e; (i.e. before the first event is received) the automaton
cyclically resets its clock (implemented by a self-transition and invariant on lep)
so that the clock value only exeeds 1, when the first event is received. Note
that according to the definition of B*, the generated signals are using broad-
cast communication. Additionally the TCTL-query ¢ = AG(x < mazimum) is
generated. Here, AG requires the property to hold always on all paths.

Figure5 shows a latency timing constraint automaton measuring the time
from the start event when the turn switch sensor receives the raw signal to the
bulb actuator which switches the indicator bulbs.

Requirements for Ordered Execution of Runnables. Requirements on the ordered
execution of runnables are captured by the ExecutionOrderConstraint. An Eze-
cutionOrderConstraint eoc = (r1,...,7n),7 C R, is defined by an ordered
sequence of a subset of the available runnable entities for which the execution
order is specified.

For every EzecutionOrderConstraint eoc a timed automaton is generated as
follows:

— Locations: L = {r;_.EOC_started,r; . EOC_finished | 1 < i < n} U
{init, error},

— Broadcast Communication: B* = {r_EOC_start,r . EOC_finished | i =
1,...,n}, Handshake Communication: B = {},

— Clocks: X = {}, Invariants: I is true for all locations,

— Urgency: U(r,-EOC_finished) = true,

— E = {init,ry_start?,0,0,r, _EOC _started}U
{ri_.EOC _started, r;_finished?,0,,r;,_EOC _finished | i =1,...,n}U
{ri_LEOC_finished,r;11_start?,0,0,r, 1 _FOC started | i =1,...,n}U
{rn-EOC _finished,T,0, 0, init}

io_bulb_value?

x:=0
x:=0 oftssﬁva\ue7r\outftssfva\ue}\ tssfvalue?\m \eftfsignaﬁmbulbfs\gnal?
x<=1| (© O O O O

Ic_io_tss_value Ic_out tss Ic_tss_value Ic_left_signal  Ic_bulb_signal Ic_io_bulb

Fig. 5. Timed automaton of a latency timing constraint
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Note that according to the definition of B*, the generated signals are using
broadcast communication. Furthermore, for every location [ € L, a TCTL-query
@ = AF(l) is generated. This property requires that on all paths of the system
run every location is eventually visited eventually (i.e., the events are received
in the specified order).

Requirements for Synchronized FExecution of FEvents. A Synchronization-
TimingEvent sc = (scopeEvents, tolerance) consists of

— scopeEvents C F describing the set of events, which have to occur only nearly
simultaneously and

— tolerance € N describing the maximum time which may occur between all
scope Fvents, so that the execution can still be categorized as being simulta-
neous.

The requirement is fulfilled if Ve;, e; € scopeEvents : |t., — t.;| < tolerance,
where t; is the time when event ¢ occurs.
For every sc, a timed automaton is generated as follows:

— Locations: L = {sc_init}, Signals: B* = {e|e € scopeEvents}B = {},
— Clocks: X = {z}, Invariants: I = {0}, Urgency: U is false for all locations
— Edges: E = {sc_init,e?,0,0, sc_init}, I;n; = {sc_init}.

Again, the generated signals are using broadcast communication. Furthermore,
for the generated transitions functions are specified which are called each time
the transition is taken. For each transition e; € E the function e_i_receiving is
called. In addition, local declarations are defined for each automaton as described
in Listing 1.

Listing 1: Local declarations in UPPAAL

bool e_i_received = false;
void e_i_receiving ()
{isRunning (); e-i-received = true; isCompleted();}

clock x;
bool running = false;

void isRunning ()
{if (!running){x=0;running=true;}}

[
OO WU W -

=
=

void isCompleted (){ if (e-l_received && ..e_n_received)
{e_i_received = false;
x=0; running=false;}}

[
w N

Finally, a TCTL-query is generated as follows: AG(running — z <
tolerance). Figure 6 exemplifies the transformation of a Synchronization Tim-
ing Constraint which requires the runnables for the left and right actuator to
be triggered synchronously. Analogously to the automaton the required local
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Bulb1_Start? Bulb2_Start?
Bulb1_receiving() Bulb2_receiving()

Fig. 6. Example for a SynchronizationTimingConstraint synchronizing the bulb lights

declarations are generated, i.e., two flags BulbI_received and Bulb2_received, two
functions Bulb1_receiving and Bulb2_receiving.

For the verification of the AUTOSAR architecture all generated automata
A; = (L, By, X5, I;, E; I;, ) are connected to a network of timed automata
N = (A1 || .. || 4n). Then a TimingConstraint T is fulfilled by the model, iff
(M| T) E ¢, that is the automaton for a single timing constraint is connected
to the network of timed automata representing the software architecture and the
network is checked according to the specified TCTL-formula.

5 Implementation and Evaluation

The transformations were implemented as an independent tool, which uses the
automation feature of SystemDesk®to retrieve AUTOSAR model informations.
It includes separated components for model conversion and export. The export-
ing module comprises functionalities to compile an XML file out of the timed
automata model, which is compatible to the UPPAAL [13] model checker.

The efficiency of the approach was evaluated by transforming three scenar-
ios while measuring the time for model transformation and model checking via
UPPAAL. The measurements were performed on an Intel i7-4810MQ @ 2.8 GHz
with 16 GB RAM and Windows 7 Professional. UPPA AL version 4.0.13 was used
with BFS search order, conservative state space reduction and DBM state space
representation.

Table 1 shows the model sizes and runtime measurements for three different
AUTOSAR models, namely a tutorial project, a model of a fueling system and
the already mentioned model for direction indication. For each demo project at
least one constraint of each type was modeled and verified. In Fig. 7, the runtime
results split into transformation and constraint checking time are visualized. The

Runtime
15
10
Tutorial Project AR_FuelSys AR_PosContro

m Transformaion m Latency

Execution Order m Synchronization

Fig. 7. Transformation and verification runtime
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table given below gives exact numbers. Transformation and verification runtime
is highest for the AR_FuelSys demo although it is not the biggest AUTOSAR
model. The reason is that it contains more model elements for which timed
automata have to be generated.

Table 1. Model size and runtime

Test system Tut.Project | AR_FuelSys | AR_PosControl
AUTOSAR elements 748 723 503

Timed automata 26 38 23
Transformation time (s) 7.56 7.96 5.9

Latency constraint (s) 0.33 0.74 0.39

Execution order constraint (s) | 0.4 0.53 0.5
Synchronization constraint (s) | 0.95 1.13 0.94
Verification time ) 9.24 10.36 7.73

The first results show that for these type of systems timing analysis is promis-
ing as the runtime is sufficiently low for real world use. Most of the time is spent
in the transformation process. But as the transformation has polynomial runtime
in the size of model elements, also larger models should be manageable.

6 Conclusion

In this work, an approach for the verification of timing requirements of
AUTOSAR-based software architectures has been presented. Utilizing this
method, timing requirements can be checked early and without access to source
code. Only timing annotations (best case and worst case execution times) for
runnable entites are required. They have to be introduced with the help of expert
knowledge in a conservative fashion, or upper bounds for execution have to be fig-
ured out by static code analysis methods. For the verification of the AUTOSAR
architecture existing tools for the verification of timed automata (like UPPAAL)
can then be used.

By transforming AUTOSAR-architectures to timed automata a formal ver-
ification of timing requirements gets possible. The modeling of the AUTOSAR
architecture and the required model elements for the analysis, however, have to
be done manually. For example, timing requirements have to be specified. For this
there is currently no tool available, which makes modeling time consuming and
error prone. As future work, we will thus investigate how timing requirements
can be precisely but easily (graphically) specified. Until now formal verification
is only seldomly used in the software development process for automotive sys-
tems, because a successive application not only requires sound analysis methods,
but also easy integration into existing development processes. Simplification of
the formal specification and the quality analysis of timing requirements are thus
crucial steps for the acceptance in industry.
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Abstract. Sandia engineers use the Temporal Logic of Actions (TLA)
early in the design process for digital systems where safety considera-
tions are critical. TLA allows us to easily build models of interactive
systems and prove (in the mathematical sense) that those models can
never violate safety requirements, all in a single formal language. TLA
models can also be refined, that is, extended by adding details in a care-
fully prescribed way, such that the additional details do not break the
original model. Our experience suggests that engineers using refinement
can build, maintain, and prove safety for designs that are significantly
more complex than they otherwise could. We illustrate the way in which
we have used TLA, including refinement, with a case study drawn from
a real safety-critical system. This case exposes a need for refinement by
composition, which is not currently provided by TLA. We have extended
TLA to support this kind of refinement by building a specialized version
of it in the Coq theorem prover. Taking advantage of Coq’s features, our
version of TLA exhibits other benefits over stock TLA: we can prove
certain difficult kinds of safety properties using mathematical induction,
and we can certify the correctness of our proofs.

1 Introduction

Sandia Laboratories builds extremely high consequence systems. Logical errors
in these systems could incur enormous costs both financially and in loss of life.
Sandia is therefore implementing new methodologies that incorporate formal
methods early in development of high consequence systems. To complement this
effort, specification languages are needed which comport with the way designers
think about systems, and which are approachable for engineers who are not
formal methods experts. At the same time, we need tools which make verification
tractable at scale.

Towards this end, Sandia engineers have begun using the Temporal Logic of
Actions (TLA) [7] to create formal specifications. TLA is a proven and effec-
tive formalism for describing the evolution of digital systems over time. How-
ever, TLA™T and its tools impose certain limitations. TLAT comes with a model
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M.H. ter Beek et al. (Eds.): FMICS-AVoCS 2016, LNCS 9933, pp. 205-213, 2016.
DOI: 10.1007/978-3-319-45943-1_14



206 P. Johnson-Freyd et al.
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Reset

Fig. 1. Simplified AWG state machine Fig. 2. AWG logical interface

checker [14] which is fully automated and useful for bug finding; it often fails to
terminate, however, when attempting to prove complex properties. Furthermore,
the model checker is a complicated program in its own right and so may contain
bugs, and provides no certificate that would allow us to independently verify the
proof.

To overcome these limitations we have designed TLA“®Y, a version of TLA
embedded in the proof assistant Coq [6]. Coq is quite powerful, but this power
comes at the expense of usability — its intended audience is primarily formal
method experts. Therefore, the design of our embedding has been driven by
the desire to leverage Coq’s capabilities while retaining TLA’s ease of use and
relatively short learning curve.

As a demonstration of TLA®Y we consider a component of a high conse-
quence system produced at Sandia. We initially developed a formal model of this
component, called the Arbitrary Waveform Generator (AWG), in TLAT. After
running into limitations with TLA™ we developed TLA®°Y and transitioned the
AWG model to our embedding. Doing so allowed us to prove properties which we
could otherwise only partially verify by way of model checking. It also enabled
us to adopt a development approach where we composed orthogonal refinements
to construct a complete model. The compositional approach is crucial: different
refinements reveal different aspects of the system, we need to be able to work
with refinements individually or in combination. We believe even larger gains
will appear as we apply these techniques to bigger systems.

2 Application: Arbitrary Waveform Generator (AWG)

The Arbitrary Waveform Generator (AWG) is a component of a high conse-
quence digital system being developed at Sandia. The AWG is used for storing
“patterns” in memory which are later played out as timed waveforms. While
relatively simple, the AWG component is a real circuit that is being incorpo-
rated into silicon in production. Its specification was developed as a collaboration
between formal methods experts and domain engineers with an eye towards more
broadly introducing certain formal methods techniques at Sandia. This process
of collaboration proved helpful early on in clarifying details of the AWG’s orig-
inal requirements document that otherwise might have been missed. And, the
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act of formalizing the resulting specification revealed weak spots and avenues to
improve our formal method techniques.

The AWG needs to support two main operations. The first is to read in a
pattern from its input and store that pattern in its memory. The second is to,
upon receiving a special signal, begin playing out the value in its memory. At
any time the AWG can also be “reset” by passing in a certain signal, clearing
its memory. Thus, the AWG can be conceptually thought of as a state machine
(see Fig. 1).

This description of the AWG is much more abstract than what would suffice
to describe an implementation. For example, it does not include the intermediate
states that will be encountered as the pattern is played out in a timed manner
or while initiating the machine with a new pattern. We will therefore need to
refine this specification. But, it is worth emphasizing that a formalization of the
specification at this level of abstraction also is insufficiently detailed for those
building components which interact with the AWG. The protocols a component
uses to communicate with other components are very relevant to the design of
those other components. Nonetheless, it is still important to have conceptual
models, and we believe formal models as well, which operate at these higher
levels of abstraction. We must refine protocols in addition to state machines.

Thus we will refine our model to clarify that the pattern is played out as
a sequence, requiring an internal memory. Additionally we need to refine our
model to describe the channels on which it communicates (See Fig.2). These
two refinements are largely orthogonal, but must both be incorporated into a
full implementation.

3 Expressing the AWG in TLA™

In order to formalize the AWG system we turned to the Temporal Logic of
Actions (TLA). TLA has desirable properties for formulating a system like the
AWG. Foremost, TLA specifications are not sensitive to the rate of the passage
of time, i.e. it is stuttering invariant [3]. This enables the development of formal
TLA specification using a process of refining more abstract specifications into
more concrete ones in much the same way we approach designs like the AWG
informally [5]. TLA takes a logic-centric view: specifications and theorems about
specifications are both just logical formulae and the statement that one specifi-
cation refines another is interpreted simply as that the more refined specification
implies the more abstract one, perhaps along some “refinement mapping” of their
underlying state spaces [1]. Stuttering invariance implies that refinements can in
many instances slow down time through the addition of intermediate states in
the refined specification which are not observable in the more abstract one.

