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0 Introduction

0 Introduction

These notes come from a semester course on complex analysis taught by Dr. Richard
Carmichael at Wake Forest University during the fall of 2010. The main topics covered
include

� Complex numbers and their properties

� Complex-valued functions

� Line integrals

� Derivatives and power series

� Cauchy’s Integral Formula

� Singularities and the Residue Theorem

The primary reference for the course and throughout these notes is Fisher’s Complex Vari-
ables, 2nd edition.
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1 The Complex Plane

1 The Complex Plane

1.1 A Formal View of Complex Numbers

We begin with a description of the complex number system. In the 16th century, mathe-
maticians sought solutions to polynomial equations such as x3 + x+ 1, but struggled to find
a ‘complete’ way of describing the solutions. Recall for instance that the roots of a quadratic
polynomial ax2 + bx+ c is given by the quadratic formula

x =
−b±

√
b2 − 4ac

2a
.

Of course if b2−4ac < 0 this has no real solutions. This led Gerolamo Cardano to create the
imaginary value i =

√
−1 to compensate for a perceived lack of completeness of solutions.

Formally, complex numbers are numbers of the form z = x + iy where x and y are real
numbers. These numbers lie on what is known as the complex plane, denoted C.

x

y
(x, y)

In this way we can view the real part x and the imaginary part y of x + iy separately.
The set of all complex numbers is denoted C, and they form an algebraic field under the
operations

� Addition: (x1, y1) + (x2, y2) = (x1 + x2, y1 + y2).

� Scaling: k(x, y) = (kx, ky) where k is a real scalar.

� Multiplication: (x1, y1)(x2, y2) = (x1x2 − y1y2, x1y2 + x2y1). Note that this multiplica-
tion differs from the usual multiplication on R, as in Euclidean geometry.

In this class we will freely use both notations for a complex number, that is x+iy = (x, y).
For example,

x = (x, 0)

i = (0, 1)

i2 = (0, 1)(0, 1) = (−1, 0).

For z = x+ iy we will also denote the real and imaginary parts by x = Re(z) and y = Im(z).
As a vector space, C has the following special attributes for each vector (complex number).

Definition. For a complex number z = x + iy, the modulus or absolute value of z is
|z| =

√
x2 + y2 and the complex conjugate of z is z̄ = x− iy.
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1.1 A Formal View of Complex Numbers 1 The Complex Plane

Note that |z| and |z̄| are always equal. Geometrically, the modulus represents the distance
in the complex plane from the origin (0, 0) to (x, y).

Proposition 1.1.1. For z, w ∈ C,

(i) |zw| = |z| |w|.

(ii) zw = z̄w̄.

Since C is a field, there is also a notion of divisibility for complex numbers. In particular
if x+ iy, u+ iv ∈ C and u+ iv 6= 0, we define

x+ iy

u+ iv
=
xu+ yv + i(yu− xv)

u2 + v2
.

One can check that this is the appropriate formula by multiplying and dividing x+iy
u+iv

by the
conjugate u− iv.

As in the xy-plane, there is a polar coordinate system for complex numbers: if z = x+ iy
then we set r = |z|, x = r cos θ and y = r sin θ where θ = tan−1

(
y
x

)
. This gives us

z = |z|(cos θ + i sin θ).

Multiplication is compatible with polar representations, for if z = |z|(cos θ + i sin θ) and
w = |w|(cosψ + i sinψ) we have

zw = |z| |w|(cos θ + i sin θ)(cosψ + i sinψ)

= |z| |w|(cos θ cosψ − sin θ sinψ) + i(cos θ sinψ + sin θ cosψ)

= |z| |w|(cos(θ + ψ) + i sin(θ + ψ)).

Likewise, z
w

= |z|
|w|(cos(θ − ψ) + i sin(θ − ψ)).

Taking powers of complex numbers, e.g. zn, is sometimes difficult to compute, since
multiplication isn’t quite as straightforward in the complex plane. However, there is a result
which utilizes the polar representation of a complex number to simplify the expression.

Theorem 1.1.2 (De Moivre’s Theorem). For all integers n, (cos θ + i sin θ)n = cos(nθ) +
i sin(nθ).

Proof. We prove this using induction on n. For the base case n = 1, we simply have

(cos θ + i sin θ)1 = cos θ + i sin θ.

Now assume De Moivre’s Theorem holds for n. Then we have

(cos θ + i sin θ)n+1 = (cos θ + i sin θ)n(cos θ + i sin θ)

= (cos(nθ) + i sin(nθ))(cos θ + i sin θ)

= (cos(nθ) cos θ − sin(nθ) sin θ) + i(sin θ cos(nθ) + cos θ sin(nθ))

= cos((n+ 1)θ) + i sin((n+ 1)θ).
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1.2 Properties of Complex Numbers 1 The Complex Plane

Definition. When we write z = |z|(cos θ+ i sin θ), the angle θ is called the argument of z,
denoted arg z.

We often want to restrict our attention to a single, canonical value of θ for any z. Thus
we define the principal argument θ = Arg z, where −π ≤ θ ≤ π.

Proposition 1.1.3. Arg(zw) = Arg z + Argw, where these may differ by a multiple of 2π.

Example 1.1.4. Let z = −1 + i and w = i. Then zw = −1− i, Arg(zw) = −3π
4

and

Arg z + Argw =
3π

4
+
π

2
=

5π

4
≡ −3π

4
mod 2π.

1.2 Properties of Complex Numbers

Continuing with the geometric parallels between Euclidean space and the complex plane, we
have the important triangle inequality for complex numbers:

|z + w| ≤ |z|+ |w|.

There is also a related inequality, sometimes called the reverse triangle inequality:∣∣|z| − |w|∣∣ ≤ |z − w|.
The original purpose of complex numbers was to compute roots of all polynomials, so

it will be desirable to be able to compute roots of complex numbers. In other words, if
w = |w|(cosψ + i sinψ), what is w1/n? Let z = w1/n, so that zn = w. Then using De
Moivre’s Theorem (1.1.2) we have

|w|(cosψ + i sinψ) = (|z|(cos θ + i sin θ))n = |z|n(cos(nθ) + i sin(nθ)).

Solving for θ, we see that

cosψ = cos(nθ) =⇒ nθ = ψ + 2πk =⇒ θ =
ψ + 2πk

n

for some integer k. Hence our expression for w1/n is

z = w1/n = |w|1/n
(

cos

(
ψ + 2πk

n

)
+ i sin

(
ψ + 2πk

n

))
.

For the nth root of w, that is w1/n, this formula gives all possible roots. In fact there are n
distinct roots; all others are repeated values.

Recall that the equation of a circle in R2 is
√

(x− x0)2 + (y − y0)2 = r for r > 0. In the
complex plane, this is expressed by |z − z0| = r.
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1.3 Subsets of the Complex Plane 1 The Complex Plane

Example 1.2.1. Let’s find the 5th roots of z = 1 + i. The polar representation of 1 + i is

1 + i =
√

2
(

cos
π

4
+ i sin

π

4

)
.

The modulus of all the 5th roots of unity is 21/10 ≈ 1.07171. Our work above gives all of
these roots as

(1 + i)1/5 = 21/10

(
cos

(
π

20
+

2πk

5

)
+ i sin

(
π

20
+

2πk

5

))
.

These are shown on the circle of radius 21/10 below.

x

y

the 5th roots of 1 + i

Example 1.2.2. Consider the equation z4 − 4z2 + 4 − 2i = 0. This may be rewritten as
(z2 − 2)2 = 2i = (1 + i)2 which has solutions

z2 − 2 = ±(1 + i) =⇒ z2 =

{
3 + i

1− i.

Using the expression for roots above, this yields the following solutions to the original equa-
tion:

z = ± 4
√

10

(
cos

(
1

2
arctan

1

3

)
+ i sin

(
1

2
arctan

1

3

))
and z = ± 4

√
2
(

cos
π

8
− i sin

π

8

)
.

1.3 Subsets of the Complex Plane

In Chapter 2 we will define functions on the complex plane, i.e. functions whose domain and
range are subsets of the complex plane. The following topological terms will be useful.

Definition. A subset D ⊆ C is open if all its points are interior points, that is, any circle
drawn around a point (called a neighborhood of the point) lies entirely within D.

5



1.3 Subsets of the Complex Plane 1 The Complex Plane

D

z0

Circles are actually a specific case of a more general notion of ‘neighborhood’ or open set in
topology. Since the open disks (sometimes called open balls) B(z0, ε) = {z ∈ C : |z−z0| < ε}
form a basis for C (see any introductory topology text, e.g. Adams and Franzosa or Munkres)
it suffices to consider open sets as those ‘composed’ of smaller open balls.

Example 1.3.1. The half plane H = {z ∈ C | Re(z) > 0} is an open set. Likewise, for any
a ∈ R, {z ∈ C | Re(z) > a} and {z ∈ C | Re(z) < a} are open sets, and the same is true for
Im(z).

Definition. A point z0 in a set D is called a boundary point if every neighborhood of z0

contains both interior and exterior points. D is said to be closed if it contains its boundary,
or the set of all boundary points of D.

Definition. An open set D is connected if all points in D may be joined by a series of
contiguous, direct line segments, each of which is completely contained within D. Further-
more, D is convex if it is connected and any single line segment joining two points in D
also lies in D.

6



2 Complex-Valued Functions

2 Complex-Valued Functions

2.1 Functions and Limits

In this section we introduce functions that have values in the complex plane.

Definition. A function of a complex variable z is a map f : D → C for some subset
D ⊆ C, i.e. f assigns a complex number to each z ∈ D.

Definition. The domain of a complex-valued function f is the set of all values z for which
the function operates; this is usually denoted D. The range is all possible values of the
function, denoted Im f or f(D).

Example 2.1.1. Let f(z) = z2. The domain of f is all of C, while the range of f is the
closed upper half plane {z ∈ C | Im(z) ≥ 0}.

x

y

f
x

y

Example 2.1.2. f(z) = 1
z−1

has domain D = {z ∈ C | z 6= 1} and range f(D) = {z ∈ C |
z 6= 0}.
Definition. A sequence is a complex-valued function whose domain is the set of positive
integers, written (zn) = (z1, z2, z3, . . .) where each zi is a complex number.

Definition. A sequence (zn) is said to have a limit L if, given any ε > 0 there is some
N ∈ N such that |zn − L| < ε for all n ≥ N . In this case we write lim

n→∞
zn = L and say that

(zn) converges to L. If no such L exists, then (zn) is said to diverge.

The definitions of sequence and limit are nearly identical to their counterparts in real
analysis. However, in the complex plane every number has a real and an imaginary part.
The following proposition helps us relate the definition of a complex limit to its real and
imaginary parts.

Proposition 2.1.3. Let zn = xn + iyn and z = x+ iy. Then lim
n→∞

zn = z ⇐⇒ lim
n→∞

xn = x

and lim
n→∞

yn = y.

Proof. ( =⇒ ) If lim
n→∞

zn = z then the inequalities |xn − x| ≤ |zn − z| and |yn − y| ≤ |zn − z|
directly imply that (xn) and (yn) converge to x and y, respectively.

( =⇒) On the other hand, suppose (xn) → x and (yn) → y. If ε > 0 is given, we may
choose N1 and N2 such that |xn− x| < ε

2
for all n ≥ N1 and |yn− y| < ε

2
for all n ≥ N2. Let

N = max{N1, N2}. Then for all n ≥ N the triangle inequality gives us

|zn − z| ≤ |xn − x|+ |yn − y| <
ε

2
+
ε

2
= ε.

Hence (zn) converges to z = x+ iy.
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2.1 Functions and Limits 2 Complex-Valued Functions

As a result, we have

Corollary 2.1.4. If zn → z then |zn| → |z|.

The converse to this is generally false. For example, the sequence |in| converges to 1
since |in| = |i|n = 1n = 1 for all n; however, in = (i,−1,−i, 1, i,−1, . . .) and this fluctuates
infinitely often between these four values, so the sequence diverges.

Proposition 2.1.5. Suppose lim
n→∞

zn = z. Then

(i) For any complex scalar k 6= 0, lim
n→∞

kzn = kz.

(ii) If zn 6= 0 for any n and z 6= 0, then lim
n→∞

1

zn
=

1

z
.

Proof. (i) Let ε > 0 be given. By convergence of (zn) there exists a positive integer N such
that |zn − z| < ε

|k| . Then for all n ≥ N ,

|kzn − kz| = |k| |zn − z| < |k|
ε

|k|
= ε.

Hence (kzn)→ kz.

(ii) First we can choose an N1 such that |zn − z| < |z|
2

for all n ≥ N1. Note that by the
reverse triangle inequality,

|zn| ≥ |z| − |zn − z| > |z| −
|z|
2

=
|z|
2
.

We use this to control the |zn| term in the calculations below. Next for any ε > 0 there is an

N2 such that for all n ≥ N2, |zn − z| < |z|2ε
2

. Let N = max{N1, N2}. Then for any n ≥ N ,∣∣∣∣ 1

zn
− 1

z

∣∣∣∣ =

∣∣∣∣z − znznz

∣∣∣∣ =
|zn − z|
|zn| |z|

≤ 2

|z|
1

|z|
|zn − z| <

2

|z|2
|z|2ε

2
= ε.

Hence
(

1
zn

)
→ 1

z
.

This shows that limits of complex sequences behave as expected (by which we mean they
behave as their counterparts do in the real case). We also have

Theorem 2.1.6. If (zn) converges to z and (wn) converges to w, then the sequence (znwn)
converges to zw.

Definition. Given a function f(z) with domain D and a point z0 either in D or in the
boundary ∂D of D, we say f has a limit at z0 if

lim
z→z0

f(z) = L

for some L ∈ C. Explicitly, f(z) has limit L at z0 if for every ε > 0 there exists a δ > 0
such that 0 < |z − z0| < δ implies |f(z)− L| < ε.

8



2.1 Functions and Limits 2 Complex-Valued Functions

Definition. f(z) is continuous at a point z0 in its domain if lim
z→z0

f(z) exists and it equals

f(z0). In particular, f(z) is continuous if for every ε > 0 there exists a δ > 0 such that if
|z − z0| < δ then |f(z)− f(z0)| < ε.

Example 2.1.7. The function f(z) = |z|2 is continuous on its domain C. For example, f(z)
has limit 4 at z0 = 2i. To see this, let ε > 0 and define δ1 = 1, δ2 = ε

5
and δ = min{δ1, δ2}.

Note that by the reverse triangle inequality, |z| ≤ |z− 2i|+ |2i| < 1 + 2 = 3; we will use this
below. Then if 0 < |z − 2i| < δ we have

|f(z)− f(2i)| = ||z|2 − 4|
= ||z|+ 2| · ||z| − 2|
= (|z|+ 2)|z − 2i|

< (3 + 2)
ε

5
= ε.

Hence lim
z→2i

f(z) = 4 as claimed.

Example 2.1.8. Consider the function f(z) =
z

z̄
where z = x + iy 6= 0 and z̄ = x− iy, its

complex conjugate. Does lim
z→0

f(z) exist? Well consider this limit along two different paths

in the complex plane:

lim
(x,y)→(0,y)

f(z) =
0 + iy

0− iy
= −1

lim
(x,y)→(x,0)

f(z) =
x+ i0

x− i0
= 1.

Since these limits are different, the limit of the function must not exist. Hence
z

z̄
is not

continuous at z0 = 0.

Definition. A function f(z) has a limit at infinity, denoted lim
z→∞

f(z) = L, if for any

ε > 0 there is a (large) number M such that |f(z) − L| < ε whenever |z| ≥ M . Note that
there is no restriction on arg z; only |z| is required to be large.

