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Abstract

Programming is a core subject within Computer Science curricula and many also con-
sider it a particularly difficult subject to learn. There have been many studies and
suggestions on what causes these difficulties and what can be done to improve the
situation.

This thesis builds on previous work, trying to understand what difficulties students
have when learning to program. The included papers cover several areas encountered
when trying to learn programming.

In Paper I we study how students use annotations during problem solving. The
results show that students who annotate more also tend to be more successful. How-
ever, the results also indicate that there might be a cultural bias towards the use of
annotations.

Not only do students have problems with programming, they also have problems
with designing software. Even graduating students fail to a large extent on simple
design tasks. Our results in Paper II show that the majority of the students do not go
beyond restating the problem when asked to design a system.

Getting stuck is something that most learners experience at one time or another. In
Paper III we investigate how successful students handle these situations. The results
show that the students use a large number of different strategies to get unstuck and
continue their learning. Many of the strategies involve social interaction with peers
and others.

In Papers IV, V, and VI we study what students experience as being key and thresh-
old concepts in Computer Science. The results show that understanding particular
concepts indeed affect the students greatly, changing the way they look at Computer
Science, their peers, and themselves.

The two last papers, Papers VII and VIII, investigate how researchers, teachers and
students view concurrency. Most researchers/teachers claim that students have difficul-
ties because of non-determinism, not understanding synchronization, etc. According
to our results the students themselves do not seem to think that concurrency is signif-
icantly more difficult than any other subject. Actually most of them find concurrency
to be both easy to understand and fun.
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Sammanfattning

Programmering har en central roll i datavetenskapliga utbildningar. Manga anser att
programmering dr svart att ldra sig. Ett stort antal studier har undersokt vad som or-
sakar dessa svarigheter och hur det dr mojligt att 6vervinna dem. Denna avhandling &r
en del av denna forskning. Artiklarna i avhandlingen undersoker vilka problem som
studenterna stoter pa under sina programmeringsstudier.

Artikel 1 beskriver hur studenter anvénder sig av annoteringar vid problemldsning.
Resultaten visar att studenter som gor méanga annoteringar tenderar att prestera bittre.
Resultaten antyder ocksa att det kan finnas kulturella skillnader i hur ofta annoteringar
anvinds.

Studenter har inte bara problem vid programmering, de har ocksa problem med
att utforma programvarusystem. Aven sistadrsstudenter misslyckas till stor del att ut-
forma l6sningar for relativt enkla system. Resultaten i Artikel II visar att majoriteten
av studenterna inte kommer lingre dn en omformulering av problemet.

Att inte forsta ett koncept eller en specifik detalj 4r nagot som alla studenter stoter
pé da och da. T Artikel IIT undersoker vi hur framgéngsrika studenter hanterar en sadan
situation. Resultaten visar att studenterna anvénder sig av ett stort antal olika strategier
for att fa en forstaelse for konceptet/detaljen. Manga av de redovisade strategierna
bygger pa en social interaktion med andra.

Artiklarna IV, V och VI utforskar vad studenterna uppfattar som nyckelkoncept
inom datavetenskap och hur forstaelsen av dessa koncept paverkar dem. Resultaten
visar att forstaelsen av vissa specifika koncept kan gora att studenterna dndrar hur de
ser pa datavetenskap, kollegor och sig sjdlva.

I artiklarna VII och VIII undersoker vi hur forskare, ldrare och studenter ser pa de
problem studenter har vid jamlopande programmering. De flesta forskare och lirare
hévdar att studenterna har problem med att forsta icke-determinism, synkronisering,
etc. Vara resultat visar dock att studenterna inte sjdlva tycks anse att jimlopande
programmering dr signifikant svarare dn andra dmnen. Tvirtom, de flesta anser att
jamlopande programmering dr bade ltt att forsta och roligt.



vi



Preface

This thesis consists of an introduction to the research area and the following papers:

Paper I

Paper 11

Paper III

Paper IV

Paper V

Paper VI

Paper VII

Questions, Annotations, and Institutions: observations from a study
of novice programmers in Proceedings of the Fourth Finnish/Baltic Sea
Conference on Computer Science Education.

Robert McCartney, Jan Erik Mostrom, Kate Sanders, Otto Seppild. pl1-
19, 2004

Can graduating students design software systems? in SIGCSE '06: Pro-
ceedings of the 37th SIGCSE technical symposium on Computer science
education.

Anna Eckerdal, Robert McCartney, Jan Erik Mostrom, Mark Ratcliffe,
Carol Zander. p403-407, 2006

Successful students’ strategies for getting unstuck in /7iCSE '07: Pro-
ceedings of the 12th annual SIGCSE conference on Innovation and tech-
nology in computer science education.

Robert McCartney, Anna Eckerdal, Jan Erik Mostrom, Kate Sanders, Carol
Zander. p156-160, 2007

Concrete examples of abstraction as manifested in students’ transfor-
mative experiences in /CER '08: Proceeding of the Fourth international
Workshop on Computing Education Research.

Jan Erik Mostrom, Jonas Boustedt, Anna Eckerdal, Robert McCartney,
Kate Sanders, Lynda Thomas, Carol Zander. p125-136, 2008

Student understanding of object-oriented programming as expressed
in concept maps in SIGCSE ’08: Proceedings of the 39th SIGCSE techni-
cal symposium on Computer science education.

Kate Sanders, Jonas Boustedt, Anna Eckerdal, Robert McCartney, Jan Erik
Mostrom, Lynda Thomas, Carol Zander. p332-336, 2008

Student transformations: are they computer scientists yet? in /[CER’09:

Proceedings of the fifth international workshop on Computing education
research workshop

Carol Zander, Jonas Boustedt, Robert McCartney, Jan Erik Mostrom, Kate
Sanders, Lynda Thomas. p129-140, 2009

Learning concurrency — what’s the problem? Jan Erik Mostrom 2011
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Paper VIII Students’ experience of learning concurrency Jan Erik Mostrom 2011
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Preface

Contribution

A list of the author’s contribution to the articles previously listed is described below.