We took a refinement based approach to formalizing the AWG in TLA™!.
Our initial specification, therefore, only modeled some very basic properties of

! The full code is available at https://github.com/philipjf/ AWG-AVOCS-2016. Note
that while we have typeset TLA™ in this paper the original source are in ASCII
format.
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Fig. 3. Excerpt of basic model in TLA™
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Fig. 4. Properties of basic model in TLA™

the AWG system. The model (Fig. 3) is parameterized by a set called Pattern
which serves to abstract away the details of the patterns stored in memory. The
specification is then described in the TLA style in terms of “events” which relate
successive states of the system. Some desired properties of this specification are
shown in Fig. 4.

One of the areas of missing details is in the handling of commands. In the
basic model, Run, Flush, and Write(p) are treated as events. However, we know
that they are actually commands which come as input to the system and might
take multiple steps to handle. Therefore, our first refinement is to incorporate
the more detailed notion of commands by adding additional variables to track
the command being processed and additional events for processing the current
command and receiving a new one.

In addition to the more detailed theory of commands, we must refine the
playing of patterns. The AWG should not play patterns to the output all at once,
but rather play them slowly. In order to handle this we can modify our original
basic specification via a second refinement to store the memory not as a single
element of the abstract set Pattern but rather as a finite sequence of elements
from such an abstract set. Accordingly, we must add additional variables and
events to perform mult-step playback.

3.1 Limitations of the TLAT Framework

At this point we have described a family of TLA' models, each describing a
different aspect of the AWG. We have extended the Basic model in two different
ways incorporating different aspects of the full system we care about. We have
also stated, and model checked, a number of properties. We would therefore like
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Section Model. Theorem hour_inv
valid (Spec ‘=> [] ‘Init).
Variables hr hr’ : Z. Proof.
unfold Spec, Init, Next.
Definition Init := apply tla_inv.
1 <= hr <= 12. (+ Base case x)
intuition .
Definition Next := (* Inductive case x)
hr’> = hr mod 12 + 1. intros .
assert (0 <= x mod 12 < 12)
End Model. by (apply Z.mod_pos_bound;
intuition ).
Definition Spec := intuition .
“Init “/\ [][Next]. Qed.

Fig. 5. A model of a clock in TLA®®?  Fig. 6. Proof of type invariant for the
clock

to complete the picture by combining all the various aspects of the three models
into a single complete model. We would also like to verify the various correctness
theorems we have stated.

However, we encounter challenges in both these goals. Both the Command
model and the Memory model were developed by extending the Basic model, but
in doing so we had to restate essentially the entire model. It would be undesirable
indeed to have to fully write out yet another model. Instead, we would like to
simply be able to assert that our full specification is exactly the refinement of
the Basic model which extends the Basic model in the way the Command model
does and the way Memory model does.

We are able to use the TLA' model checker to check the theorems we have
stated, but only by first instantiating the abstract set pattern with a concrete,
finite, set. The model checker tells us that our theorems are true, but only for this
concrete set. How can we be sure they hold for any instantiation of Pattern?
Moreover, the model checker will claim that the properties hold, but it does not
provide any sort of witness or reason as to why this is true. Instead, we gain
confidence in correctness only relative to our confidence in the correctness of
the model checker. While a TLA™ proof system (TLAPS) [4] which might help
rectify some of these issues has been partially developed it is incomplete and
does not currently support temporal reasoning.

4 Expressing the AWG in TLAC°4

We want to be able to prove properties about our models using inductive reason-
ing. Moreover, we want to support parametric reasoning — it should be possible
for us to consider some aspects of a model as abstract parameters and still be
able to prove properties about that model independent of their instantiation.
Further, we want proof witnesses and a small trusted base so we do not have to
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depend on the correctness of complex pieces of machinery like model checkers.
Moreover, we would like a framework which also has good support for “program-
ming in the large” and building abstractions.

Interactive theorem provers based on type theory excel at precisely this point.
By using a small core logic they separate the problems of finding proofs and
interacting with the system with the problem of checking a proof already found.
Systems like Coq and Isabelle [13] come equipped with powerful automated
methods as well as tools for developing new domain specific automation, but
kept segregated from the logic kernel.

However, unlike what we see with TLA™Y, Coq’s logic is not geared specifically
toward expressing systems which evolve over time. While TLA is well suited to
describing systems like the AWG, vanilla Coq is not.

TLA®°Y is an embedding of TLA into Coq. It allows us to take advantage
of Coq’s features which make scalable verification tractable while presenting an
interface similar to TLA. Moreover, while Coq is a highly advanced tool requiring
a great deal of time to master, one of our goals on the AWG project has been
to support collaboration between subject matter experts and system designers
with formal methods experts. As such, we have aimed to make the embedding
relatively straightforward to use even for non-experts. For example, we can use
our embedding to formalize a model of a simple clock akin to that considered
by Lamport [8,9].

The Coq code in Fig.5 provides a complete specification of the clock using
our library. The Init and Next definitions inside the Model section describe the
initial configuration and evolution of the state of the clock which we encode as a
single integer hr. Init requires this variable have a value between one and twelve.
Next relates the variable hr to the variable hr’ (representing the next time)
whenever hr’ is equal to one plus the value of hr modded out by twelve. These
definitions are simply predicates in Coq and so involve no temporal operators.
However, the definition of Spec below them occurs within the embedded TLA.
While exceedingly simple, the clock already demonstrates the main features we
need to specify the AWG. In particular, we can prove properties in addition to
stating them. For example, an important property we can prove about the clock
is that the value of hr will always be between one and twelve. The proof in Fig. 6
of this property demonstrates a standard style of proofs in our system, where
TLA specific reasoning is used to handle the temporal backbone of formulae but
standard Coq tactics are used for the non-temporal leaves. The availability of
such general mathematical theorems is one of the benefits of working with Coq.

Using TLA“°Y we formulated the specification of the AWG module much
along the lines of the clock above. Following the original version in TLA we
approached this through a series of modules corresponding to the Basic, Com-
mand, and Memory refinements. As in the original specification we took the
set of patterns to be abstract. To do so, we constructed each specification as a
module functor. The Basic module is parameterized by a module which provides
a representation of patterns. Mostly the translation is direct, however a typed
encoding of the state means that some invariants now hold automatically and
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do not require proofs. Further, we can state and prove the other properties from
the TLA™ version of the specification.

The Command module was constructed in much the same way. Using Coq’s
inductive type system made it easy to express the type of the control variable
as well as the type of commands. The last module translated was the Memory
module. A parameter stores the maximal length of the vector of patterns in
memory. We then instantiate the Basic module with a representation in which
Basic patterns correspond to sequences of patterns in the Memory module and
show refinement with respect to this instantiation.

Now, we have constructed two modules in Coq which each refine our original
Basic specification. We want a specification which incorporates the details from
each. We would like to be able to do this in a general way: we should not have to
fully describe the combined refinement at the same level of detail as the others,
but rather simply declare it as the combination of the memory and command
refinements.

One option, available to us from TLA™, is to take the models’ conjunction
[2]. However, a complexity arises in that the two models have different types
to represent their states and we need to be explicit about what states we are
using. Using the product of the two state spaces would lead to a model, but
not the one we intend. Specifically, we would have, for example, two separate
variables encoding the status. Instead we construct the combined specification
as the conjunction of the two refinements restricted to the case where they map
to the same thing in Basic. This “pull-back” definition is relatively simple in
TLA®°Y and is highly appealing from a scalability perspective.

5 Implementing TLAC°4

There are a number of ways to use a meta-logic as rich as Coq to host another
logic or language. Often when considering embedded languages we contrast so-
called “shallow” and “deep” embeddings [11]. In a shallow embedding each con-
struct of the target language is directly mapped to a construct of the meta-
language. By contrast, in a deep embedding the target language constructs are
considered as data representing syntax. Existing work includes examples of both
deep and shallow embeddings of TLA into Coq. In [12] a shallow embedding of
TLA in Coq was constructed to prove a meta result that all TLA specifications
of a certain form are “machine closed.” As such, TLA formulae are interpreted
as predicates on infinite sequences of states.

Theorem tla_inv_gen
forall (A : Type) (Init : Predicate A) (Next : Action A)
(F P : Expr A), (valid (‘Init ‘/\ [][Next] ‘/\ F ‘=> P)) —>
(forall s, eval P s — Next (s 0) (s 1) — eval P (s @ 1))
—> valid (‘Init /\ []J[Next] ¢/\ F ‘=> [] P).

Fig. 7. Induction rule
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A deep approach to embedding a TLA like logic in Coq was used more
recently as part of the VeriDrone project [10]. VeriDrone combines discrete digital
components with continuous physical ones in a hybrid cyber-physical system, and
so their logic combines continuous time with the discrete transition semantics
of TLA. Following Lamport, they use a two step approach where their logical
syntax corresponds to a full set of “RTLA” formulae of which the stuttering
invariant TLA formulae are a subset.

We take a mostly deep embedding approach to the handling of TLA formulae
in Coq. TLA expressions are encoded as an inductive datatype parameterized by
the type of states. However, our design yields simpler proofs for safety properties
by ensuring that all formulae are stuttering invariant by construction. Safety
properties are demonstrated via the induction rule in Fig. 7 without having to
think about stuttering steps. We then use Coq’s notation feature to present
convenient TLA syntax.

Following Lamport [7], TLA®? formulae are interpreted as predicates over
infinite sequences of states called behaviors. Our implementation “compiles” for-
mulae to Coq functions from behaviors to Coq’s Prop type. From there, proofs
are done in Coq as per usual, and in particular may use Coq’s standard automa-
tion facilities.

6 Conclusions

Our use of Coq to embed a TLA-like language yielded several practical benefits.
Using refinement for composition, we were able to construct a model of a critical
system component in stages, adding detail as we went. The use of Coq allowed us
to construct proofs of correctness properties interactively, combining automation
where possible with human insight where necessary. Unlike approaches based on
bespoke model checkers, Coq also lends a very high level of confidence to our
proofs.

The designers and engineers involved in the specification and verification
of the AWG component found the effort to be worthwhile. Using a TLA-style
specification forced us to consider details about how the high-level design worked
early on. Without it, we probably would not have considered those details until
they were encountered by programmers or revealed in testing, making them
harder to correct.

The use of interactively-developed proofs rather than automated model
checking comes at a cost in terms of development time and required expertise.
Improved automation within Coq would be helpful and we are planning future
work in this area. One obvious path is to replicate the capabilities of the TLA™
model checker within Coq. We might even be able to prove the correctness of
the model checker within Coq itself.

Further work could involve connecting TLA®°? with other Coq based ver-
ification approaches, with the goal of “full stack verification,” where low level
implementations are proven to correspond to our high level models. One can
imagine a world in which design, development, and specification happen in tan-
dem, such that implementations are fully verified and correct by construction.
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Coq

is an essential step in this effort.
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Abstract. Formal validation of railway signalling systems normally
involves three processes: creating models; simulation; and verifying the
models’ dynamic behavior against the specified properties. It is well-
known that the third process often encounters the problem of state
explosion. To achieve fully automated formal validation, researchers usu-
ally abstract away details of operating procedures and concentrate on
route interlocking that prevents train collision and derailment. Thus we
encounter a dilemma between fully automated validation of an incom-
plete model or partial, semi-automated validation of a complete model.
We argue that formally modelling the complete model will be more valu-
able for the on-going projects of the State Railway of Thailand because
they provide insights and can be used to train new signal engineers. This
paper focuses on the complete Coloured Petri Net (CPN) model of a
typical Thai railway signalling system: a double-line station with one
passing loop. The CPN model has included train movements that can be
simulated and graphically visualized. In particular we illustrate how the
CPN diagrams capture nine properties: Route interlocking, Flank pro-
tection, Approach signal release, Aspect sequence, Approach lock, Back
lock, Alternative overlap, Sectional route release and Quick route release.
Lessons learnt from using CPN Tools to model and validate the railway
signalling systems are also discussed.

Keywords: Interlocking tables + Route-based interlocking - Approach
lock - Back lock - Visualization extension

1 Introduction

During the last 30 years many research groups have been working on the appli-
cation of formal methods to railway signalling systems. A comprehensive review
of the research in this area can be found in [5,6]. Although most researchers
focus on formal verification and validation, this paper places emphasis on for-
mal specification instead for two reasons. First, the motivation for using formal

This work is supported by the National Science and Technology Development Agency
and National Research Council of Thailand.
© Springer International Publishing AG 2016

M.H. ter Beek et al. (Eds.): FMICS-AVoCS 2016, LNCS 9933, pp. 214-230, 2016.
DOT: 10.1007/978-3-319-45943-1_15



Application of Coloured Petri Nets 215

methods is to reduce costs and increase productivity. To achieve this, the tools
must be used by signal engineers. However, it is likely that signal engineers will
be unable to comprehend theorem provers or model checking algorithms, so that
formal validation and verification processes should be hidden. On the other hand,
the signal engineers are more interested in developing the requirement specifi-
cation and simulating the critical scenarios. Thus, they require modelling and
simulation tools that are easy to use and have high expressive modelling power.
Second, to alleviate the state explosion problem, researchers usually abstract
away a lot of the details of operating procedures and concentrate only on the
route interlocking' that prevents train collision. However, besides route interlock-
ing there are other vital safety operating procedures to which failure to comply
could potentially lead to danger. It seems a choice between either fully auto-
mated validation of an incomplete model or simulation of a complete model. We
argue that formal specification and simulation of the complete model are more
valuable for the on-going projects of the State Railway of Thailand.