Example 2.1.9. The family of functions f(z) = 1
zm

has a limit L = 0 as z → ∞ for all
m = 1, 2, 3, . . .. To see this, let ε > 0 and choose M = 1

ε1/m
. Then if |z| ≥M ,∣∣∣∣ 1

zm

∣∣∣∣ =

(
1

|z|

)m
≥
(

1

M

)m
= (ε1/m)m = ε.

By properties of limits, we have

Proposition 2.1.10.

1) Every polynomial p(z) = a0 + a1z + . . .+ anz
n is continuous on the complex plane.

2) If p(z) and q(z) are polynomials, then their quotient p(z)
q(z)

is continuous at all points such

that q(z) 6= 0.

9



2.2 Infinite Series 2 Complex-Valued Functions

Every complex-valued function f(z) can be written as f(z) = u(z) + iv(z), where u and
v are each real-valued functions. This allows us to view every complex function by its real
and imaginary parts. It is easy to see that all of the results on continuity for functions of
the real numbers now apply for complex-valued functions. In particular,

Proposition 2.1.11. Let f = u+ iv be a complex-valued function. Then f is continuous at
z0 if and only if u and v are both continuous at z0.

2.2 Infinite Series

In this section we briefly review infinite series, since they carry over to the complex case
nearly identically.

Definition. For complex numbers z1, z2, . . . their nth partial sum is
n∑
j=1

zj = z1 + . . .+ zn.

Definition. An infinite series of complex numbers is a limit of partial sums

∞∑
j=1

zj = lim
n→∞

n∑
j=1

zj.

Definition. We say an infinite series of partial sums sn =
n∑
j=1

zj converges if s = lim
n→∞

sn

exists. Otherwise, the series diverges.

In the complex case, we can write each zj = xj + iyj so every infinite series may be
written as the sum of a real and imaginary series:

∞∑
j=1

zj =
∞∑
j=1

xj + i
∞∑
j=1

yj.

As with functions, the series
∑
zj converges if and only if

∑
xj and

∑
yj converge. In other

words, lim
n→∞

sn only converges when lim
n→∞

xn and lim
n→∞

yn both exist.

Definition. A series
∞∑
j=1

zj has absolute convergence if
∞∑
j=1

|zj| converges. If
∞∑
j=1

zj con-

verges but the absolute series does not converge, we say the series converges conditionally.

Notice that if
∞∑
j=1

zj converges (absolutely) then both
∞∑
j=1

xj and
∞∑
j=1

yj converge (abso-

lutely) as well. The triangle inequality for series looks like∣∣∣∣∣
∞∑
j=1

zj

∣∣∣∣∣ ≤
∞∑
j=1

|zj|.

10



2.3 Exponential and Logarithmic Functions 2 Complex-Valued Functions

Example 2.2.1. As in the real case, a geometric series
∞∑
j=1

αj converges to
1

1− α
if |α| < 1

and diverges otherwise. The value α is sometimes called the ratio of the series.

Example 2.2.2. Consider the series
∞∑
j=1

j

(
1 + 2i

3

)j
. Absolute convergence is useful in

complex analysis since we can reduce complex numbers to purely real-valued expressions. In
this case, we see that

∞∑
j=1

∣∣∣∣∣j
(

1 + 2i

3

)j∣∣∣∣∣ =
∞∑
j=1

j

∣∣∣∣1 + 2i

3

∣∣∣∣j =
∞∑
j=1

j

(√
5

3

)j

which converges by the ratio test, for example. Hence the original series converges absolutely.

Example 2.2.3. The series
∞∑
n=1

in

n
converges even though the similar-looking harmonic series

∞∑
n=1

1

n
diverges. To see this, notice that we can write

∞∑
n=1

in

n
=
∞∑
n=1

(−1)n

2n
+ i

∞∑
n=1

(−1)n−1

2n− 1

and both parts converge by the alternating series test.

2.3 Exponential and Logarithmic Functions

Recall from single-variable calculus the exponential function ex. This function has many
definitions, with the two most important being

ex = lim
t→∞

(
1 +

x

t

)t
and ex =

∞∑
n=1

xn

n!
.

In complex analysis, we define

Definition. For z = x+ iy, the complex exponential function ez is defined by

ez = ex(cos y + i sin y).

The special case eit = cos t + i sin t is called Euler’s formula. Euler was the first to
realize the connection between the exponential function and sine and cosine. This amazing
identity, called “the most remarkable formula in mathematics” by Feynman, has been around
since 1748 and has far-reaching implications in many branches of mathematics and physics.

The following proposition shows that this definition captures all of the nice properties of
ex from the real case. We will see in a moment that in the complex plane, the exponential
function has even deeper properties and an essential connection to the geometry of C.

11



2.3 Exponential and Logarithmic Functions 2 Complex-Valued Functions

Proposition 2.3.1. For complex numbers z and w,

(a) ez+w = ezew.

(b) 1
ez

= e−z.

(c) ez+2πi = ez, that is, the complex exponential function is periodic with period 2πi.

(d) If z = x+ iy, |ez| = ex and therefore |eiy| = 1.

(e) ez 6= 0 for any z ∈ C.

Proof. (a) Let z = x+ iy and w = x′ + iy′. Then

ez+w = e(x+x′)+i(y+y′) = ex+x′(cos(y + y′) + i sin(y + y′))

= exex
′
(cos y + i sin y)(cos y′ + i sin y′) = ezew

(the last part uses a trick similar to the one used in the proof of De Moivre’s Theorem
(1.1.2)).

(b) follows from (a) and trig properties.
(c) follows directly from the definition of ez.
(d) follows from the fact that for any θ, | cos θ + i sin θ| = 1.
(e) By part (d), |ex+iy| = ex, and x is real so ex is always nonzero. Therefore |ez| 6= 0

which implies ez 6= 0.

We will see in Chapter 3 that ez also satisfies one of the nicest properties of the exponential
function in the real case: d

dz
ez = ez

Note that part (c) of Proposition 2.3.1 implies that f(z) = ez is not a one-to-one function
on the complex plane. This is unfortunate, since that was one of the nice attributes of ex in
the real case, as it allowed us to define an inverse, the logarithm log x. We next show how
to construct a partial solution to this problem.

Let w = ex+iy. We seek a function F such that F (w) = x + iy and eF (x+iy) = x + iy.
Note that since |w| = ex and these are real numbers, we have x = ln |w|. This allows us to
define

Definition. The formal logarithm is written log z = ln |z|+ i arg z.

This is not a function (meaning it is not well-defined), since arg z represents a set of
values which differ by 2kπ for integers k.

We remedy this by making branch cuts of the complex plane. This is done by taking
a ray from the origin, say with angle θ and defining the branch (θ, θ + 2π] so that log z is
well-defined on this domain. The most important branch is

Definition. Let Arg z denote the argument of z in the branch (−π, π]; this is called the
principal branch. Then we define the principal logarithm by

Log z = ln |z|+ iArg z.

Proposition 2.3.2. On the principal branch, Log ez = eLog z = z.

12



2.3 Exponential and Logarithmic Functions 2 Complex-Valued Functions

Proof. Let z = x+ iy with Arg z = θ ∈ (−π, π]. Then on one hand,

Log ez = ln |ez|+ iArg ez = ln ex + iy = x+ iy = z

and on the other hand,

eLog z = eln |z|+iArg z = eln |z|(cos θ + i sin θ) = |z|(cos θ + i sin θ) = z.

Note that these require that we restrict our attention to a single branch (it may not even be
the principal branch) for the expressions to be well-defined.

Recall that f(z) = u(z) + iv(z) is continuous if and only if u and v are continuous. Well
Arg z has no limit at values along the negative real axis. Therefore Log z is not continuous at
any point Re(z) ≤ 0. However, making a different branch cut allows us to define a function
with different continuity.

As in the real case, exponentials for bases other than e are permitted. They relate to the
logarithm by

az = ez log a

where log a is defined on a fixed branch of the logarithm.

Example 2.3.3. Let’s use the complex logarithm to evaluate (−1)i. Note that (−1)i =
ei log(−1) where log is defined appropriately. We also have

log(−1) = ln | − 1|+ i(arg(−1) + 2kπ) = 0 + i(−π + 2kπ).

Then ei log(−1) = e−(−π+2kπ) = eπ−2kπ for any integer k. The principal value of (−1)i is eπ,
which is found by

(−1)i = eiLog(−1) = ei(−πi) = eπ.

Example 2.3.4. We can use logarithms to solve an equation such as z1+i = 4. First consider
(1 + i) log z = log 4 = ln |4|+ 2kπi. This gives us

log z =
ln |4|+ 2kπi

1 + i

(
1− i
1− i

)
=

(ln |4|+ 2kπ)− i ln |4|+ 2kπi

2
= (ln |2|+ kπ) + i(− ln |2|+ kπ).

Taking the exponential of both sides yields

z = elog z = e(ln 2+kπ)+i(− ln 2+kπ)

= 2ekπ((−1)k cos(ln 2) + i(−1)k+1 sin(ln 2))

= (−1)k2ekπ(cos(ln 2)− i sin(ln 2)).

Example 2.3.5. To simplify an expression such as (1 + i)i, use the logarithm to write
(1 + i)i = ei log(1+i). Then

log(1 + i) = ln |1 + i|+ i(arg(1 + i) + 2πk) =
ln 2

2
+ i
(π

4
+ 2πk

)
=⇒ ei log(1+i) = e−(π4 +2πk)+i ln 2

2 = e−
π
4

(
cos

(
ln 2

2

)
+ i sin

(
ln 2

2

))
.
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2.4 Trigonometric Functions 2 Complex-Valued Functions

2.4 Trigonometric Functions

The complex trigonometric functions are defined in terms of ez. This should come as no
surprise, given the relation we have seen between exponential and trig functions. By the end
of the section we will see that this connection runs even deeper.

Definition. The complex cosine and complex sine functions are defined by

cos z = 1
2
(eiz + e−iz) and sin z = 1

2i
(eiz − e−iz).

Note that the complex trig functions coincide with their real counterparts, for if x ∈ R
we have

1
2
(eix + e−ix) = 1

2
(cosx+ i sinx+ cos(−x) + i sin(−x))

= 1
2
(cosx+ i sinx+ cosx− i sinx) = cos x

and 1
2i

(eix − e−ix) = 1
2i

(cosx+ i sinx− (cos(−x) + i sin(−x)))

= 1
2i

(cosx+ i sinx− cosx+ i sinx) = sinx.

The complex cosine and sine functions are also periodic, with period 2π like the real-valued
cosine and sine. Using the fact that ez is periodic, we can write

cos(z + 2π) = 1
2
(ei(z+2π) + e−i(z+2π))

= 1
2
(eize2πi + e−ize−2πi)

= 1
2
(eiz + e−iz) = cos z

and sin(z + 2π) = 1
2i

(ei(z+2π) − e−i(z+2π))

= 1
2i

)(eize2πi − e−ize−2πi)

= 1
2i

(eiz − e−iz) = sin z.

Many other properties of the real trig functions carry over the complex case. Just to name
a few,

(a) cos(−z) = cos z and sin(−z) = − sin z

(b) sin
(
z + π

2

)
= cos z and cos

(
z + π

2

)
= − sin z

(c) sin(z + w) = sin z cosw + cos z sinw

(d) cos(z + w) = cos z cosw − sin z sinw

(e) cos2 z + sin2 z = 1

(f) cos2 z − sin2 z = cos(2z)

(g) When we define the derivative of a complex-valued function in Section 3.2, we will see
that the derivatives of cos z and sin z are similar to the real case.

Example 2.4.1. It is easy to see from the definition of cosine that cos z = 0 if and only if
z = π

2
+ πk for any integer k.
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2.4 Trigonometric Functions 2 Complex-Valued Functions

Example 2.4.2. Complex conjugation commutes with trig and exponential functions:

ez = ez cos z = cos z sin z = sin z.

Using the definitions of cos z and sin z, we can define the other four main trig functions.

tan z =
sin z

cos z
= −ie

2iz − 1

e2iz + 1

sec z =
1

cos z

csc z =
1

sin z

cot z =
cos z

sin z
= i

e2iz + 1

e2iz − 1
.

15



3 Calculus in the Complex Plane

3 Calculus in the Complex Plane

3.1 Line Integrals

If f : [a, b] → C is a complex-valued function which is continuous on some interval [a, b]
where a, b ∈ R, then the integral of f over [a, b] is simply∫ b

a

f(t) dt =

∫ b

a

Re(f(t)) dt+ i

∫ b

a

Im(f(t)) dt.

For functions that take on values over some region in the complex plane, we integrate over
curves.

Definition. Let f(z) be a complex-valued function which is continuous on some region D ⊆
C and let γ be a smooth curve contained in D that is parametrized by γ(t), a ≤ t ≤ b. Then
the line integral of f over γ is∫

γ

f(z) dz =

∫ b

a

f(γ(t))γ′(t) dt.

a

b

γ(t)

Remember that a curve is smooth if its first derivative γ′(t) exists and is continuous on
[a, b]. Since the curves are all functions on a real interval [a, b], we need not worry about
complex derivatives yet; γ′(t) is just the first derivative in the normal sense. Some important
examples of parametrizations in the complex plane are

Example 3.1.1. A curve γ is simple if γ(t1) 6= γ(t2) whenever a < t1 < t2 < b. In plain
language, a simple curve does not intersect itself; it is an embedding of the interval [a, b] into
C. The easiest simple curve to parametrize is a line:

z0

z1

γ

If γ is the line between z0 and z1, then we parametrize it by γ(t) = z0 + t(z1 − z0) for
0 ≤ t ≤ 1.
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3.1 Line Integrals 3 Calculus in the Complex Plane

Example 3.1.2. A curve γ is closed if γ(a) = γ(b), i.e. it starts and ends in the same
location. The canonical example of a simple closed curve is a circle:

z0

r

γ

This is parametrized by γ(t) = z0 + reit for 0 ≤ t ≤ 2π.

Example 3.1.3. Let’s compute the line integral

∫
γ

z2 dz over the line from (0, 0) to (2, 3) in

the complex plane.

z0 = 0 + 0i

z1 = 2 + 3i

γ

We parametrize the curve by γ(t) = 2t + 3it, 0 ≤ t ≤ 1. Then using the formula above, we
compute ∫

γ

z2 dz =

∫ 1

0

γ(t)2γ′(t) dt =

∫ 1

0

(2t+ 3it)2(2 + 3i) dt

=

∫ 1

0

(4t2 − 9t2 + 12it2)(2 + 3i) dt =

∫ 1

0

(−5t2 + 12it2)(2 + 3i) dt

=

∫ 1

0

(−46t2 + 9it2) dt = −46

3
t3
∣∣∣∣1
0

+ 3it3
∣∣1
0

= −46

3
+ 3i.

Example 3.1.4. Just as reversing the order of a and b in a real integral changes the integral
by −1, one can reverse the orientation of a smooth curve γ to switch the sign of the line
integral along γ. Let −γ denote the curve γ with orientation reversed. Then∫

−γ
f(z) dz = −

∫
γ

f(z) dz.

Example 3.1.5. Next let’s change the path of integration to be the semicircle γ(t) =
eit, 0 ≤ t ≤ π. We will write γ(t) = cos t + i sin t so that the derivative may be written

17



3.1 Line Integrals 3 Calculus in the Complex Plane

γ′(t) = − sin t+ i cos t. Then we compute∫
γ

z2 dz =

∫ π

0

(cos t+ i sin t)2(− sin t+ i cos t) dt

=

∫ π

0

(cos2 t− sin2 t+ 2i cos t sin t)(− sin t+ i cos t) dt

=

∫ π

0

(sin3 t− cos2 t sin t− 2 cos2 t sin t) dt+ i

∫ π

0

(cos3 t− sin2 t cos t− 2 sin2 t cos t) dt

=

∫ π

0

(sin t− cos2 t sin t− 3 cos2 t sin t) dt+ i

∫ π

0

(cos t− sin2 t cos t− 3 sin2 t cos t) dt

=

∫ π

0

(sin t− 4 cos2 t sin t) dt+ i

∫ π

0

((cos t− 4 sin2 t cos t) dt

=

[
− cos t+

4

3
cos3 t

]π
0

+ i

[
sin t− 4

3
sin3 t

]π
0

= −2

3
.

