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Two- and one-dimensional honeycomb structures of silicon and germanium
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1UNAM-Institute of Materials Science and Nanotechnology, Bilkent University, Ankara 06800, Turkey
2Department of Physics, Bilkent University, Ankara 06800, Turkey

(Dated: October 22, 2018)

First-principles calculations of structure optimization, phonon modes and finite temperature
molecular dynamics predict that silicon and germanium can have stable, two-dimensional, low -
buckled, honeycomb structures. Similar to graphene, these puckered structures are ambipolar and
their charge carriers can behave like a massless Dirac fermions due to their π- and π∗-bands which
are crossed linearly at the Fermi level. In addition to these fundamental properties, bare and hy-
drogen passivated nanoribbons of Si and Ge show remarkable electronic and magnetic properties,
which are size and orientation dependent. These properties offer interesting alternatives for the
engineering of diverse nanodevices.

PACS numbers: 73.22.-f, 63.22.-m, 61.48.De

The unusual electronic properties of graphene, which
is derived from its planar honeycomb structure leads to
charge carriers resembling massless Dirac fermions [1].
Recent synthesis of graphene [2, 3, 4] has demonstrated
that this truly two dimensional (2D) structure is stable
and has introduced novel concepts [2, 5, 6]. Not only the
fundamental properties of 2D graphene, but also interest-
ing size and geometry dependent electronic and magnetic
properties of their quasi 1D nanoribbons [7, 8] have been
revealed. While the research interest in graphene and its
ribbons is growing rapidly, one has started to question
whether the other Group IV elements in Periodic Ta-
ble, such as Si and Ge, have stable honeycomb structure
[9, 10]. Even before the synthesis of isolated graphene,
ab-initio studies based on the minimization of the total
energy has revealed that a buckled honeycomb structure
of Si can exists [9, 10].

In this letter, based on the state-of-the-art structure
optimization, phonon dispersion and ab-initio finite tem-
perature molecular dynamics calculations within den-
sity functional theory (DFT) [11] we show that the low-
buckled honeycomb structures of Si and Ge can be sta-
ble. Their band structures show linear band crossing at
the Fermi level and thus have Dirac points at the K-
and K′-points of the hexagonal Brillouin zone (BZ), even
for puckered structure. These results are somehow un-
expected but may have important consequences. For ex-
ample, the bands display an ambipolar character and the
charge carriers behave like massless Dirac fermions in a
small energy range around the Fermi level, EF . Even
more remarkable is that the armchair and zigzag nanorib-
bons of Si and Ge can exist and display unusual proper-
ties which are crucial for future device applications.

Calculated variation of the binding energy of the re-
laxed honeycomb structure of Si and Ge as a function
of the lattice constant is presented in Fig.1. Here pla-
nar (PL), low-buckled (LB) and high buckled (HB) hon-
eycomb structures correspond to distinct minima. The
PL honeycomb structure is the least energetic config-

uration and is not stable. The important question to
be addressed is whether these puckered LB and HB ge-
ometries correspond to real local minima in the Born-
Oppenheimer surface.

PL structure of Si and Ge have phonon modes, which
have imaginary frequencies in BZ. For the minimum en-
ergy PL structure of Si, optical and acoustical branches
hybridize and one optical (ZO) branch is lowered into
acoustical frequencies and have imaginary frequencies
along Γ − K direction of BZ. The situation for PL Ge
structure is even more dramatic with one acoustical and
one optical branch having imaginary frequencies. As for
HB honeycomb structures of Si and Ge with a buckling of
∆HB ≈ 2 Å, they have also imaginary phonon frequencies
for a large portion of BZ. Moreover, structure optimiza-
tion of HB structure on the (2×2) supercell results in an
instability with a tendency towards clustering. Clearly,
the unstable HB structure does not correspond to a real
local minimum; it can occur only under the constraint of
the (1×1) hexagonal lattice.

The phonon dispersion curves in Fig.1 indicate that 2D
periodic LB honeycomb structure of Si is stable. With an
equilibrium buckling ∆LB=0.44 Å, its optical and acous-
tical branches are well separated and all branches have
positive frequency. Two acoustical branches are linear
as k → 0. Whereas the transverse branch displays a
quadratic dispersion near Γ-point, since the force con-
stants related with the transverse motion of atoms decays
rapidly [12]. The phonon dispersion curves of 2D periodic
LB structure of Ge having a buckling of ∆LB=0.64 Å are
similar to those of Si, except the frequencies of Ge are
almost halved due to relatively smaller force constants.
The transverse acoustical phonon branch has imaginary
frequencies near Γ-point. This may be interpreted as LB
structure of Ge can be unstable if the wavelength of this
particular mode λ > 3b (7b according to phonon dis-
persion curves calculated using DFPT [11]), whereas its
flakes can be stable. In fact, the structure optimization
on the (l × l) supercells (where for l = 2 − 8 atoms are
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FIG. 1: (Color online) Upper panel: Energy versus hexago-
nal lattice constant of 2D Si and Ge are calculated for var-
ious honeycomb structures. Black (dark) and dashed green
(dashed light) curves of energy are calculated by LDA using
PAW potential and ultrasoft pseudopotentials, respectively.
Planar and buckled geometries together with buckling dis-
tance ∆ and lattice constant of the hexagonal primitive unit
cell, b are shown by inset. Lower panels: Phonon dispersion
curves obtained by force-constant and linear response theory
are presented by black (dark) and dashed green (dashed light)
curves, respectively.

displaced along random directions from their optimized
positions and subsequently the structure is relaxed) is re-
sulted in the atomic configuration with periodic rippling
for l > 3. The stability of LB structures of Si and Ge
are further tested by extensive ab-initio finite tempera-
ture molecular dynamics calculations using time steps of
δt = 2× 10−15 seconds. In these calculations the (4× 4)
supercell is used to lift the constraint of (1× 1) cell. Pe-
riodic 2D LB structure of Si (Ge) is not destroyed by
raising the temperature from T=0 K to 1000 K (800 K)
in 100 steps, and holding it at T=1000 K (800K) for 10
picoseconds (ps). A finite size, large hexagonal LB flake
of Si (Ge) with hydrogen passivated edge atoms is not
destroyed upon raising its temperature from 0 K to 1000
K (800 K) in 100 steps and holding it for more than 3 ps.

We believe that the present analysis together with cal-

TABLE I: Binding energy and structural parameters calcu-
lated for the bulk and 2D Si and Ge crystals. abulk [in Å],
Ec,bulk [in eV per atom], ∆HB [in Å], ∆LB , bLB , dLB and
Ec,LB, respectively, stand for bulk cubic lattice constant,
bulk cohesive energy, high-buckling distance, low-buckling
distance, hexagonal lattice constant of 2D LB honeycomb
structure, corresponding nearest neighbor distance and cor-
responding cohesive energy.

abulk Ec,bulk △HB △LB bLB dLB Ec,LB

Si 5.41 5.92 2.13 0.44 3.83 2.25 5.16

Ge 5.64 5.14 2.23 0.64 3.97 2.38 4.15

culated phonon dispersion curves provides stringent test
for the stability of LB honeycomb structure of both Si
and Ge. In this respect, LB structures of Si and Ge ap-
pear to be a contrast to 2D C and BN forming only sta-
ble planar honeycomb structure [16]. The situation with
three different minima corresponding to PL, LB and HB
geometries of 2D Si and Ge in Fig.1 is reminiscent of those
of 1D atomic chains. Earlier, it has been shown that
while several elements and III-V compounds form lin-
ear, wide-angle (i.e. LB) and low-angle (i.e. HB) atomic
chains [13, 14], only C and BN form stable linear atomic
chains [14, 15]. That C and BN form linear 1D atomic
chains and 2D planar honeycomb structures arises from
the strong π-bonding. Despite the weakened π-bonding,
the stability of Si and Ge LB structures are maintained by
puckering induced dehybridization. As a result, the per-
pendicular pz-orbital, which forms π-bonding and hence
π- and π∗-bands, combines with the s-orbital. Relevant
lattice parameters and cohesive energies of LB Si and Ge
honeycomb structures are given in Table I. Different po-
tentials (PAW or ultrasoft pseudopotential) [11] yielded
values which differ only 1%.

The calculated electronic band structures and corre-
sponding density of states (DOS) of LB Si and Ge are
presented in Fig.2. For the sake of comparison bands for
unstable planar and HB structures are also given. Two
dimensional HB Si and Ge are metallic. The bands of
PL and LB structures are similar except that specific de-
generacies split due to lowering of point group rotation
symmetry from C6 in PL geometry to C3 in LB geometry.
Similar to graphene, π- and π∗-bands of LB Si crossing
at K- and K

′

-points at EF are semimetallic. For PL Ge,
since the s-like lowest conduction band of planar Ge dips
into the Fermi level, π- and π∗-bands cross at K- and
K′-points above the Fermi level. Therefore, PL struc-
ture of Ge is metallic. Upon a structural transformation
from PL to LB structure, the crossing point of the π-
and π∗-bands of Ge shifts to Fermi level. At the end, LB
structure of Ge becomes also semimetallic. Around the
crossing point, these bands are linear. This behavior of
bands, in turn, attributes a massless Dirac fermion char-
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FIG. 2: (Color online) Energy band structure of Si and Ge
are calculated for high-buckled (HB), planar (PL) and low-
buckled (LB) structures. For LB structure the density of
states (DOS) is also presented. The crossing of the π- and
π∗- bands at K- and K′-points of BZ is amplified to show
that they are linear near the cross section point. Zero of en-
ergy is set at the Fermi level, EF . s, px,y orbital character of
bands are indicated.

acter to the charge carriers. Interestingly, by neglecting
the second and higher order terms with respect to q2, the
Fermi velocity is estimated to be vF ∼ 106m/s for both
Si and Ge by fitting the π- and π∗- bands at k = K+ q
to the expression

vF ≃ E(q)/h̄|q| (1)

We note that vF calculated for LB honeycomb struc-
tures of Si and Ge are rather high and close to that cal-
culated for graphene using the tight-binding bands. In
addition, because of the electron-hole symmetry at K-
and K ′-points of BZ, LB Si and Ge are ambipolar for
E(q)= EF ± ǫ, ǫ being small. The ambipolar effect and
high vF of LB Si and Ge are remarkable properties.

While LB crystals of Si and Ge are of fundamental im-
portance, any application involving these materials re-
quires only a small piece of them or a flake, but not an
infinite size. In this respect, their ribbons of nanometer
scale with well-defined shape may be crucial for device
applications. Whether nanoribbons of Si and Ge show
behaviors similar to graphene is the next question to be
answered. Here we consider Si and Ge armchair and
zigzag nanoribbons of different widths, in terms of the
number of Si or Ge atoms n forming a continuous chain
between two edges. The ribbons having width n > 7, ∼1
nm, preserve their LB honeycomb structure upon struc-
ture relaxation. The value of the buckling decrease near
the edges. Their both edges, undergo a (2×1) reconstruc-
tion, which is different for different orientation. Whereas
the reconstruction disappear when the dangling bonds at
the edges are terminated by hydrogen atoms.

In Fig.3(a), we show the minimum energy reconstruc-
tion pattern of n = 10 armchair nanoribbons among
four other (2 × 1) patterns. Si armchair nanoribbons

FIG. 3: (Color online) Ideal and relaxed atomic structure
displaying a (2×1) asymmetric dimer like reconstruction (a);
electronic energy bands and isosurface charge density of se-
lected states (b); variation of band gap, EG with the width
n of bare Si armchair nanoribbons (c); and similar variation
of EG for the hydrogen saturated nanoribbons showing os-
cillations depending on whether n = 3p, 3p + 1 or 3p + 2 (p
being an integer) (d). Bare Si zigzag nanoribbons showing two
different (2 × 1) reconstruction geometries [18] indicated by
”1” and ”2” and the band structure of metallic non-magnetic
(NM) ground state corresponding to ”1” (e). Isosurfaces of
spin density difference [∆ρ = ρ↑ − ρ↓] for spin-up (red/light)
and spin-down (blue/dark) states in different magnetic ex-
cited states together with spin-up (solid-red/light) and spin-
down (dashed-blue/dark) bands: Antiferromagnetic (AFM)
state (f); and ferromagnetic (FM) state (g) together with their
calculated total energies and magnetic moments. Zero of the
energy is set to EF .

are nonmagnetic semiconductors with band gaps rela-
tively smaller than those of graphene. Generally, owing
to quantum confinement effect the band gap EG increases
with decreasing width n. However, similar to graphene,
the variation of EG with n shows an oscillatory (or fam-
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ily) behavior. For example, if n = 3p + 2 (p being an
integer), EG is very small, but it is large for n = 3p
and n = 3p+ 1. Upon the saturation of dangling bonds
with hydrogen, the value of the band gap increases for
small n, but continues to show the ”oscillatory behav-
ior”. In this case also EG is still small for n = 3p + 2.
Similar oscillatory behavior is also calculated for Ge arm-
chair nanoribbons. We note that the DFT may under-
estimate the calculated band gaps. The variation of the
band gap with n is an important property, which may
lead to formation of quantum dot or multiple quantum
wells through the width modulation [17].

We performed spin-dependent total energy and elec-
tronic structure calculations for bare and hydrogen ter-
minated zigzag nanoribbons. In the (2×1) reconstruction
of bare zigzag nanoribbons in Fig.3(e), one Si atom at the
edge is pushed down while the adjacent atom is raised.
This situation is reminiscent of the (2×1) reconstruc-
tion of Si(111) surface pointed out earlier by Haneman
[18]. In Fig.3(e) one distinguishes however, out-of-plane
and in-plane reconstruction geometries indicated by ”1”
and ”2”, respectively. We found that, the out-of-plane
(2×1) reconstruction geometry has a nonmagnetic (NM),
metallic ground state. However, metallic antiferromag-
netic (AFM) and ferromagnetic (FM) states in Fig.3(f)
and 3(g), respectively, are excited states. This situation
is, however, reversed upon the termination of dangling
bonds by hydrogen; namely magnetic states have lower
energies than NM state. The analysis of the difference
charge density, ∆ρ = ρ↑−ρ↓ in Fig.3(f) and 3(g) indicates
that the AFM and FM states have almost equal energies,
the FM state being 1 meV more energetic. This energy
difference between AFM and FM states, which is within
the accuracy limits of DFT and hence is not decisive,
is however reversed, if noncollinear calculations includ-
ing spin-orbit interaction are performed. In the AFM
case, the edge states have opposite spins and approxi-
mately zero magnetic moment in the unit cell. On the
other hand, the FM state has magnetic moment of 1.62
µB. In both AFM and FM state in Fig.3, the lowered
edge Si atoms have larger magnetic moment, since each
raised edge atom donates electrons to adjacent lowered
edge atoms.

In conclusion, calculations based on DFT show that
Si and Ge can remain stable in LB honeycomb struc-
ture, which attribute them important properties similar
to graphene. Armchair and zigzag nanoribbons of LB
Si and Ge in honeycomb structure exhibit electronic and
magnetic properties, which depend strongly on their size
and geometry. The electronic properties of these nanorib-
bons undergo dramatic change depending whether their
edges are passivated by hydrogen. These properties of Si
and Ge nanoribbons can be used for diverse device appli-
cations. Further to the predictions of the present study,
recent work by Nakano [19] et al. achieving the soft syn-
thesis of single Si monolayer sheet on a substrate holds

the promise for the synthesis of Si and Ge nanoribbons
having honeycomb structures.
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