It should be noted that most of the authors in articles 1-6 have been involved in
a 7-year long research collaboration — the group usually goes under the name “The
Sweden Group” — which has been quite successful. One of the habits of this group
is to have long and regular discussions about the data being analyzed. During these
discussions, ideas are raised, modified, and re-modified; data and results are examined
and re-examined; and text is written, edited and later re-edited. In fact the collaboration
has been so “tight” that the group members have had difficulties to point out what
each individual has contributed — even directly after a paper has been submitted for
publication. The “joint collaboration” in this group has truly been “joint” and thus
much of my contribution has been to participate in the discussions and put forward my
ideas and opinions.

Paper I The data used in this paper was originally collected for a Workshop at
ITiCSE 2004. The first observations that students annotated their solutions
in various ways was done by me, the analysis in this paper was done jointly
by the authors.

Paper II The data analyzed in this paper was collected by approximately 20 people
as a part of a larger international project. It was my comments on the data
that steered the analysis in its final direction. Otherwise, the analysis and
writing was done jointly by the five authors.

Paper III Data collection was done by all authors and one additional person. Analysis
and writing was done together jointly by the five authors.

Paper IV Data collection was done by all authors. As usual the data and analysis was
discussed within the group; my contribution was mainly in the sections on
’modularity’ and ’data abstraction’.

Paper V Data collection was mainly done by two of the authors - Carol Zander and
Lynda Thomas. Analysis of data and writing was done jointly by all authors.

Paper VI This paper used the same raw data as paper 5. Much of the work was done
jointly by the authors; my main contribution was in the section “’Identity”
together with Carol Zander.

Paper VII All work done for this paper was done by the author.

Paper VIII All work done for this paper was done by the author.
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Description of papers

Paper I - Questions, Annotations, and Institutions: observations from
a study of novice programmers

This paper explores the connection between the way in which students annotate
problems and how well they perform. The results show that successful students
tend to annotate their work more than less successful students, a result that is
confirmed by other studies. However, students at two universities do not follow
this pattern and instead annotated their work sparingly. This becomes even
more interesting when we observe that these two universities are located in two
neighboring countries and have a common Computer Science history.

The results also show that the annotations vary depending on the type of
question. For example: fixed-code questions got more annotations classified
as tracing, while elimination type annotations were favored in skeleton-code
questions.

While these results seem to be “common-sense results” they open up new
interesting questions:

e If annotations improve student results, should we not teach how to use
annotations? The paper cites a study where students are encouraged to
use annotations, but they still fail to take full advantage of them. Is this
a typical behavior or can we encourage students in some other way?

e Some of the annotations are used to track the dynamic behavior of a
program. This is interesting since most of the programming languages
we use today are static textual languages that usually can not show what
happens dynamically when the program is executed. Do these student
notations indicate that we need a notation for the dynamic nature of a
program? Would such a notation make a difference for the students? (note
that “notation” does not refer to program visualization tools, run-time
debuggers, etc)

e The results show a connection between annotations and student perfor-
mance, except for students at the two universities mentioned above. These
students perform at an equal level to the students at other universities but
use annotation more sparingly. This might indicate that there are cultural
differences in how Computer Science is taught/learned around the world.



Can we take advantage of the differences in some way (if they actually
exist)?

Unfortunately the data that were collected for the study did not include infor-
mation that allowed us to pursue these questions in more detail.

Paper II - Can graduating students design software systems?

Some studies [35, 29] report on novice difficulties in completing simple pro-
gramming problems. Lister et al. [29] even suggest that students have problems
reading/understanding basic code snippets. This paper makes a similar inves-
tigation into graduating students’ ability to design software.

The participants in the study were asked to design a “super alarm clock”
to help students manage their sleep patterns. The resulting designs were cat-
egorized into six categories. This categorization shows that only 38% of the
students produced something that at least could be considered to be a first step
towards a finished design. More than 60% failed to make any significant progress
towards a design. Some of these, quite depressing, results might be explained
by the students’ inexperience with under-specified tasks similar to the one used
in the study. However, the results indicate that even graduating students have
difficulties in designing software.

It is also worth noting that academically high-performing students did not
produce the best designs. Instead many of them produced designs that were
categorized as “First step” or below. The best designs were in fact produced by
students with an average grade.

Based on these results it seems fair to say that we as educators have failed
to teach students how to design software. While some of the failures might be
explained by the students lack of experience with these types of problems it does
not explain everything. It might be prudent to carefully consider what goals we
set for our students and whether we manage to help the students reach them.

Paper III - Successful students’ strategies for getting unstuck

We all get stuck at times when learning something new. It can be that we do
not understand a specific concept, a procedure for doing some task, or we might
lack some knowledge that is necessary to learn a new concept. The end result is
the same: we get stuck in our learning and we have to find a way to get unstuck,
for example, by finding a work-around to avoid the problem or by asking friends
and colleagues for help.

This paper investigates how students get unstuck. The results show that
students use a large number of strategies. None of the strategies found should
surprise the experienced teacher, in fact many of the strategies are similar to the
advice commonly given for how to study successfully. However, it is interesting
to note that social interaction plays an important role for many students.

This brings up the very interesting question of how unsuccessful students
handle situations where they get stuck. Do these students fail their studies



because they can not get unstuck? If so, what kind of strategies do the unsuc-
cessful students use? Further, if students fail because they get stuck and fail to
get unstuck, what can we do to help them acquire learning strategies that will
help them to get unstuck?

It is worth noting that social interaction is important for the students. Is
this something we can encourage by increasing the time students work together.
An important question is also how this affect students participating in distance
education courses, is there a difference in how they interact with their peers.
And if that is the case, how does this affect their academic performance.

The list of different strategies also serves as a nice reminder for teachers of
the importance of showing different methods for attacking a problem.

Paper IV - Concrete examples of abstraction as manifested in stu-
dents’ transformative experiences

Many Computer Science educators consider abstraction to be a key concept
in Computer Science. This paper shows that this is indeed true: abstraction
plays an important role for many students when learning to program. However,
students do not talk about abstraction per se, in fact they might not mention
abstraction at all. Instead they describe transformative events that occurred
due to abstraction.

It is also worth noting that students might have reached this transformative
event either by first gaining an abstract understanding of the subject, followed
by practical experience, or vice versa. Once again, we see the importance of
both allowing students to view a subject from a number of different angles, and
of gaining practical experience.