Related Work. One of the good candidates for the modelling of railway sig-
nalling systems is Petri nets. There have been many researchers using Petri
Nets for modelling railway signalling systems e.g. [1,8,16] but they transform
the Petri Net models into other tools in order to conduct simulation or verifi-
cation. For example, Sun [16] transformed Coloured Petri Net (CPN) model to
a B-machine model. Hagalisletto et al. [8] also transformed their CPN model
into Maude [3]. The verification and validation of the railway interlocking chal-
lenge drew a lot attention from model checking researchers. A comparison study
of applicability bounds when using NuSMV and SPIN was conducted in [7].
Their result showed that the verification of medium and large interlockings were
still out of reach. To push the applicability bounds further, several techniques
have been proposed. Winter [20] pursued a significant improvement in run-time
and memory usage by optimizing variable and transition orderings. A pioneer-
ing work by Haxthausen [10] systematically compared modelling and verification
approaches developed by two different research groups: DTU/Bremen [9,11] and
Surrey/Swansea [12,13]. Both approaches were able to detect all injected errors.
Haxthausen et al. [9] proposed to apply bounded model checking combined with
inductive reasoning for verification and validation of interlocking systems. James
et al. [13] suggested that the nature of railway systems involved events (e.g. train
movement) and state-based reasoning (the interlocking). To combine event-based
with state-based modelling, James et al. proposed to use CSP||B for the mod-
elling language. Incidentally, we point out that Petri Nets are a tool that already
combines event-based and state-based modelling. In [13] James et al. also sug-
gested three abstraction techniques. First, they reduced the verification problem
for any number of trains to that of a two-train scenario. Second, they decom-
posed a large scheme plan into a set of smaller ones such that the safety of
all smaller scheme plans implied the safety of the original scheme plan. Third,
they abstracted a scheme plan such that checking the abstract scheme plan was

! No conflicted route can be used at the same time by multiple trains.
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enough to ensure that the required safety properties hold for the concrete plan.
Although James et al. [13] assumed that the train’s length was shorter than a
track segment, in [12] they pushed further by allowing trains to span any num-
ber of track segments. They also showed that considering only two trains was
sufficient to analyse the safety properties.

Previous Work. In 2009 we [17] used CPNs [14] and CPN Tools [2] to model
and analyse the signalling system of a single track railway station. To build the
model we needed two pieces of data: the signalling layout and the interlock-
ing tables. The CPN model was divided into two parts according to the data.
First, a CPN model that mimics the signalling layout and simulates the train
movements was created. Second, a generic model of the interlocking tables coded
the content of the interlocking table into ML functions which are called on arc
inscriptions or in guards. Modelling interlocking tables of other railway stations
was simply done by changing the content of the ML functions. These ML func-
tions were automatically generated from the interlocking table using Extensible
Stylesheet Language Transformations (XSLT). By exhaustively searching for the
states where trains collide, we formally verified this CPN model [17]. Nevertheless
[17] had two problems. Firstly, where we had many signalling devices working
together, the CPN diagram became too complex. Secondly, although the sys-
tem was safe, the signalman could give sequences of route setting instructions
that led the train traffic into a deadlock. Using state space generation, our CPN
model generated a lot of safe terminal markings that had no train collision but
in which the train traffic was in a deadlock. This was inconvenient when investi-
gating terminal markings. To eliminate the first problem, we modeled in [18] the
signalling layout by encoding the geographic information into tokens, data values
that can have an arbitrarily complex (user defined) data structure. When the
signaling layout is modified or rebuilt, we simply change the initial state of the
model without having to modify the model structure itself. To avoid the traffic
deadlocks in the second problem, [19] used the automatic route setting and auto-
matic route canceling functions. Although these two procedures are not in the
interlocking tables, both are standard operating procedures normally conducted
by signalmen.

Contributions. Despite having solved the two problems of [17] in [18] and
[19], there are still another two fundamental problems. Firstly, encoding the
geographic information into tokens in [18] made the CPN model too difficult
to read. Our counterparts, State Railway of Thailand (SRT) signal engineers,
prefer the CPN model that mimics the signalling layout and simulates the train
movements. To solve this problem, we use the visualization extension? of CPN
Tools to display the status of signalling equipment representing train movements
and signal aspects. Secondly, because of abstraction and assumptions, none of
our previous CPN models has included all properties in the interlocking table.

2 Visualization Extension v.0.9 Developed By M. Westergaard and M. Assiri.
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Thus we rebuild a complete model of a double-line station with one passing loop,
named Don Si Non. Our new model has included all properties in the interlocking
table.

The rest of this paper is organised as follows. Section 2 briefly explains the
railway signalling principle and desired properties. Section 3 describes the inter-
locking table along with the CPN model. Section4 discusses lesson learnt and
perspective. Section 5 presents conclusions and outlines suggested future work.

2 Introduction to the Railway Signalling Principle
and Desired Properties

2.1 Railway Signalling Principle

To avoid collision the railway is operated by dividing the railway lines into sec-
tions in which only one train is allowed at a time. A train is not allowed to enter
the section if there are objects blocking the passage of the train. The State Rail-
way of Thailand’s regulation divides the section into two categories: between two
stations called block sections and within the station area. The railway signalling
layout comprises a collection of railway tracks and signalling equipment. The
three important signalling devices are track circuits, points and signals. A track
circuit is used to detect the presence of a train. A point (or switch or turnout) is
a mechanical installation used to guide a train from one track to another. Signals
are classified into two types: main signals (e.g. warner, home and starter signals)
and auxiliary signals (e.g. call-on, shunting, junction indicators). The main signal
displays red when the train is forbidden to enter the section. When it displays
yellow, the driver has authority to move the train entering the section and pre-
pare to stop at the next signal. The green display gives the driver authority to
move the train into the section. For more detailed descriptions of each signalling
devices see [19].

After specifying track layouts, the signalling apparatus shall be arranged such
that conflicting train movements are not allowed. This arrangement is called
“interlocking”. A collection of track circuits along the reserved section is called
a “route”. The interlocking table is a collection of the “routes” in a tabular form
specifying the states and actions of all related signalling apparatus. We divide the
interlocking tables into 4 parts: Route setting; Signal clearing; Approach locking;
and Route locked and Approach locked releasing. The tables are ambiguous and
difficult to understand because the railway signalling is a concurrent system with
a lot of exceptional conditions. Nevertheless the interlocking tables have been
the main document for designing the railway signalling systems for many years.

More details of the interlocking table will be discussed when we discuss the
CPN model of the associated properties.

2.2 Desired Properties

According to SRT’s requirements, the desired properties of the signalling systems
are classified into nine categories:
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Property (1) Route Interlocking. The entry signal shall not display a pro-
ceed aspect (green or yellow) unless the reserved route is proven safe. Hence
there is no train collision or derailment.

Property (2) Flank Protection. This is an important class of fail safe require-
ment. The equipment within the surrounding area of the reserved route that may
cause an accident shall be in the safe position even if no train is expected to pass
such a signal or such points. Points should lay in such positions that they do not
give immediate access to the route. Even though those flank points and derailers
are not located on the required route, when the route is set, they shall be locked
in the safe position until the route is released.

Property (3) Approach Signal Release. When the train diverges to the
loop line, the turnout speed must be significantly less than the mainline speed
otherwise the train may derail. The speed restriction is enforced by keeping the
entry signal red until the train occupies the track in front of the entry signal
for 60s.

Property (4) Approach Lock. After a route is set, the points are locked, and
the entry signal is cleared. If the track circuit in front of (approaching) the entry
signal is occupied, then the signalman cannot cancel the route by the normal
procedure. Approach locking prevents the train driver from the sudden change
of signal aspect from green or yellow to red.

Property (5) Backlock. When two consecutive setting routes are “non-
straight through route”, the exit route cannot be canceled if the entry route
is not released.

Property (6) Aspect Sequence. The driver must see a yellow aspect before
a red one otherwise he cannot stop the train at the red signal.

Property (7) Alternative Overlap. Overlap is a section beyond a stop signal
that must be clear and points must be locked before the reserved route is set. It
is possible that a route may have more than one possible overlap depending on
the previous route locked with its point lying positions.

Property (8) Sectional Route Release. The route locking property enforces
that all points along the route cannot be used by another train’s movement
until the train clears the last point. This is inconvenient for a large yard with
more concurrent train movements. A relaxation called “Sectional Route Release
(SRR)” is adopted. While the train passes each section, it releases the locking
affecting that section so that the points cleared by the train can be reused by
other train movements.

Property (9) Quick Route Release. For shunting or track work, the train
may leave the platform track into the block and then return to the station.
Before the incoming route can be set, the outgoing route has to be canceled.
The cancelation usually involves a long delay which is inconvenient and ineffi-
cient. Instead of canceling, the outgoing route can be released earlier when the
signalman attempts to set the return route.
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3 The Coloured Petri Net Model

Formal methods are techniques based on mathematically defined syntax and
semantics for the specification, development and verification of software and
hardware systems. They remove ambiguities and are indispensable for check-
ing correctness of high-integrity systems. Coloured Petri Net (CPN) [14,15] is
a formal method which is widely used to model and analyse complex concur-
rent and distributed systems. An important advantage of CPNs is its graphical
notation with the abstract data types providing conciseness with a high level of
expressive modelling power. Our CPN model has been created and maintained
using CPN Tools [2], a software package for the creation, editing, simulation and
state space/reachability analysis of CPNs. It supports the hierarchical construc-
tion of CPN models [15], using constructs called substitution transitions. These
transitions hide the details of subnets and allow further nesting of substitution
transitions. This allows a complex specification to be managed as a series of hier-
archically related pages which are visualized in a hierarchy page, automatically
generated.

Our railway signalling model comprises 19 pages, 46 places and 53 transitions.
The station yard comprises 4 point machines, 16 main signals, 6 call-on signals,
25 track circuits and 34 routes. We assume that the train’s length is shorter than
a track segment and a train may span either one or two track segments. Our
previous work [17-19] did not include the following properties: Approach signal
release; Back lock; Alternative overlap; Sectional route release; and Quick route
release. On the other hand, this paper includes all nine desired properties listed
in Sect. 2.2. The railway signalling model comprises nine substitution transitions
(represented by double-line rectangles in Fig. 1) arranged according to the typical
operating sequence of a route, e.g. ReleaseRoutes; SetRoutes; ClearSignals;
MovingTrain; ApproachLocked; BackLock; ApproachLockReleased; Restore-
Signals and CancelRoutes. Due to the space limitation we choose to
discuss only SetRoutes; ClearSignals; ApproachLocked; BackLock; and
ReleaseRoutes. These in fact cover all necessary information in the interlocking
table.

3.1 Global Declarations and Route’s State

Figure 2 shows the Global Declarations that define the data structures associated
with the model. The status of signalling apparatus is captured by four places
(represented as ellipses): Track typed by TIDxPOS; Signal typed by SIDxGYR;
POINT typed by NRxPIDxLU; and Block typed by BIDxCNG. The data types of
signalling apparatus are a product of device identification and its status (lines
1-15 of Fig. 2).

State transitions (line 18 of Fig.2) are defined according to the route’s life
cycle. After the signalman initiates a route command and the required points
are lying and locked in the correct positions, the interlocking attempts to clear
the signal. The SigClearing state is created. After the signal is cleared, the
route’s state changes to SigCleared. When the approach lock condition is
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fulfilled, the route’s state changes to SigLocked and puts a token into Place
ApproachLockState in order to inhibit the cancel command. After the train
passes the entry signal, the interlocking begins the route’s normalization process
(Normalizing state) and starts the sectional route release (SRR) process.
When the normalization process ends, the state changes to RouteReleasing
and waits for the last condition before releasing the route completely. Because
the alternative overlap depends on another route that is currently used, we use
a three-tuple (ROUTExXxREVXSTATE) to represent the route’s state. “REV”
stands for the reverse route. When there is no previous route set, we use “E” as
dummy.
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1o (% Point *)-

2: colset NR = with Normal | Reverse;

3: colset PID = int with 99..115;

4: colset LU = with LOCK | UNLOCK;

5: colset NRxPIDxLU = product NR * PID * LU;

6: (* Track Circuits -*)-

7: colset TD = with noTrain | TrainCallOn | TrainUP | TrainDOWN
8: | TrainSTOP | TrackFailed;

9: colset TIDxPOS = product STRING * TD;

10: (x Signal *)-

11: colset GYR = with G | Y | R | CCC;

12: colset SIDxGYR = product STRING * GYR ;

13: (x Block =)=

14: colset CNG = with COMING | NORMAL| GOING;

15: colset BIDxCNG = product STRING * CNG ;

16: (* Route’s State——*)-

17: colset ROUTE = STRING;

18: colset STATE = with SigClearing | SigCleared | SigLocked
19: | BACKLOCKED | Normalizing | RouteReleasing | None;
20: colset APP_STATE = with APP_LOCKED | APP_LOCK_Releasing;
21: colset ROUTExREVxSTATE= product ROUTE * ROUTE * STATE;
22: colset ROUTExAPP_STATE= product ROUTE * APP_STATE;

Fig. 2. Global declarations.

