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Abstract

W PMSP96 [Plaut, D. C., McClelland, J. L., Seidenberg, M. S.,
& Patterson, K. Understanding normal and impaired word read-
ing: Computational principles in quasi-regular domains. Psy-
chological Review, 103, 56-115, 1996, Simulation 4] is an
implementation of the triangle model of reading, which was
able to simulate effects found in normal and surface dyslexic
readers. This study replicated the original findings and explored
the possibility that damage to the phonological portion of
the model might produce symptoms of phonological dyslexia.
The first simulation demonstrated that this implementation of
PMSP96 was able to reproduce the standard effects of reading,
and that when damaged by removal of the semantic input to

INTRODUCTION

Phonological dyslexia is a disorder of reading character-
ized by impairment in nonword reading ability. The
characteristics of phonological dyslexia are closely related
to those of deep dyslexia, with the important distinc-
tion that phonological dyslexics do not make any of the
semantic errors that are diagnostic of deep dyslexia.
The first case of phonological dyslexia was reported by
Beauvois and Derouesné (1979) who coined the term.
Since then there have been numerous reports of indi-
vidual cases as well as two case series (Crisp & Lambon
Ralph, 2006; Berndt, Haendiges, Mitchum, & Wayland,
1996). Analysis of these shows that there is a wide con-
tinuum of reading performance both for words and non-
words. At one end there are patients whose word reading
is near ceiling and have only slightly impaired nonword
reading; then there are patients with relatively “pure” de-
ficits whose word reading is still reasonably preserved,
but whose nonword reading is almost at floor. Finally,
there are the very severe cases with abolished nonword
reading, and also very poor reading of words.

At first, it was thought that the only important factor
in phonological dyslexia was lexicality. More recently, it
has been shown that imageability/concreteness also af-
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phonology, it produced the kind of frequency/consistency inter-
actions and regularization errors typical of surface dyslexia. The
second simulation explored the effect of phonological damage.
Phonological damage alone did not result in a convincing simu-
lation of phonological dyslexia. However, when the damage was
followed by a period of recovery, the network was able to
simulate large lexicality and imageability effects characteristic
of phonological dyslexia—the first time that both surface and
phonological dyslexia have been simulated in the same parallel
distributed processing network. This result supports the view
that plasticity-related changes should be a significant factor in
our understanding of chronic behavioral dissociations.

