Can Sage Replace Maple and Mathematica?

Randall Pruim

Calvin College

slides available at
http://www.calvin.edu/~rpruim/talks/

What is Sage?

According to http://sagemath.org:

Sage is a free open-source mathematics software system licensed under the GPL. It combines the power of many existing open-source packages into a common Python-based interface.

What is Sage?

According to http://sagemath.org:

Sage is a free open-source mathematics software system licensed under the GPL. It combines the power of many existing open-source packages into a common Python-based interface.

What is Sage?

According to http://sagemath.org:

Sage is a free open-source mathematics software system licensed under the GPL. It combines the power of many existing open-source packages into a common Python-based interface.

Other features:

- Web browser interface
- Kernel can be installed locally (independence), or accessed via public servers (zero set-up time)
- Integrates with LATEX

Q. Can Sage replace Maple and Mathematica?

- Q. Can Sage replace Maple and Mathematica?
 - A. I think so.

- Q. Can Sage replace Maple and Mathematica?
 - A. I think so.
- **Q.** Can Sage compete with Maple and Mathematica?

- Q. Can Sage replace Maple and Mathematica?
 - A. I think so.
- Q. Can Sage compete with Maple and Mathematica?
 - A. Definitely. Even if it does not become your only or primary CAS, it likely has niche to fill in your toolkit.

- Q. Can Sage replace Maple and Mathematica?
 - A. I think so.
- Q. Can Sage compete with Maple and Mathematica?
 - A. Definitely. Even if it does not become your only or primary CAS, it likely has niche to fill in your toolkit.
- Q. Should Sage replace Maple and Mathematica?

- Q. Can Sage replace Maple and Mathematica?
 - A. I think so.
- Q. Can Sage compete with Maple and Mathematica?
 - A. Definitely.
 Even if it does not become your only or primary CAS, it likely has niche to fill in your toolkit.
- Q. Should Sage replace Maple and Mathematica?
 - A. That depends on what is important to you.

Some Evidence

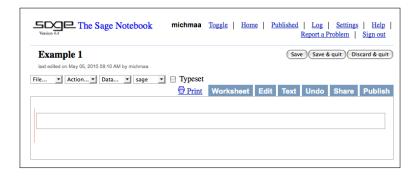
We'll look at a few examples that demonstrate some of Sage's strengths:

- Ubiquity
- Conformity
- Community
- Universality

Ubiquity

Because sage is

- free, and
- available via a web browser,


there is almost no start-up cost in using Sage.

In particular, students can use Sage any time on any machine with a web browser and internet connection.

We can set up a new account at http://sagemath.org in a few seconds and then get to work.

Sage Worksheets in your Browser

This simplest way to start with Sage is via the online worksheet interface at sagemath.org.

Can also be accessed at http://localhost:8000/

Conformity

Sage pulls together open source utilities from a number of different origins and brings them together into one (mostly) coherent system.

Sage is built on the python programming language.

- Sage skills transfer to Python
- Python skills transfer to Sage

Python

- comprehensive, high level programming language
- light syntax
- good for scripting, prototyping
- interpreted
- libraries of utilities for the sciences

Community

Like most open source projects, Sage is community-supported.

- Sage notebooks can be published, making them available to anyone.
- Published notebooks can be searched.
- If you have a great idea for Sage, you can submit it. If it
 passes quality control, the core development team will add
 it to the next release of Sage.
 - Calvin student Ethan VanAndel just found out that some utilities he developed will be included in the next release.
- Excellent LATEX support.

The latest version of Sage includes the $\mathtt{sagetex.sty}$ style for \colongle TEX.

output

The sum of $1 + 2 + \sqrt{3} = \sqrt{3} + 3 = 4.7321$.

The latest version of Sage includes the sagetex.sty style for LATEX.

output

The sum of $1 + 2 + \sqrt{3} = \sqrt{3} + 3 = 4.7321$.

LATEX code

The sum of $1+2+\sqrt{3}$

- = \sage{1+2+sqrt(3)}
- = \sage{round(1+2+sqrt(3),4)}\$

Workflow

LATEX, Sage, LATEX

works with pdflatex, custom rules exist for latexmk

Of course, Sage has many fancier things, too.

output

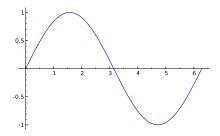
There are

6255423473879432172551153347179787953125682826

integer partitions of 2010.

LATEX code

There are \[\sage{number_of_partitions(2010)}\] integer partitions of 2010.


```
Let f(x)=e^x\sin{(2\,x)}, then the second derivative of f is \frac{\mathrm{d}^2}{\mathrm{d}x^2}e^x\sin{(2\,x)}=-3\,e^x\sin{(2\,x)}+4\,e^x\cos{(2\,x)}\,.
```

Code

```
\label{eq:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:
```

Sage and LATEX (plots)

Plotting works, too.

code

\sageplot{plot(sin(x), x, 0, 2*pi)}

Universality

From sagemath.org:

Mission: Creating a viable free open source alternative to Magma, Maple, Mathematica and Matlab.

The Goal: To be your one-stop mathematical environment

- First application area was elliptic curves (GP/pari)
- Maxima and numpy/scipy form core elements of the engine
- Can interface with Maple and Mathematica if they are installed
- Provides interface to R (incomplete?)

Links

```
http://www.calvin.edu/~rpruim/talks/
```

http://sagemath.org/

http://localhost:8000/

http://www.python.org/