3.2 Setting Routes

Substitution transition SetRoutes in Fig.1 is linked to the second level CPN
page named RouteSetting which plays the central role of route interlocking. As
an example, Fig. 3(a) shows the station yard when routes 31(2) and 3-5(1M) are
set consecutively. The content in the interlocking tables for route setting with
its associated CPN diagram, RouteSetting, are shown in Fig. 3(b).

Column “DETECTS POINTS” shows that setting route 3-5(1M) to signal
31 requires the points 101 111 112 lying in the reverse position. If any points
(101,111,112) are locked in normal position, the route 3-5(1M) cannot be set.
If points 102 are locked in reverse position without route 31(2) being used, the
route 3-5(1M) cannot be set. These conditions are specified in the guard function
to prevent route 3-5(1M) from being set.

Column “Require Track Circuits” shows that the route 3-5(1M) requires track
circuits 101AT, 101BT, 61T, 102AT to be cleared. In addition, for alternative
overlap when points 102 are in reverse, it also requires track circuit 102BT to
be cleared.

The symbol “=” in the interlocking table (Fig. 3(b)) means flank protection.
The symbol “*U” means the train is going in the upward direction. For flank
protection, route 3-5(1M) requires track circuits 2-72T, 2-4T to be cleared or
occupied by the train going in the upward direction. In addition, in the case
of alternative overlap, it requires track circuits 4-72T, 4-4T to be cleared or



222 S. Vanit-Anunchai

61T  S31+-@O
10187 O@- s32 10287
S1-5 112
X0 @O0 1018T o111 62T 515 @O o 102AT 2-72T 24T 22T 793-ITC N G
[ I N R 1 1 | [ [ | [ss«==|
1-71T 1018 © 1018T  O@H s16 01024 OO@H OO0+
S2-4 52-2
S35 028
1800 01014 631 517 -@0' oMy 472m 44T 42T 733TC N G
[ N .| | | [ | |[s=«=&s]
3-71T 101AT O@-518 1028T
S4-4 S4-2
(a)
ROUTE | TO REQUIRES DETECTS POINTS Require Track Circuits
NO. ROUTE NORMAL 0occ I TIME
3-3(M) | 3-5 |[4-4(1M) 4-4(1C) 18 |[<N101> OR 3-37 3-717 101AT (N102 OR 101BT) (3-1BT OR| 60 Sec
HOME <R101 N111 AFTER 3-5(2M)R 3-5(2C)R> OR 3-1AT OR

<R101 R111 AFTER 3-5(1M)R 3-5(1C)R>. 3-58)
TNNER [3-5(1M)| 31 [2-4(2M) 3-3(C) 32(1) |R101 R111 Ri1Z [<N102> OR TOTAT 10187 61T 102AT (N102 OR 1028T) | (3-71 T | 60 5ec
HOME <R102> AFTER 31(2)R] = 2-72T 2-4T OR *U OR
= N102 OR 4-72T 4-4T OR *U 3-3T)

[
[
1
v 1°"2-4(2M)"++1°"3-3(C)"

SetRoute
ommand 2,

1°"3-5(1M)"

+417"32(1)"

1

1

1

|

1°"3-5(1M)"++1" "2-4(2M)" T

ROUTE +4+17"3-3(C)"++1°"32(1)" 1

1

[(tr1 = noTrain orelse trl = TrainUP) andalso .

(tr2 = noTrain orelse tr2 = TrainUP) andalso H

(case (rev, pos101,lock101 ,pos102, lock102, 1

pos111, lock111, pos112, lock112) of 1
(/- - - _, Normal, LOCK) => false | | setroute

K_+_——+— _ Normal, LOCK, _, _) => falsg._ B
I( _ . Normal, LOCK, _, _, _, _, _, ) => false
1("31(2)",_, _, Reverse, LOCK, _, _,

I( _,, —, Reverse, LOCK, _, _, _, )
I("E o o ¢t e ) =3 true

| _ => false)] 1'(pos101, 101, lock101)++
17 (pos102, 102, lock102)++
17 (posi11, 111, lock111)++
“(pos112, 112, lock112)

P_999

POINTs

<

OUTE

1°("101AT", noTrain)++
1°("101BT", noTrain)++
1°("61T", noTrain)++ L
1" ("102AT", noTrain)++
(if pos102 = Reverse then 1°("102BT", noTrain)
else empty) ++
(1°("2-72T", tr1) ++ 17("2-4T", trl) )++
(if pos102 = Reverse then
(1'("4-72T", tr2) ++ 1'("4-4T", tr2))  [[R/Out]
else empty) o

>

A

Track
TIDxPOS A

1'(rev,rev2, state)

—(( RouteState

17 ("3-5(1M)", rev, SigClearin
+

NRxPIDxLU

Y

SetPoint

if pos1 = Reverse then NRxPIDxLU
1" (Reverse, i, LOCK)

1" (Reverse, 101, LOCK)++

17 (Reverse, 111, LOCK)++

1" (Reverse, 112, LOCK)++

(if rev = "31(2)" then 1 (Reverse, 102, LOCK)
else 1" (Normal, 102, LOCK))

POsL,i, u) | 111 => 1'("101BT", noTrain)

)
+ 1 (rev,rev2, state) EOUTEXREVXSTATE

case (i) of

101 => 1°("101AT", noTrain) ++
1°("101BT", noTrain)

1102 => 1°("102AT", noTrain) ++
1°("102BT", noTrain)

else 1°(Normal, i, LOCK)

(pos2, i, lock_i)

P_S

A > SetPOINTLock |€

| 112 => 1°("102AT", noTrain)
| => empty J

[(lock_i = UNLOCK

orelse posl = pos2)]

(b)

Fig. 3. (a) The station yard when routes 31(2) and 3-5(1M) are set consecutively. (b)
The content in the interlocking tables for route setting with its associated CPN page

named RouteSetting. (Color figure online)

occupied by the train moving in the upward direction. The track circuit require-
ments are modelled by the arc inscription connected to the place Track shown

in Fig. 3(b).
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Column “REQUIRES ROUTE NORMAL” lists the opposing routes that
must not be currently in used (Normal). These opposing routes require the same
lie of point positions and track circuits as 3-5(1M) does. The other conflict-
ing routes are not listed in this column because they are already protected by
the different setting of point positions. Place RouteNormal contains all nor-
mal routes. When 3-5(1M) is set, a token “3-5(1M)” is taken out from this
place. This requirement is modelled by the arc inscription connected to the
place RouteNormal shown in Fig. 3(b).

Transition SetPOINTLock sets and locks the associated points in the correct
positions. In our previous CPN model [17-19], we moved and locked the points
before checking all route setting conditions. We found that there were a lot of
states in which the required points were locked in the conflict position because
they were already used by other routes. For the purpose of formal verification,
in order to alleviate the state explosion, we suggest that Transition SetRoute
checks all conditions of route setting before moving and locking the points.

3.3 Clearing Signals

Substitution transition ClearSignals in Fig. 1 is linked to the second level CPN
page named SIGNALClearing. As an example, Fig. 4 demonstrates the clearing
of outer home signal 3-3 and warner 3-1 when the route’s state is SigClearing.
The warner 3-1 is simply a repeater of home 3-3. When 3-3 is red, 3-1 must
be yellow. When 3-3 is yellow or green, 3-1 must be green. This properties
are captured by Transitions ChW_HY and ChW_HG. To clear the outer home
3-3 from red to yellow there are two possible conditions. Firstly, “Approach
signal release” is when the train occupies the berth track® for 60s, modelled by

[(GYR2 =Y orelse GYR2 = G)]
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Fig. 4. An example of the CPN page: SIGNALClearing for route 3-3(M).

3 The track circuit in front of the (approaching) home or starter signal.
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Fig. 5. The folded CPN page: SIGNALClearing for every route.

Transition TrainSTOP. Or secondly, the next inner home signal 3-5 is cleared
(either yellow of green). These two conditions are listed in Column “Occ” and
“Time” of Fig. 3(b).

After the signal is cleared, the route’s state goes to SigCleared. Figure4
illustrates this for only one route, 3-3(M). This station yard has a total of 34
routes so that 34 unfolded CPN pages are required. However, we can fold the
CPN diagrams of all 34 routes into one CPN diagram as shown in Fig. 5.

3.4 Approach Locked and Back Locked

Among all of the properties listed in Sect.2.2 the Approach Locked and Back
Locked properties are the most complex. Substitution transition Approach
Locked in Fig. 1 is linked to the second level CPN page named ApproachLocked.
Figure6 illustrates examples of approach lock for routes 15(1), 2-4(2M)
and 3-3(M).

Type 1. For route 15(1) after the starter signal 15 is cleared, the approach lock
conditions are following:

(1) (Track 62T is occupied) or;

(2) (Track 101BT is occupied) and (Point 111 is normal) or;

(3) (Track 1-71T is occupied) and (Point 111 and 101 are normal) and (Signal
1-5 is cleared) or;
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(4) (Track 101AT is occupied) and (Point 111 is normal) and (Point 101 is
reverse) or;

(5) (Track 3-71T is occupied) and (Point 111 is normal) and (Point 101 is
reverse) and (Signal 3-5 is cleared)

These five conditions are captured by Transition Exit_SignalMainLine in Fig. 6.

Type 2. For route 2-4(2M) the approach lock occurs when the home signal 2-4 is
cleared. Because this route diverges the train into 61T, the property “Approach
signal release” is applied.

Type 3 and Type 4. For route 3-3(M) after the signal 3-3 is cleared, the
approach lock conditions are following:

(1) Track 3-1AT or 3-1BT is occupied for 60s (Type 3) or
(2) (Track 3-1AT or 3-1BT or 718-7T is occupied) and (the inner home 3-5 is
cleared) (Type 4).

Route |APPROACH LOCKED WHEN Type
SIGNAL CLEARED AND TC OCC
15(1) [62T 1

[101 BT (1-71T OR 1-5N)
(101AT (3-71T OR 3-5N) OR N101)
ORR 111
2-4(2M) |WHEN CLEARED 2
3-3(M) |WHEN CLEARED WITH
3-1AT 3-1BT OCC 60 sec OR
(3-1AT 3-1BT 718-7T AFTER 3-5R)
15(2) |WHEN CLEARED
%B[101BT (62T OR 62T OCC 60 sec) Backlock
AFTER 1-5(2M)]
9%B[10AT 101BT (62T OR 62T OCC 60sec)
AFTER 3-5(2M)]

& W

(tc_id1 = "3-1AT" orelse tc_id1 = "3-18T") (3.3(m)", APP_LOCKED) /‘“

ApplockState
(tc_id1, TrainSTOP) OuterHomeCLEARED ("3-3(M)", "E",SigLocked) \
i ByTrainSTOP A Y
D S —————— ROUTEXAPP_STATE
P_986 Type-4 [ ("3-3(M)", "E", SigQleared) =
[(tc_id1 = "3-1AT" orelse tc_id1 = "3-1BT" orelse
tc_id1 = "718-7T") andalso (GYR1 = Y orelse GYR1 = G)
andalso tr <> noTrain] ("3-3(M)", APP_LOCKED) B
OuterrHomeCLEARED ("3-3(M)", "E",SigLocked)
(tc_id1, tr) gl AfterInnerHomeCLEARED B
= - " wew
P 986 Type-3 [€ ¢330y, '€, SigCieared) ) v
("3-5", GYR1) e
RouteSla!D
[(GYR1 = Y orelse GYR1 = G)] ROUTEXREVXSTATE N
("2-4(2M)", APP_LOCKED) Y
InnerHomeSigCLEARED ("2-4(2M)", "E", SigLocked)
SIDXGYR P86 Type-2 e e S
case tc_id1 of ("2-4(2M)", "E", SigQeared)
"1-71T" => 17 ("1-5", GYR1) ("15(1)", APP_LOCKED) )
| "3-747" => 17("3-5", GYR1)
| —=> empty Exit_Signal ("15(1)", rev,SigLocked)
N MainLine
- P_986 T
17(tc_id1, tr) ype-1 ("15(1)", rev,SigCleared)

e (case tc_id1 of
1" (Normal, 111, LOCK)

1" (Normal, 111, LOCK) ++1° (Normal, 101, LOCK)

1" (Normal, 111, LOCK) ++1' (Reverse, 101, LOCK)

| "101BT" => true
| "1-71T" => true
| "101AT" => true

| "3-71T" => true |"3-74T" => 1" (Normal,111, LOCK) ++1° (Reverse, 101, LOCK)
|_ => false) y |-=>empty)
andalso (GYR1 = Y
orelse GYR1 = G)
andalso tr <> noTrain]
NRxPIDXLU

Fig. 6. An examples of the CPN page: ApproachLocked for routes 15(1), 2-4(2M) and
3-3(M) and their associated contents from the interlocking table.
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BACKLOCKED
LOG

ROUTEXROUTE

5(2)", "E", SigClearing)++

1°("1 B
("15(2)", "3-5(2M)") 1°("3-5(2M)", "15(2)", state)

BackLockedAfterRouteSet

P_986 "15(2)", "E", BACKLOCKED)++

1("1
1°("3-5(2M)", "15(2)", state)

RouteState

ROUTEXAPP_STATE ROUTEXREVXSTATE

("15(2)", APP_LOCKED)

("15(2)", APP_LOCKED)

("15(2)", "3-5(2M)") [tr = noTrain orelseytr= TrainSTOP]

[In/OutF
17("15(2)", "E", BACKLOCKED)
TrackPool4 BackLockec d
1°("101AT", noTrain) ++
1'("101BT", noTrain) ++ | P_986 1°("15(2)", "E", SigClearing)
TIDxPOS 1°("62T", tr)

1'"3-5(2M)"

RouteNormal

ROUTE

Fig. 7. The BACKLOCK page: route 15(2) is backlocked after route 3-5(2M) is set.