fects word reading. Traditionally, this variable has been
associated with reading performance in deep dyslexics,
and most of the early reports do not associate image-
ability effects with phonological dyslexia. The first sug-
gestion of this possible association comes from patient
LB (Derouesné & Beauvois, 1985). Friedman (1995) also
reported some cases who exhibited imageability effects;
however, it was not until the most recent case-series
study (Crisp & Lambon Ralph, 2006) that it became clear
that the occurrence of imageability effects in phonological
dyslexia was widespread. In that study, all except one of
the 12 patients (the mildest) were significantly more ac-
curate when reading high imageability words. This grad-
ual realization that many “‘deep dyslexic”” symptoms also
occur in phonological dyslexia is part of an emerging
trend in which deep and phonological dyslexia are viewed
as points on a continuum rather than as separate dis-
orders (Crisp & Lambon Ralph, 2006; Friedman, 1996).
The vast majority of phonological-deep dyslexic pa-
tients also present with other associated phonological
impairments, an observation which has led many to
attribute phonological dyslexia to a generalized phono-
logical impairment (e.g., Farah, Stowe, & Levinson, 1996;
Patterson & Marcel, 1992). Indeed, we are only aware of
three potential exceptions to this rule: LB (Derouesné &
Beauvois, 1985), RR (Bisiacchi, Cipolotti, & Denes,
1989), and, more recently, RG (Caccappolo-van Vliet,
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Miozzo, & Stern, 2004). All of these cases had only mild
nonword reading impairments, and as nonword reading
is one of the more difficult phonological tasks, we would
argue that their apparent lack of phonological impair-
ment is merely a reflection of the fact that tests for other
phonological deficits were not sufficiently sensitive to
identify such a mild impairment. Although the current
simulations cannot speak directly to this issue (they are
restricted to modeling performance in reading tasks),
they respect the notion that phonological dyslexia is
the result of generalized damage to the phonological sys-
tem. Accordingly, the expectation for this study is that
lexicality and imageability effects should emerge from
generalized damage to the phonological portion of a neu-
ral network that processes words using interconnected
orthographic, phonological, and semantic systems.
Previous models of reading have focused on model-
ing surface rather than phonological dyslexia (Plaut,
McClelland, Seidenberg, & Patterson, 1996; Patterson,
Seidenberg, & McClelland, 1989); as yet, there has been
no account of acquired phonological dyslexia within a
connectionist framework. Harm and Seidenberg (1999)
have explored the phenomenon of developmental pho-
nological dyslexia with some success. They trained a
single-route network in two stages. First, they trained
the phonological portion of the network so that it
learned the phonological representations of the words
in the training corpus. They then trained the network to
read, interleaving this new training with continued
exposure to phonological only trials from the first phase
of training. To model developmental phonological dys-
lexia, they damaged the phonological portion of the
network after the first stage of training. Although they
successfully modeled varying severities of developmen-
tal dyslexia, none of their simulations were intended to
produce, nor did they come near to producing the very
large lexicality effects found in cases of pure acquired
phonological dyslexia. In fact, there are no reported
parallel distributed processing (PDP) models of acquired
phonological dyslexia that produce lexicality effects of
the required magnitude. (Harm & Seidenberg, 2001
modeled acquired phonological dyslexia, but the focus
of the article was on orthographic influences on RTs,
and lexicality effects were not reported.) It is difficult to
come to any definite conclusion as to why this should
be, but we suspect that a key factor is the difficulty in
obtaining large lexicality effects. Attempting to model
large performance dissociations as a result of damage to
a PDP network can be a very frustrating task. Damage to
these networks tends to affect all processing tasks to a
similar degree (although this will also depend critically
on the architecture of the network and the nature of the
tasks involved). This was certainly the case with early at-
tempts to model surface dyslexia (Patterson et al., 1989).
PMSP96 successfully captured surface dyslexia, but it
achieved this without directly damaging the network.
It modeled surface dyslexia by encouraging a division
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of labor between the direct activation of phonology by
orthography and the additional constraint supplied by
word meaning (semantics). Semantic contributions were
modeled by applying an external input to “push” the
output of the phonological units toward their targets.
Semantic damage could then be modeled by the re-
moval of this input, thus producing surface dyslexia.
This article adopts an additional factor when model-
ing the effects of brain damage (Welbourne & Lambon
Ralph, 2005a). Under this approach, patient perform-
ance is assumed to be the combined result of brain
damage and plasticity-related recovery. The period of
recovery (corresponding to the period of spontaneous
recovery in patients) is critical because it allows the brain
to reoptimize its remaining connections, thus allowing
it to make the best use of what resources it has left.
Therefore, recovery after brain damage may be, at least
in part, attributable to synaptic weight changes. If accu-
rate performance depends on the pattern of synaptic
weights (as it does in PDP models), then it seems rea-
sonable to assume that the disconnection of some
weights, after brain damage, will not leave the remaining
synapses optimally configured to perform the task. Fur-
ther, provided that there is an optimization process by
which the synaptic weights can change (learning), then
it seems inevitable that some of the recovery that we
observe in patients after brain damage must be attribut-
able to synaptic change. This kind of mature synaptic
plasticity has been studied mostly in the context of cor-
tical sensory maps (for a review, see Buonomano &
Merzenich, 1998), and it is clear that these maps are
capable of undergoing extensive modification, presum-
ably as a result of some learning process operating at
the synaptic level. Further evidence for this comes from
studies that demonstrate an altered pattern of activation
in recovered aphasic patients—often involving a shift
of processing from the left to right hemisphere (e.g.,
Blank, Bird, Turkheimer, & Wise, 2003; Weiller et al.,
1995). Leff et al. (2002) provided a particularly strong
example of this. They looked at the relationship be-
tween rate of speech presentation and cerebral activity.
In normal subjects, this function showed a left-right
asymmetry in the posterior superior temporal sulcus
with the left hemisphere showing a steeper response
curve. However, in a group of recovered aphasic pa-
tients with lesions encompassing the left posterior su-
perior temporal sulcus, the steep response curve had
transferred to the homologous area in the right hemi-
sphere. The key strength of this study is that it demon-
strates a shift in activation response curves (rather than
just activations), suggesting that the activation in the
homologous area is performing a similar function to
the original left hemisphere activations. The authors at-
tribute this transfer to synaptic reorganization—exactly
the process that we have introduced into the model.
Our previous simulations (Welbourne & Lambon
Ralph, 2005a, 2005b) demonstrated that at least some
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behavioral dissociation exhibited by patients might re-
sult from this plasticity-related recovery. Plaut (1996)
also investigated the effects of retraining after damage.
Using a network linking orthography to semantics, he
showed that retraining could produce a shift in the error
patterns from deep to phonological dyslexia. The pur-
pose of the present study was to apply our new meth-
odology to a suitable reading model in an attempt to
simulate acquired phonological dyslexia. We selected
Simulation 4 from Plaut et al. (1996) as the most
appropriate for our purposes. This model consists of a
feedforward network trained on a set of monosyllabic
words, with the training weighted by the square root of
word frequency. Input to the phonological units comes,
in a great part, direct from the orthographic units, but is
supplemented by an external ‘“semantic” contribution.
In their article, Plaut et al. demonstrated that removal of
this semantic contribution resulted in typical surface
dyslexic reading patterns. We speculated that damage
to the phonological side of the network, followed by a
suitable period of retraining, might result in typical
phonological patterns of impairment.

METHODS

The architecture, training, and representations used in
these simulations were modeled on those used by Plaut
et al.’s (1996) Simulation 4." Each of these key features is
summarized below. Figure 1 shows the architecture of
the network that was used throughout this set of
simulations. There were three sets of units: 105 graph-
eme units, 100 hidden units, and 61 phoneme units. The
input layer was connected to the hidden layer, with a
probability of 40%, and the hidden layer was connected
to the output layer, with a probability of 80%. This
sparse connection is a modification from the original
simulation where every layer was fully connected to the
next layer up. The purpose of this modification was to
reduce the competence of the phonological part of the
model so that word reading would require a division of
labor between semantic and phonological systems. Plaut

et al. achieved the same result by using a very high value
of weight decay in the phonological part of the model.
The current method was chosen in preference because
it is a more realistic description of synaptic connectivity
in the human brain: If every neuron in the brain were
connected with every other, the size of the brain would
need to increase to a sphere of radius 10 km (Plaut,
2002; Nelson & Bower, 1990). Histological studies in
mice and rats (Young, Scannell, & Burns, 1995) have
demonstrated that the probability of neuronal connec-
tion is extremely dependent on distance. Neurons that
are in close proximity are connected with a high prob-
ability using intracortical connections. Neurons that are
in different systems may still be connected intercortically
via white matter connections, but the density of the
connection projection will be much sparser. Hence, in
our model, connections between orthography and pho-
nology are less likely than connections occurring within
the phonological system.

The activity level of each unit was set to vary between
0 and 1 as a nonlinear (logistic) function of the unit’s
total input. The initial weights on the connections were
set to random values between —0.1 and +0.1. The
network was then trained using the standard backpropa-
gation learning algorithm with momentum enabled only
if the gradient of the error slope was less than 1. Cross
entropy was used as the error function as in PMSP96.
The learning rate for the network was set to 0.05 and the
momentum was 0.9.

It should be noted that this learning procedure differs
slightly from that used in PMSP96, where each connec-
tion was allowed to modify its own learning rate in a
procedure known as delta bar delta learning (Jacobs,
1988). The procedure used here, however, is computa-
tionally simpler and results in very similar performance
to that found in PMSP96.

Orthographic and Phonological Representations

The network used the same representations as PMSP96,
designed to minimize the dispersion problem (a problem

Figure 1. Network . .
architecture. Direct semantic
[ 61 phoneme units ] contribution
Probability of connection =.8
[ 100 hidden units ]
Probability of connection = .4
[ 105 grapheme units ]
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whereby the same letters in different positions cannot
mutually benefit from phonological knowledge). These
representations divide each word into three parts (onset,
vowel, and coda) and then use specific units to code for
particular graphemes or phonemes occurring within each
part. In addition, the phonological onset and coda are
further divided into groups of mutually exclusive pho-
nemes so that when reading off the unit activations only
the most active member of each group is a candidate for
inclusion in the output phoneme string. Table 1 shows
the representation scheme used in this simulation (pho-
nological subgroups are separated by extra spaces). In
general, words are coded from left to right so that if
more than one unit is active in the onset or coda, then
the output is read in the order that they appear in the
table. The only exception to this occurs for the phonemes
pairs p-s, k-s, and t—s, which can occur either way round
in the phonological coda. To cater for this, special units
k-s, p-s, and t-s are used to determine the order. If both
s and p are active, then they are taken in the order s—p,
unless the p—s unit is active, in which case the order is
reversed.

Interpretation of Output to Allow for Omissions

In the original PMSP96 model, it was not possible for the
network to make omission errors. At the very least, every
input would generate an output consisting of a single
vowel sound (from the most active vowel unit). Al-
though this is not a serious problem, where the target
is surface dyslexia, it acquires much more significance
when attempting to model phonological dyslexia, where
omissions constitute one of the largest categories of
error. In order to avoid this problem, we adopted a
slightly different interpretation of the network’s output.
We decided to adopt a range of activations that would

Table 1. Orthographic and Phonological Representations

Orthographic units

Onset YSPTKQCBDGFVJZLMNRWHCH
GH GN PH PS RH SH TH TS WH

Vowel EIO UAY AI AU AW AY EA EE EI EU EW EY
IE OA OE OI OO OU OW OY UE UI UY

Coda HRLMNBDGCXFV]SZPTKQ BB

CH CK DD DG FF GG GH GN KS LL NG
NN PH PP PS RR SH SL SS TCH TH TS TT
77U E ES ED

Phonological units

Onset sSC zZjfvIDpbtdkgmnh Ilrwy
Vowel aeiou@ TAEIOUWY
Coda r Il mnN bgd psksts sz fvpk
t SZTDCj
1128  Journal of Cognitive Neuroscience

be classed as omissions. For the onset and coda, this
range was set to 0.35-0.65, whereas for the vowel units,
it was set to 0.15-0.25 (this maintains the distinction
made in the original model where vowel units require
less activation to be considered as “ON’).? Under this
scheme, units with activations above the top end of the
range are regarded as “ON,” whereas units whose
activations fall below the bottom of the range are
regarded as “OFF.” Any units with activations falling
within the range are considered to be in an undecided
state. The presence of a single output unit in this
undecided state is sufficient to flag the whole response
as an omission. This new method of interpreting the
network’s output was used in all of the simulations
including the replication of the original PMSP results.
The exact settings for these parameters is not critical,
using a wider range results in more omission and fewer
nonword errors, narrower ranges give more nonword
and fewer omission errors.

Imageability Ratings

Imageability ratings for words in the corpus were ob-
tained from the MRC Psycholinguistic database and from
Cortese and Fugett (2004). Between them these sources
provided ratings for 2719 of the 2998 words in the
corpus (1529 words had ratings from both sources).
For purposes of this study, both these ratings were
converted to z scores and averaged if necessary. Words
without an imageability rating were given an average
imageability value (z score = 0).

Semantic Input

Semantic input to the phonological units was provided,
such that it tended to push the phonological units
towards the correct activations. Throughout training,
the strength of this contribution was gradually increased
to mimic the effect of learning. The strength of this
input at any given developmental stage was modulated
by word frequency and imageability according to the
following formula:

0.5
1+ e~ (1.14Log(Freq+2)—1)

0.5
1+ e—(Image,+1.5)

INPUTsemantic = (

X Modulation

Equation 1. Formula for calculating the semantic
input to phonological units

Frequency was taken from Kugera and Francis (1967)
(for consistency with PMSP96) and imageability z score
was calculated as above. (The constants in this formula
were selected to provide a sensible distribution across
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Figure 2. Contribution to semantics from variations in frequency and imageability.

the frequency and imageability values in the corpus
with more of the variation originating in imageability.)
Figure 2 shows how this semantic input varies with
frequency and imageability, whereas Figure 3 shows
the distribution of the semantic contribution for items
in the training corpus.