Example 3.1.6. Compute the line integral

∫
γ

(z2 − 3|z|+ Im z) dz where γ is parametrized

by γ(t) = 2eit, 0 ≤ t ≤ π
2
. First note that γ′(t) = 2ieit. Then∫

γ

(z2 − 3|z|+ Im z) dz =

∫ π
2

0

(4e2it − 3|2eit|+ Im(2eit)) · 2ieit dt

=

∫ π
2

0

(8ie3it − 12ieit + 4ieit sin t) dt

=

∫ π
2

0

(
8ie3it − 12ieit + 4ieit

(
1

2i
(eit − e−it)

))
dt

=

[
8

3
e3it − 12ieit +

1

2
sin(2t)− i

2
cos(2t)− 2t

]π
2

0

=
28

3
− π

2
− 44

3
i.

The definition of line integrals can be extended to piecewise smooth curves by∫
γ

f(z) dz =

∫
γ1

f(z) dz +

∫
γ2

f(z) dz + . . .+

∫
γk

f(z) dz

where each γi is a smooth curve on an interval [ai, bi] ⊂ [a, b], γ1(a) = γ(a), γk(b) = γ(b) and
γi(bi) = γi+1(bi) for all i.

Definition. The length of a curve γ is given by the integral∫ b

a

|γ′(t)| dt =

∫ b

a

√
x′(t)2 + y′(t)2 dt

where γ(t) = x(t) + iy(t), a ≤ t ≤ b is a parametrization of γ.
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3.2 Differentiability 3 Calculus in the Complex Plane

Example 3.1.7. Let γ be the unit circle, which has the parametrization γ(t) = eit, 0 ≤ t ≤
2π. Let’s verify the circumference of the circle with the formula for the length of γ:∫ 2π

0

|γ′(t)| dt =

∫ 2π

0

|ieit| dt =

∫ 2π

0

dt = 2π.

The next proposition contains some useful properties of the line integral.

Proposition 3.1.8. Suppose γ is a smooth curve and f and g are continuous, complex-valued
functions on a domain containing γ.

(a)

∫
γ

(f(z) + g(z)) dz =

∫
γ

f(z) dz +

∫
γ

g(z) dz.

(b) For any c ∈ C,

∫
γ

cf(z) dz = c

∫
γ

f(z) dz.

(c) If τ is a curve whose initial point is the terminal point of γ, then γτ is defined to be
the curve obtained by following γ and then τ . The integral over γτ is given by∫

γτ

f(z) dz =

∫
γ

f(z) dz +

∫
τ

f(z) dz.

(d)

∣∣∣∣∫
γ

f(z) dz

∣∣∣∣ ≤ max
z∈γ
|f(z)| · length(γ).

3.2 Differentiability

Recall that the function f(z) =
z

z̄
is not continuous at z0 = 0. This points to the fact

that complex functions are somehow different than their real brethren, and in particular the
convergence of a function in C is much stronger than convergence in R.

Definition. The derivative of a complex function f(z) at a point z0 ∈ C is defined by

f ′(z0) = lim
h→0

f(z0 + h)− f(z0)

h
= lim

z→z0

f(z)− f(z0)

z − z0

.

If these limits exist, we say f(z) is differentiable at z0.

This definition is the same as in the real case, although as discussed above the notion of
a limit is much stronger in C. In the complex world, we have a further notion of differentia-
bility:

Definition. A complex function f(z) is holomorphic at z0 ∈ C if f(z) is differentiable on
some open disk centered at z0. Functions which are holomorphic on the whole complex plane
C are called entire.
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3.2 Differentiability 3 Calculus in the Complex Plane

Example 3.2.1. Many familiar functions from real analysis have the same derivative in
the complex plane. For example, f(z) = z2 has derivative 2z which may be confirmed by
computing either of the above limits. In fact this holds for all z ∈ C so z2 is an entire
function.

Example 3.2.2. f(z) = z̄2 is differentiable at 0 and nowhere else, which means f(z) is not
holomorphic at 0. To see this, write z = z0 + reiθ. Then the difference quotient can be
written

z̄2 − z̄2
0

z − z0

=
(z̄0 + re−iθ)2 − z̄2

0

reiθ

=
z̄2

0 + 2z̄0re
−iθ + r2e−2iθ − z̄2

0

reiθ

=
2z̄0re

−iθ + r2e−2iθ

reiθ
= 2z̄0e

−2iθ + re−3iθ.

If r 6= 0 then we get different answers for the limit z → z0 (e.g. take θ = 0 and θ = π
2
) which

shows that f(z) is not differentiable at any point other than the origin. At z0 = 0, we see
that

lim
z→z0

z̄2 − z̄2
0

z − z0

= lim
z→z0

z̄2

z
= 0.

Example 3.2.3. Complex conjugation is not differentiable at any z0 ∈ C since

lim
z→z0

z̄ − z̄0

z − z0

= lim
z→z0

z − z0

z − z0

= lim
z→0

z̄

z

does not exist as we have seen.

Most of the nice properties of real derivatives carry over to the complex place.

Proposition 3.2.4. Let f and g be differentiable at z ∈ C.

(a) (f(z) + g(z))′ = f ′(z) + g′(z).

(b) For any c ∈ C, (cf)′(z) = cf ′(z).

(c) (fg)′(z) = f ′(z)g(z) + f(z)g′(z).

(d) If g(z) 6= 0 then

(
f(z)

g(z)

)′
=
f ′(z)g(z)− f(z)g′(z)

g(z)2
.

(e) (zn)′ = nzn−1. In particular this means that polynomials are entire.

(f) If g is differentiable at f(z) then (g(f(z)))′ = g′(f(z))f ′(z).

The fundamental property in this section is a pair of equations called the Cauchy-
Riemann Equations, which relate the derivative f ′(z) to the partial derivatives with respect
to the real and imaginary parts of z.
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3.2 Differentiability 3 Calculus in the Complex Plane

Theorem 3.2.5 (Cauchy-Riemann Equations). Let f(z) = u(x, y) + iv(x, y) be a complex
function which is continuous at z0 = x0 + iy0. Then f(z) is differentiable at z0 if and only
if the partial derivatives ∂u

∂x
, ∂u
∂y
, ∂v
∂x

and ∂v
∂y

exist, are continuous and satisfy

∂u

∂x
=
∂v

∂y
and

∂u

∂y
= −∂v

∂x

on some neighborhood of z0.

Proof. ( =⇒ ) If f(z) is differentiable at z0 = x0 + iy0 then

f ′(z0) = lim
h→0

f(z0 + h)− f(z0)

h
.

First consider approaching z along the line (x0 + h) + iy0:

lim
h→0

f((x0 + h) + iy0)− f(x0 + iy0)

h
= lim

h→0

u(x0 + h, y0) + iv(x0 + h, y0)− u(x0, y0)− iv(x0, y0)

h

= lim
h→0

u(x0 + h, y0)− u(x0, y0)

h
+ i

v(x0 + h, y0)− v(x0, y0)

h

=
∂u

∂x
+ i

∂v

∂x
= f ′(z0).

Next, approach along x0 + i(y0 + h):

lim
ih→0

f(x0 + i(y0 + h))− f(x0 + iy0)

ih
= lim

ih→0

u(x0, y0 + h) + iv(x0, y0 + h)− u(x0, y0)− iv(x0, y0)

ih

= lim
h→0

u(x0, y0 + h)− u(x0, y0)

ih
+ i

v(x0, y0 + h)− v(x0, y0)

ih

=
1

i

∂u

∂y
+
∂v

∂y
=
∂v

∂y
− i∂u

∂y
= f ′(z0).

Setting these two expressions for f ′(z0) equal gives the result, since the real and imaginary
parts of the resulting expression must be equal.

( =⇒) The converse requires a little more care. We will show that f(z) is differentiable
at z0 with derivative f ′(z0) = ∂f

∂x
(z0) = ∂u

∂x
(z0) + i ∂v

∂x
(z0). We first break up the difference

quotient, using h = hx + ihy:

f(z0 + h)− f(z0)

h
=
f(z0 + h)− f(z0 + hx) + f(z0 + hx)− f(z0)

h

=
f(z0 + hx + ihy)− f(z0 + hx)

h
+
f(z0 + hx)− f(z0)

h

=
hy
h
· f(z0 + hx + ihy)− f(z0 + hx)

hy
+
hx
h
· f(z0 + hx)− f(z0)

hx
.

Elsewhere, we have
∂f

∂x
(z0) =

hy
h
· ∂f
∂y

(z0) +
hx
h
· ∂f
∂x

(z0).
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3.2 Differentiability 3 Calculus in the Complex Plane

Now we subtract these two expressions and take a limit, which gives

lim
h→0

f(z0 + h)− f(z0)

h
− ∂f

∂x
(z0) = lim

h→0

[
hy
h

(
f(z0 + hx + ihy)− f(z0 + hx)

hy
− ∂f

∂y
(z0)

)]
+ lim

h→0

[
hx
h

(
f(z0 + hx)− f(z0)

hx
− ∂f

∂x
(z0)

)]
.

If we can show that the limits on the right are both 0, then we’re done. The ratios hx
h

and
hy
h

are both bounded by the triangle inequality, so it suffices to prove the the expressions in
parentheses tend to 0. The second term goes to 0 since by definition,

∂f

∂x
(z0) = lim

hx→0

f(z0 + hx)− f(z0)

hx
.

The other expression is more problematic, since it involves both hx and hy. However, the
Mean Value Theorem from real analysis gives us real numbers 0 < a, b < 1 such that

u(x0 + hx, y0 + hy)− u(x0 + hx, y0)

hy
= uy(x0 + hx, y0 + ahy)

and
v(x0 + hx, y0 + hy)− v(x0 + hx, y0)

hy
= vy(x0 + hx, y0 + bhy).

Substituting these expressions into the first term above gives us

f(z0 + hx + ihy)− f(z0 + hx)

hy
− ∂f

∂y
(z0) = uy(x0 + hx, y0 + ahy) + ivy(x0 + hx, y0 + bhy)

− uy(x0, y0)− ivy(x0, y0)

= (uy(x0 + hx, y0 + ahy)− uy(x0, y0))

+ i(vy(x0 + hx, y0 + bhy)− vy(x0, y0)).

Finally, these two pieces each tend to 0 since uy and vy are assumed to be continuous at
z0 = x0 + iy0. This finishes the proof.

Example 3.2.6. Consider the function

f(z) =


x3 − y3

x2 + y2
+ i

x3 + y3

x2 + y2
z 6= 0

0 z = 0.

It is easy to see that the Cauchy-Riemann equations hold for f(z) at z0 = 0, but the complex
derivative f ′(0) does not exist. This is not a failure of the theorem, however, since the partial
derivatives ux, uy, vx and vy are not continuous at any point but 0.

Example 3.2.7. Consider f(z) = Log z using the principal branch D as its domain. We
may write this as

f(z) = ln |z|+ iArg z = 1
2

ln(x2 + y2) + i arctan
(
y
x

)
.
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3.3 Power Series 3 Calculus in the Complex Plane

So one sees that u(x, y) = 1
2

ln(x2 + y2) and v(x, y) = arctan
(
y
x

)
. We calculate the partials:

ux =
x

x2 + y2
vx = − y

x2

1

1 +
(
y
x

)2 =
−y

x2 + y2

uy =
y

x2 + y2
vy =

1

x

1

1 +
(
y
x

)2 =
x

x2 + y2
.

Hence ux = vy and uy = −vx so f(z) satisfies the Cauchy-Riemann equations on D, meaning
it is differentiable. Moreover, we can write its derivative as

f ′(z) = ux + ivx =
x

x2 + y2
− i y

x2 + y2
=

x− iy
x2 + y2

=
z̄

|z|2
=

1

|z|
.

This is a striking, yet perhaps predictable result that reassures us that our definition of the
complex logarithm captures the real case.

3.3 Power Series

Definition. A power series is an infinite series of the form

∞∑
n=0

an(z − z0)n.

Such a series is said to be centered about z0.

Example 3.3.1. Power series are really a generalization of a geometric series

∞∑
n=0

zn

centered about z0 = 0, where all the coefficients are 1. We know from Section 2.2 that this

series converges to
1

1− r
exactly when |z| < 1. We will see that power series behave in

similar ways, and when they converge, they converge to complex functions that we may be
interested in.

For a power series
∞∑
n=0

an(z − z0)n we have three cases for convergence:

(1) The series only converges at z = z0. In this case, the radius of convergence of the
series is 0.

(2) The series converges for all z in a disc of finite radius R centered at z0.

(3) The series converges for all z ∈ C, in which case we say the series has an infinite radius
of convergence.

23



3.3 Power Series 3 Calculus in the Complex Plane

Examples.

1 Consider the series
∞∑
n=0

n! zn. By the ratio test,

lim
n→∞

∣∣∣∣(n+ 1)! zn+1

n! zn

∣∣∣∣ = lim
n→∞

|z|(n+ 1) =∞

so the series diverges for all positive radii. This is an example of case 1, i.e. the series
has no radius of convergence.

2 For
∞∑
n=0

5n(z − i)n, the ratios test gives us

lim
n→∞

∣∣∣∣5n+1(z − i)n+1

5n(z − i)n

∣∣∣∣ = lim
n→∞

5|z − i|.

So the series converges (absolutely) whenever 5|z − i| < 1 =⇒ |z − i| < 1
5
. This is an

example of case 2, where the series has positive radius of convergence R = 1
5
.

3 The power series
∞∑
n=0

zn

n!
is an example of case 3, since it converges (absolutely) for all

z as shown again by the ratio test:

lim
n→∞

∣∣∣∣∣
zn+1

(n+1)!

zn

n!

∣∣∣∣∣ = lim
n→∞

∣∣∣∣ z

n+ 1

∣∣∣∣ = 0 < 1.

A power series with positive or infinite radius of convergence represents a function that is
holomorphic within the disc of convergence of the series. This is one of the most important
facts in complex analysis, so we take a moment to formalize it here.

Theorem 3.3.2. Suppose
∞∑
n=0

an(z− z0)n has a positive or infinite radius of convergence R.

Then it represents a function f(z) which is holomorphic on D = {z ∈ C : |z − z0| < R}.

Proof. This will be proven in Section 3.6.

Now that we know that power series are holomorphic (differentiable) on their discs of
convergence, we can take derivatives.

Theorem 3.3.3. Suppose
∞∑
n=0

an(z− z0)n has a positive or infinite radius of convergence R.

Then its derivative is also a power series:

f ′(z) =
∞∑
n=1

nan(z − z0)n−1

which has radius of convergence R.
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3.4 Cauchy’s Theorem 3 Calculus in the Complex Plane

This can be applied repeatedly to obtain the Taylor series expansion of f(z) about z0:

f(z) =
∞∑
n=0

f (n)(z0)

n!
(z − z0)n.

Example 3.3.4. The Taylor series for the exponential function is

ez =
∞∑
n=0

zn

n!
.

Using the formulas for cos z and sin z from Section 2.4, we can derive their Taylor series as
well:

cos z =
∞∑
n=0

(−1)n

(2n)!
(z − z0)2n

sin z =
∞∑
n=0

(−1)n

(2n+ 1)!
(z − z0)2n+1.