Figure 7 illustrates an example of backlocking for routes 15(2) when route
3-5(2M) is set. When route 15(2) is in the SigClearing state and route 3-
5(2M) is set, route 15(2) goes to BACKLOCKED and puts a token into Place
APP_LOCKED to inhibit any cancel command. This behaviour is captured by Tran-
sition BackLockedAfterRouteSet. Transition BackLockedReleased releases
route 15(2) from the BACKLOCKED state using the condition in the interlock-
ing table shown in Fig.6. Without routes 1-5(2M) and 3-5(2M), route 15(2) is
approach locked by the condition of type 2.

3.5 Releasing Route

Substitution transition ReleasedRoutes in Fig.1 is linked to the second level
CPN page named RouteReleased. Figure 8(a) shows the station yard when route
16(1) is set. Figure8(b) illustrates an example of the releasing of route 16(1).
To start normalizing and releasing procedures the route can be in either the
SigCleared or SigLocked states because the Call-on routes do not require app-
roach lock. The five-point stars are the normalization conditions: (Track 101BT
occupied and cleared) and (Track 101AT occupied). The four-point star is the
condition of sectional route release. The last two columns in the table are the
conditions of quick route release. Instead of driving the train beyond outer home
signal 3-3 before releasing the route 16(1), the route 16(1) can be released earlier
(in front of the inner home 3-5) if the signalman attempts to set route 3-5(1M)
or 3-5(2M).

4 Lessons Learnt and Perspective

Route Interlocking Validation. Our previous work [17-19] did not success-
fully validate the “Route Interlocking” property because we try to set any com-
bination of non-conflicting routes at the same time. Of course, this leads to state
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61T  531-@O
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101BT O®+H s32 102AT
s1-1 51-3 51-5 11

GNC FOO @00 @00 10187 it 62T SI5.@0e 102AT 2721
- ! ! ! ' — ] | | |

718-5T 1-1AT 1-1BT 1-3T 1-71T 101B ? @O+ 516 WOZA
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GNC OO @00 @00 o 101A 63T S1I7FH@O e 4721
ooy —— 11— T -7 | " | [ ]
718-7T 3-1AT 3-1BT 3-3T 3-71T 101AT O@- 518 102BT

(a)

TYPE [ROUTE| TO |ROUTE NORMALIZATION INITIATED SECTIONAL ROUTE RELEASING ROUTE LOCKING RELEASED BY
NO. TC OCC and TC RELEASES POINT| ~ REQUIRES | WHEN SETTING| TC
CLEAR OCCUPIED TC CLEAR ROUTE CLEAR
sTATER| 16(1) [ 696-8 10T b 0maT 101 101BT,101AT 3-3(M) 33T, 3-71T
111 101BT 3-5(1M) 101AT
+ 3-5(2M) 101AT, 101BT

[tr <> noTrain
andalso (state = SiglLocked

("16(1)", "E", = &)
Normalizing) orelse state = SigCleared)] - —
(- 7 Pre_Condition 1'("1018T",tr) S
("16(1)", "E", state) |p Normalization
("16(1)", "E", (*101BT", tr)) TIDXPOS A\
("16(1)", (1)
Track_was_Occupied
ROUTEXREVXTIDxPOS
161", "E", [tr <> noTrain] [(*16(1)", "E",("101BT" tr))
Normalizing)
Rot izing | A
ﬁlsm' === P_982 1'("101BT",noTrain)++
ROUTEXREVXSTATE RouteReleasing) 1" ("101AT", tr)

[(state = RouteReleasing
orelse state = Normalizing) case i of

- g i 111 => 1°("101BT",noTrain)
(*16(1)", "E", state) andalso not (member(i,|_pid))] 1101 => 1° (“101AT* noTrain)+ 4

Y
("16(1)", |_pid) o
T",noT:
@eleam < > SeasRalasse P 1'("1018T*noTrain) |
("16(1)", 1_pid~A[i]) P_981

ROUTExL_PID
- SetPOINTUNLock
@ [Unlockpoint]
[t p")T i I
tr= noTrain orelse
S empty tr = TrainSTOP)]
*16(1)", I_pid st Pt NRxPIDXLU v
\__("16(1)", I_pid) outeReleasing) o = o -

ist_to_ms (case (NextRouteCMD) of
("3-3(M)") => [( "3-3T",noTrain),( “3-71T",noTrain)]
| (*3-5(1M)*) => [("101AT" noTrain)]
| ("3-5(2M)") => [("101AT",noTrain),( "101BT",noTrain)]
| - => [("101BT", noTrain),("101AT",noTrain),
( "3-3T",noTrain),( "3-71T",noTrain)])

if NextRouteCMD = "E"

then empty
else 1’ NextRouteCMD
mal »{(_ RouteCmd
ROUTE

P_982

1’ NextRouteCMD
"16(1)"
if NextRouteCMD = "E"

then 1'"E"
else empty

Fig. 8. (a) The station yard when route 16(1) is set. (b) An example of CPN model:
RouteReleased for route 16(1) and its associated interlocking table.

explosion. However [4] suggested that to prove “global no-collision” properties
it is enough to prove only “no two-train collision”.

Thus we test the route interlocking by adding the CPN model of Fig. 9 in the
TOP_LEVEL CPN page and adding an ML function call to conduct automatic
route setting [19]. The stop option in the state space tool in CPN Tools is set
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such that detecting a train collision will stop the state space generation. The
analysis result gives the size of the state space as 29,049 nodes and 53,853 arcs.
It takes 41h 5min and 58s to generate the state space. No train collision is
detected.

Formal Specification. With reference to the discussion in Sect. 3, the inter-
locking table presents the specification of route interlocking well, but specifica-
tion of the other properties are incomprehensible. Different railways have dif-
ferent interlocking tables so that even the signalling experts sometimes have
trouble with the tables. With pattern matching and a graphical notation, the
Petri Net formalism is a natural choice for formalising interlocking tables. With
the abstract data type and hierarchical structure of Coloured Petri Nets, we can
fold CPN diagrams of various routes into a single CPN diagram, hence produc-
ing a much more compact and generic model. By changing the content of ML
functions in arc and guard inscriptions according to the content in the inter-
locking table, our CPN diagram can be reused with other interlockings. It can
scale up to reuse with a larger interlocking so long as no additional properties not
already in the model are required. As railway networks become larger; passengers
demand shorter delays; and the railway operators are asking for more efficiency
and flexibility, interlocking tables have progressively become too complicated to
comprehend. This argument can be witnessed by the tables of Figs. 3(b), 6 and
8(b). To cope with the complexity we may need other formal forms of represen-
tation rather than the interlocking tables. Coloured Petri Nets are a promising
formal specification for the railway signalling systems.

Simulation and Visualization Extension. Since [17] we have attempted to
mimic the train movements along track circuits and signal aspects using places
and transitions. The major problem is that for checking the conditions (e.g.
route setting) we need all apparatus information of each kind contained in one
place. Thus we have duplicated information: one in the centralized place and
the other in distributed places along the track layout. The duplication made
modelling very inconvenient. Mimicking the train movement is one of the most
important requirements from our counterparts. To comply with this requirement

list_to_ms([( "1-1BT", TrainSTOP),
("1-71T", TrainSTOP),
"3-1BT", TrainSTOP),
"3-71T", TrainSTOP),
"2-2T", TrainSTOP),
"4-2T", TrainSTOP),
"62T"," TrainSTOP),
"63T", TrainSTOP),
"61T", TrainSTOP)])

BerthTrack

TIDxPOS

1 (tc_id1, TrainSTOP)++
1'(tc_id2, TrainSTOP)

17 (tc_id1, tr)++ InitTrack
e » 1 (tc_id2, tr2)
Enable Init [ \@
f 1" (tc_id1, TrainSTOP)++
P_983 1" (tc_id2, TrainSTOP) TIDxPOS

Fig. 9. Additional CPN diagram to the TOP_LEVEL page.



Application of Coloured Petri Nets 229

we adopt the recently developed Visualization Extension (VE). The VE code
itself is written in JAVA but we call VE via ML functions in the Code Segments
of transitions. This graphical visualization is useful when we conduct simulation
for testing desired properties.

Modelling with Prioritized Transitions. Normally the interlocking con-
troller works faster than train movements. To make the model compact we assign
train movements a lower priority than interlocking controllers using prioritized
transitions, hence avoiding much additional net structure required to implement
the prioritization otherwise. Moreover we also adjust the order of precedence of
each transition to make the model compact and work properly. It seems to be
very useful but we discovered two drawbacks. Firstly, a slightly different order
of precedence causes the model to behave differently. Secondly, the prioritized
transitions cause a lower speed of state space generation (and simulation). Thus
this feature should be used with care or should be avoided if possible.

5 Conclusion and Suggested Work

This paper presents the complete CPN model of a typical railway station of Thai
railways. We illustrate how well our CPN diagrams capture all nine desired prop-
erties from the interlocking table. Route locking and flank protection properties
are formally validated using state space analysis. Other properties have been
simulated and visualised using a visualization extension. For illustrative pur-
poses the paper focuses on the unfolded version of the model. Our counterparts
use the folded version as the template applied to other stations in order to gain
insights and train new engineers. In future we wish to investigate the formal
modelling and analysis of the signalling systems for high speed trains.
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Abstract. The technological evolution of railway signalling equipment
promises significant increases in transport capacity, in operation regular-
ity, in quality and safety of the service offered.

This evolution is based on the massive use of computer control units
on board trains and on the ground, that aims at improving the perfor-
mance of rail transport and maintaining high safety figures.

A brief review of possible innovation trends of signalling systems shows
that they will be more and more based on the exchange of accurate and
secure complex information, in order to ensure safe operation.

For this reason we want to advocate the adoption of a novel, data-
driven safety certification approach, based on formal verification tech-
niques, focusing on the desired attributes of the exchanged information.
A discussion on this issue is presented, based on some initial observations
of the needed concepts.

1 Introduction

The railway signalling sector has historically been reluctant to technological
innovation compared to other markets, especially for those functions that have
significant impacts on the safety of the railway.

The conservativeness of the domain and the strict safety requirements have
indeed favoured, more than in other domains such as the automotive and avionic
ones, the adoption of formal methods in the certification of software safety,
when introducing computer-based control equipment. This because only formal
methods can, in principle, promise the development of zero-defect software. This
trend is witnessed by several success stories, too many to be exhaustively cited
here, in both the main classes of railway signalling systems:

— ATP/ATC (Automatic Train Protection/Control) systems guarantee safe
speed and braking control for trains, along the line, where the main safety
criterion is to guarantee that two trains travelling at speed in the same direc-
tion stay a safe distance apart. The basic concept in ATP/ATC is the braking
curve: safety is guaranteed if the speed is always below the line of the braking
curve; should the speed be above the line, emergency braking is enforced.

© Springer International Publishing AG 2016
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These systems accommodate both train distancing and protection of singu-
lar points of the line: for this purpose a line is divided in sections of which
appropriate sensors detect occupancy by a train. Distancing is obtained by
ensuring that at any moment the speed of the train is such that the train
can be brought to a halt before entering in an occupied section, that is, the
braking curve is at zero at the entrance of the occupied section; the value of
allowed speed given by the braking cure depend on the number of free sections
in front of the train. Protection of singular points of the line (e.g., an open
level crossing) is obtained by setting the braking curve at zero at the protected
point.

ATP/ATC systems are constituted by on-board components that receive infor-
mation from wayside components. In the early computer-based systems of this
kind, this communication is rather simple and occurs at specific points of the
line. As a consequence, the safety enforcing algorithms were not excessively
complex and were directly amenable to formal specification [22].

— Interlocking systems establish safe routes through the intricate layout of tracks
and points. Interlocking systems have immediately called for a direct applica-
tion of model checking, since their safety properties are quite directly expressed
in temporal logic, and their specifications by means of control tables can be
directly formalized [5,16,19,20]. Typical of these verification tasks is the com-
binatorial state space explosion problem, due to the high number of boolean
variables involved: the first applications of model checking have therefore
addressed portions of an interlocking system [2,13]; but even recent works
[12,32] show that routine verification of interlocking designs for quite large
stations is still a challenge for model checkers.

The conservativeness of the railway signalling sector has been recently broken
by the latest technological evolution, which promises significant improvement on
transport capacity, on the regularity of the service, on the very quality and safety
of the offered service. Such evolution is increasingly based on the presence, on
board trains and at ground, of processors that deal with more and more complex
real-time information. This poses big challenges to the consolidated safety cer-
tification processes, and even make questionable, especially on the basis of the
relatively high levels of density of faults (so-called bugs) experienced in software
components [14], whether the necessary complexity of the software development
of such systems, as well as of countermeasures put in place to make it safe, in
the end could lead to the practical impossibility of getting these benefits.

In this work we will first do a brief review of some very innovative propos-
als that have been imagined and designed, involving both safe control of the
movement of trains, and stations control equipments, that is, innovative ways to
improve efficiency of rail transport. We show how they are based more and more,
in order to ensure the safety of operation, on the availability and distribution
of accurate and safe complex (wvital) information, while the purely functional
aspects maintain the traditional basic principles that are ultimately related to
the physics of train movement.
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Fig. 1. Communication based moving block principle

Based on the observations made on the considered designs, we will try to draw
some elements on how to systematically address the issue of safety certification
of such complex systems, pointing where formal specification and verification
techniques can be used at an advantage.

2 Innovation in Signalling Systems

2.1 “Communication Based” Distancing Systems

Emblematic of signalling systems innovation is the success of ERTMS/ETCS,
which has assumed the role of a de facto standard for high-speed lines and for
interoperability also outside Europe.

The widest form of adoption of this standard implements the level 2, which
introduces radio communication between train and ground, but is based on the
traditional fized block, i.e. a segmentation of the track in sections, each of which
sections containing at most one train; in this case the distance between successive
trains, variable with speed, is measured as the number of free blocks that exist
between two trains. The level 3 instead introduces the socalled moving block,
in which trains are continuously monitored and maintained at braking distance
between them, via a radio link to the control center. The moving block makes
it possible to increase the line capacity and improves the flow of traffic and
therefore energy efficiency.

The same concept — the moving block — underlies the most modern CBTC
(Communication Based Train Control) systems, that offer the capacity of auto-
matic driving in the subways, again controlling trains via a radio communication.

In these innovative distancing systems, the traditional, simple and easily
observable binary consensus information exchanged between old days electro-
mechanical devices is replaced by more complex information (e.g. Movement
Authority - MA) continuously exchanged through advanced, mostly wireless,
means of communication (see Fig.1). In such systems, safety is guaranteed not
only by the proper functioning of the equipment on the ground and on board the
train, but also by the accuracy and integrity of information exchanged between
the ground and on board, for example speed and position information produced
on board the train and Movement Authority sent to the following train.
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2.2 Highly Innovative Distancing Concepts

The availability of safe information about the position, speed, acceleration and
deceleration of the preceding train, like that used in level 3 ETCS and in CBTC,
inspired the idea of an innovative method of train formation, called Virtual
Coupling [4,29]. The concept is based on the idea of multiple trains (possibly,
individual self propelling units) which run one behind the other without physical
contact but at a distance comparable to mechanical coupling (see Fig.2). The
strict real-time control of the dynamic parameters of the following train with
respect to the parameters of the preceding one allows the distance between trains
to be minimized, therefore allowing high flexibility, for example in the forwarding
of different segments of a train to different destinations through the composition
and decomposition during the run.

Although it still looks like a concept far from being implemented in reality,
largely for the radical innovations needed in terms of safety rules, the concept
inherits some of the principles of car platooning [1], that is being experimented
in the automotive domain, and is already the object of an industrial patent
[24]. Virtual Coupling is one of the challenges addressed in the Shift2Rail Joint
Undertaking Initiative, and well represents the limits to which the technologies
upon which ETCS is based can be pushed in a next future.
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Fig. 2. The Virtual Coupling concept

2.3 Distributed Interlocking Systems

Current computer-based interlocking systems usually have a centralized design,
with all logic residing in a single computer. Larger stations are sometimes parti-
tioned in (still quite-large) areas, each governed by a subsystem of the whole
interlocking. On the other end, a general trend in the different application
domains of the so-called Cyber-Physical Systems is instead to attack complex-
ity by means of distributed intelligence, that is, a plurality of computational
elements each dedicated to a specific portion of the physical system to be mon-
itored, controlled and commanded.

Following this trend, a fine-grained distribution of the interlocking logic over
all processors deployed at the sensors and actuators along the track layout, i.e.
within the track circuits, point machines, signals, etc. has been proposed [10,11,
15,17]. There are a number of advantages that such a fine-grained distributed
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can produce, such as (a) easier deployment and maintenance, (b) copper-free
communication if wireless links are adopted, (c) vendor lock-in avoidance by
means of an open, standard interlocking protocol stack. However, a shift to
such fine-grained, distributed interlocking will probably not be implemented in
practice in the next 10 years, although one industrial patent already has appeared
for a similar concept [23], and another patent [31] even shifts the distribution
of the interlocking logic in a CBTC system to on-board computers and direct
train-to-train communication.

In a system like this every physical track element is equipped with a tiny com-
puter, who knows the routes that interest the associated element, and receives
and interprets route booking, release, and cancellation requests, dialoguing with
the computer of adjacent elements. The overall safety of a plant of this kind
can only be achieved by ensuring that the information on the routes reserved
for incoming trains are properly shared in a consistent way by all distributed
processors associated to the concerned elements.

2.4 Safety Paradigm Shift

The trend that is common to the signalling systems sketched in the previous sec-
tions is that trains are allowed to move within a safety envelope that is dynam-
ically moving as well in front of the train. In the case of ATP/ATC systems the
envelope is mainly related to the distance from the preceding trains; in the case
of interlocking system the envelope is related to the reservation of a route for
the train and therefore to the occupancy of tracks and to the position of points
in front of the track. Capacity (intended as the number of trains that can use
the same track one after the other in a given time interval) is higher the smaller
is the safety envelope; the need for increasing track capacity asks for a reduction
of the size of the envelope, but the minimal safe size of the envelope depends
critically on speed (and hence also maximal capacity depends on speed) or on
route reservation information.

In the quest for capacity, the concept of dynamic safety envelope can be
pushed to make dynamic all the static safety constraints that are traditional in
railways. For example, the concept of route that must be set free in front of a
train and gives its movement envelope: routes are currently predetermined in
terms of a sequence of track elements that need to be free, and points that need
to be correctly positioned in order to reserve the route for a train. But routes
could be dynamically generated in front of the train depending on the status
of next track sections and points, allowing for last minute choice according to
optimization strategies. Even, local (on board) choices based on the knowledge
on the position and time of the next scheduled stop and on the position and
speed of possibly conflicting trains may be envisaged, introducing the need of a
correct balance between autonomy of choice and safety, on one side, and global
optimization, on the other.

Moreover, the signalling systems sketched in the previous sections are clear
examples of systems of systems, that is, are composed by subsystems of different
technology, of different deployment (board/ground) - and hence belonging to
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different stakeholders - communicating through different media and protocols.
In this situation, certification of the overall safety is really a complex task, for
which novel paradigms need to be adopted in order to maintain certification
costs under acceptable limits without mining safety.

Usually, safety assessment, according to CENELEC guidelines', is done by
apportioning the safety requirements to the subsystems, following a hierarchi-
cal decomposition. One of the main instruments used in this apportionment is
the definition of Safety Integrity Level (SIL), that assigns the maximal SIL to
the components (be them hardware or software) whose malfunctioning directly
affects the overall safety. The idea is that the certification efforts are concen-
trated on the highest SIL components, in order to contain costs. This process is
however difficult, since most components are somehow involved in critical func-
tions, hence it comes out that most, if not all, the components are assigned the
highest SIL, with consequent increase in development and certification costs.

From the description of the signalling systems sketched in the previous
section, it is evident that their operational reliability and safety is based on
the availability of correct critical (often called wvital) information describing the
safety envelope parameters, to be exchanged between, or to be processed by, the
processing units. We advocate therefore the adoption of a data-driven certifica-
tion process, which focuses on the flow of the vital information among and inside
(hardware and software) components.

Let us look at Fig. 1: the only safety requirement that we have to satisfy is
that the MA transmitted to the second train correctly depends on the actual
position of the preceding train (let us for the moment forget that MA is processed
by the second train’s onboard computer to enforce the braking if needed, and
hence also this processing may contribute to unsafety). Hence, this is the only
goal that the safety certification should have: Movement Authority depends in
a certified way on the position of the preceding train. This simple statement
implies however a huge amount of work on the components of the system, and
is our belief that the most cost-effective way is to concentrate this effort on the
flow of information exchanges and processing.

A similar approach is the one reported in [8] to address security issues by
focusing on the critical data flow in complex systems: the example given in that
paper is the detailed data flow of MA determination in a CBTC system. That
approach is focused however only on security violations brought by possible
attackers. It is our belief that such approach extends to other possible safety
violations.

3 Integrity and Consistency of Vital Information

In reference to Fig. 1, let us detail the different aspects that are required by the
example requirement that the MA correctly depends on the actual position of
the preceding train.

! CENELEC EN 50126, 50128, 50129, 50159 is a series of documents regarding the
safety of railway control and protection systems.
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First, the measure of position and speed of a train has to be accurate, that
is, precise.

A value of a measure of a physical quantity (either sensed or computed) can
be said accurate if it remains within an admitted interval w.r.t. the actual value
of the measured quantity, notwithstanding sensors and computing algorithms
introduce systematic and random errors.

The accuracy of a measurement can be ensured by a number of widely consol-
idated techniques, starting from the quality itself of the sensors, to the replication
of the sensors with appropriate voting algorithms, or to the composition of data
from different sensors via data fusion algorithms, filtering and estimation. For
example, in ERTMS level 2, there are independent ways of capturing the position
of a train: track circuits that give a coarse grain position information, balises
give exact position information in specific points of the line, on board odometry
gives information, possibly subject to drift, on distance travelled, GPS receivers
give also position information for trains outside tunnels. Data fusion algorithms
are needed to get the best possible accuracy out of this information.

Numerical Analysis techniques are used to study the formation and accumu-
lation of errors in processing.

We are not addressing accuracy in this context anymore, although it is a
complex problem deserving a great deal of attention, and that introduces a fur-
ther complexity dimension in the deployed software. We therefore are assuming
that suitable accuracy is formally guaranteed to be achieved from every sensor
reading and in every further numerical processing.

Second, the transmission of position and speed of a train to the RBC, its
processing to deduce the Movement Authority, as well as the transmission of the
latter to the following train, have not to violate the integrity of such information,
that is, shall not corrupt it.

Third, the value of the position of a train stored in the on-board computer
and that stored in the RBC have to coincide, that is, consistency should be
guaranteed.

These attributes, to be obtained by techniques discussed in the next sections,
can be defined more precisely:

— Integrity of a piece of information is satisfied if the information has not been
corrupted by (hardware or software) faults occurred to the system that pro-
duces or stores it, or to the communication system that transmits it.

Note that this integrity notion is closely linked to the levels of integrity
known as SIL, which rather refer to the characteristics of robustness required
for the processing systems: a component with a higher SIL is capable of pro-
ducing information of higher (in the probabilistic sense) integrity.

— Consistency of a piece of information replicated in more storing elements is
satisfied when the replicas have the same value (or values within given accuracy
bounds) at the same time in all the storing elements. Notice that this definition
includes the notion of timeliness of replicated information, that is the absence
of cases in which at a given time two stored replicas of the same information
(e.g. the status - free or reserved - of a route) refer actually to different time
instants due to delays in the system.
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4 Demonstrating Safety

As mentioned above, demonstrating the safety of a system requires to prove
integrity and consistency of any vital information. Where this is not the case,
countermeasures should be taken for the system to restore the integrity and
consistency in a time compatible with the safety requirements established for the
system, or to bring the system into a fail-safe state in case of detection of any
violation. In fact, as usual, safety is composed by two distinct contributions: the
ability of the system to work as intended, hence respecting the safety margins,
and its ability to detect possible violations in time to bring the system to a fail
state, which in the case of railways, means bringing trains to halt.

4.1 Data-Driven Safety Design Techniques

A number of consolidated fault-tolerance and fault-avoidance techniques and
measures can be exploited to ensure the integrity and consistency of vital infor-
mation: in the following we give a list (by no means exhaustive) of the main ones,
taking care to distinguish the design techniques aiming at improving integrity or
consistency, from those aimed at detecting their violations (to bring the system
in a fail-safe state).

Data integrity can be threatened by different causes that can be classified as:

— random, typically hardware, failures;

— systematic hardware failures;

— communication failures;

— systematic software failures (software bugs);

— intentional attacks by intruders or saboteurs, especially when the data is com-
municated through an open transmission medium.

Consolidated techniques can be used to protect from hardware failures: in the
case of hardware random failures, the usual fault tolerance techniques based
on redundancy, also in the form of information coding, can be adopted for the
consolidation of the integrity of the concerned vital information.

Analogously, redundancy or information coding can be adopted for detecting
errors for fail safety.

Commonly used techniques for qualitative and quantitative assessment of
reliability and safety, such as Fault Tree Analysis, FMEA, Markovian methods,
etc.) can be used for the assessment of integrity of each information.

Systematic hardware failures can usually be traced to poor design or unantic-
ipated operational conditions; using best practices and thorough testing under
real operational conditions can reduce considerably the emergence of such a cat-
egory of failures. Note that we tend to consider those failures due to problems
in the design of complex programmable hardware components (such as FPGAs)
as belonging to the class of software failures.

Each of the mentioned techniques increases the design costs; an appropriate
combination (as indicated by EN50126 and 50129 guidelines) should be applied
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to all hardware components on which vital information depends, or in which it
is stored, processed or through which it flows, but not necessarily to those that
provably have no impact on the vital information flow.

One other typical example of random failures are communication failures
due to noise and interference: safe transmission is typically obtained in this case
by sophisticated error detection information coding, and retry in case of error
detection: consecutive unsuccessful retries over a certain number force a fail-safe
permanent failure detection. This basic technique has been exploited in a more
elaborate fashion in the Safety Layer of the ERTMS Euroradio protocol [9].
Similar protocols based on a safety layer (according to the CENELEC standard
EN50159) should be used for the exchanged vital information.

4.2 Software Faults

Among the fault categories cited above, software faults are of an increasing
concern due to the exponential increase of the size and complexity of software
embedded in signalling equipments [14].