Paper V - Student understanding of object-oriented programming as
expressed in concept maps

This paper reports on an investigation of student understanding of object-
oriented concepts. Instead of more traditional data collection methods like
interviews, questionnaires, etc., this study used concept maps. This allowed the
participants, given some “seed concepts,” to freely come up with concepts and
associate them with the existing ones.

The results contain some interesting information: students seem to associate
class and behavior more strongly than class and data, message passing between
objects is not mentioned at all, abstraction, polymorphism and encapsulation
were rarely mentioned, and it is unclear whether students really understand the
connection between class and objects.

The results show that some concepts that many consider to be a fundamental
part of object orientation are not what the students immediately think of. A
possible method for improving the results could be to let these concepts have a
more prominent role in our courses, making the students more aware of them.



Paper VI - Student transformations: are they computer scientists
yet?

The Sweden Group has investigated Threshold Concepts in relation to Computer
Science in several studies. One of the properties of a Threshold Concept is that
once it is understood it permanently changes the learner’s view of the subject.
(See Section 4.2 for more details about Threshold Concepts.) In this paper we
investigate what transformative events students have experienced and how these
events affected them personally.

Students report on a large number of different concepts that changed their
view of Computer Science and different types of transformation. Some students
changed their habits of thinking about and solving problems, others changed
the way they looked at Computer Science in a larger context, while still others
indicated that they had changed the way they looked at themselves.

One of the lessons learned from this study is that learning to program is not
only a matter of learning facts, syntax and process. It is also the process of
going from being a novice to a recognized member of a professional community.

Paper VII - Learning concurrency — what’s the problem?

It is common wisdom among Computer Science teachers that concurrency is a
hard subject to learn and that students have difficulties in learning it. Interest-
ingly enough there are other teachers/researchers who claim that students have
no difficulties in learning concurrency and that it should be a part of early pro-
gramming courses (or even to be the foundation for all programming courses).

In this paper we survey what has been written about students and their
learning of concurrency. The results indeed show that there are different opin-
ions on how difficult learning concurrency is. (See Section 5.4 for more informa-
tion.) But more importantly the paper also shows that only limited empirical
evidence exists for various claims.

The results also include a categorization of what is said to cause students
their problems. Unfortunately, these categories include a large number of the
concepts and techniques used when designing and implementing concurrent sys-
tems.

Perhaps the most important observation in this paper is the lack of empirical
data on what is causing problems for the students. Nevertheless, as some of the
studies show there is much to be learned by doing basic research.

Paper VIII - Students’ experience of learning concurrency

The previous paper investigates what teachers and researchers have to say about
students and their problems in learning concurrency. In this paper we report
on a interview study with students who have taken at least one course where
concurrency is taught.

The results, described in more detail in Section 5.5, show that the students
had a positive view of concurrency. They did not find it to be significantly more



difficult than any other CS subject. Also, to some the added complexity only
acted as additional challenge making it even more interesting.

What came as a surprise was that there were few spontaneous mentions of
the need of of code/process visualization, something that was quite popular in
the articles surveyed in the paper described above.






Chapter 1

Introduction

When students learn to program it is not uncommon to hear comments on how
difficult this is. The author’s personal experience include comments like “This is
impossible”, “Programming is sooo difficult”, “I can’t understand this”, “I will
never learn to how to program”, “This is so frustrating” and the very generic
“Arrrrgh” (sometimes followed by the sound of a fist hitting a keyboard, or a
table). This could, of course, be the result of failing as a teacher, but judging
from the numerous articles describing student’s problems in learning to program,
many teachers seem to have the same experience.

Since “programming” includes a large number of different activities and var-
ious concepts, the studies in the literature describe a large number of different
problems of student’s learning to program. Most of these studies have focused
on novices and the problems they experience; we can find articles where authors
discuss students understanding of basic language constructs [29], how the pro-
gramming paradigm affects students understanding [46], how students debug
programs [51], and so on.

One of the concepts seen to cause problems is concurrency. It is suggested by
many authors that the introduction of multiple execution threads is something
that students find difficult. There are many suggestions as to what causes these
difficulties [37] and what programming language, tool, and/or course design to
use to make it easier for students to learn.

Interestingly, another group of authors writes that concurrency is not some-
thing that students find difficult and that it is something that can be introduced
early in the curricula. It can be somewhat difficult to determine if one of these
groups is “right” since they both argue convincingly for their case.

This thesis can be seen as a summary of my attempts to better understand
the problems students experience when learning to program.



1.1 Outline of the thesis

This thesis is outlined as follows: In Section 2, I give a short general description
of the activities that “programming” includes. Section 3 provide an overview
of Computer Science Education Research, followed by Section 4 that describes
the research I have been involved with. The concept of concurrency and stu-
dents’ problem with the subject is explored in Section 5. I make some general
conclusions in Section 6. This is followed by the papers previously described.



Chapter 2

Programming

How can we describe what commonly is referred to as “programming”? While
to many non-programmers it might seem to be a single activity, in reality it can
be a very diverse series of activities aimed at solving a wide variety of problems.
There is, for example, a huge difference between designing and implementing a
system for weather forecasts and a small script for cleaning up log files. Assume
that we need to come up with one sentence describing “programming”; our
attempt to do this resulted in:

Programming is the act of understanding a problem, formulating a
solution, and writing down the solution in such a way that a com-
puter can use the solution to solve the problem.

There are other issues to consider, for example, maintainability, but let us ignore
those for the moment. Depending on the problem, these activities might involve
a single programmer or several hundred individuals with various specialities. For
the sake of brevity, assume that a single individual is responsible for the complete
solution. This means that this individual, the programmer, first needs to under-
stand the problem domain; for example, when designing/implementing a system
for accounting, the programmer must understand accounting and how accoun-
tants work. Once the problem is understood, the programmer will use standard
problem-solving techniques to break the problem down into small enough sub-
problems that can be solved using the tools and knowledge available to the
programmer. In the final step, the programmer needs to communicate the so-
lution in such a way that a computer can follow the instructions. The most
common method today is to write down a very detailed set of instructions us-
ing a textual language such as C, C++, Java, Python, or PHP. The reality,
of course, is much more complex than this very simplified description, but it
catches the three main activities in programming.