Over the course of development, the total semantic
input was modulated by an epoch-dependent stepwise
modulation factor that varied from 0.6 to 4.8 in steps of
0.6, where a step occurred after every 200 epochs. This
is slightly different to the continuous function used in
PMSP96, but the key point is that, through training,
semantics makes an increasing contribution to the acti-
vation of the phonological units.
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Semantic Contribution

Figure 3. Distribution of semantic contribution for all items in
training corpus.

In the case of the nonwords, Plaut et al. did not
provide any semantic contribution. We adopted a differ-
ent approach for the following reason: In the brain, the
connections between O and S (either direct O — S or
indirect O — P — S) cannot be selectively turned off for
nonwords. Hence, nonwords will generate some kind of
activation across the semantic units, which will, in turn,
contribute to the activation of phonological units. This
nonword semantic activation will not correspond to any
known semantic targets (except in the case of lexicali-
zation errors); rather, it will represent some kind of
average semantic activation for all the visually similar
words. This will result in a contribution from semantics
to phonology that is effectively random noise. Accord-
ingly, for nonword reading, semantic input was ran-
domly added to the phonological units, where the
input for each unit varied between —0.5 and +0.5 modu-
lated by the same function as for the real words.

Training Procedure

The network was trained using full batches with the same
corpus of 2998 monosyllabic words used in PMSP96. The
square-root frequency (Kucera & Francis, 1967) of each
word was used to scale the error derivatives for the pur-
poses of backpropagation. This has the same effect as
using frequency to determine the probability of a word
being presented for training; however, it has the consid-
erable advantage that every word can still be presented
once every epoch, thus considerably compressing the
required training time (see Plaut et al., 1996 for a fuller
discussion of this issue). To eliminate the possibility
that the results might be a consequence of one particular
set of initial weights, the network was trained 10 times;
each time using a different random set of weights as the
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starting point. These 10 trained networks then formed
the starting point for further investigations.

Testing Procedure

The performance of the network was tested every 10
epochs throughout the training period. Seven sets of test
stimuli were used in this testing process:

1. High-frequency regular words (z = 24) (BEST, BIG,
CAME. . .)

2. High-frequency irregular words (n = 24) (ARE,
BOTH, BREAK...)

3. Low-frequency regular words (7 = 24) (BEAM,
BROKE, BUS...)

4. Low-frequency irregular words (z = 24) (BOWL,
BROAD, BUSH. ..)

5. Regular nonwords (n = 43) (BEED, BELD, BINK. . .)

6. High imageability words (z = 24) (BANK, BED,
BLUE...)

7. Low imageability words (# = 24) (BEAU, DRAB,
FATE...)

The regular and irregular words were taken from
Taraban and McClelland (1987) and were matched
across groups for frequency. The regular nonwords were
taken from Glushko (1979) and were created by chang-
ing the onset of an existing regular word. These stimuli
are the same as those used in PMSP96 so that it is pos-
sible to make a direct comparison of results.

The high and low imageability word sets were con-
structed for the purposes of this simulation. Low image-
ability words (imageability rating 200-400) were selected
from the training corpus and matched, pairwise, on
frequency with high imageability words (imageability
rating 500-700) also selected from the corpus. A list of
these words is provided in Appendix A.

Classification of Errors

Where the network’s response was incorrect, it was clas-
sified into one of five possible error types: omissions,
nonwords, visual/phonological, regularizations, unre-
lated lexical responses.’ As we have already indicated,
omissions were recorded whenever the activation of any
of the output units fell into a predefined range. Non-
word errors occurred where the network produced a
valid output which did not correspond to any of the
words in its training corpus. Visual/phonological errors
were recorded where the network produced an incor-
rect word that contained at least 50% of the correct
target phonology (these words were also visually similar
to the target). Regularization errors could only occur
when the target word was irregular. They were calculat-
ed by matching the actual output of the network against
a list of possible regularizations for each word. For most
words, this list consisted of just one possible regulariza-

1130  Journal of Cognitive Neuroscience

tion, but some words (e.g., FLOOD or LOSE) can be
regularized in two different ways. The list of pronunci-
ations treated as regularizations was taken from those
used in PMSP96. Finally, unrelated lexical responses
were recorded where the output corresponded to a
word from the training corpus that contained less than
50% of the correct phonology.

Simulation Structure

Initially, 10 versions of the network (each with a random
set of initial weights) were trained until performance
reached asymptote (2000 epochs). These 10 networks
then formed the starting point of two additional simu-
lations, exploring the effects of semantic and phono-
logical damage. Semantic damage was simulated by
decreasing the strength of the “semantic” contribution
to phonology while simultaneously adding increasing
amounts of noise. Phonological damage was simulated
by lesioning links into the hidden layer of phonological
units while simultaneously adding noise to the output of
those units. Of course, in this network, it is not possible
to differentiate between damage to the O — P pathway
and damage to the phonological system, but in view of
the overwhelming association between phonological
dyslexia and other phonological impairments, it seems
more parsimonious to interpret this damage as general-
ized damage to the phonological system. The addition of
noise served two purposes: (1) it helped to ensure that
nature of the damage was, as near as possible, that of a
generalized phonological impairment; (2) it meant that,
in addition to damaging the network’s performance, we
were also damaging its ability to relearn. This is likely to
be the case in the human brain where learning and
representation are intrinsically linked. After phonologi-
cal damage, the network was allowed to “recover” for
200 epochs of further training.