In the railway sector, for what concerns software faults (which are deter-
ministic and not random ones), reference has to be made to the CENELEC
EN50128: 2011 guidelines that mandates the techniques to be used depending
on the required SIL. For example, the application of model-based design tech-
niques and formal methods are considered among the most effective measures to
design (hopefully) zero-defect software, while software diversity is also considered
to protect against software failures. Defensive programming, where redundant
checks are seeded in the code to detect anomalous control flow, data flow or data
values at run-time, is adopted to bring the system in a fail-safe state in the case
of a detected failure.

These techniques are mandated by the guidelines for the software components
of the highest SIL levels. In our view, integrity is an attribute of the data, rather
than of the software components, hence it will be important to focus on the vital
data processing.

If we look back to the safety envelope concept in the envisaged advanced
signalling systems, we can note that at any time, the vital information that give
the safety information parameters is distributed and/or replicated over a num-
ber of components, both on board trains and wayside. If we look in detail to
the functionality of such components, we can see that the processing of vital
information is carried by quite simple algorithms (e.g. calculation of the dis-
tance to the preceding train, or reservation of a route on the basis of a mutual
exclusion algorithm). That is, the safety-related functions implemented in each
components may quite easily undergo a formal verification. More precisely, we
can summarize the steps of the needed safety verification process as follows:

— For each software component, focus on the vital information, by conducting
an analysis of the steps that the data undergoes during its preparation, using
a data-flow analysis [21] of the code responsible for handling such data. This
analysis has the role of confining the most expensive techniques (such as formal
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verification) to those parts of the software that effectively affect vital infor-
mation integrity. The application of these techniques can define the effective
integrity level of a software component, although referring to only those data
paths through which vital data flows.

— Code verification (by static analysis or formal verification) can use program
slicing techniques [30] to focus on the essential properties to be verified. We
can assume that, for the observations previously done, the relevant data paths
can be fully formally verified not to violate integrity.

— When considering instead the flow between different software objects, we can
resort to integrity policies [3,28] that have been proposed in the past as a
systematic approach to avoid that high integrity data flows through lower
integrity components, either by statically checking the data flow, or by run-
time checking of interactions between software objects.

— The consistency of replicated information in the distributed components, pos-
sibly subject to failures, has been the object of study of specific fault tolerant
distributed algorithms, such as Distributed Consensus [7] or Byzantine Agree-
ment [18] algorithms.

These algorithms are designed to ensure consistency, defined as the combi-
nation of the two aspects of validity (in each not faulty distributed item the
information is valid, that is, not corrupted, during the execution of the algo-
rithm) and agreement (all replicas of the information on non faulty items
coincide - or are all in the same accuracy range).

One critical aspect of distribution is that clocks on separate processor may
drift, so that the timeliness of information is at stake. The distributed consis-
tency algorithms usually take care of this: since they require at least a round
of coordination between the distributed items, at the round termination they
are synchronized on the exchanged value and its global timestamp, possibly
by recurring to specific clock synchronization algorithms.

Typically these algorithms can be formally proved to ensure consistency prop-
erties on the basis of assumptions on the maximum number of admitted faulty
items, and on specific properties of the communication media.

These algorithms actually constitute a consistency layer on top of the safety
layer discussed in Sect. 4.1.

— Each distributed component must be formally proved to comply to the dis-
tributed consistency algorithm when receiving/transmitting the local values
of vital information.

A further challenging aspect related to the integrity of exchanged vital data
is security, that is the absence of intrusion by a third party to infringe the
privacy of the information or fraudulently take control of the functions of a
system. This becomes increasingly important as the communication is based on
open protocols at some level (internet, wireless, ...): since there is the trend to
keep communication costs to an acceptable level by recurring at open protocols
and media, it is believed that this aspect is by far the greatest concern for the
deployment of the signalling systems whose safety is based on communication,
in which security has a direct impact on the integrity of vital information.
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The CENELEC standard EN50159, as well as recent developments in security
and encryption techniques, attempt to mitigate this concern: the so called cyber-
physical security research area, addressing other domains both in transportation
and in other pervasive computing applications, has produced also results for
the railway signalling domain; for example the security of the ERTMS train to
trackside protocols has been formally analysed using the ProVerif tool in [25].

5 Quantitative Dependability Assessment

We can note that the notions of accuracy, integrity and consistency can be given
also in probabilistic terms, that is, we can attempt to estimate the probability
that at a given time a vital information is accurate, has not been corrupted, and
its replicas are consistent.

To turn this in an overall probabilistic assessment of the safety of the sys-
tem, the data-driven approach imposes that a suitable combined application
of those techniques can produce for each component interested to the flow of
vital information an evaluation of how the said attributes propagate through
the component itself.

That is, such a process should provide certified components coming with accu-
racy, integrity and consistency figures for the produced information, expressed
as a function of expected attributes of vital input information, if any. According
to the data flow among components, the attributes of interest are then obtained
by functional composition of all those given figures.

For example, fully formally verified software components typically propagate
identically such probabilities from the input parameters to the output informa-
tion due to the fact that they do not introduce any other violation. A communi-
cation protocol that introduces a non null probability of integrity violation that
reduces of 5% the integrity of the input data, and exchanges a vital datum of
integrity probability 1 produces a vital datum of integrity 0.95.

In the considered systems, we can however notice how the emphasis on the
safety of operation is increasingly counterbalanced by the need to ensure trans-
port service availability and transport capacity.

Quantitative safety assessment is able to provide both the probability with
which the system correctly works (that is, the reliability) and the probability
that due to any problem the system has gone in a fail-safe state. A fail-safe
state in the railway signalling domain typically ends up in non providing the
service, since it correspond to some halted train, e.g. through the application of
emergency braking or setting all signals to red, impacting therefore availability
and capacity of the transport system.

The large number of critical computing components in a modern complex
signalling system increases the number of cases in which the failure of one
component can bring to a fail-safe halt of a system, causing the partial or full
unavailability of transport service.

This effect is worsened by the number of communication links employed
in these systems: typically, the safety layers of the communication protocols
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adopted in these systems exploit the principle of positive control to allow move-
ment of trains: the train cannot move if no explicit Movement Authority has
been received. Any serious transmission error (that is, persistent over a given
period of time) eventually leads to a fail-safe state.

A more subtle phenomenon observed in radio-based train control, such as
CBTC systems, is the indeterminate delay time in message transmission expe-
rienced when multiple trains require movement authorities and the available
bandwith of the communication link is not sufficient to guarantee correct end-
to-end transmission in due time. Retries tend to clog even more the link, with
the fail-safe halt as ultimate consequence.

A careful evaluation of safety characteristics of a modern, complex, signalling
system cannot therefore ignore an adequate analysis of availability attributes, in
order to ensure an appropriate transport capacity, with the related operation cost
effectiveness, through techniques of quantitative evaluation of these attributes
[27]. Quantitative modelling of the adopted algorithms and protocols is therefore
an important issue. As an example, we can refer to the experiences aimed at the
quantitative evaluation of the ERTMS Euroradio protocol by means of a Petri
Net model (see, e.g., [6,33]).

With regard to security, it is not simple to give a probabilistic measure of
the contribution of security issues to the integrity of vital data: such a measure
should be obtained on the basis of assumptions on the frequency of intrusion by
third parties, as well as on the basis of the capacity of the security mechanisms
to counter them. Sanders in [26] discusses some possible tools and methods for
quantitative predictive assessment of security for large-scale systems.

Another area of difficult quantitative evaluation is the area of human inter-
action errors, which again can disrupt service through enforcement of a fail safe
state by the control equipment. Statistical evidence of such problems should be
collected in the operation of these advanced systems in order to include such
evaluation in an overall quantitative evaluation of dependability.

6 Conclusions

In this paper we have outlined the basic principles that have to be considered
when determining the safety of a complex signalling system in which the correct
processing and transmission of vital information plays a vital role. In this regard,
we have advocated the adoption of a data-driven certification approach, that
takes into account the flow of vital information in the system, focusing the
application of formal verification techniques on those parts of the system that
have a major influence on the integrity and consistency of vital information.

It is our belief that such a shift will help to focus certification efforts on the
actual threats to safety, lowering the certification costs, which form nowadays a
major contribution to the cost of actual implementation of advanced signalling
systems, if not even an effective barrier preventing their adoption.

We plan then to shape the basic principles sketched in this paper in a fully
operational certification process, able to merge all the mentioned techniques in a
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single data-driven effort suitable to address the challenges of signalling systems
of the next future.

Acknowledgements. This work is based on an invited presentation made at a work-
shop funded by the PART project of DTU Compute (Department of Applied Mathe-
matics and Computer Science, Technical University of Denmark), and has been con-
ducted while on leave from University of Florence, thanks to a grant of the Villum
Foundation.

References

1.

10.

11.

12.

Bergenhem, C., Pettersson, H., Coelingh, E., Englund, C., Shladover, S., Tsug-
awa, S.: Overview of platooning systems. In: I'TS World Congress, Vienna, 22-26
October 2012

Bernardeschi, C., Fantechi, A., Gnesi, S., Larosa, S., Mongardi, G., Romano, D.: A
formal verification environment for railway signaling system design. Formal Meth-
ods Syst. Des. 12(2), 139-161 (1998)

Biba, K.: Integrity Considerations for Secure Computer Systems. MITRE Co,
Bedford (1977)

Bock, U., Bikker, G.: Design, development of a future freight train concept- “vir-
tually coupled train formations”. In: Schnieder, E., Becker, U. (eds.): 9th IFAC
Symposium Control in Transportation Systems, 13—-15 June, S. 410-415, Braun-
schweig (2000)

Bonacchi, A., Fantechi, A., Bacherini, S., Tempestini, M., Cipriani, L.: Validation
of railway interlocking systems by formal verification, a case study. In: Counsell, S.,
Nufez, M. (eds.) SEFM 2013. LNCS, vol. 8368, pp. 237—-252. Springer, Heidelberg
(2014)

Carnevali, L., Flammini, F., Paolieri, M., Vicario, E.: Non-markovian performa-
bility evaluation of ERTMS ETCS level 3. In: Beltran, M., Knottenbelt, W.,
Bradley, J. (eds.) EPEW 2015. LNCS, vol. 9272, pp. 47-62. Springer, Heidelberg
(2015)

Chandra, T.D., Toueg, S.: Unreliable failure detectors for reliable distributed sys-
tems. J. ACM 43(2), 225-267 (1996)

Chen, B., Schmittner, C., Ma, Z., Temple, W.G., Dong, X., Jones, D.L., Sanders,
W.H.: Security analysis of urban railway systems: the need for a cyber-physical
perspective. In: Koornneef, F., van Gulijk, C. (eds.) SAFECOMP Workshopps
2015. LNCS, vol. 9338, pp. 277-290. Springer, Heidelberg (2015)

Esposito, R., Lazzaro, A., Marmo, P., Sanseviero, A.: Formal verification of ERTMS
Euroradio safety critical protocol. In: Proceedings 4th Symposium on Formal Meth-
ods for Railway Operation and Control Systems (FORMS 2003). L’Harmattan
Hongrie, Budapest (2003)

Fantechi, A.: Distributing the challenge of model checking interlocking control
tables. In: Margaria, T., Steffen, B. (eds.) ISoLA 2012, Part II. LNCS, vol. 7610,
pp. 276-289. Springer, Heidelberg (2012)

Fantechi, A., Gnesi, S., Haxthausen, A., van de Pol, J., Roveri, M., Treharne, H.:
SaRDIn - a safe reconfigurable distributed interlocking. In: WCRR 2016, Milano,
May 2016

Ferrari, A., Magnani, G., Grasso, D., Fantechi, A.: Model checking interlocking
control tables. In: Schnieder, E., Tarnai, G. (eds.) FORMS/FORMAT 2010, pp.
107-115. Springer, Heidelberg (2010)



244

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

A. Fantechi

Groote, J.F., van Vlijmen, S., Koorn, J.: The safety guaranteeing system at station
Hoorn-Kersenboogerd. In: Logic Group Preprint Series 121. Utrecht University
(1995)

Hase, K.R.: Open proof for railway safety software - a potential way-out of vendor
lock-in advancing to standardization, transparency, and software security. In: 8th
Symposium on Formal Methods for Automation and Safety in Railway and Auto-
motive Systems (FORMS/FORMAT 2010), 2-3 December 2010, Braunschweig,
Germany (2010)

Haxthausen, A., Peleska, J.: Formal development and verification of a distributed
railway control system. IEEE Trans. Software Eng. 26(8), 687701 (2000)
Haxthausen, A.E., Peleska, J., Pinger, R.: Applied bounded model checking for
interlocking system designs. In: Counsell, S., Nunez, M. (eds.) SEFM 2013. LNCS,
vol. 8368, pp. 205-220. Springer, Heidelberg (2014)

Hei, X., Ma, W., Gao, J., Xie, G.: A concurrent scheduling model of distributed
train control system. In: IEEE International Conference on Service Operations,
Logistics, and Informatics (SOLI), pp. 478-483 (2011)

Lamport, L., Shostak, R., Pease, M.: The Byzantine general problem. ACM Trans.
Program. Lang. Syst. 4(3), 382401 (1982)

James, P., Lawrence, A., Moller, F., Roggenbach, M., Seisenberger, M., Setzer, A.,
Kanso, K., Chadwick, S.: Verification of solid state interlocking programs. In: Coun-
sell, S., Nunez, M. (eds.) SEFM 2013. LNCS, vol. 8368, pp. 253-268. Springer,
Heidelberg (2014)

James, P., Moller, F., Nguyen, H.N., Roggenbach, M., Schneider, S., Treharne, H.,
Trumble, M., Williams, D.: Verification of scheme plans using CSP||B. In: Coun-
sell, S., Nifiez, M. (eds.) SEFM 2013. LNCS, vol. 8368, pp. 189-204. Springer,
Heidelberg (2014)

Kildall, G.A.: A unified approach to global program optimization. In: ACM SIG-
PLAN Symposium on Principles of Programming Languages (POPL), pp. 194-206
(1973)

DaSilva, C., Dehbonei, B., Mejia, F.: Formal specification in the development of
industrial applications: subway speed control system. In: Proceedings 5th IFIP
Conference on Formal Description Techniques for Distributed Systems and Com-
munication Protocols (FORTE 1992), Perros-Guirec, pp. 199-213, North-Holland
(1993)

Michaut, P.: Method for managing the circulation of vehicles on a railway network
and related system. US patent 8820685 B2 (2014)

Ohmstede, H.: Method for reducing data in railway operation. US patent 7578485
(2009)

de Ruiter, J., Thomas, R.J., Chothia, T.: A formal security analysis of the ERTMS
train to trackside protocols. In: Lecomte, T., Pinger, R., Romanovsky, A. (eds.)
RSSRail 2016. LNCS, vol. 9707, pp. 53-68. Springer, Heidelberg (2016)

Sanders, W.H.: Quantitative security metrics: unattainable holy grail or a vital
breakthrough within our reach? IEEE Secur. Priv. 12(2), 67-69 (2014)

Schulz, O., Peleska, J.: Reliability analysis of safety-related communication archi-
tectures. In: Schoitsch, E. (ed.) SAFECOMP 2010. LNCS, vol. 6351, pp. 1-14.
Springer, Heidelberg (2010)

Totel, E., Blanquart, J.-P., Deswarte, Y., Powell, D.: Supporting multiple levels of
criticality, digest of papers. In: FTCS-28, The Twenty Eigth Annual International
Symposium on Fault-Tolerant Computing, Munich, Germany, 23-25 June 1998,
pp. 70-79. IEEE Computer Society (1998)



29.

30.
31.

32.

33.

Formal Techniques for a Data-Driven Certification of Advanced Railway 245

UIC: Virtually coupled trains. http://www.railway-energy.org/static/Virtually_
coupled_trains_86.php

Weiser, M.: Program slicing. IEEE Trans. Software Eng. 10(4), 352-357 (1984)
Whitwam, F., Kanner, A.: Control of automatic guided vehicles without wayside
interlocking. US patent 20120323411 A1 (2012)

Winter, K., Robinson, N.J.: Modelling large railway interlockings and model
checking small ones. In: Twenty-Sixth Australasian Computer Science Conference
(ACSC 2003), pp. 309-316 (2003)

Zimmermann, A., Hommel, G.: Towards modeling and evaluation of ETCS real-
time communication and operation. J. Syst. Softw. 77(1), 47-54 (2005)


http://www.railway-energy.org/static/Virtually_coupled_trains_86.php
http://www.railway-energy.org/static/Virtually_coupled_trains_86.php

Ariola, Zena M. 205
Asavoae, Irina Mariuca 142

Beringer, Steffen 189
Breton, Nicolas 171
Bride, Hadrien 39

Chadli, Mounir 133

Dernehl, Christian 25
Dieumegard, Arnaud 117

Fantechi, Alessandro 231
Fonteneau, Yoann 171

Ge, Ning 171

Habermaier, Axel 97, 150
Hansen, Norman 25
Hoffmann, Ruth 81
Huang, Wen-ling 3
Hulette, Geoffrey C. 205

Ishii, Yoshinao 65

Jacobs, Bart 56

Jenn, Eric 171

Johnson, Christopher W. 81
Johnson-Freyd, Philip 205

Kim, Jin Hyun 133
Knapp, Alexander 97

Author Index

Kouchnarenko, Olga 39
Kowalewski, Stefan 25
Kutsuna, Takuro 65

Larsen, Kim Guldstrand 133
Legay, Axel 133

Leupolz, Johannes 97, 150
Lu, Yu 81

Miller, Alice A. 81
Mohsen, Mahmoud 56

Naujokat, Stefan 133
Nguyen, Hoang Nga 142

Pantel, Marc 117

Peleska, Jan 3
Peureux, Fabien 39

Reif, Wolfgang 97, 150
Roggenbach, Markus 142

Shaikh, Siraj 142
Steffen, Bernhard 133

Toom, Andres 117
Traonouez, Louis-Marie 133

Vanit-Anunchai, Somsak 214
Voiron, Guillaume 39

Wehrheim, Heike 189



	Preface
	Organization
	Abstracts of the Invited Talks
	Lessons Learned in a Journey Toward Correct-by-Construction Model-Based Development
	Model-based Testing Strategies and Their (In)dependence on Syntactic Model Representations
	Random Testing of Formal Properties for Industrial Critical Systems
	Contents
	Invited Talk
	Model-Based Testing Strategies and Their (In)dependence on Syntactic Model Representations
	1 Introduction
	2 Problem Description
	3 A Model-Independent Method for Input Equivalence Class Partition Testing
	4 Model-Based Transformation-Invariant Calculation of Input Equivalence Classes
	5 Conclusion
	References

	Automated Verification Techniques
	Abstract Interpretation of MATLAB Code with Interval Sets
	1 Introduction
	1.1 Contribution

	2 Related Work
	3 Abstract Interpretation of MATLAB
	3.1 Syntax and Concrete Semantics
	3.2 Abstract Semantics
	3.3 Abstract Interpretation

	4 Evaluation
	5 Conclusion
	References

	Workflow Nets Verification: SMT or CLP?
	1 Introduction
	2 Preliminaries
	2.1 Workflow Nets
	2.2 Modal Specifications
	2.3 Modal Specifications Verification Method

	3 Experimental Protocol
	4 Results and Feedback from Experiments
	4.1 Observation from State-Machine Workflow Nets Verification
	4.2 Observation from Marked-Graph Workflow Nets Verification
	4.3 Observation from Free-Choice Workflow Nets Verification
	4.4 Observation from Ordinary Workflow Nets Verification
	4.5 Lessons Learned from Experience

	5 Related Work and Conclusion
	References

	One Step Towards Automatic Inference of Formal Specifications Using Automated VeriFast
	1 Introduction
	2 Architecture
	3 An Inner Look at Automated VeriFast
	3.1 Auto-generating Predicates
	3.2 Auto-fixing

	4 Automated VeriFast by Examples
	4.1 Stack Example
	4.2 Bank Example

	5 Related Work
	6 Conclusions and Future Work
	References

	Analyzing Unsatisfiability in Bounded Model Checking Using Max-SMT and Dual Slicing
	1 Introduction
	2 Background and Motivating Example
	2.1 Bounded Model Checking for Embedded Control Software
	2.2 Example Model with a Counter
	2.3 Motivation

	3 Initial Condition Analysis Using Maximum Satisfiability
	3.1 Max-SMT
	3.2 Analyzing Initial Conditions with a Partial Max-SMT Solver
	3.3 Example of Analyzing Initial Conditions
	3.4 Limitations

	4 Causal Path Analysis Using Dual Slicing
	4.1 Dual Slicing
	4.2 Causal Path Analysis
	4.3 How to Compare Execution Logs
	4.4 Example of Analyzing the Causal Path

	5 Case Study
	5.1 Outline of the Model and Problem Setting
	5.2 Results

	6 Related Work
	7 Conclusion and Future Work
	References

	Towards the Automated Verification of Weibull Distributions for System Failure Rates
	1 Introduction
	2 Multi-state Failure Mode in Satellite Subsystems
	3 Preliminaries
	3.1 Continuous-Time Markov Chains
	3.2 The PRISM Model Checker
	3.3 Continuous Stochastic Logic

	4 Approximation of Weibull Failure Models
	4.1 Weibull Distributions
	4.2 Increasing Failure Rates (IFR)
	4.3 Decreasing Failure Rates (DFR)

	5 Encoding the Weibull Models with CTMCs in PRISM
	5.1 Encoding the Weibull Distribution with IFR
	5.2 Encoding the Weibull Distribution with DFR

	6 Conclusion and Future Work
	References

	Fault-Aware Modeling and Specification for Efficient Formal Safety Analysis
	1 Introduction
	2 Model-Based Safety Analysis
	2.1 Fault Terminology
	2.2 State-Based Fault Modeling

	3 Fault-Aware Modeling and Specification
	3.1 Fault-Aware Kripke Structures
	3.2 Fault-Aware Linear Temporal Logic
	3.3 Fault Injection

	4 Deductive Cause Consequence Analysis
	4.1 Conceptual Improvement: Safe Fault Sets
	4.2 Efficiency Improvement: Fault Removal

	5 Tool Support and Evaluation
	5.1 The S# Modeling and Analysis Framework for Safety-Critical Systems
	5.2 Evaluated Case Studies
	5.3 Evaluation Results

	6 Conclusion and Future Work
	References

	Model-Based System Analysis
	Block Library Driven Translation Validation for Dataflow Models in Safety Critical Systems
	1 Introduction
	2 Formal Specification of Blocks in Dataflow Languages
	2.1 Example of Block Specification: IntegerDelay
	2.2 Specifying a Block Family
	2.3 Verification and Validation of Block Specifications
	2.4 Handling Loop Constructs

	3 Verification of the Correctness of Generated Code
	3.1 Semantic Annotation of the Generated Code
	3.2 Verification Using the Frama-C Toolset

	4 Translation Validation of IntegerDelay
	5 Related Work
	6 Conclusion and Future Work
	References

	A Model-Based Framework for the Specification and Analysis of Hierarchical Scheduling Systems
	1 Introduction
	2 Background
	3 Formal Model-Based Compositional Framework for Hierarchical Scheduling Systems
	3.1 Automata-Based Models for a Scheduling Unit
	3.2 Formal Analysis of Hierarchical Scheduling Systems

	References

	Utilising K Semantics for Collusion Detection in Android Applications
	1 Introduction
	1.1 Related Work

	2 A Collusion Definition on the Android Level
	3 The K Framework
	4 Concrete Android Semantics
	5 Abstract Android Semantics
	6 Model Checking for Collusion
	7 Concluding Remarks and Future Work
	References

	Unified Simulation, Visualization, and Formal Analysis of Safety-Critical Systems with 
	1 Introduction
	2 Case Study: Height Control System
	3 Modeling Safety-Critical Systems with 
	3.1 Model of Computation
	3.2 The  Modeling Language
	3.3 Fault Modeling

	4 Analyzing Safety-Critical Systems with 
	4.1 Execution Semantics of  Models
	4.2 Model Checking  Models
	4.3 Simulating  Models
	4.4 Evaluation of  Model Checking Efficiency
	4.5 Safety Analysis of the Height Control Case Study

	5 Conclusion and Future Work
	References

	Applications and Case Studies
	Formal Verification of a Rover Anti-collision System
	1 Introduction
	2 The S3 Toolset
	3 Specification and Design of the ARP Use Case
	3.1 The Context of Use Case
	3.2 System-Level Safety and Functional Requirements
	3.3 System Design Choice
	3.4 High-Level Software Requirements and Software Design

	4 Property Verification
	4.1 The Workflow of Property Verification
	4.2 K-Inductive Proof of Safety Property
	4.3 BMC and Test Case Generation
	4.4 Safety Property and Map Data Validation
	4.5 Property Verification Results

	5 Equivalence Proof Between Design and Generated Code
	6 Lessons Learned
	6.1 Proof of Generated Code
	6.2 Proof-Driven Design Guidance

	7 Conclusion and Perspective
	References

	Verification of AUTOSAR Software Architectures with Timed Automata
	1 Introduction
	2 Background
	2.1 Introduction to AUTOSAR
	2.2 Timed Automata

	3 Transformation of AUTOSAR Models
	3.1 Transformation

	4 AUTOSAR Timing Extensions
	4.1 Timing Events

	5 Implementation and Evaluation
	6 Conclusion
	References

	Verification by Way of Refinement: A Case Study in the Use of Coq and TLA in the Design of a Safety Critical System
	1 Introduction
	2 Application: Arbitrary Waveform Generator (AWG)
	3 Expressing the AWG in TLA+
	3.1 Limitations of the TLA+ Framework

	4 Expressing the AWG in TLACoq
	5 Implementing TLACoq
	6 Conclusions
	References

	Application of Coloured Petri Nets in Modelling and Simulating a Railway Signalling System
	1 Introduction
	2 Introduction to the Railway Signalling Principle and Desired Properties
	2.1 Railway Signalling Principle
	2.2 Desired Properties

	3 The Coloured Petri Net Model
	3.1 Global Declarations and Route's State
	3.2 Setting Routes
	3.3 Clearing Signals
	3.4 Approach Locked and Back Locked
	3.5 Releasing Route

	4 Lessons Learnt and Perspective
	5 Conclusion and Suggested Work
	References

	Formal Techniques for a Data-Driven Certification of Advanced Railway Signalling Systems
	1 Introduction
	2 Innovation in Signalling Systems
	2.1 ``Communication Based'' Distancing Systems
	2.2 Highly Innovative Distancing Concepts
	2.3 Distributed Interlocking Systems
	2.4 Safety Paradigm Shift

	3 Integrity and Consistency of Vital Information
	4 Demonstrating Safety
	4.1 Data-Driven Safety Design Techniques
	4.2 Software Faults

	5 Quantitative Dependability Assessment
	6 Conclusions
	References

	Author Index