The human ability to solve problems is something that has been of inter-
est to researchers in Cognitive Science and we will not go into the details of
problem solving here; we recommend that the interested reader read an in-
troductory book on Cognitive Science [14] to get an overview. One problem



solving strategy is to divide a problem into smaller sub-problems that can be
solved individually. These solutions can then be combined to solve the complete
problem. This “divide-and-conquer” strategy can be found in many Computer
Science textbooks. In fact, most programming languages are designed in a way
that encourage the programmer to use “divide-and-conquer” — for example by
using procedures, functions, classes, modules, etc.

One important part of programming is writing down the envisioned solution
in a form that can be translated into something that the computer can execute.
Although this might sound like a simple task, it has been the source of much
discussion, for example, on conflicts between programming and natural lan-
guages [3], on comparing different paradigms [46], whether novices understand
even simple code snippets [29], or programming in general [17]. Not only have
different language paradigms like object-oriented and logic programming been
suggested and discussed, but also what the notation of the different paradigms
should look like. Traditionally most programming languages have used a tex-
tual notation but there have been suggestions to use graphical programming
languages like Agentsheets® [47], StageCast [9] or Scratch? [32] or even ani-
mated programming like ToonTalk [20] to make programming more accessible.

Some research has focused on the learning situation, how students learn, how
they become professionals, etc. Some of this research has resulted in insights on
how well students have learned to program [35, 29, 30], the importance of good
examples [44], students’ understanding of correctness [25, 21], cultural conflicts
between students and professionals [26], etc.

Despite all the effort that researchers and teachers have put into understand-
ing and helping students, there is still much work to be done.

Thttp://www.agentsheets.com/
2http://scratch.mit.edu/
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Chapter 3

Computer Science
Education Research

Computer Science Education (CSEd) research is somewhat different than many
other research areas in Computer Science. In many areas it is possible to base
research on collecting and analyzing quantitative data, usually using statistical
methods. While quantitative data certainly can be collected and analyzed doing
CSEd research, it has a number of limitations. Perhaps the biggest problem is
that a statistical analysis might indicate that there are a number of problems and
tell us how common they are. But with education research, we are usually not
interested in the manifestations of student problems; instead we are interested
in why they experience these difficulties and what is causing them — we want to
understand how the students think and why they make the mistakes they do,
not just that they do make mistakes.

Similarly, the fact that that 24% of the students have problem A, 16% prob-
lem B, 21% problem C, etc., does not give us enough information. We can not
discard problem E just because “only” 11% of the students have this problem.
Instead we want to know what kind of problems students encounter. Once we
know this, we can adapt our presentation of the subject to take these issues into
consideration, hopefully making it easier for the students to learn. In general,
it is less interesting to know how many students experience certain problems,
compared to knowing what kind of problems they experience and why.

It goes without saying that it is very difficult to objectively measure how
someone thinks; literature in Cognitive Science shows the many difficulties re-
searchers have in trying to understand how humans think. Instead we must turn
to qualitative data collection. To someone trained in quantitative research these
methods might seem “strange”, “unscientific’, and “subjective” since they do
not necessarily involve results that are quantifiable or easy to generalize. Qual-
itative researchers aim to gather an in-depth understanding of human behavior
and the reasons behind such behavior. Qualitative methods are designed to get
at the why and how, as opposed to the what, where, and when. Researchers
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in psychology, social sciences, etc., have extensive experience in conducting this
type of research, experience we can take advantage of.

3.1 Collecting data for CSEd research

It is our experience that often both quantitative and qualitative data are col-
lected during a CSEd study. The quantitative data often contains basic back-
ground information such as student age, gender, year of study, type of educa-
tional institution, etc. However, the vast majority of data comes in the form of
written essays, collected drawings/diagrams and, most importantly, recordings
of interviews. Below we will discuss these three types of data in greater detail.

Essays

One very attractive feature of essays, at least to the researcher, is that they are
easily converted to a form that can be analyzed. In fact in many instances they
come in electronic form and can directly be used for analysis. Unfortunately,
this data collection method also has some drawbacks, for example:

e It can be difficult or impossible to follow up on issues raised in the essays.
This can be extremely frustrating to the researcher, not being able to
follow up on issues mentioned or ask for clarifications.

e The student who writes the essay can limit and/or censor him/herself be-
cause of the time/effort required to write a detailed description. Writing
down a detailed explanation can take quite some time and it is our experi-
ence that written comments on questionaries and essays tend to be quite
terse.

However, while these issues limit the usefulness of the data, the method also has
advantages. Using essays it also becomes possible to collect data from students
that would not have been available for interviews.

Sketches

It is not uncommon for a student to make spontaneous sketches during an
interview or during some kind of problem solving activity [29]. Sketches can be
difficult to analyze since they are usually of a dynamic nature. For example,
sketches made during an interview tend to evolve over time. This makes it
difficult to analyze how the the sketch looked like at a certain point in the
interview. Similarly, sketches collected at the end of problem solving exercise
are different to analyze since it is difficult to know how they looked like at
a certain point of time in the problem solving activity. In other words, the
dynamic nature of sketches makes them difficult to analyze.
However, by using something like an Anoto pen! or Explanogram technology[45],

it becomes possible to study the dynamics of a sketch. We have had the op-

Thttp://www.anoto.com/ visited 2011-06-13
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portunity to try to analyze that same sketches with and without the use of
Explanograms and we found it fascinating how differently we interpreted the
static sketches compared to the dynamic version that Explanograms offered
us?. We recommend that anyone who plans to collect sketches as a part of their
study use these or similar technologies.

Interviews

Interviews are perhaps the most important tool we have to collect qualitative
data on student experience of learning. A commonly used type of interview
is the semi-structured interview where the interviewer has a predefined set of
topics to cover. While the interviewer has a script to follow there is no need
to follow it religiously, instead the interview should be flexible and allow the
interviewee to control the interview to a certain extent. The interviewer should
also take the opportunity to ask follow-up questions in an attempt to get more
details. The interviewer should also make sure that all questions have been
covered before ending the interview.

A good interviewer understands his/her role during the interview, recogniz-
ing how different types of questions affects the interviewee, how the intonation,
choice of words, body language, etc., all affect the outcome of the interview.
During analysis it is important to consider which role the interviewer played in
the interview, for example, if the interviewer introduced any bias or in some
other way influenced the interviewee.

3.2 Analysis methods

As with any experimental work, it is important to plan the experimental setup
carefully so that it fits with the approach that has been selected for doing the
data collection and analysis. Popular analysis methods includes

e Grounded Theory
e Narrative Research
e Phenomenology

e Content (or Thematic) Analysis

Ethnography
e Case Study

e Phenomenography

2This was only done as an informal experiment and did not result in any comparison
between the methods.
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See for example [7, 4] for more information. For the novice qualitative researcher
it can sometimes be difficult to differentiate these methods and understand when
to use which method. In our research we have not used a “pure” method, instead
we have analyzed the data in a way that is inspired by Grounded Theory and
Phenomenography. Our workflow can shortly be described as

1.
2.

5.

Collect raw data - the majority being semi-structured interviews.
Transcribe.
Read the interviews and look for various themes/categories.

Re-read the interviews and refine the themes/categories. Repeat this step
until are no further changes in the themes/categories.

Analyze the themes/categories with regard to the research question(s).

However, it is important for the researchers to be aware of the limitations that
come with the choice of data collection methods and analysis. As Fincher el
al. [15] point out, there is interesting information to find if we look outside our
normal ways of collecting data.
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Chapter 4

Student problems in
learning to program

Computer Science Education research has to a large extent focused on novice
programmers and the problems they experience when first learning to program.
Some of the work focus on syntactical/semantical issues [10] and the use of
programming plans/goals [54, 53]. There has also been extensive work done
to investigate alternative ways of programming, for example programming by
demonstration [8], programming by example [20, 42], programming with exam-
ples [41], graphical programming languages [9, 47, 32], and animated program-
ming languages [19]. How programming can be used by the computer users
in general [43], for example in spreadsheet applications where users are able
to define how calculations should be done. We can also find a large number of
studies on specific topics related to learning to program. Some examples include
studies on examples for object-oriented programming [44], how students han-
dle new concepts [28], how previous knowledge affects learning [56, 52], various
factors that affect how students learn to program [59], how students read and
understand code [29, 31, 16, 58], and the transition from being a student to a
professional [1].
The author of the present thesis has mainly studied the following areas:

e Understanding how to program
e Threshold Concepts

e Social aspects

e Concurrency

This section describes the first three subjects while concurrency is explored in
more detail in Chapter 5
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4.1 Understanding how to program

As we have mentioned earlier, there has been much work on helping students
learn how to program. However, student problems persist and even tasks that
most CS teachers would consider to be fundamental, such as reading code, can
pose considerable problems for the students [29]. Lister et al. summarizes their
results:

The McCracken group established that many first-year program-
ming students cannot program at the conclusion of their introduc-
tory courses. While a popular explanation for that inability is that
students cannot problem-solve, in the strong five-step sense defined
by the McCracken group, this working group has established that
many students lack knowledge and skills that are a precursor to
problem-solving. These missing elements relate more to the ability
of students to read code than to write it. Many of the students
manifested a fragile ability to systematically analyze a short piece
of code.

These results indicate that students’ difficulties are, partially, caused by the
inability to read and understand code. It is also worth noting that students
who annotated their work did better than those who did not. McCartney et
al. [34] show that while all students seem to benefit from annotating their work,
different types of annotations are used for different types of problems. Our
study used two different types of multiple choice questions:

Fixed-code. The student is given a code fragment and answers questions about
what is the result of the execution of the code.

Skeleton-code. Here the students are presented with an incomplete code snip-
pet and are asked to complete the code by selecting the correct code snip-
pet.

For the fixed-code questions, students tended to use some kind of tracing to find
the correct answer, while the process of elimination was a more popular strategy
for skeleton-code questions. The study does not find evidence to explain these
differences but the authors suggest three possible reasons: 1) too much work is
required to do tracing for skeleton-code problems, 2) fixed-code questions are
less abstract and thus more suitable for tracing, and 3) there is a lack of a
notation to represent the more complex code snippets used for skeleton-code
questions.

Not only do students perform on a less than expected level in reading/writing
simple programs, they also have problems in designing programs. In Eckerdal et
al. [12] we describe a study where 149 graduating student design solutions were
categorized. The results indicate that a large number of the students, 62% of
the observations, of the graduating students produce designs that the authors
categorize to be less than a “First Step”. Only 2% of the observations were
considered to be a “Complete” design. The study also indicates that students’
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grades have little relationship to their produced design as the designs of many
of top performing students were classified to be below a “Partial” design.

4.2 Threshold Concepts

The idea of Threshold Concepts [36] has received interest from the CSEd com-
munity [5, 11, 13, 33, 48, 49, 57, 60] with the hope that it would make it possible
to define a number of core concepts that students must master in the discipline.
This would enable educators to concentrate their efforts on these concepts, re-
sulting in better understanding from the students. Meyer and Land [36] defines
Threshold Concepts as being:

Transformative: they change the way a student looks at things in the disci-
pline.

Integrative: they tie together concepts in ways that were previously unknown
to the student.

Irreversible: they are difficult for the student to unlearn.

Potentially troublesome: students experience these concepts as conceptually
difficult, alien, and/or counter-intuitive.

Often boundary markers: they indicate the limits of a conceptual area or
the discipline itself.

The motivation behind Threshold Concepts is the “aha moment” that most of
us have had, i.e., we come to understand a concept that has troubled us for
some time and once we have gained this understanding, other things become
clear. When asked about their opinion of Threshold Concepts many educators
found them very interesting [5]. In the Sweden Group, we have investigated
Threshold Concepts in Computer Science thoroughly [11, 5, 13, 60, 33, 40] We
identified two possible Threshold Concepts:

We have identified two Threshold Concepts, or perhaps broad ar-
eas within which thresholds exist: pointers and object-oriented pro-
gramming. These were the terms our subjects used for concepts
they identified, but these concepts — object-oriented programming
in particular — are very broad [5, p. 508].

In a later paper [39], the abstraction of specific concepts — for example, modular-
ity, data abstraction, inheritance, polymorphism, design patterns, complexity
— was added. However, it is difficult to find evidence of these as Threshold
Concepts and they do not seem to be universal in the sense that every student
experiences them.

Moreover, it is problematic that the discovered concepts have such broad
scope. For example, the notion of object-oriented programming as a Threshold
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Concept is almost useless since object-oriented programming is such an encom-
passing topic — it is usually the subject for several courses — that it becomes
impossible to know where to concentrate the teaching effort. In Sanders et
al. [50], concept maps were used to investigate students’ understanding of the
concepts that make up object-oriented programming. Students were found to
confuse “class” and “instance” but students generally connected classes with
both data and behavior to various degree. They have a static model of object-
orientation showing no interaction among objects in a program.

4.3 Social aspects

Some authors point out that it is not only facts and skills that students have
to learn before they can claim to be Computer Scientists, they also have to
become a part of the Computer Science Community by learning the language,
standards, and way of thinking that is the accepted behavior in the community.

Ben-David Kolikant [23] describes the culture clash that happens when old-
timers in the informal programming culture — the students — meet the academic
programming culture — the teachers. She suggests that these cultural meetings
should be considered fertile zones of cultural encounter where bridges are built
between the students’ current culture and the target academic culture. Kolikant
suggests that students’ and teachers’ different standards of correctness [25, 21]
might be explained by this cultural clash [26]. The following quote characterizes
this clash:

In contrast, we found that CS students assert and exercise rights to
grant legitimacy to activities proposed by the teachers and will not
make the effort needed to learn advanced subjects until such legiti-
macy has been granted. We believe that the standing of teachers in
CS is different from teachers’ standing in other subjects: Students
challenge the demands set by the teachers because they know how
to productively solve problems on the computer, although they have
different ideas on what counts as a satisfactory solution.

Zander et al. [61] describe a similar progression from computer user to computer
science student to computer science professional is described. However, it is
difficult to say to what extent this affects the students’ learning.
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Chapter 5

Concurrency

It is safe to say that programming is not something that comes naturally to
everyone. Thus it is not surprising to see that many studies have been focused
on novices and the problems they experience, while less attention has been given
to the problems experienced by more advanced students — despite that many
new and complex concepts are introduced in the later years. Concurrency is
one of the concepts that traditionally is introduced later in the curricula and is
often considered difficult.

5.1 What is concurrency?

The main difference between a serial and a concurrent system is that the serial
system has a single thread of execution whereas a concurrent system has multiple
threads, see for example [6, 18, 55]. Figure 1 shows a traditional serial program.
The dotted rectangle symbolizes the program code, while the arrowed line shows

Figure 1: A serial program, the arrowed line shows the execution path from
beginning to end. The loop in the middle symbolizes a loop in the code.

the execution path — sometimes called a ‘thread’. We can see how a traditional
program runs from start to end along a single path. This is in contrast to a
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concurrent program that allows the execution of several different paths at the
same time, see Figure 2.

Figure 2: A concurrent program that splits a single execution path into several
concurrent paths.

A second noticeable thing is that the different threads in a concurrent system
work together towards a common goal. To be able to achieve this goal it is
necessary to coordinate the activities of the threads; in other words, there is a
need for a mechanism that allows the threads to communicate with each other.
Several methods for how to communicate have been suggested and we will take
a closer look at one of them later.

5.2 What problems do concurrency solve?

In early computer systems, concurrency was simulated by letting one processing
unit quickly switch between different threads. It turns out that despite the
extra strain these switches put on the processing unit, the total performance
of a system can increase. How can this be? Input/Output (I/O) operations
are usually very slow compared to other execution. This means that a program
that has many I/O operations spends a considerable amount of time waiting
for these operations to complete. By switching to another thread and letting it
execute during these periods, we can achieve a total increase in performance!,
Figure 3 illustrates this phenomen.

If we have several processing units available, we can also achieve higher
performance by dividing a problem into several sub-problems and letting the
different units solve each part. The sub-solutions are then combined to provide
the complete solution. For example, this is a common technique when making
large matrix calculations as illustrated in Figure 4. In an ideal world this would

IThe word “performance” is used in a general sense.
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Figure 3: The top diagram shows the execution time in a sequential system
that waits during I/O access (grey box). The lower diagram shows how we take
advantage of the wait time to run the second process, resulting in better total
performance.

Figure 4: A matrix is divided into several parts, each part is processed on a
separate unit and the results are combined.

mean that using ten processors instead of one would cut down the time used to
one-tenth of the time.

Both of the examples above involve increased performance, but concurrency
can also be used to make it easier for a programmer to design and implement a
system. The following fictitious example tries to exemplify this. Let us assume
that we have a program that plays video; this means that it needs to read
data from a disk or a network connection (R), decode/output sound (DS, OS),
decode/output images (DI, OI) in addition to react to user input (UI), see
Figure 5. However, it quickly becomes difficult to coordinate these activities so
that the system gets new data to process on time, decode/output sound and
images without delay/jitter, and at the same time be responsive to user input.
By making a design based on concurrency, we can design a system that is much
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Figure 5: A single threaded solution where many different activities need to be
interleaved.

easier to implement and maintain, see Figure 6. Here we see how the different

ul

Figure 6: A solution with six threads that communicate to achieve the desired
result. Note that this solution is more modular than the one in Figure 5.

threads are responsible for one single task and only communicate with each
other when necessary. This solution has two major advantages: designing and
implementing the program becomes easier since each task is separated from the
others with a clearly defined interaction interface; and in the case where we have
multiple processing units, we can schedule the different threads onto different
processing units resulting in higher performance of the whole system.

5.3 Problems with concurrency

Unfortunately, concurrency comes with its own set of problems. We will not
describe them all here, but only give an example of one of the most basic ones:
a race condition. Assume we have two threads, A and B, that execute the
following code.

Thread A:
Al: while index < 3 do
A2: sum = sum + values[index]
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A3: index = index + 1
A4: print sum

Thread B:
Bl: if index > 1 then
B2: index = 0

Assume that the value of ‘index’ is 0 before the execution of this code and
that ‘values’ contains the values [8, 10, 20]. Since these two threads execute
concurrently there are several possible sequences in which these instructions
can execute. One possibile sequence is A1, A2, A3, A1, A2, A3, Al, A2, A3,
Al, A4, B1, B2. This would result in a printout of 38. But an equally possible
execution order would be A1, A2, A3, A1, A2, A3, A1, A2, A3, B1, B2, A1, A2,
A3, A1, A2, A3, A1, A2, A3, A1, A4 which would result in 76 being printed.
The problem that shows in the second sequence is that both threads can freely
access ‘index’ at any time. Thread A executes the loop A1-A3 three times,
making ‘index’ equal three. The next statement would be Al again, which
would evaluate index < 3 to false and quit the loop. However, before this
happens thread B starts and changes the value of ‘index’ to 0. When thread A
now continues with Al, it will evaluate index < 3 to true and sum up ‘values’
a second time.

This also means that running the same program twice does not necessarily
give the same result. To avoid problems similar to this one, we need some way
of synchronizing the access to ‘index’. Several synchronization primitives have
been suggested and once again we will limit ourselves and describe only one, the
semaphore. The semaphore is a very basic synchronization mechanism that can
be viewed as a datatype that has the value of 0 or higher. Only two operations
are allowed on a semaphore besides initialization: ‘acquire’ and ‘release’ — both
of these operations are “atomic” meaning that they cannot be interrupted or
interleaved. ‘Acquire’ can be described using the following pseudo-code:

if value > O then

decrease value by one

let the calling thread continue execution with the next instruction
else

suspend the thread

And the ‘release’ operation:

if other threads waiting then

let one of the waiting threads run
else

increase value with 1
continue execution of calling thread

Given this definition we can avoid the problems described previously by rewrit-
ing the code as follows:

Init code:
I1: Semaphore indexlock = 1
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Thread A:

Al: acquire(indexlock)

A2: while index < 3 do

A3: sum = sum + values[index]
Ad: index = index + 1

A5: release(indexlock)

A6: print sum

Thread B:

Bl: acquire(indexlock)
B2: if index > 1 then
B3: index = 0

B4: release(indexlock)

This means that we have two possible permutations of the lines I1, A1-A5 and
B1-B4: either 11, A1, A2, A3, A4, A5, B1, B2, B3, B4; or 11, B1, B2, B3, B4,
A1, A2, A3, A4, A5. When the print statement on line A6 is reached it will
print out 38 in both cases.

While this seems to be a simple solution to the problem, there are additional
problems that need to be taken into consideration. Take, for example, the case
where both threads need resources R1 and R2 to complete their tasks. R1 and
R2 can be modeled as semaphores rl and r2. A possible solution could be
written:

Thread A:

Al: acquire(rl)

A2: acquire(r2)

A3: # complete task
A4: release(r2)

A5: release(rl)

Thread B:

Bl: acquire(r2)

B2: acquire(rl)

B3: # complete task
B4: release(rl)

B5: release(r2)

Assume the execution order of Al, B1, A2, B3, A3, B3, etc. Already at the third
step we can see a potential problem: Thread A tries to get access to r2 which
already has been acquired by B. In the fourth step, disaster is complete since
B tries to gain access to rl which is owned by A. In other words, we now have
two processes that both are waiting for the other process to release a needed
resource, a situation commonly referred to as “deadlock” — the system has come
to a complete standstill.

We will not further discuss possible problems that can occur when using a
concurrent system; we recommend the interested reader to look at one of the
available textbooks for details.
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5.4 Problems students are thought to have

Do students have problems with concurrency and if so, what are these problems?

We were interested in finding the answers to these questions and turned to the
literature [37]. To our surprise we found only a modest number of papers, and
many of those we found focused on implementation details of some specific tool.
What made this discovery even more interesting was that some of these papers
did not describe what problems students have or how the proposed tool would
improve the situation. Sometimes we found that the authors of a paper made
general claims like “Students have difficulties in learning concurrency since it is
difficult to ‘see’ what happens in the system” or “In our experience students have
problem with X”. In other words, there were no references to previous studies or
empirical data. In some instances a shallow evaluation of some specific tool was
described. This work can be summarized as “We showed it to some students.
They liked it. You should use it.”

However, not everything we found belonged to this category. Several authors
have written papers detailing studies investigating student problems and related
questions. One author who has written several papers on the subject is Ben-
David Kolikant [2, 27, 22, 24, 23, 25, 26, 21]. Some of Ben-David Kolikants
findings include:

e Students do not understand what a computational model is.
e Students have difficulties on orchestration synchronization.
e Students tend to make centralized solutions.

e Students have different standards for correctness compared to teachers
and professionals.

e The difference in standards for correctness might be attributed to a cul-
tural difference between expert users (the students) and expert program-
mers (teachers/professionals).

Although it might not seem directly related to concurrency we found the last
item especially intriguing. In a concurrent system it is very important that
all parts works as specified; if the students have the “relaxed” standards of
correctness as described by Ben-David Kolikant, they can easily run into various
problems when implementing a concurrent system.

To get a better overview of the problems students face, we classified what
different papers claimed to be problematic. This resulted in the following list:

e Concurrency in general
e Previous experience
e Non-determinism

e Tools and programming languages
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Synchronization

Creating a mental model

Limited by examples

Debugging and testing
e Problem solving

Each item is described in more detail in Paper VII. A summary of the papers
reviewed is found in Table 5.1, with details found in Paper VII.

We classified the thoroughness of the papers along four dimensions (for a
more detailed description of these dimensions see Paper VII):

Claims - Does the paper make any claims about the problems students have?
Here we expected that a large percentage of the papers would either be-
long to “Claims with references” or “No claims”. The first group being
papers that give some kind of reference to support the claims while the
second would contain papers that explore and try to understand student
problems. Each paper is placed into one group.

Content - What did the paper discuss? Each paper can be classified as dis-
cussing several subjects, this is due to the simple fact that many papers
touched on several subjects.

Empirical - Does the paper collect any empirical data? In other words, is data
collected for an evaluation of the tool/method/curricula/etc described in
the paper? In some cases it makes no sense to collect data since an eval-
uation make no sense. Each paper is put into one group.

Analysis - Did the paper include any form of data analysis? Please note that
there was no judgment on which analysis method was used, or of the
results. Each paper was put into one group.

While this classification could be analyzed further, it gives an indication of the
types of papers we found. We would like to note some interesting information
that can be found in Table 5.1:

e As mentioned above we had expected a paper either to make no claims or
make claims citing papers with supporting data. To our surprise we found
that the group “Claims, no references” was large: 35%.

e Several different subjects are discussed in category “Content”; “Course”,
“Tool” and “Student understanding” being the ones most popular. We
see that only 20 out of 106 papers contain a discussion of student under-
standing. While this is not in any way conclusive evidence it does give an
indication that the interest in “Student understanding” is low.
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e To be able to evaluate if/how a tool/course/method/etc affect student
learning it is necessary to collect empirical data. Yet, 49% of the papers
did not include any mentioning of collecting empirical data.

e We can also see that only 30% of the papers included an analysis of data
while 52% did not contain an analysis or an analysis that could be classified
as “Anecdotical” or “Questionable”.

It should be noted that there are several threats to the validity of these results,
mainly in how the papers were collected (see Paper VII for details). On the
other hand, we have thoroughly searched the literature using various methods
to make sure that we did not miss relevant publications.

Table 5.2 lists how the papers in different content categories differ along
the other categories: Claims, Empirical data, and Analysis. Most noticeable is
“Student understanding” which has a very different profile than other subjects.
Nineteen out of the twenty papers were classified as collecting empirical data
and containing an analysis. Ten made no claims about student understanding,
while nine that made claims had supporting references. These numbers suggests
that papers for this subject can be considered research papers based on empirical
data.

Two other subjects worth noting are “Tool” and “Visualization”. Both
subjects have a large number of papers classified as making claims without sup-
porting data. To a large degree these papers also lack descriptions of collecting
empirical data, and few contain an analysis of the data found.

5.5 Problems the students themselves describe

While the problems listed above certainly are interesting they also mainly reflect
what teachers/researchers believe are the problems students face. By doing a
series of interviews, we were able to do a first comparison between what can be
found in the literature and what the students themselves think, see Paper VIII.

To highlight some of the results from [38]: Out of the seven students in-
cluded in the results, six explicitly stated they thought concurrency to be
fun/interesting. The seventh student indicated that concurrency was not some-
thing he was interested in%. This is a very encouraging result; it indicates that
the students think that concurrency is something worthwhile to study.

The second thing to note is that the students made very few comments
about visualization. In fact, only one student made a comment that we could
interpret as a wish for a visualization tool. This is in stark contrast with the
literature where visualization is a common theme. There are several possible
explanations for this difference, the first being simply that there has been a
misunderstanding in what problems students have and what kind of help is
needed. But it could also be that the students are not advanced enough to
appreciate, or even realize, the difference a visualization tool would make to

2although he said that he wanted to work with embedded systems.
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Claims All
No claims 47
Claims, no references 37
Claims, references 22
Total 106
Content All
Bugs 3
Concurrency concepts 5
Course 40
Language 19
Library 9
Miscellaneous 9
Non-determinism 3
Students understanding 20
Tool 30
Visualization 14
Total 152
Empirical All
Anecdotical 23
No 33
Not relevant 15
Yes 35
Total 106
Analysis All
Anecdotical 34
Do not discuss learning 6
Yes 32
No 16
Not relevant 13
Questionable 5
Total 106
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Table 5.1: A summary of articles referenced in Paper VII.

their understanding. Unfortunately, the data collected was not rich enough to
allow for a deeper analysis.
Third, is concurrency difficult? Judging by the results from [38], the stu-
dents do not appear to think so. They seem to think that concurrency is fairly
straightforward to understand and use. They do recognize that a concurrent
system is more complex than a sequential system, but this added complexity
does not appear to deter them from thinking that concurrency is no more diffi-
cult than other subjects. In fact, to some the added complexity adds an extra
challenge that makes the whole problem solving process more interesting.
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There are several sources of errors that might influence these results. The
perhaps biggest problem is that we do not know if the students really have
understood concurrency. It might be that they think that they have understood
based on the examples/problems they have encountered during their course and
if faced with real-world problems they would change their minds.
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Chapter 6

Conclusions

Computer Science is about 60-70 years old (if we exclude early work by Ada
Lovelace, etc.) and it is a rapidly evolving field. As a consequence, Computer
Science education is chasing a moving target with ever changing programming
languages, programming techniques, and tools. However, there are some impor-
tant concepts that seem to be constant over time, for example, basic concepts
like control structures and parameter passing but also more advanced subjects
like object-oriented and functional programming.

One of these important concepts is concurrency; it has been important for
many decades but we think it is going be even more important in the future.
With the increased availability of many-core processors, more and more types
of applications are going to use a multi-threaded design.

Encouragingly, students seem to be interested in concurrency and agree the
importance of the subject. They also appear to think that concurrency is fairly
straightforward to learn. They, of course, have some problems, but students do
not indicate that concurrency is radically more difficult than other concepts.
On the contrary, the interviewed students seem to think that concurrency is an
interesting challenge that they want to master.

This does not mean that concurrency is without its problem. Researchers,
for example: Ben-David Kolikant and Lonngard, list several issues that seem
to be common problem for novices learning concurrent programming. There
are many opportunities for future research about concurrency and learning. We
find the questions below especially interesting:

e All students mention at least one synchronization primitive. Some men-
tioned a specific primitive as being a problem at first — although none said
it was a big problem. Was this the first primitive they learned? Were
the difficulties “normal” confusion that occurs when a new concept first is
introduced? Or, can we see a pattern in what primitives caused problems?

e Have the students really mastered concurrency or are they “stuck” at a
lower level of understanding — similar to what is indicated in [29] about
programming in general? Have they encountered concurrent systems with
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a large number of threads and complex thread interaction? Are the stu-
dent answers we received only based on experience with systems of basic
complexity? Would their answers be different if they had experience from
complex systems?

e What kind of software tools are most helpful when trying to learn concur-
rent programming?

e In Paper VII we find that several different languages have been introduced
in attempts to make concurrency more accessible. Is there a combination
of language type/notation - for example textual, graphical, object-oriented
- and pedagogical approach that yield better results than other combina-
tions.

We believe that by continued research of the problems students experience and
how different tools/languages/pedagogical approaches affect them, we will make
concurrency easier to learn in the future.
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