RESULTS
Initial Training

By epoch 2000, the network had reached asymptote
performance for all of the stimuli sets except nonwords,
which reached asymptote sooner (epoch 300). At this
point, the network correctly pronounced all of the
words in its corpus, including all of the homographs.
This is slightly better than the performance achieved
by PMSP96, which was 99.7% accurate in word reading.
For nonword reading, the model was correctly reading
90.5% of the regular nonwords. This is not as good as the
96.5% achieved by PMSP96, but it is still close to human
performance, which averages 93.8% (Glushko, 1979).

It was important to verify that this model could rep-
licate the standard frequency/consistency interaction
found in the naming latencies of normal human pop-
ulations (e.g., Seidenberg, 1985; Seidenberg, Waters,
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Barnes, & Tanenhaus, 1984). Error scores from the
network at epoch 2000 were submitted to a 2 x 2 analy-
sis of variance, where frequency and consistency were
treated as between-group variables. This confirmed that
there was indeed a significant frequency/consistency in-
teraction [F(1, 1916) = 238, p < .001]. In addition, there
were significant main effects of both frequency [F(1,
1916) = 306, p < .001] and consistency [F(1, 1916) =
522, p < .001]. Figure 4 illustrates this interaction and it
is clear that the effect of frequency was almost com-
pletely modulated by consistency. For irregular words,
low frequencies resulted in much higher error scores,
but for regular words, there was almost no effect of fre-
quency. This is consistent with the standard effect found
in human reading latencies and with the results found
for PMSP96.

In addition to standard effects of consistency and fre-
quency, one might also expect to see an effect of image-
ability (Strain, Patterson, & Seidenberg, 1995) with high
imageability items having lower error scores than low im-
ageability ones. To test this, error scores from the high
and low imageability word sets were compared. The mean
error score for high imageability items was 0.0082 (SD =
0.013), whereas the mean error score for the low image-
ability items was 0.0223 (SD = 0.0416). Submitting these
scores to a ¢ test revealed that there was, as predicted, a
significant difference (¢t = —7.08, df = 570, p < .001).

Simulation 1: Effect of Semantic
Damage—Replication of PMSP96

Before investigating the possibility that this model could
simulate the symptoms of phonological dyslexia, it was im-
portant to verify that, like PMSP96, it was capable of rep-
licating the symptoms of surface dyslexia. Surface dyslexia

is characterized by poor reading of low-frequency excep-
tion words, coupled with accurate reading of nonwords.
Errors made in reading irregular words tend to be regu-
larizations or LARCs (legitimate alternate reading of com-
ponents; Patterson, Suzuki, Wydell, & Sasanuma, 1995);
for example, reading PINT to rhyme with MINT. To
mimic the effect of semantic damage, we gradually re-
duced the strength of the semantic contribution while
simultaneously adding noise to it. This was achieved by
decreasing the strength of the modulation factor from
4.8 to 0 in 10 steps of 0.48 while simultaneously adding
increasing amounts of Gaussian noise with a standard
deviation increasing in 10 steps of 0.75.

Figures 5 and 6 show the results of this simulation;
Figure 5 gives the accuracy rates and Figure 6 shows the
percentage of responses to irregular stimuli that were
regularizations. For clarity, the regular high-frequency,
high imageability and low imageability word sets have
been omitted—performance on these word sets is very
similar to that for low-frequency regular words. Low-
frequency irregular words are the most affected by the
semantic lesions, with performance dropping to 47% for
the worst damage. At this point, performance on high-
frequency irregular words is reduced to 83%, whereas
accuracy rates on all other word sets fall between
90% and 93%. Note that for nonwords this represents
a slight improvement on the undamaged performance.
Figure 6 shows how the proportion of responses that
are regularizations increases with the degree of semantic
lesion. Again, low-frequency words are the most af-
fected. For the worst level of damage, 34% of responses
to low-frequency irregular words and 7% of responses to
high-frequency irregular words are regularizations. This
pattern of results is consistent with that found in sur-
face dyslexic patients (Woollams, Lambon Ralph, Plaut,

Figure 4. Interaction between
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Figure 5. Effect of removal of
semantic input on accuracy
rates.
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Hodges, & Patterson, in press) and with the results of
PMSP96 Simulation 4.

Simulation 2: Effect of Phonological Damage

Phonological damage was simulated by lesioning the
links between input and hidden layers while simulta-
neously adding noise to the output of the hidden layer.
Twenty levels of severity were tested with lesions rang-
ing from 5% to 100% and noise ranging from 0.05 to
1, both in equal intervals. For each level of severity,
two random lesions were administered to each of the
10 networks so that each data point represents the aver-
age of 20 trials.

Figure 7 shows the effect of this kind of damage on
network performance. Clearly, there is some degree of
lexicality effect; throughout the range of damage sever-
ity, nonwords are read less accurately than any of the
word sets. However, the size of the effect is relatively
small, with the difference ranging between 20% and 40%
so that there is no point at which the network’s per-
formance resembles that of pure phonological dyslexia.
Throughout the range of damage severity, there is a
small advantage for high imageability words versus low
imageability words. However, the magnitude of this
difference is generally smaller than one would expect
to see in patients with phonological dyslexia. In sum-
mary, phonological damage on its own does not result in
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Figure 7. Effect of

phonological damage.
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performance that is typical of phonological dyslexia:
Although it produces data which are qualitatively similar
to phonological dyslexia, it cannot produce sufficiently
wide ranges of lexicality or imageability effects.

So far, the results are in accordance with our expecta-
tions: Phonological damage on its own does not produce
sufficiently large dissociations to make a convincing case
that the network is modeling phonological dyslexia.
This is an analogous situation to that found when trying
to model surface dyslexia with a single-route network
(Welbourne & Lambon Ralph, 2005a; Plaut et al., 1996;

Patterson et al., 1989), where damage alone did not result
in sufficiently large dissociations. The key question is
whether the addition of a period of recovery will change
this pattern of results. To test this, we selected three
levels of damage severity (15%, noise SD = 0.15; 30%,
noise SD = 0.3 and 70%, noise SD = 0.7) and allowed the
network to recover for 200 epochs by re-exposing it to
the original learning environment. Figure 8 shows the
results of this investigation, in terms of reading accuracy,
for the three levels of damage severity. At the most severe
level, nonword reading is abolished while word reading
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accuracy varies between 27% and 43%, depending on
the stimuli set. The high imageability and regular high-
frequency words are read with the highest accuracy. This
pattern of results is exactly what one might expect to see
in a rather severe case of phonological dyslexia.

For the medium and mild levels of damage, the
pattern of performance is similar to that for severe
damage except that it is centered around progressively
higher mean scores: In the case of moderate damage
(30% of links removed), scores range from 49% to 73%,
whereas for milder damage (15% of links removed) they
range from 82% to 94%. In all cases, irregular and low
imageability words are read less accurately than regular
and high imageability words. Nonword reading is seri-
ously impaired for all levels of damage, with overall level
of nonword reading accuracy decreasing with increasing
damage severity. Even at mild levels of damage, non-
word reading accuracy is still only 29%. For the medium
level of damage, the network’s performance resembles
that of a “pure” phonological dyslexic patient: Word
reading performance is relatively preserved (over 70%
for regular high frequency words), and at 4% accuracy
nonword reading is almost abolished. For mild damage,
the performance of the network is similar to that of a
mild case of phonological dyslexia. In addition to the
expected effects of lexicality and imageability, there
appears also to be a small effect of consistency, such
that for the mild and moderate levels of damage, the
network is slightly less accurate when reading inconsist-
ent items.

To confirm the significance of the apparent effects of
lexicality, imageability, and consistency, we submitted
the results to a series of ¢ tests: Lexicality was tested
by comparing performance on high-frequency regular
words with performance on regular nonwords; image-
ability was tested by comparing performance on the
high and low imageability word sets; consistency was
tested by comparing the low-frequency regular and ir-
regular word sets. To compensate for the increased pos-
sibility of Type 1 errors due to multiple comparisons, a
more severe significance criterion of 0.01 was adopted.
Table 2 shows the results of these tests and it is imme-
diately obvious that all of the comparisons for lexicality
and imageability produce highly significant differences
(all ps < .001). At mild levels of damage, there is also a
significant effect of consistency, however, this effect
reduces so that it is only marginal for moderate damage
and disappears completely for severe damage.

Comparison of Lexicality Effects in
Patients and Model

So far, the comparison with patient data has been of a
qualitative nature. We have identified three prototypical
patient profiles and demonstrated that the model can
reproduce these patterns. However, we have not, as yet,
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Table 2. Lexicality, Imageability, and Consistency Effects at
Three Severities of Damage

Lesion Mean

Effect Type Severity Difference MSE t Value df p

Lexicality: Reg Mild

65.75 21 318 19 <.001

HENW Moderate  69.3 20 345 19 <.001

Severe 28.8 1.4 199 19 <.001

Imageability: ~ Mild 5.83 1.8 51 19 <.001

HiFL Moderate 10 34 29 19 <.001

Severe 15.8 1.3 125 19 <.001

Consistency:  Mild 9.2 1.8 51 19 <.001
LFR-LFI

Moderate 10.0 3.4 29 19 .009
Severe 2.5 2.9 85 19 405

Reg = Regular; HF = high frequency; NW = nonwords; HI = high
imageability; LI = low imageability; LFR = low-frequency regular; LFI =
low-frequency imageability.

quantified this comparison. To achieve this, we com-
bined data from the two extant case-series studies (Crisp
& Lambon Ralph, 2006; Berndt et al., 1996). These
patients were all tested more than 3 months postonset
(mean = 52 months), so for all of the patients there had
clearly been ample time for the operation of plasticity-
related recovery processes. For each patient, we took
the total percentage accuracy on all words in the study
and the total percentage accuracy on all nonwords in the
study (note that the exact composition of these lists was
not the same for both studies). Patients were then
divided into three groups corresponding to the three
prototypical profiles already identified. Patients with
lexicality effect sizes of more than 60% were identified
and placed in the “pure” group (nz = 5). The remaining
patients were split into two groups according to their
word reading ability: Those with accuracy rates in excess
of 70% were placed in the mild group (n = 6), with the
remainder being placed in the severe group (n = 12).
These groups were then matched on word reading
accuracy with the model (summing across all word
types), both immediately after damage alone and after
damage and then retraining. To obtain accurate fits,
different levels of damage were required for the retrain-
ing and no retraining cases. Figure 9 shows the results of
this matching process. For the damage-only case, dam-
age levels of 5%, 10%, and 20% were used, whereas for
the damage and then retraining case, the best fitting
levels were 10% 15%, and 40%, corresponding to the
mild, pure, and severe patient groups, respectively.
¢t Tests revealed no significant difference between any
of the word reading scores of the patient groups and the
matching scores from the model (all ps > .05). Having
established matched word reading performance, we
then compared the size of the lexicality effects across
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Figure 9. Fit between patients
and model on word reading
accuracy. i
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the groups (Figure 10). The lexicality effect size from the
patients and the model appears very similar in the case
where the model has been allowed to recover, but
where no recovery has been allowed, the models’
lexicality effect sizes seem substantially smaller than
the patients for both the mild and the pure groups.
¢t Tests confirm this impression; there is no significant
difference in the size of lexicality effects between the
patients and the retrained model (all ps > .05). How-
ever, for the damage-only case, there is a significant
difference between the patients and the model in both
the mild and the pure cases (all ps < .001).

These results are as predicted; in the damage-only
case, the model is not able to produce sufficiently large
lexicality effects to capture the patient data adequately.
However, when the possibility of plasticity-related re-
covery is introduced, the model can capture the full
range of data.

Analysis of Errors

The previous section has shown how the model can
simulate the full range of lexicality effects that one would
expect to see in patients. However, it is also important
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to explore how this kind of damage affects the variety
of errors that the network produces. The pattern of
errors that one expects to see in patients suffering
from phonological dyslexia is very different from that
observed in surface dyslexic patients. Instead of regu-
larizations, the dominant error responses are usually
omissions, nonwords (not regularizations), and visual/
phonological errors. Data from the Crisp and Lambon
Ralph (2006)* case series of 12 patients suggest that
omissions are the most common form of errors in
these patients, followed by nonwords and then visual/
phonological errors, with these three categories be-
tween them forming the bulk of all reported errors.
Figure 11 shows how the frequency of error responses
in the network varies with increasing levels of phono-
logical damage. The results are strikingly similar to the
expected phonological dyslexic pattern. The most com-
mon error type is omissions followed by nonwords
and then visual/phonological errors. In contrast to
the simulation of semantic damage, regularization er-
rors form only a small proportion of responses, and
this proportion actually decreases with increasing lesion
severity.

DISCUSSION

Two simulations were conducted using a network archi-
tecture similar to PMSP96 (Simulation 4). The first
simulation demonstrated that our implementation per-
forms similarly to PMSP96 in that it can reproduce the
cardinal features of normal reading, as well as the
symptoms of surface dyslexia. The second simulation
explored the possibility that damage to the phonological
portion of the model would lead to performance resem-

bling that found in phonological dyslexia. Damage alone
did not produce sufficiently large lexicality effects, but if
the network was allowed a period of plasticity recovery,
then a full range of lexicality effects could be modeled,
coupled with the imageability effects that are character-
istic of phonological dyslexia. This is the first time that
such large lexicality effects have been modeled in a
network which also has the capacity to learn. Moreover,
it is the first time that simulations of surface and
phonological dyslexia have been produced from the
same connectionist architecture.

These results pose two important questions: (1) What
are the critical components in these simulations that are
essential to successfully modeling phonological dyslexia?
(2) How do these results mesh with those reported by
Welbourne and Lambon Ralph (20052)?

Two features of these simulations seem likely to
have significantly contributed to their success in model-
ing phonological dyslexia. The first of these is the
inclusion of a period of plastic recovery after damage.
Welbourne and Lambon Ralph (20052) found that in-
cluding a period of recovery was helpful when modeling
surface dyslexia because it magnified the effect of small
preexisting processing biases into large performance
dissociations. Exactly the same effect is produced in
these simulations, but this time the biases are toward
lexicality and imageability effects rather than a frequen-
cy/consistency interaction. The fact that in two cases
this manipulation contributes to different behavioral
dissociations, both matching known patient behavior,
is indicative that these plastic recovery processes play
a critical role in determining the behavior of chronic
stage patients. This new evidence from modeling neatly
complements the imaging studies (Blank et al., 2003;
Leff et al., 2002; Weiller et al., 1995) that find altered
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activation patterns in recovered patients. The obvious
conclusion is that the synaptic reorganization that sup-
ports changes in brain activation patterns and response
curves also underpins behavioral changes that occur in
the period of spontaneous recovery, and contributes to
the formation patterns of dissociation typical of chronic
stage patients.

The second key factor in this simulation is the fact that
the phonological damage was generalized in nature,
affecting both the ability of the network to map from
orthography to phonology and the integrity of its pho-
nological representations. This was achieved by combin-
ing damage to the connections in the O — P pathway
with noise added to the output of the phonological
hidden units. Without the addition of noise, it is prob-
able that the network would have been able to recover
by finding solutions that relied more on the regularities
in the training set, resulting in reduced lexicality effects
and an increased influence of consistency. The idea that
phonological dyslexia arises from generalized phonolog-
ical damage is consistent with the primary systems
hypothesis (Patterson & Lambon Ralph, 1999), which
assumes that reading is subserved by the more general
preexisting language systems and that the acquired
dyslexias arise from generalized damage to one of these
systems. Indeed, the current model could be regarded
as a first step toward an implementation of the primary
systems hypothesis. Of course, a full implementation
would require a model that was able to perform addi-
tional linguistic tasks such as speech, comprehension,
and repetition.

It is important to consider how the results of this
simulation mesh with the results reported by Welbourne
and Lambon Ralph (20052). In that simulation, damage
to an isolated phonological network resulted in a surface
dyslexic performance; here, on the other hand, surface
dyslexia arises from damage to the semantic portion of
the network, whereas damage to the phonological
portion produced the symptoms of phonological dys-
lexia. At first glance, this seems somewhat inconsistent;
how is it that surface dyslexia can arise from two
different damage loci? In reality, there is no inconsist-
ency; in both cases, the endpoint is the same. Surface
dyslexia occurs where the phonological system has
insufficient computational resources to successfully pro-
cess all of the words in its corpus and has no available
support from semantics. Welbourne and Lambon Ralph
(20052) achieved this situation by damaging a phono-
logical system that was initially overcompetent in that it
could read without any support from semantics. In the
current simulation, the same situation was achieved,
more realistically, by removing semantics from a net-
work where reading was supported by a division of labor
between phonology and semantics (Plaut et al., 1996).
Only in this latter situation, where there is the potential
for a division of labor, can damage to the phonological
system result in phonological dyslexia.

One slightly unexpected aspect of these results is the
presence of a small consistency effect following mild or
moderate phonological damage. This is not traditionally
associated with phonological dyslexia. However, al-
though it is not often reported, phonological dyslexics
do often exhibit consistency effects. A reanalysis of data
from Berndt et al. (1996)° reveals that 9 out of 10 of the
patients in the series showed more accurate reading of
regular than of irregular words with the performance
difference ranging from 2% to 20%. When data from all
of the patients are submitted to statistical analysis, these
differences are shown to be significant (z = 2.32, df = 9,
p = .023, one-tailed). Data from the only other case
series of phonological dyslexics (Crisp & Lambon Ralph,
2006) are even more emphatic; 10 out of 12 patients
showed a superiority for regular words, varying from 5%
to 33%, and the group as a whole showed a very
significant consistency effect (¢t = 4.41, df = 11,
b < .001, one-tailed). The mean size of the consistency
effect for the two sets of patients (including those who
did not exhibit a consistency effect) was 5% for the
Berndt et al. set and 14% for the Crisp and Lambon
Ralph set. This compares with a mean consistency effect
of 7.2% for the network (averaged across all damage
severities). In light of this, it seems reasonable to suggest
that this simulation has captured a hitherto unremarked
feature of phonological dyslexia.

This study represents a considerable step forward in
that it is the first time that any single PDP reading model
has been able to produce both the frequency/consisten-
¢y interactions typical of surface dyslexia and the lexi-
cality/imageability effects associated with phonological
dyslexia. However, there still remain a number of im-
portant questions which lie beyond the scope of the
present model. As we indicated in the Introduction, the
vast majority of phonological dyslexics present with
generalized phonological deficits that are not specific
to reading. This would be very interesting to explore
computationally and this study takes a step toward this
goal in that generalized phonological damage is shown
to produce patterns of reading typical of phonological
dyslexics. However, a thorough exploration of this issue
would require a more complex network that could
reproduce speech, repetition, and comprehension be-
haviors. In addition, it has been suggested that phono-
logical and deep dyslexia form a continuum (Friedman,
1996). This study has demonstrated a continuum of
symptoms within phonological dyslexia but it is not
able to explore the relationship between severe phono-
logical dyslexia and deep dyslexia. It is limited in this
regard because the implementation of semantics does
not allow for the production of semantic errors that are
the defining symptom of deep dyslexia. Future studies
should concentrate on models that include both se-
mantic and phonological representations and should
be trained on a variety of language tasks rather than
just reading.
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APPENDIX A—HIGH AND LOW
IMAGEABILITY WORD LISTS

High Imageability Low Imageability

Word  Imageability KF Freq Word Imageability KF Freq
BANK 560 83 BEAU 394 2
BED 635 127 DRAB 340 5
BLUE 569 143  FATE 343 33
BRAIN 572 45 FIND 370 399
CHAIN 559 50 FOURTH 384 74
CHART 531 22 GRADE 397 35
CHEST 556 53  KEPT 300 186
CLAY 575 100  LOON 348 2
COAL 581 32 LUCK 399 47
CURB 556 13 NEED 327 360
HOUSE 606 591  PART 340 500
LINT 513 4 PAT 386 35
MINE 522 59  PRIME 386 45
MUG 574 1  SCORN 364 4
PLANE 556 114 SLOE 276 2
RIDGE 543 18 SLOUGH 245 1
RING 601 47  SMART 396 21
SHRIMP 618 2 STRICT 383 11
SOUP 604 16 THWART 324 3
SPADE 578 10  TREAT 360 26
SPIRE 541 5 TURN 384 233
SQUINT 515 1 TYPE 395 200
TACK 546 4  WARN 359 11
YELL 501 9  WISH 399 110
Mean 563 65 Mean 358 98
SD 34 120 SD 41 142
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Notes

1. We are grateful to David Plaut for sharing his training
patterns with us.
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2. In the original PMSP simulation, a distinction was made
between the required activation levels for onsets and offsets as
opposed to vowels: Onsets and offsets had to have activation
levels of greater than 0.5, whereas the most active vowel was
taken as the output regardless of its activation level. This
reflects the fact that all monosyllabic words must, by definition,
include a vowel.

3. Due to the abstract nature of the semantic implementa-
tion, it was not possible to characterize errors as being se-
mantically related to the target word.

4. Data taken from responses to the PALPA 31 list of words
varying in imageability and frequency.

5. We are grateful to Rita Berndt for allowing us access to
some of the data that formed the basis of the article.
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