3.4 Cauchy’s Theorem

We now arrive at a theorem of central importance in complex analysis. The statement of the
theorem is simple, but as we will see, this result has far-reaching implications in the complex
world.

Theorem 3.4.1 (Cauchy’s Theorem). Let f(z) be a complex function that is holomorphic
on domain D, and suppose γ is any piecewise smooth, simple, closed curve in D. Then∫

γ

f(z) dz = 0.

Proof. By assumption f ′(z) is continuous on D and γ has interior Ω within D. We compute∫
γ

f(z) dz =

∫
γ

(u+ iv)(dx+ i dy) =

∫
γ

(u dx− v dy + i(v dx+ u dy))

=

∫
γ

(u dx− v dx) + i

∫
γ

(v dx+ u dy)

=

∫∫
Ω

(−vx − uy) dxdy + i

∫∫
Ω

(ux − vy) dxdy by Green’s Theorem

=

∫∫
Ω

(−vx + vx) dxdy + i

∫∫
Ω

(ux − ux) dxdy by Cauchy-Riemann equations

= 0 + i0 = 0.

Some immediate consequences of Cauchy’s Theorem are

25



3.4 Cauchy’s Theorem 3 Calculus in the Complex Plane

Corollary 3.4.2 (Independence of Path). If γ1 and γ2 are curves with the same initial and
terminal points lying in a domain on which f(z) is holomorphic, then∫

γ1

f(z) dz =

∫
γ2

f(z) dz.

Corollary 3.4.3 (Deformation of Path). Suppose γ1 and γ2 are two simple, closed curves
with the same orientation, with γ2 lying on the interior of γ1.

γ2

γ1

If f(z) is holomorphic on the region between γ1 and γ2 then∫
γ1

f(z) dz =

∫
γ2

f(z) dz.

Corollary 3.4.4 (Fundamental Theorem of Calculus). If f(z) is holomorphic on a simply-
connected domain D, then there is a holomorphic function F satisfying

F (z) =

∫
γ

f(z) dz

for any γ lying in D. Equivalently, F satisfies F ′(z) = f(z) on all of D.

Example 3.4.5. Now it’s easy to solve an integral such as

∫
γ

ez dz where γ is some path

from 0 to 2 + 2i:

γ

0 + 0i

2 + 2i

∫
γ

ez dz = ez|2+2i − ez|0+0i = e2(cos 2 + i sin 2)− 1.

The most important application of Cauchy’s Theorem is Cauchy’s Integral Formula,
which is described in the next section.
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3.5 Cauchy’s Integral Formula

Theorem 3.5.1 (Cauchy’s Integral Formula). Suppose f is holomorphic on a domain D
and γ is a simple closed curve on D, with positive orientation and interior Ω. Then for all
z ∈ Ω,

f(z) =
1

2πi

∫
γ

f(ζ)

ζ − z
dζ.

Ω

z0
C

γ

D

Proof. Fix z ∈ Ω and let C be a circle with center z contained in Ω. Note that for any

z ∈ D,
f(ζ)

ζ − z
is holomorphic on D r {z}. By deformation of path,

1

2πi

∫
γ

f(ζ)

ζ − z
dζ =

1

2πi

∫
C

f(ζ)

ζ − z
dζ.

We parametrize C by z + reit for 0 ≤ t ≤ 2π and write

1

2πi

∫
C

f(ζ)

ζ − z
dζ =

1

2πi

∫ 2π

0

f(z + reit)

reit
ireit dt

=
1

2π

∫ 2π

0

f(z + reit) dt.

Now take the limit as r → 0. Since f(z) is continuous, we can bring the limit inside the
integral:

lim
r→0

1

2π

∫ 2π

0

f(z + reit) dt =
1

2π

∫ 2π

0

f(z) dt.

Notice that f(z) doesn’t depend on t, so we can integrate this easily and see that it equals
f(z). This proves the theorem.

Example 3.5.2. Cauchy’s integral formula allows us to solve path integrals that were pre-
viously inaccessible. For example, if γ is a circle about the origin of radius 1, then z = 1

2
is

on its interior and
ez

z − 1
2

is not holomorphic on the interior of γ. However, Cauchy’s integral

formula lets us compute ∫
γ

ez

z − 1
2

dz = 2πie1/2.
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Example 3.5.3. Consider the following contours

γ1

γ2

z1z2

First, Cauchy’s Theorem (3.4.1) makes it easy to evaluate integrals around γ2, since z1 and
z2 are not on the interior of this curve. For example,∫

γ2

ez

z − z1

dz = 0 and

∫
γ2

ez

z − z2

dz = 0.

When a point is on the interior of a curve, we use Cauchy’s integral formula (3.5.1):∫
γ1

ez

z − z1

dz = 2πiez1 .

Unfortunately, since z2 lies directly on γ1, the integral∫
γ1

ez

z − z2

dz

must be evaluated by hand, e.g. by parametrization.

Example 3.5.4. Using our integration formulas so far, we can break complicated contours
down into simple pieces. For example, consider∫

|z+1|=2

−z2

(z − 2)(z + 2)
dz.

The contour of integration is the circle of radius 2 centered at z0 = −1, which contains
z1 = −2 on its interior but not z2 = 2. By partial fraction decomposition, we can write∫

|z+1|=2

−z2

(z − 2)(z + 2)
dz =

∫
|z+1|=2

(
−1

z − 2
+

1

z + 2

)
dz

=

∫
|z+1|=2

1

z + 2
dz −

∫
|z+1|=2

1

z − 2
dz.

The second of these integrals is 0 by Cauchy’s Theorem (3.4.1). The first evaluates to 2πi
by Cauchy’s integral formula (3.5.1), so we see that the original integral is equal to 2πi.
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We can see this another way, by setting f(z) =
−z2

z − 2
and noticing that f is holomorphic

on |z + 1| = 2. Then Cauchy’s integral formula (3.5.1) tells us that∫
|z+1|=2

−z2

(z − 2)(z + 2)
dz = 2πif(−2) = 2πi

−4

−4
= 2πi.

The next theorem shows that Cauchy’s Integral Formula is intimately related to complex
power series.

Theorem 3.5.5. Let f be holomorphic on a domain D and suppose z0 is a point in D such
that the circle |z − z0| < R for some real R lies in D. Let γ be a simple closed curve lying
within this circle and containing z0 on its interior. Then

f(z) =
∞∑
k=0

ak(z − z0)k where ak =
1

2πi

∫
γ

f(ζ)

(ζ − z0)k+1
dζ

Proof. Let ∆ = {z : |z − z0| < R}. By deformation of path, it suffices to consider when γ is
a circle. For a fixed r < R, we take γ to be the positively-oriented circle γ : |z− z0| = r. By
Cauchy’s Integral Formula (3.5.1),

f(z) =
1

2πi

∫
γ

f(ζ)

ζ − z
dζ

for any z on the interior of γ. For any one of these z’s, let s = |z−z0| so that s < r. Consider

1

ζ − z
=

1

(ζ − z0)− (z − z0)
=

1

ζ − z0

· 1

1− z−z0
ζ−z0

.

Note that
|z − z0|
|ζ − z0|

=
s

r
< 1. This allows us to introduce the series as a convergent geometric

series:
1

ζ − z
=

1

ζ − z0

∞∑
k=0

(
z − z0

ζ − z0

)k
.

Using this and the expression given by Cauchy’s integral formula above, we are able to write

f(z) =
1

2πi

∫
γ

f(ζ)

ζ − z
dζ

=
1

2πi

∫
γ

f(ζ)

ζ − z0

∞∑
k=0

(
z − z0

ζ − z0

)k
dζ

=
1

2πi

∞∑
k=0

(z − z0)k
∫
γ

f(ζ)

(ζ − z0)k+1
dζ.

Corollary 3.5.6. If f(z) is holomorphic on D, f has derivatives of all orders on D and
each derivative is holomorphic on D.
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3.6 Analytic Functions 3 Calculus in the Complex Plane

Proof. By Theorem 3.5.5, f(z) can be written as a power series with positive radius of
convergence,

f(z) =
∞∑
k=0

ak(z − z0)k with ak =
1

2πi

∫
γ

f(ζ)

(ζ − z0)k+1
dζ,

for some γ about z0. We will see in Section 3.6 that we can differentiate (and antidifferentiate)
power series, so f(z) is infinitely differentiable on the region of convergence of the power
series.

3.6 Analytic Functions

Theorem 3.5.5 suggests a powerful connection between power series and holomorphic func-
tions in the complex plane. In this section we prove that every power series represents a
holomorphic function on its region of convergence and every holomorphic function has a
power series representation on its domain. First, we need a converse to Cauchy’s Theorem
(3.4.1).

Theorem 3.6.1 (Morera’s Theorem). Suppose f(z) is continuous on a domain D and∫
γ

f(z) dz = 0

for all smooth, closed curves γ in D. Then f is holomorphic on D.

Proof. We may assume D is connected; otherwise the proof can be repeated on each con-

nected component of D. Fix z0 ∈ D and define F (z) =

∫
γ

f(ζ) dζ where γ is any smooth

curve connecting z0 and z. By independence of path, F (z) is well-defined for all z ∈ D.
Since all closed curves γ give F = 0 and f(z) is continuous, it follows that F ′(z) = f(z),
that is, F is an antiderivative of f . Then F (z) is holomorphic on D, which by Corollary 3.5.6
implies that f(z) is also holomorphic on D.

We prove the first direction of the power series-holomorphic function connection below.

Theorem 3.6.2. Suppose f(z) =
∞∑
k=0

ak(z − z0)k has a positive radius of convergence R.

Then f is a holomorphic function on the domain D = {z ∈ C : |z − z0| < R}.

Proof. Given any closed curve γ in D,∫
γ

∞∑
k=0

ak(z − z0)k dz = 0

by continuity of the power series on its region of convergence. Then Morera’s Theorem says
that f(z) is holomorphic on D.
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Now we know that power series are differentiable on their region of convergence. The
next result says that we can differentiate power series term-by-term, just as in the real case.

Theorem 3.6.3. Suppose f(z) =
∞∑
k=0

ak(z−z0)k has positive radius of convergence R. Then

f(z) is differentiable with

f ′(z) =
∞∑
k=1

kak(z − z0)k−1

which also has radius of convergence R.

Example 3.6.4. In this example we verify the derivatives for ez, cos z and sin z. In Exam-
ple 3.3.4 we saw that the Taylor series expansions for these functions are

ez =
∞∑
n=0

zn

n!

cos z =
∞∑
n=0

(−1)n

(2n)!
(z − z0)2n

and sin z =
∞∑
n=0

(−1)n

(2n+ 1)!
(z − z0)2n+1.

Differentiating the power series for ez term-by-term shows that

d

dz
ez =

∞∑
n=1

nzn−1

n!
=
∞∑
n=1

zn−1

(n− 1)!
=
∞∑
n=0

zn

n!
= ez.

We can use the definitions of cos z and sin z in terms of the complex exponential function
(Section 2.4) to prove that their derivatives are

d

dz
cos z = − sin z and

d

dz
sin z = cos z.

We can repeatedly apply Theorem 3.6.3 to subsequent derivatives of f to obtain a state-
ment of Taylor’s Theorem for complex functions:

Theorem 3.6.5. Suppose f(z) =
∞∑
k=0

ak(z− z0)k has a positive radius of convergence. Then

ak =
f (k)(z0)

k!
.

We now turn to the other connection between holomorphic functions and power series.
Well actually, we have already proven (Corollary 3.5.6) that holomorphic functions have
power series representations, which we recall here.
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Theorem 3.6.6. Let f be holomorphic on a domain D. Then

f(z) =
∞∑
k=0

ak(z − z0)k for ak =
1

2πi

∫
γ

f(ζ)

(ζ − z0)k+1
dζ

where z0 ∈ D and γ is a simple closed curve lying in D and containing z0 on its interior.

We immediately obtain the following generalization of Cauchy’s integral formula (3.5.1).

Corollary 3.6.7. Suppose f is holomorphic on a domain D and γ is a simple closed curve
in D, positively oriented and with interior Ω. Then for all z ∈ Ω and n ∈ N,

f (n)(z) =
n!

2πi

∫
γ

f(ζ)

(ζ − z)n+1
dζ.

We now define what it means for a function to be analytic on a certain region in the
complex plane.

Definition. A function f(z) that is continuous on a region D ⊆ C is analytic at z0 ∈ D if
f equals its Taylor series expansion about z0 and f is analytic on D if it is analytic at every
point in D.

The following theorem summarizes everything we have learned so far about holomorphic
functions in the complex plane.

Theorem 3.6.8. For a complex function f(z) which is continuous on a domain D, the
following are equivalent:

(1) f(z) is differentiable on some open disk centered at z0 ∈ D, that is, f is holomorphic
at z0.

(2) The Taylor series expansion of f(z) about z0 converges to f(z) with positive radius of
convergence, i.e. f is analytic.

(3) f(z) satisfies the Cauchy-Riemann equations on some neighborhood of z0.

(4)

∫
γ

f(z) dz = 0 for every simple closed curve γ inside D with z0 on its interior (Cauchy’s

Theorem and Morera’s Theorem).

We conclude with a consequence of the generalized Cauchy’s integral formula to entire
functions that are bounded.

Theorem 3.6.9 (Liouville’s Theorem). If f(z) is entire and there exists a constant M such
that |f(z)| ≤M for all z ∈ C, then f is a constant function.

Proof. Let z0 ∈ C and take Cr to be the circle centered at z0 with radius r > 0. By
Corollary 3.6.7,

f ′(z0) =
1

2πi

∫
Cr

f(ζ)

(ζ − z0)2
dζ.
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Parametrize the circle by Cr : z0 + reit, 0 ≤ t ≤ 2π. Then

f ′(z0) =
1

2πi

∫ 2π

0

f(z0 + reit)

r2e2it
ireit dt

=
1

2πr

∫ 2π

0

f(z0 + reit)

eit
dt.

Taking the modulus of both sides and applying the triangle inequality for integrals, we have

|f ′(z0)| ≤ 1

2πr

∫ 2π

0

∣∣∣∣f(z0 + reit)

eit

∣∣∣∣ dt
=

1

2πr

∫ 2π

0

|f(z0 + reit)|
|eit|

dt

≤ 1

2πr

∫ 2π

0

M dt.

As we take r → 0, this expression tends to 0 as well, showing |f ′(z0)| = 0. Since z0 was
arbitrary, we have shown that f(z) is constant.

3.7 Harmonic Functions

There is a certain class of holomorphic functions which are important in physics. We study
them here.

Definition. A complex function f = u+iv is harmonic on a domain D if it has continuous
second partial derivatives on D that satisfy the Laplace equation

∂2u

∂x2
+
∂2u

∂y2
= 0.

The next result says that the real and imaginary parts of a holomorphic function are
harmonic.

Proposition 3.7.1. Suppose f = u+ iv is a holomorphic function on a domain D. Then u
and v are harmonic on D.

Proof. Since f is holomorphic, it is infinitely differentiable and so are u and v. In particular, u
and v have continuous second partial derivatives. Moreover, f satisfies the Cauchy-Riemann
equations:

ux = vy and uy = −vx
which imply uxx +uyy = vyx− vxy = 0 since these are continuous. Hence u is harmonic. The
proof is the same for v.

Given a harmonic function u, one may be interested in finding a harmonic conjugate
of u, i.e. another harmonic function v such that f = u+ iv is holomorphic in some region of
the complex plane.
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Example 3.7.2. Consider the function u(x, y) =
x

x2 + y2
. We first show that u is harmonic

by computing second partials.

ux =
−x2 + y2

(x2 + y2)2

uxx =
−2x(x2 + y2)2 − 4x(x2 + y2)(−x2 + y2)

(x2 + y2)4

=
(x2 + y2) · 2x(−x2 − y2 + x2 − y2)

(x2 + y2)4

=
−4xy2

(x2 + y2)3

and uy =
−2xy

(x2 + y2)2

uyy =
−2x(x2 + y2)2 − 4y(x2 + y2)(−2xy)

(x2 + y2)4

=
(x2 + y2) · 2x(4y2 − x2 − y2)

(x2 + y2)4

=
4xy2

(x2 + y2)3
.

Thus uxx +uyy = 0 so u(x, y) is harmonic. Now for f = u+ iv to be a holomorphic function,
it will need to satisfy the Cauchy-Riemann equations, so ux = vy and uy = −vx. The above

shows that we must have vx =
2xy

(x2 + y2)2
. Integrating with respect to x,

v =

∫
2xy(x2 + y2)−2 dx =

−y
x2 + y2

+ yΨ(y)

for some function Ψ(y). Now if we differentiate this with respect to y, we have

vy =
−(x2 + y2)− 2y(−y)

(x2 + y2)2
+ yΨ′(y) + Ψ(y) =

−x2 + y2

(x2 + y2)2
+ yΨ′(y) + Ψ(y).

By the expression for ux determined above, we must have yΨ′(y) + Ψ(y) = 0. A general
solution to this differential equation is Ψ(y) = c

|y| , which gives us

v(x, y) =
−y

x2 + y2
+ y

c

|y|
=

−y
x2 + y2

± c

and this is holomorphic for all (x, y) ∈ C such that y 6= 0.
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Proposition 3.7.3. If u(x, y) = k is a constant function, then it has a harmonic conjugate
v(x, y) which is also constant.

Proof. To begin with, u clearly satisfies the Laplace equation so it is harmonic. A harmonic
conjugate v must satisfy vx = vy = 0 by the Cauchy-Riemann equations, so

v =

∫
vy dy = k1 + χ(x)

and v =

∫
vx dx = k2 + ψ(y).

Setting these equal, we have k1 + χ(x) = k2 + ψ(y), so χx(x) = ψy(y) = 0, showing that
each of the functions must be constant, say χ(x) = c1 and ψ(y) = c2. Therefore v(x, y) =
k1 + c1 = k2 + c2, showing v is a constant function.

In general, the existence of harmonic conjugates is characterized by

Theorem 3.7.4. Suppose u(x, y) is a harmonic function on the simply connected region
D ⊆ C. Then there exists a harmonic conjugate v(x, y) such that f = u+ iv is holomorphic
on D.

Proof. Fix (x0, y0) ∈ D and define v(x, y) by

v(x, y) =

∫ y

y0

∂u

∂x
(x, t) dt−

∫ x

x0

∂u

∂y
(t, y0) dt.

Then f = u+ iv is holomorphic in D since it satisfies the Cauchy-Riemann equations:

∂v

∂y
=

∂

∂y

∫ y

y0

∂u

∂x
(x, t) dt =

∂u

∂x

and
∂v

∂x
=

∂

∂x

∫ y

y0

∂u

∂x
(x, t) dt− ∂2u

∂x∂y
(x, y0) =

∫ y

y0

∂2u

∂x2
(x, t) dt− ∂2u

∂x∂y
(x, y0)

= −
∫ y

y0

∂2u

∂y2
(x, t) dt− ∂2u

∂x∂y
(x, y0) using the Laplace equation

= −∂u
∂y

(x, y) +
∂u

∂y
(x, y0)− ∂u

∂y
(x, y0) = −∂u

∂y
(x, y).

Moreover,

∂2v

∂x2
+
∂2v

∂y2
=

∂

∂x

∫ y

y0

∂2u

∂x2
(x, t) dt− ∂

∂x

(
∂u

∂y
(x, y0)

)
+

∂

∂y

(
∂u

∂x
(x, y)

)
− ∂

∂y

∫ x

x0

∂2u

∂y2
(t, y0) dt

= − ∂

∂x

∫ y

y0

∂2u

∂y2
(x, t) dt− ∂2u

∂x∂y
(x, y0) +

∂2u

∂y∂x
(x, y) +

∂

∂y

∫ x

x0

∂2u

∂x2
(t, y0) dt

= − ∂

∂x

(
∂u

∂y
(x, y)− ∂u

∂y
(x, y0)

)
− ∂2u

∂x∂y
(x, y0) +

∂2u

∂y∂x
(x, y) +

∂

∂y

(
∂u

∂x
(x, y0)− ∂u

∂x
(x0, y0)

)
= 0.

So v(x, y) is indeed a harmonic conjugate of u(x, y).

Corollary 3.7.5. Every harmonic function is infinitely differentiable on its domain.
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4 Meromorphic Functions and Singularities

4.1 Laurent Series

With Theorem 3.6.6, we saw that an analytic function can be written

f(z) =
∞∑
k=0

ak(z − z0)k where ak =
1

2πi

∫
γ

f(ζ)

(ζ − z0)k+1
dζ

for all z in its domain D. This is highly useful, but when f(z) is not analytic on a domain
D we still want a way of representing f as a series. This motivates the introduction and
application of Laurent series:

Definition. A Laurent series is a series expansion of a function f(z) about a point z0 not
in the domain of f in terms of two infinite power series, a positive and negative one:

f(z) =
∞∑
k=0

ak(z − z0)k +
∞∑
k=1

bk(z − z0)−k =
∑
k∈Z

ck(z − z0)k.

Remark. A Laurent series converges if and only if both the positive and negative series
converge. Absolute and uniform convergence are defined analagously. Notice that any Taylor
series is a Laurent series whose negative part vanishes.

Example 4.1.1. f(z) = e1/z is not analytic at z0 = 0, but we can write its Laurent series
expansion

e1/z =
∞∑
k=0

1

k!
z−k.

In this case only the k = 0 term of the positive series is nonzero.

Example 4.1.2. Consider the function f(z) = z3+z2

(z−1)2
about z0 = 1. First we write the

regular Taylor series expansion of the numerator about z0:

z3 + z2 =
∞∑
k=0

an(z − 1)k = 2 + 5(z − 1) +
8

2!
(z − 1)2 +

6

3!
(z − 1)3.

Dividing by (z − 1)2 yields

z3 + z2

(z − 1)2
=

2

(z − 1)2
+

5

z − 1
+ 4 + (z − 1)

which is a Laurent series for f(z) about z0 = 1. The coefficients are b2 = 2, b1 = 5, a0 =
4, a1 = 1 and the rest are zero.

Example 4.1.3. Similarly, we use the Taylor series for sin z to write the Laurent series for
f(z) = sin z

z3
about z0 = 0 as

sin z

z3
=

1

z2
− 1

3!
+
z2

5!
− z4

7!
+ . . .
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We should take a moment to explicitly describe the region of convergence of a Laurent
series. Suppose ∑

k∈Z

ck(z − z0)k =
∞∑
k=0

ak(z − z0)k +
∞∑
k=1

bk(z − z0)−k.

The positive series has some radius convergence R1, that is, the series converges on the region
{z ∈ C : |z − z0| < R1}. Similarly, the negative series is just a power series in 1

z−z0 so it

has radius of convergence 1
R2

, i.e. it converges when 1
|z−z0| <

1
R2

. This can be written as the

complement of a closed disk, {z ∈ C : |z − z0| > R2}. Thus we see that the Laurent series
is convergent on an annular region {z ∈ C : R2 < |z − z0| < R1} (as long as R2 < R1).
By Theorem 3.6.2, the Laurent series represents an analytic function f(z) on the region
D = {z ∈ C : R2 < |z − z0| < R1}. This is made explicit in the next theorem.

Theorem 4.1.4. Suppose f is a holomorphic function on D = {z ∈ C : R1 < |z−z0| < R2}.
Then f is equal to its Laurent series expansion about z0 which can be written

f(z) =
∞∑
k=0

ak(z − z0)k +
∞∑
k=1

bk(z − z0)−k

where ak =
1

2πi

∫
C2

f(ζ)

(ζ − z0)k+1
dζ and bk =

1

2πi

∫
C1

f(ζ)

(ζ − z0)−k+1
dζ

for circles C1 and C2 centered at z0 with radii R1 and R2, respectively.

Proof. Apply Cauchy’s Theorem (3.4.1) and related results to both series.

Remark. By the definition of their coefficients in terms of the integrals above, Laurent
series expansions are unique.

Example 4.1.5. Consider f(z) = 1
(z−1)(z−3)

on three different regions centered about the
origin:

I

II
III

The three regions are given by I : {z ∈ C : |z| < 1}, II : {z ∈ C : 1 < |z| < 3} and III :
{z ∈ C : |z| > 3}. We want to compute Laurent series for f(z) in each of the regions. First
we use partial fraction decomposition to write

1

(z − 1)(z − 3)
=
−1/2

z − 1
+

1/2

z − 3
.

38



4.1 Laurent Series 4 Meromorphic Functions and Singularities

On various regions, we compute the following using geometric series:

−1

2
· 1

z − 1
=

1

2
· 1

1− z
=

1

2

∞∑
n=0

zn, |z| < 1

1

2
· 1

z − 3
= −1

2
· 1

3
· 1

1− 2/3
= −1

6

∞∑
n=0

(z
3

)n
, |z| < 3

−1

2
· 1

z − 1
= −1

2
· 1

z
· 1

1− 1/z
= −1

2
· 1

z

∞∑
n=0

z−n, |z| > 1

1

2
· 1

z − 3
=

1

2
· 1

z

1

1− 3/z
=

1

2
· 1

z

∞∑
n=0

(
3

z

)n
, |z| > 3.

Putting these together into Laurent series on each region, we have

I : f(z) =
1

2

∞∑
n=0

zn − 1

6

∞∑
n=0

(z
3

)n
=
∞∑
n=0

(
1

2
− 1

6
· 1

3n

)
zn

=
∞∑
n=0

1

2
(1− 3−n−1)zn

II : f(z) = −1

2
· 1

z

∞∑
n=0

z−n − 1

6

∞∑
n=0

(z
3

)n
=
∞∑
n=0

−1

2
3−n−1zn +

∞∑
n=0

−1

2
z−n−1

III : f(z) = −1

2
· 1

z

∞∑
n=0

z−n +
1

2
· 1

z

∞∑
n=0

3nz−n

=
∞∑
n=0

1

2
(3n − 1)z−n−1.

In these we see examples of a Laurent series that is a Taylor series (I), corresponding to a
disk on which f(z) is holomorphic; a Laurent series with both positive and negative parts
(II), which is holomorphic on an annulus; and a Laurent series with only negative part (III),
holomorphic on the complement of a disk.

Laurent series give us a way to deal with ‘holes’ in the domain of a function which is
otherwise holomorphic on the region. Such functions have a special name:

Definition. A complex function f(z) is meromorphic on a domain D if it is holomorphic
on D r {z1, z2, . . . , zr} where r is finite.
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4.2 Isolated Singularities

A singularity is the name we give to a ‘hole’ in the domain of a complex function. Below we
describe the three different types of singularities a function may have.

Definition. If f(z) is holomorphic on the punctured disk D = {z ∈ C : 0 < |z − z0| < R}
for some R > 0 (R may be infinite) but not at z0 then z0 is called an isolated singularity
of f . The three types of isolated singularities are

(a) z0 is a removable singularity if there is a function g which is holomorphic on the
disk D ∪ {z0} = {z ∈ C : |z − z0| < R} such that f(z) = g(z) for all z ∈ D.

(b) z0 is a pole if lim
z→z0
|f(z)| = ∞. In particular, z0 is a pole of order m if z0 is

a root of 1
f(z)

with multiplicity m. Equivalently, m is the smallest integer such that

lim
z→z0

(z − z0)m+1f(z) = 0.

(c) z0 is an essential singularity if it is neither removable nor a pole.

The isolated singularities of a function may be characterized in terms of Laurent series
expansions of the function.

Proposition 4.2.1. Let z0 be an isolated singularity of f(z) and suppose f(z) has a Laurent
series expansion

f(z) =
∞∑
n=0

an(z − z0)n +
∞∑
n=1

bn(z − z0)−n

in the region 0 < |z − z0| < R.

(a) z0 is a removable singularity if and only if bn = 0 for all n and there is a function g,

g(z) =

{
f(z) z 6= z0

a0 z = z0,

which is analytic in |z − z0| < R.

(b) z0 is a pole of f(z) if and only if all but a finite number of the bn vanish. Specifically,
if bn = 0 for all n > m then z0 is a pole of order m and f can be written

f(z) =
bm

(z − z0)m
+

bm−1

(z − z0)m−1
+ . . .+

b1

z − z0

+
∞∑
n=0

an(z − z0)n.

(c) z0 is an essential singularity if and only if infinitely many of the bn are nonzero.
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Examples. We examine functions with each type of isolated singularity.

1 The function f(z) = sin z
z

has a Laurent series which is a Taylor series:

sin z

z
=

1

z

∞∑
n=0

(−1)n

(2n+ 1)!
z2n+1 =

∞∑
n=0

(−1)n

(2n+ 1)!
z2n

on the region {z ∈ C : |z| > 0}. Therefore z0 = 0 is removable and the function g that
removes the singularity is

g(z) =

{
sin z
z

z 6= 0

1 z = 0.

Note that g(z) is analytic everywhere; it is an entire function. This shows that f(z) is
meromorphic on Cr {0}.

2 Consider f(z) = sin z
z4

whose Laurent series is given by

sin z

z4
=

1

z4

∞∑
n=0

(−1)n

(2n+ 1)!
z2n+1 =

∞∑
n=0

(−1)n

(2n+ 1)!
z2n−3 =

1

z3
−

1/6

z
+
∞∑
n=0

(−1)n

(2n+ 5)!
z2n+1.

This shows that z0 = 0 is a pole of order 3. Moreover, by Theorem 4.1.4 we can use the
coefficients of the Laurent series to integrate f(z) around some contour C containing
z0 = 0 on its interior:∫

C

sin z

z4
dz = b1 · 2πi =

(
−1

6

)
2πi = −πi

3
.

3 sin
(

1
z

)
, cos

(
1
z

)
and e1/z are all functions with essential singularities at z0 = 0. For

example, consider the Laurent series expansion of f(z) = e1/z:

e1/z =
∞∑
n=0

1

n!
z−n = 1 + z−1 +

1

2
z−2 +

1

6
z−3 + . . . .

Although there is not a nice extension of e1/z to an analytic function about z0 = 0, we
can still use the b1 coefficient of its Laurent series to compute contour integrals:∫

C

e1/z dz = b1 · 2πi = (1)2πi = 2πi.

The next result is rather neat. It says that if f(z) has an essential singularity at z0 then
the image f(D) of any disk D centered at z0 is dense in C (in the topological sense).

Theorem 4.2.2 (Casorati-Weierstrass). If z0 is an essential singularity of f(z) and D =
{z ∈ C : 0 < |z− z0| < R} for some positive R, then for any z ∈ C and ε > 0, there is some
z′ ∈ D such that |z − f(z′)| < ε.
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Proof. To contradict, suppose there is some z ∈ C and an ε > 0 such that for all z′ ∈ D,
|z − f(z′)| ≥ ε. Then g(z) = 1

f(z′)−z is bounded as z → z0, so

lim
z→z0

(z − z0)g(z) = lim
z→z0

z − z0

f(z′)− z
= 0.

By Proposition 4.2.1, g has a removable singularity at z0, and therefore

lim
z→z0

∣∣∣∣f(z′)− z
z − z0

∣∣∣∣ =∞.

This implies that f(z′)−z
z−z0 has a pole at z0, say of order m. By definition,

lim
z→z0

(z − z0)m+1f(z′)− z
z − z0

= lim
z→z0

(z − z0)n(f(z′)− z) = 0.

Finally, this shows that f(z′) − z has a pole or removable singularity at z0 which implies
the same of f(z), but this cannot be the case since z0 was essential. Hence f(D) must be
dense.

4.3 The Residue Theorem

The examples in Section 4.2 illustrate the connection between the coefficients of the negative
part of the Laurent series of a function and contour integrals of the function about its
singularities. The coefficient b1 is of particular importance, so much so that it has a special
name.

Definition. Let z0 be an isolated singularity of f(z). The residue of f at z0 is

Res(f ; z0) :=
1

2πi

∫
C

f(z) dz

where C : |z − z0| = r for some 0 < r < R, the radius of convergence of the Laurent series
for f . This is in turn equal to the b1 coefficient of the Laurent series.

There is a nice formula for the residues of removable singularities and poles.

Proposition 4.3.1. Suppose z0 is a nonessential singularity of f(z).

(a) If z0 is a removable singularity, Res(f ; z0) = 0.

(b) If z0 is a pole of order m, then

Res(f ; z0) =
1

(m− 1)!
lim
z→z0

dm−1

dzm−1
(z − z0)mf(z).

Proof. (a) follows from Cauchy’s Theorem (3.4.1), and (b) is a simple application of Taylor’s
Theorem to the series

(z − z0)mf(z) =
∞∑

n=−m

cn(z − z0)n+m.

The formula for Res(f ; z0) follows from the identification of the residue and b1.
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Example 4.3.2. Let f(z) =
ez

z2(z − iπ)4
. Then f has a pole of order 2 at z0 = 0, so we

define g(z) = z2f(z) which is analytic on a small enough neighborhood of 0 (so that it avoids
iπ). By Proposition 4.3.1,

Res(f ; 0) =
1

(2− 1)!
lim
z→0

d2−1

dz2−1
g(z) = lim

z→0
g′(z).

The first derivative of g is

g′(z) =
ez(z − iπ)4 − ez · 4(z − iπ)3

(z − iπ)8

=
ez(z − iπ)3(z − iπ − 4)

(z − iπ)8

=
ez(z − iπ − 4)

(z − iπ)5
.

Then the formula for the residue above allows us to compute

Res(f ; 0) = lim
z→0

ez(z − iπ − 4)

(z − iπ)5
=
−iπ − 4

(−iπ)5
=

1

π4
+

4

iπ5
.

Proposition 4.3.3. Suppose f and g are analytic on |z − z0| < r for some z0 ∈ C and
r > 0, and suppose g(z0) = 0 but g′(z0) 6= 0. Then

Res

(
f

g
; z0

)
=
f(z0)

g′(z0)
.

Proof. Let g(z) have the following power series centered at z0 (by assumption the series has
no c0 coefficient):

g(z) =
∞∑
k=1

ck(z − z0)k = (z − z0)
∞∑
k=0

ak(z − z0)k

where ak = ck−1; call the analytic function represented by this new series h(z). Note that
h(z0) = c1 6= 0, so

f(z)

g(z)
=

f(z)

(z − z0)h(z)

and f
h

is analytic at z0. Using the definition of residue in terms of the Laurent series coeffi-

cients, the residue of f
g

is equal to the constant term of the series for f
h

(the n = −1 term of

the series for f
g
). This is computed to be f(z0)

h(z0)
, but by the way we defined h, h(z0) = g′(z0).

Hence

Res

(
f

g
; z0

)
=
f(z0)

g′(z0)
.
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We finally arrive at the central theorem in basic complex analysis: the Residue Theorem.

Theorem 4.3.4 (The Residue Theorem). Suppose f(z) is meromorphic on a region D; let
z1, . . . , zn be the isolated singularties of f inside D. If γ is a piecewise smooth, positively
oriented, simple closed curve lying in D that does not pass through any of the zi then∫

γ

f(z) dz = 2πi
n∑
i=1

Res(f ; zi).

Proof. Draw a positively-oriented circle Ci around each singularity zi such that zi is the only
singularity of f on its interior. The case where n = 3 is illustrated below.

γ

z1z2

z3

Then γ is contractible to a curve γ′ which connects the Ci together and otherwise contains
no singularities on its interior. Such a contraction is shown in the next figure.

z1z2

z3

γ′

Then

∫
γ

f(z) dz =

∫
γ′
f(z) dz +

n∑
i=1

∫
Ci

f(z) dz but by construction, f(z) is holomorphic on

the interior of γ′, so by Cauchy’s Theorem (3.4.1) this part equals 0. Evaluate the remaining
terms using the definition of residue to produce the main summation formula:∫

γ

f(z) dz =
n∑
i=1

∫
Ci

f(z) dz =
n∑
i=1

2πiRes(f ; zi).
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Example 4.3.5. Evaluate

∫
γ

z2 − 2z + 1

(z − 1)(z − 4)(z + 3)
dz about the given contour.

C1 C2 C3

γ

Set f(z) =
z2 − 2z + 1

(z − 1)(z − 4)(z + 3)
. By the Residue Theorem we may evalute the integral of

f over γ as∫
γ

z2 − 2z + 1

(z − 1)(z − 4)(z + 3)
dz = 2πi(Res(f ;−3) + Res(f ; 1) + Res(f ; 4)).

First, note that the function g(z) = z−1
(z−4)(z+3)

is holomorphic on C2 and f(z) = g(z) on
the interior of C1 minus 1. Thus z2 = 1 is a removable singularity, so by Proposition 4.3.1,
Res(f ; 1) = 0. Next, it is easy to see that z1 = −3 and z3 = 4 are both simple poles, so we
compute their residues using the pole formula (Proposition 4.3.1):

Res(f ;−3) = lim
z→−3

(z + 3)f(z) = lim
z→−3

z2 − 2z + 1

(z − 1)(z − 4)
=

4

7

Res(f ; 4) = lim
z→4

(z − 4)f(z) = lim
z→4

z2 − 2z + 1

(z − 1)(z + 3)
=

3

7
.

Putting this together, we have∫
γ

z2 − 2z + 1

(z − 1)(z − 4)(z + 3)
dz = 2πi

(
4

7
+ 0 +

3

7

)
= 2πi.

4.4 Some Fourier Analysis

Techniques in Fourier analysis are vital in many areas of mathematics and the physical
sciences, especially when signal or wave data needs to be broken down into simple compo-
nents. By studying heat diffusion and wave equations, Joseph Fourier discovered that every
continuous function can be approximated with arbitrarily small error by a series of the form

∞∑
n=0

an cos(nx) + bn sin(nx).
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Extending these functions to the complex plane, we can take advantage of Euler’s formula
eit = cos t+ i sin t.

Definition. Let f be an integrable, complex-valued function defined on R (or defined on C
but restricted to R for this section). The Fourier transform of F is

f̂(w) =

∫ ∞
−∞

f(x)e2πiwx dx.

The reason the Residue Theorem (4.3.4) is important to the study of Fourier series
becomes evident in the next theorem.

Theorem 4.4.1. Let f(z) be analytic on the half-plane H : Im(z) ≥ 0 except possibly at a
finite number of singularities {z1, . . . , zn}, all of which have positive imaginary part. Suppose
|f(z)| gets arbitrarily small for all z ∈ H with sufficiently large modulus, i.e.

lim
R→∞

max
|z|=R

Im(z)≥0

|f(z)| = 0.

Then for all real numbers w > 0,

f̂(w) = 2πi
n∑
j=0

Res(f(z)e2πiwz; zj).

Similarly, if all of the above conditions hold for the negative half-plane H′ : Im(z) ≤ 0, then

f̂(w) = −2πi
n∑
j=1

Res(f(z)e2πiwz; zj).

Example 4.4.2. Consider the real-valued function f(x) =
1

1 + x2
. We can extend this to a

complex function f(z) =
1

1 + z2
which clearly satisfies

lim
R→∞

max
|z|=R

Im(z)≥0

|f(z)| = 0.

Then Theorem 4.4.1 above tells us we can compute the Fourier transform of f(x) in terms
of residues of f(z): f̂(w) = 2πiRes(f(z)e2πiwz; i). Since f(z) only has a simple pole in the
upper half-plane at z0 = i, we use Proposition 4.3.1 to compute this residue:

Res(f(z)e2πiwz; i) = lim
z→i

(z − i) e2πiwz

(z − i)(z + i)
= lim

z→i

e2πiwz

z + i
=
e−2πw

2i
.

Hence the Fourier transform of f(z) is f̂(w) = πe−2πw.

4.5 The Argument Principle
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5 Complex Mappings

5.1 Möbius Transformations

5.2 Conformal Mappings

5.3 The Riemann Mapping Theorem
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6 Riemann Surfaces

Riemann surfaces are a mix of the topology of covering spaces and the complex analysis
of analytic continuation. The main problem one encounters in the latter setting is that a
holomorphic function does not always admit a uniquely defined analytic continatuion. The
normal strategy then is to employ ‘branch cuts’, but this tactic seems ad hoc and not suited
to generalization. Riemann’s idea was to replace the branches of a function with a covering
space on which the analytic continuation is an actual function.

6.1 Holomorphic and Meromorphic Maps

Definition. Let X be a surface, i.e. a two-dimensional manifold. A complex atlas on X
is a choice of open covering {Ui} of X together with homeomorphisms ϕi : Ui → ϕi(Ui) ⊆ C
such that for each pair of overlapping charts Ui, Uj, the transition map

ϕij := ϕj ◦ ϕ−1
i : ϕi(Ui ∩ Uj) −→ ϕj(Ui ∩ Uj)

and its inverse are holomorphic. A complex structure on X is the choice of a complex
atlas, up to holomorphic equivalence of charts, defined by a similar condition to the above.
A connected surface which admits a complex structure is called a Riemann surface.

Example 6.1.1. The complex plane C is a trivial Riemann surface. Any connected open
subset U in C is also a Riemann surface via the given embedding U ↪→ C.

Example 6.1.2. The complex projective line P1 = P1
C = C∪{∞} admits a complex structure

defined by the open sets U0 = P1 r {∞} = C and U1 = P1 r {0} = C× ∪{∞}, together with
charts

ϕ0 : U0 → C, z 7→ z and ϕ1 : U1 → C, z 7→ 1

z
,

where 1
∞ = 0 by convention. Note that ϕ1 ◦ ϕ−1

0 is the function z 7→ 1
z

on C× which is
holomorphic.

Example 6.1.3. Let Λ ⊆ C be a lattice with basis [ω1, ω2].

ω1

ω2
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Then the quotient C/Λ admits a complex structure as follows. Let π : C → C/Λ be the
quotient map and suppose Π ⊆ C is a fundamental domain for Λ, meaning no two points in
Π are equivalent mod Λ. Set U = π(Π) ⊆ C/Λ. Then π|Π : Π → U is a homeomorphism,
so let ϕ : U → Π be its inverse. Letting {Ui} be the collection of all images under π of
fundamental domains for Λ, we get a complex atlas on C/Λ (one can easily check that the
transition functions between the Ui are locally constant, hence holomorphic). Topologically,
C/Λ is homeomorphic to a torus.

Definition. A function f : U → C on an open subset U of a Riemann surface X is holo-
morphic if for every complex chart ϕ : V → ϕ(V ) ⊆ C, the function f ◦ ϕ−1 : ϕ(U ∩ V )→
U ∩ V → C is holomorphic.

Let O(U) denote the set of all holomorphic functions U → C.

Lemma 6.1.4. For any open set U of a Riemann surface X, O(U) is a commutative C-
algebra.

Proposition 6.1.5 (Holomorphic Continuation). For any open set U ⊆ X of a Riemann
surface and any x ∈ U , if f ∈ O(U r{x}) is bounded in a neighborhood of x, then f extends
uniquely to some f̃ ∈ O(U).

More generally, we can define holomorphic maps between two Riemann surfaces.

Definition. A continuous map f : X → Y between Riemann surfaces is called holomorphic
if for every pair of charts ϕ : U → ϕ(U) ⊆ C on X and ψ : V → ψ(V ) ⊆ C on Y such that
f(U) ⊆ V , the map

ψ ◦ f ◦ ϕ−1 : ϕ(U)→ U → V → ψ(V )

is holomorphic. We say f is biholomorphic if it is a bijection and its inverse f−1 is also
holomorphic. In this case X and Y are said to be isomorphic as Riemann surfaces.

Lemma 6.1.6. If X
f−→ Y

g−→ Z are holomorphic maps between Riemann surfaces, then
g ◦ f : X → Z is also holomorphic.

Proposition 6.1.7. Let f : X → Y be a holomorphic map. Then for all open U ⊆ X, there
is an induced C-algebra homomorphism

f ∗ : O(U) −→ O(f−1(U))

ψ 7−→ f ∗ψ := ψ ◦ f.

Proof. The fact that f ∗ψ is an element of O(f−1(U)) follows from the above definitions of
O and a holomorphic map between Riemann surfaces. The ring axioms are also easy to
verify.

Theorem 6.1.8. Suppose f, g : X → Y are holomorphic maps between Riemann surfaces
such that there exist a set A ⊆ X containing a limit point a ∈ A and f |A = g|A. Then f = g.
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Proof. Let U ⊆ X be the set of all x ∈ X with an open neighborhoodW on which f |W = g|W .
Then U is open and a ∈ U ; we will show it is also closed. If x ∈ ∂U , we have f(x) = g(x) since
f and g are continuous. Choose a neighborhood W ⊆ X of x and charts ϕ : W → ϕ(W ) ⊆ C
and ψ : W ′ → ψ(W ′) ⊆ C in Y with f(W ) ⊆ W ′ and g(W ) ⊆ W ′. Consider

F = ψ ◦ f ◦ ϕ−1 : ϕ(W )→ ψ(W ′) and G = ψ ◦ g ◦ ϕ−1 : ϕ(W )→ ψ(W ′).

Then F and G are holomorphic and W ∩ U 6= ∅, so we must have F = G. Therefore
f |W = g|W , so x ∈ U after all. This implies U = X.

Definition. A meromorphic function on an open set U ⊆ X consists of an open subset
V ⊆ U and a holomorphic function f : V → C such that UrV contains only isolated points,
called the poles of f , and limx→p |f(x)| =∞ for every pole p ∈ U r V .

Denote the set of meromorphic functions on U by M(U). Then M(U) is a C-algebra,
where f + g and fg are defined by meromorphic continuation.

Example 6.1.9. Any polynomial f(z) = c0 + c1z + . . . + cnz
n is a holomorphic function

C→ C. Viewing C ⊆ P1, f is a meromorphic function on P1 with only a pole at ∞ of order
n (assuming cn 6= 0).

Example 6.1.10. Any meromorphic function f ∈M(X) may be represented by a Laurent
series expansion about any of its poles p by choosing a complex chart U → C containing p,
lifting z to a parameter t on U and writing

f(t) =
∞∑

n=−N

cnt
nfor some cn ∈ C.

Theorem 6.1.11. Suppose X is a Riemann surface. Then the set of meromorphic functions
M(X) is in bijection with the set of holomorphic maps X → P1.

Proof. If f ∈ M(X) is a meromorphic function, then setting f(p) = ∞ for every pole p of
f defines a holomorphic map f : X → P1. Indeed, it is clear that f is continuous. Let P be
the set of its poles. If ϕ : U → ϕ(U) ⊆ C is a chart on X and ψ : V → ψ(V ) ⊆ C is a chart
on P1 with f(U) ⊆ V , then since f is holomorphic on X r P , ψ ◦ f ◦ ϕ−1 : ϕ(U)→ ψ(V ) is
holomorphic on ϕ(U) r ϕ(P ). By Proposition 6.1.5, ψ ◦ f ◦ ϕ−1 is actually holomorphic on
ϕ(U), so f is a holomorphic map of Riemann surfaces.

Conversely, if g : X → P1 is holomorphic, then by Theorem 6.1.8, either g(X) = {∞} or
g−1(∞) is a set of isolated points in X. It is then easy to see that g : X r g−1(∞) → C is
meromorphic.

Corollary 6.1.12 (Meromorphic Continuation). For any open set U ⊆ X and any x ∈ U ,
if f ∈ M(U r {x}) is bounded in a neighborhood of x, then f extends uniquely to some
f̃ ∈M(U).

Proof. Apply Proposition 6.1.5 and Theorem 6.1.11.

Corollary 6.1.13. Any nonzero function in M(X) has only isolated zeroes. In particular,
M(X) is a field.

50



6.1 Holomorphic and Meromorphic Maps 6 Riemann Surfaces

Theorem 6.1.14. Let f : X → Y be a nonconstant holomorphic map between Riemann
surfaces. Then for every x ∈ X with y = f(x) ∈ Y , there exists k ∈ N and complex charts
ϕ : U → ϕ(U) ⊆ C of X and ψ : V → ψ(V ) ⊆ C of Y with f(U) ⊆ V such that

(1) x ∈ U with ϕ(x) = 0 and y ∈ V with ψ(y) = 0.

(2) F = ψ ◦ f ◦ ϕ−1 : ϕ(U)→ ψ(V ) is given by F (z) = zk for all z ∈ ϕ(U).

Proof. It is easy to arrange (1) by replacing (U,ϕ) with another chart obtained by composing
ϕ with an automorphism of C taking ϕ(x) 7→ 0. So without loss of generality assume (1) is
satisfied. By Theorem 6.1.8, F = ψ ◦ f ◦ ϕ−1 is nonconstant. Thus since f(0) = 0, we may
write F (z) = zkg(z) for some k ≥ 1 and some g ∈ O(ϕ(U)) with g(0) 6= 0. Then g(z) = h(z)k

for some holomorphic function h on ϕ(U), and H(z) = zh(z) defines a biholomorphic map
α of some open neighborhood W ⊆ ϕ(U) of 0 onto another open neighborhood of 0. Finally,
replace (U,ϕ) by (ϕ−1(W ), α ◦ ϕ). By construction, F = ψ ◦ fϕ−1 is now of the form
F (z) = zk.

Definition. The integer k for which F can be written F (z) = zk about x ∈ X is called the
multiplicity of f at x.

Corollary 6.1.15. If f : X → Y is a nonconstant holomorphic map between Riemann
surfaces, then f takes open sets to open sets.

Corollary 6.1.16. If f : X → Y is an injective holomorphic map, then f is biholomorphic
X → f(X).

Proof. If f is injective, then locally F (z) = zk with k = 1. Hence f−1 is holomorphic.

Corollary 6.1.17 (Maximum Principle). Suppose X is a Riemann surface and f : X → C
is a nonconstant holomorphic function. Then |f | does not attain its maximum.

Proof. Suppose x0 ∈ X exists such that |f(x0)| = sup{|f(x)| : x ∈ X}. Set

D = {z ∈ C : |z| ≤ |f(x0)|}

so that f(x0) lies in the boundary of D. Then f(X) ⊆ D, but by Corollary 6.1.15, f(X) is
open in D, contradicting f(x0) ∈ ∂D.

Theorem 6.1.18. If f : X → Y is a nonconstant holomorphic map and X is compact, then
Y is also compact and f is surjective.

Proof. By Corollary 6.1.15, f(X) is open but since X is compact, f(X) is also compact and
in particular closed. Therefore f(X) = Y .

Corollary 6.1.19 (Fundamental Theorem of Algebra). Every nonconstant polynomial f(z) =
c0 + c1z + . . .+ cnz

n with ci ∈ C has a root.

Proof. Such an f extends to a holomorphic map f : P1 → P1 by setting f(∞) = ∞. Since
P1 is compact, Theorem 6.1.18 says f is surjective, so f(z) = 0 for some z ∈ C.

51



6.2 Covering Spaces 6 Riemann Surfaces

Corollary 6.1.20. Every holomorphic function on a compact Riemann surface is constant.

Proof. C is not compact, so Theorem 6.1.18 implies that every holomorphic function from a
compact space into C must be constant.

Corollary 6.1.21. Every meromorphic function on P1 is rational.

Proof. First, note that the only way for such an f ∈ M(P1) to have infinitely many poles
is if it had a limit point, but then Theorem 6.1.8 would imply f ≡ ∞. Thus f has finitely
many poles, say a1, . . . , an ∈ P1; we may assume ∞ is not one of the poles, or else consider
the function 1

f
instead. For 1 ≤ i ≤ n, expand f as a Laurent series about ai:

fi(z) =

mi∑
j=1

cij(z − ai)−j for cij ∈ C.

Then g = f − (f1 + . . . + fn) is holomorphic on P1 and thus constant by Corollary 6.1.20
since P1 is compact. This shows f is rational.

Corollary 6.1.20 gives another proof of Liouville’s Theorem (3.6.9):

Corollary 6.1.22 (Liouville’s Theorem). Every bounded holomorphic function on C is con-
stant.

Proof. By Proposition 6.1.5, f has a holomorphic continuation to f̃ : P1 → C, but by
Corollary 6.1.20, f̃ must be constant.

6.2 Covering Spaces

The idea in this section is to relate holomorphic maps between Riemann surfaces to covering
space theory. Recall the following definition from topology.

Definition. A map p : Y → X between connected, Hausdorff spaces is a covering map if
each point x ∈ X has a neighborhood U such that p−1(U) ⊆ Y is a nonempty disjoint union
p−1(U) =

∐
Uα such that the restriction p|Uα : Uα → U is a homeomorphism for each Uα.

Such a neighborhood U is called an evenly covered neighborhood of x, and the Uα are called
the sheets of the cover over x. The domain space Y is called a covering space of X.

Theorem 6.2.1. If p : Y → X is a nonconstant holomorphic map between Riemann surfaces
then p is open and has discrete fibres.

Proof. By Corollary 6.1.15, p is open and Theorem 6.1.8 implies each fibre is discrete.

Let p : Y → X be a cover of Riemann surfaces. Traditionally, holomorphic functions
f : Y → C are treated as multi-valued functions on X by setting f(x) = {f(y1), . . . , f(yn)}
where p−1(x) = {y1, . . . , yn}.

Example 6.2.2. Let exp : C→ C× be the exponential map z 7→ ez and f = id : C→ C the
identity map. Then the resulting multi-valued function C× → C is the complex logarithm,
which is only defined as a function after making a particular choice of branch of the function.
We can describe this idea more cleanly with Riemann surfaces and branched covers.
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Definition. Suppose p : Y → X is a nonconstant holomorphic map. A ramification point
of p is a point y ∈ Y such that for every neighborhood V ⊆ Y of y, p|V : V → p(V ) is not
injective. The image x = p(y) is called a branch point of p. If p has no ramification points
(and hence no branch points), then we call p an unramified map.

Theorem 6.2.3. A nonconstant holomorphic map p : Y → X is unramified if and only if it
is a local homeomorphism.

Proof. Suppose p is unramified. Then for any y ∈ Y , there exists a neighborhood V ⊆ Y of
y such that p|V : V → p(V ) is injective and open. Therefore p|V is a homeomorphism onto
p(V ). The converse follows from basically the same argument.

Example 6.2.4. For each n ≥ 2, the map pn : C → C defined by pn(z) = zn is ramified
at 0 ∈ C and unramified everywhere else. Therefore pn : C× → C is an unramified cover.
Moreover, Theorem 6.1.14 says that every ramified cover of Riemann surfaces Y → X is
locally of the form C→ C, z 7→ zn.

Example 6.2.5. The exponential map exp : C → C×, z 7→ ez is an unramified cover. In
fact, as in the topological case, exp gives a universal cover of C via the inverse system of the
covers pn.

Example 6.2.6. The quotient map π : C→ C/Λ from Example 6.1.3 is an unramified cover
of Riemann surfaces.

Theorem 6.2.7. Suppose p : Y → X is a local homeomorphism of Hausdorff topological
spaces and X is a Riemann surface. Then Y admits a unique complex structure making p a
holomorphic map.

Proof. Let ϕ : V → C be a chart of X. Then there exists an open subset U ⊆ V over which
p|U : p−1(U) → U is a homeomorphism. Set Ũ = p−1(U) and ϕ̃ = ϕ ◦ p|U : Ũ → C. Then

ϕ̃ is a complex chart on Y and the collection {Ũ , ϕ̃} obtained in this way forms a complex
atlas on Y . Since p : Y → X is locally biholomorphic by construction, it is a holomorphic
map between Riemann surfaces. Uniqueness is easy to check.

Example 6.2.8. Now that we can view nonconstant holomorphic maps as local homeomor-
phisms, and in most cases covering spaces, we can rephrase the language of branch cuts as
a lifting problem. For example, let exp : C → C× be the exponential map and suppose
f : X → C× is a holomorphic map of Riemann surfaces, with X simply connected. Then by
covering space theory, for each fixed x0 ∈ X and z0 ∈ C such that f(x0) = ez0 , there exists
a unique lift F : X → C making the diagram

X

C

C×

F exp

f
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commute. Theorem 6.2.7 can be used to show that any such F is holomorphic. Moreover,
any other lift G of f differs from F by 2πin for some n ∈ Z. For the special case of a simply
connected open set X ⊆ C×, any lift F is a branch of the complex logarithm on X.

Example 6.2.9. Similarly, one can construct the complex root functions z 7→ z1/n, n ≥ 2,
as lifts along the cover pn : C× → C.

Let f : Y → X be a nonconstant holomorphic map that is proper, i.e. the preimage of
any compact set in X is compact in Y . For each x ∈ X, define the multiplicity of f at x to
be

ordx(f) =
∑

y∈f−1(x)

vy(f)

where vy(f) is the multiplicity of f at y.

Example 6.2.10. If f : Y → X is unbranched at x ∈ X, then p−1(x) = {y1, . . . , yn} for
some n and vyi(f) = 1 for each 1 ≤ i ≤ n. Thus ordx(f) = n.

Theorem 6.2.11. If f : Y → X is a proper, nonconstant holomorphic map between Rie-
mann surfaces, then there exists a number n ∈ N such that for every x ∈ X, ordx(f) = n.

Proof. By Theorem 6.2.1, the set B of ramification points of f is a closed, discrete subset
of Y . Let A = f(B) ⊆ X. Then since f is proper, A is also closed and discrete. The
restriction f |Y rB : Y rB → XrA is unramified, so it is a finite-sheeted covering space; say
n is the number of sheets of f |Y rB, i.e. the size of any fibre f−1(x) for an unbranched point
x ∈ X. By the above example, f has multiplicity n at every y ∈ Y r B. Suppose a ∈ A
and write f−1(a) = {b1, . . . , bk} ⊆ B and mi = vbi(f). For each 1 ≤ i ≤ k, we may choose
neighborhoods Vi ⊂ Y of bi and Ui ⊂ X of a such that for all x ∈ Ui r {a}, f−1(x) ∩ Vi
consists of exactly mi points. Then there is a neighborhood U ⊆ U1∩ · · · ∩Uk of a such that
f−1(U) ⊆ V1∪· · ·∪Uk and for every x ∈ U∩(XrA), f−1(x) consists of exactly m1 + . . .+mk

points. However we showed that |f−1(x)| = n, so n = m1 + . . .+mk as required.

Corollary 6.2.12. Let X be a compact Riemann surface and f : X → C a nonconstant
meromorphic function. Then the number of zeroes of f equals the number of poles of f ,
counted with multiplicity.

Proof. View f as a holomorphic function X → P1. Since X and P1 are compact, f is a
proper map so ord0(f) = ord∞(f). But ord0(f) is precisely the number of zeroes of f , while
ord∞(f) is the number of poles.

Corollary 6.2.13. Any complex polynomial f(z) ∈ C[z] of degree n has exactly n zeroes,
counted with multiplicity.

Proof. We may view f as a holomorphic map P1 → P1. Then it is easy to see ord∞(f) = n,
so once again ord0(f) = n.
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7 Elliptic Functions

7 Elliptic Functions

In this chapter we review the classical theory of Jacobians for complex curves, starting with
the construction and basic properties of elliptic functions, their connection to elliptic curves
and their Jacobians, and then describing the construction in arbitrary dimension.

7.1 Elliptic Functions

Let Λ ⊆ C be a lattice, i.e. a free abelian subgroup of rank 2. Then Λ can be written

Λ = Zω1 + Zω2 for some ω1, ω2 ∈ C such that
ω1

ω2

6∈ R.

Definition. A function f : C→ C ∪ {∞} is doubly periodic with lattice of periods Λ
if f(z + `) = f(z) for all ` ∈ Λ and z ∈ C.

Definition. An elliptic function is a function f : C→ C∪ {∞} that is meromorphic and
doubly periodic.

It is not obvious that doubly periodic functions even exist! We will prove this shortly.

Definition. Let Λ ⊆ C be a lattice. The set

Π = Π(ω1, ω2) = {t1ω1 + t2ω2 | 0 ≤ ti < 1}

is called the fundamental parallelogram, or fundamental domain, of Λ. We say a
subset Φ ⊆ C is fundamental for Λ if the quotient map C → C/Λ restricts to a bijection
on Φ.

ω1

ω2

Π

Lemma 7.1.1. For any choice of basis [ω1, ω2] of Λ, Π(ω1, ω2) is fundamental for Λ.

Lemma 7.1.2. Let Λ be a lattice. Then
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(a) If Π is the fundamental domain of Λ, then for any α ∈ C, Πα := Π+α is fundamental
for Λ.

(b) If Φ is fundamental for Λ, then C =
⋃
`∈Λ

Φ + `.

Corollary 7.1.3. Suppose f is an elliptic function with lattice of periods Λ and Φ funda-
mental for Λ. Then f(C) = f(Φ).

Proposition 7.1.4. A holomorphic elliptic function is constant.

Proof. Let f be such an elliptic function and let Φ be the fundamental domain for its lattice
of periods. Then Π is compact and hence f(Π) is as well. In particular, f(C) = f(Π) ⊆ f(Π)
is bounded, so by Liouville’s theorem, f is constant.

Proposition 7.1.5. Let f be an elliptic function. If α ∈ C is a complex number such that
∂Πα does not contain any of the poles of f , then the sum of the residues of f inside ∂Πα

equals 0.

Proof. Fix a basis [ω1, ω2] of Λ and set ∆ = ∂Πα. By the residue theorem, it’s enough to
show

∫
∆
f(z) dz = 0. We parametrize the boundary of Π as follows:

γ1 = α + tω1

γ2 = α + ω1 + tω2

γ3 = α + (1− t)ω1 + ω2

γ4 = α + (1− t)ω2.

γ1

γ2

γ3

γ4

α

Πα

We show that
∫
γ1
f(z) dz+

∫
γ3
f(z) dz = 0 and leave the proof that

∫
γ2
f(z) dz+

∫
γ2
f(z) dz = 0

for exercise. Consider∫
γ1

f(z) dz +

∫
γ3

f(z) dz =

∫ 1

0

f(α + tω1)(ω1 dt) +

∫ 1

0

f(α + (1− t)ω1 + ω2)(−ω1 dt)

= ω1

∫ 1

0

f(α + tω1) dt+ ω1

∫ 0

1

f(α + sω1) ds since f is elliptic

= ω1

(∫ 1

0

f(α + tω1) dt−
∫ 1

0

f(α + sω1) ds

)
= 0.

Hence the sum of the residues equals 0.
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Corollary 7.1.6. Any elliptic function has either a pole of order at least 2 or two poles on
the fundamental domain of its lattice of periods.

Proposition 7.1.7. Suppose f is an elliptic function with fundamental domain Π and α ∈ C
such that ∆ = ∂Πα does not contain any zeroes or poles of f . Let {aj}nj=1 be a finite set of
zeroes and poles in Πα, with mj the order of the pole aj. Then

∑n
j=1 mj = 0.

Proof. For a pole z0, we can write f(z) = (z− z0)mg(z) for some holomorphic function g(z),
with g(z0) 6= 0. Then

f ′(z)

f(z)
= (z − z0)−1

(
m+ (z − z0)

g′(z)

g(z)

)
.

Hence Res
(
f ′

f
; z0

)
= m. Then the statement follows from Proposition 7.1.5.

Proposition 7.1.7 has an analogue in algebraic geometry: if f is a rational function on
an algebraic curve C, the formal sum (f) =

∑
mjaj, where the aj and mj are defined as

above, is called the principal divisor associated to f and its degree is deg(f) =
∑
mj. Then

one can prove that deg(f) = 0.
Continuing in the complex setting, let f be an elliptic function and let a1, . . . , ar be the

poles and zeroes of f in the fundamental domain of Λ. Write ordai f = mi if ai is a pole
of order −mi or if ai is a zero of multiplicity mi. The sum ord(f) =

∑r
i=1 mi is called the

order of f . Then Corollary 7.1.6 says that there are no elliptic functions of order 1. We will
show that the field of elliptic functions with period lattice Λ is generated by an order 2 and
an order 3 function.

Let f be elliptic and z0 ∈ C with ordz0 f = m. Then for any ` ∈ Λ, ordz0+` f = m as
well. Indeed, if z0 is a zero then

0 = f(z0) = f(z0) = . . . = f (m−1)(z0)

but f (k)(z) is also elliptic for all k ≥ 1. If z0 is a pole of f , the same result can be obtained
using 1

f
instead of f .

If Φ1 and Φ2 are any two fundamental domains for Λ, then for all a1 ∈ Φ1, there is a
unique a2 ∈ Φ2 such that a2 = a1 + ` for some ` ∈ Λ. Thus Propositions 7.1.5 and 7.1.7 hold
for any fundamental domain of Λ, so it follows that ord(f) is well-defined on the quotient
C/Λ.

Now given any meromorphic function f(z) on C, we would like to construct an elliptic
function F (z) with lattice Λ. Put

F (z) =
∑
`∈Λ

f(z + `).

There are obvious problems of convergence and (in a related sense) the order of summation.
It turns out we can do this construction with f(z) = 1

zm
,m ≥ 3 though. First, we need the

following result, which can be proven using Cauchy’s integral formula (3.5.1) and Morera’s
theorem (3.6.1).
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Lemma 7.1.8. Let U ⊆ C be an open set and suppose (fn) is a sequence of holomorphic
functions on U such that fn → f uniformly on every compact subset of U . Then f is
holomorphic on U and f ′n → f ′ uniformly on every compact subset of U .

Proposition 7.1.9. Let Λ be a lattice with basis [ω1, ω2]. Then the sum∑
ω∈Λr{0}

1

|ω|s

converges for all s > 2.

Proof. Extend the fundamental domain by translation by the vectors ω1, ω2 and ω1 + ω2,
and call the boundary of the resulting region ∆:

Λ

Λ

Λ

Λ

∆

Then ∆ is compact, so there exists c > 0 such that |z| ≥ c for all z ∈ ∆. We claim that for
all m,n ∈ Z,

|mω1 + nω2| ≥ c ·max{|m|, |n|}.

The cases when m = 0 or n = 0 are trivial, so without loss of generality assume m ≥ n > 0.
Then

|mω1 + nω2| = |m|
∣∣∣ω1 +

n

m
ω2

∣∣∣ ≥ |m|c.
Hence the claim holds. Set M = max{|m|, |n|} and arrange the sum in question so that the

1
|ω|s are added in order of increasing M values. Then the sum can be estimated by

∑
ω∈Λr{0}

1

|ω|s
≤

∞∑
M=1

8M

csM s
∼

∞∑
M=1

1

M s−1
.

This converges for s > 2 by p-series.

Proposition 7.1.10. Let n ≥ 3 and define

Fn(z) =
∑
ω∈Λ

1

(z − ω)n
.

Then Fn(z) is holomorphic on CrΛ and has poles of order n at the points of Λ. Moreover,
Fn is doubly periodic and hence elliptic.
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Proof. Fix r > 0 and let Br = Br(0) be the open complex r-ball centered at the origin in C.
Let Λr = Λ ∩Br be the lattice points contained in the closed r-ball. Then the function

Fn,r(z) =
∑

ω∈ΛrΛr

1

(z − ω)n

is holomorphic on Br. To see this, one has 1
|z−ω|n ≤

C
|ω|n for some constant C and for all

z ∈ Br, ω ∈ ΛrΛr. Then C
|ω|n converges by Proposition 7.1.9, so by the Weierstrass M -test,

1
|z−ω|n converges uniformly and hence Fn,r(z) is holomorphic. It follows from the definition
that Fn has a pole of order n at each ω ∈ Λ. Finally, for ` ∈ Λ, we have

Fn(z + `) =
∑
ω∈Λ

1

(z + `− ω)n
=
∑
η∈Λ

1

(z − η)n
= Fn(z)

since the series is absolutely convergent and we can rearrange the terms.

This shows that elliptic functions exist and more specifically that for each n ≥ 3, there
is at least one elliptic function of order n. Unfortunately the previous proof won’t work
to construct an elliptic function of order 3. However, Weierstrass discovered the following
elliptic function.

Definition. The Weierstrass ℘-function for a lattice Λ is defined by

℘(z) =
1

z2
+

∑
ω∈Λr{0}

[
1

(z − w)2
− 1

ω2

]
.

Theorem 7.1.11. For any lattice Λ, ℘(z) is an elliptic function with poles of order 2 at the
points of Λ and no other poles. Moreover, ℘(−z) = ℘(z) and ℘′(z) = −2F3(z).

Proof. (Sketch) To show ℘(z) is meromorphic, one estimates the summands by∣∣∣∣ 1

(z − ω)2
− 1

ω2

∣∣∣∣ ≤ D

|ω|3

for some constant D and all z ∈ Br, ω ∈ Λ r Λr as in the previous proof.
Next, ℘(z) can be differentiated term-by-term to obtain the expression ℘′(z) = −2F3(z).

And proving that ℘(z) is odd is straightforward:

℘(−z) =
1

(−z)2
+

∑
ω∈Λr{0}

[
1

(−z − ω)2
− 1

ω2

]

=
1

z2
+

∑
−ω∈Λr{0}

[
1

(z − (−ω))2
− 1

(−ω)2

]
= ℘(z)

after switching the order of summation.
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Finally, proving ℘(z) is doubly periodic is difficult since we don’t necessarily have absolute
convergence. However, one can reduce to proving ℘(z+ω1) = ℘(z) = ℘(z+ω2). Then using
the formula for ℘′(z), we have

d

dz
[℘(z + ω1)− ℘(z)] = −2F3(z + ω1) + 2F3(z)

= −2F3(z) + 2F3(z) = 0

since F3(z) is elliptic by Proposition 7.1.10. Hence ℘(z + ω1)− ℘(z) = c is constant. Evalu-
ating at z = −ω1

2
, we see that c = ℘

(
ω1

2

)
− ℘

(
−ω1

2

)
= 0 since ℘(z) is odd. Hence c = 0, so

it follows that ℘(z) is doubly periodic and therefore elliptic.

Lemma 7.1.12. Let ℘(z) be the Weierstrass ℘-function for a lattice Λ ⊆ C and let Π be the
fundamental domain of Λ. Then

(1) For any u ∈ C, the function ℘(z) − u has either two simple roots or one double root
in Π.

(2) The zeroes of ℘′(z) in Π are simple and they only occur at ω1

2
, ω2

2
and ω1+ω2

2
.

(3) The numbers u1 = ℘
(
ω1

2

)
, u2 = ℘

(
ω2

2

)
and u3 = ℘

(
ω1+ω2

2

)
are precisely those u for

which ℘(z)− u has a double root.

Proof. (1) follows from Corollary 7.1.6.
(2) By Theorem 7.1.11, deg℘′(z) = 3 so it suffices to show that ω1

2
, ω2

2
and ω1+ω2

2
are all

roots. For z = ω1

2
, we have

℘′
(ω1

2

)
= −℘′

(
−ω1

2

)
= −℘′

(ω1

2
− ω1

)
= −℘′

(ω1

2

)
since ℘′(z) is elliptic. Thus ℘′

(
ω1

2

)
= 0. The others are similar.

(3) The double roots occur exactly when ℘′(u) = 0, so use (2).

We now prove that any elliptic function can be written in terms of ℘(z) and ℘′(z).

Theorem 7.1.13. Fix a lattice Λ ⊆ C and let E(Λ) be the field of all elliptic functions with
lattice of periods Λ. Then E(Λ) = C(℘, ℘′).

Proof. Take f(z) ∈ E(Λ). Then f(−z) ∈ E(Λ) as well and thus we can write f(z) as the
sum of an even and an odd elliptic function:

f(z) = feven(z) + fodd(z) =
f(z) + f(−z)

2
+
f(z)− f(−z)

2
.

We will prove that every even elliptic function is rational in ℘(z), but this will imply the

theorem, since then feven(z) = ϕ(℘(z)) and fodd(z)
℘′(z)

= ψ(℘(z)) for some ϕ, ψ ∈ C(℘(z)) and

we can then write f(z) = ϕ(℘(z)) + ℘′(z)ψ(℘(z)).
Assume f(z) is an even elliptic function. It’s enough to construct ϕ(℘(z)) such that

f(z)
ϕ(℘(z))

only has (potential) zeroes and poles at z = 0 in the fundamental parallelogram
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for Λ, since then by Corollary 7.1.6, f(z)
ϕ(℘(z))

is holomorphic and then by Proposition 7.1.4

it is constant. Suppose f(a) = 0 for a some zero of order m. Consider ℘(z) = u. If
u 6= ℘

(
ω1

2

)
, ℘
(
ω2

2

)
, ℘
(
ω1+ω2

2

)
then ℘(z) = u has precisely two solutions in the fundamental

parallelogram, z = a and z = a∗ where

a∗ =


ω1 + ω2 − a if a ∈ Int(Π)

ω1 − a if a is parallel to ω1

ω2 − a if a is parallel to ω2.

(Notice that since f is even, f(a) = 0 implies f(a∗) = 0 as well.) Moreover, if orda f = 0 then
orda∗ f = m. Note that a = a∗ holds precisely when a is in the set Θ :=

{
0, ω1

2
, ω2

2
, ω1+ω2

2

}
.

Let Z (resp. P ) be the set of zeroes (resp. poles) of f(z) in Π. Then the assignment
a 7→ a∗ is in fact an involution on Z and P , so we can write

Z = Z ′1 ∪ · · · ∪ Z ′r ∪ Z ′′1 ∪ · · · ∪ Z ′′s
P = P ′1 ∪ · · · ∪ P ′u ∪ P ′′1 ∪ · · · ∪ P ′′v

where the Z ′i and P ′i are the 2-element orbits of the involution and the Z ′′j and P ′′j are the
1-element orbits. Of course then s, v ≤ 3. For a′i ∈ Z ′i, set orda′i f = m′i and for a′′j ∈ Z ′′j ,
set orda′′i f = m′′i , which is even. Likewise, for b′i ∈ P ′i , set ordb′i f = n′i and for b′′j ∈ P ′′j , set
ordb′′i f = n′′i which is even. Then we define ϕ(℘(z)) by

ϕ(℘(z)) =

∏r
i=1(℘(z)− ℘(a′i))

m′i
∏s

j=1(℘(z)− ℘(a′′j ))
m′′j /2∏u

i=1(℘(z)− ℘(b′i))
n′i
∏v

j=1(℘(z)− ℘(b′′j ))
nj

.

Then ϕ(℘(z)) has only potential zeroes/poles at z = 0 in the fundamental parallelogram, so
we are done.

7.2 Elliptic Curves

Let Λ ⊆ C be a lattice. There is a canonical way to associate to the complex torus C/Λ
an elliptic curve E such that C/Λ ∼= E(C). We would also like to reverse this process, i.e.
given an elliptic curve E, define a lattice Λ ⊆ C such that C/Λ ∼= E(C). This procedure
generalizes for a curve C of genus g > 1 and produces its Jacobian, C ↪→ Cg/Λ = J(C).

We need the following lemma.

Lemma 7.2.1. Suppose f0, f1, f2, . . . is a sequence of analytic functions on the ball Br(z0)
with Taylor expansions

fn(z) =
∞∑
k=0

a
(n)
k (z − z0)k.

Then if F (z) =
∑∞

n=0 fn(z) converges uniformly on Bρ(z0) for all ρ < r, each series Ak =∑∞
n=0 a

(n)
k converges and F (z) has Taylor expansion

F (z) =
∞∑
k=0

Ak(z − zk0 ).
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Let ℘(z) be the Weierstrass ℘-function for Λ. Then ℘′(z)2 is an even elliptic function, so
by Theorem 7.1.13, ℘′(z)2 ∈ C(℘). On a small enough neighborhood around z0 = 0,

℘(z)− 1

z2
=

∑
ω∈Λr{0}

[
1

(z − ω)2
− 1

ω2

]
is analytic. Moreover, for each ω ∈ Λ r {0} we have

1

(z − ω)2
=

1

ω2
+

2z

ω3
+

3z2

ω4
+ . . .

=⇒ 1

(z − ω)2
− 1

ω2
=

2z

ω2
+

3z2

ω4
+ . . .

which is uniformly convergent. Hence Lemma 7.2.1 shows that

℘(z)− 1

z2
=

∑
ω∈Λr{0}

∞∑
k=1

k + 1

ωk+2
zk =

∞∑
k=1

(k + 1)Gk+2z
k

where Gm = Gm(Λ) :=
∑

ω∈Λr{0}
1
ωm

. These Gm are examples of modular forms.

Definition. The series Gm(Λ) =
∑

ω∈Λr{0}
1
ωm

is called the Eisenstein series for Λ of
weight m.

From the above work, we obtain the following formulas:

℘(z) =
1

z2
+ 3G4z

2 + 5G6z
4 + 7G8z

6 + . . .

℘(z)2 =
1

z4
+ 6G4 + . . .

℘(z)3 =
1

z6
+

9G4

z2
+ 15G6 + . . .

℘′(z) = − 2

z3
+ 6G4z + . . .

℘′(z)2 =
4

z6
− 24G4

z2
− 80G6 − . . .

This implies:

Proposition 7.2.2. The functions ℘ and ℘′ satisfy the following relation:

℘′(z)2 = 4℘(z)3 − g2℘(z)− g3

where g2 = 60G4 and g3 = 140G6.

Consider the polynomial p(x) = 4x3 − g2x − g3, where the gn are defined for the lattice
Λ ⊆ C.

Proposition 7.2.3. p(x) = 4(x − u1)(x − u2)(x − u3) where u1 = ℘
(
ω1

2

)
, u2 = ℘

(
ω2

2

)
and

u3 = ℘
(
ω1+ω2

2

)
are distinct roots.
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Thus (x, y) = (℘(z), ℘′(z)) determine an equation y2 = 4x3−g2x−g3 which is the defining
equation for an elliptic curve E0 over C. Let E = E0 ∪ {[0, 1, 0]} ⊆ P2 be the projective
closure of E0. The point [0, 1, 0] is sometimes denoted ