
1/10

COSC 462

Parallel Algorithms

Matrix-Matrix Multiplication

Piotr Luszczek

2/10

Remarks on Divisibility

● In practice, matrix dimensions and processor counts do not
divide each other

– N is not multiple of P
● Solution: padding with 0’s

– New dimension N’=N+b
● Especially useful for matrix-matrix multiply because 0’s don’t

contribute to the result
● CPUs often take shortcut when 0’s are encountered in floating-point

unit
● If adding 0’s is not an option, for example, small memory then the

cleanup code has to be provided to deal with
– P is not a square of an integer

● Factor P into shape closest to a square
– For example: P=128=8*16

● Advantage:
– Math equations for algorithm scaling will work

– P is a prime number
● Remove one process from computing and try to factor again

3/10

Why Study Matrix-Matrix Multiplication?

● Perfectly parallel yet contains reductions

● Various data distributions possible

● Plenty of examples and written material available

– Algorithms: Cannon (systolic), SUMMA, PUMMA, 3D, 2.5D
● Separate algorithms can be developed for network topologies

– Hypercube (SGI)

– Fat-tree (Infiniband)

– Dragonfly (Cray)

– Torus (Tofu, K computer)
● Applications

– Computational chemistry (change of basis for Hamiltonian)

– Signal processing

– Plasma containment physics
● Tokamak design
● github.com/ORNL-Fusion/aorsa2d

4/10

Definition and Observations

● Matrix notation

– C = A∗B A,B,C∈RN∗N

● Element-wise

– c
ij
 = ∑ a

ik
 b

kj

● Code

– for (i = 0; i < N; ++i)
 for (j = 0; j < N; ++j)
 for (k = 0; k < N; ++k)
 c[i][j] += a[i][k] * b[k][j]

● Observations:

– A lot of work, little input/output data
● Complexity(N) = 2N3 + Θ(N2)
● Data(N) = 3N2 + Θ(N)
● We call it: surface to volume effect

– Parallelism abounds
● The loops can be interchanged
● Summation can use any variant of efficient reduction

5/10

Attempt 1: Single-element Tasks

● Tasks

– N3 compute tasks t
i,j,k

 : c
i,j

(k) = a
i,k

 b
k,j

– N2 reduction tasks r
i,j
 : ∑

k
 c

i,j
(k)

● Data partitioning

– Elements of C don’t need to be replicated

– Elements of A and/or B must be replicated or communicated
● a1,1 is needed by c1,* and c*,1 (N+N tasks)

– Must agglomerate to decrease message count

i

j

k

6/10

Attempt 2: Rowwise Agglomeration

● Rows of B have to be communicated:

– for (i = 0; i < N; ++i)
 sendrecv((self+1) % P, (self-1+P) % P, B[i][:])

● Each processor must exchange N messages

– Total : N*N → Θ(N2)
● Computation to communication ratio

– 2N3 computations on P processors: 2N3/P

– Entire B is communicated: N2

– Ratio: 2N/P
● The ratio is very small (bad)
● The problem needs to grow linearly with number of processors

p
0

p
1

p
2

p
1

p
2

= *

C

=

A B

7/10

Attempt 3: Cannon’s Algorithm

● Main idea:

– Use 2D processor grid and 2D partitioning of the matrix
● Computation to communication ratio

– Computation for a single processor: 2 * N/√P * N/√P * N

– Communication to send the data to a processor: 2*N/√P*N

– Ratio: N/√P
● Compare to N/P for rowwise agglomeration

*

C

=

A B

N/√P

N/√P N

N

8/10

Beware of Sequential Performance

0 100 200 300 400 500 600
0

50

100

150

200

250

Matrix-Matrix Multiply on Intel Pentium III 933 MHz L2 256 KB

Block-oriented
Row-oriented

Matrix size

M
flo

p/
s

9/10

Element-wise vs. Block-wise vs Recursive

*=

*=

*=

Dot-product
formulation,
size of “a”
and “b”
vectors
grows with
the problem
size N

Submatrix
formulation,
block size
can be
limited to fit
in cache

Recursive
formulation
is “cache
oblivious” -
will perform
well without
selecting
block size
explicitly

10/10

Amdahl Law: Sequential Performance Matters

● The reference (sequential) performance for computing Amdahl
fraction must be optimized

● Slow sequential performance is bad because

– Gives a false sense of scalability

– Makes communication look slow compared to computation

– Creates superlinear scalability when there is none

– Gives the wrong basis for comparing between different hardware
and (sequential/parallel) algorithms

● My machine is better because scaling is better
● My algorithm is better because it scales better

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10

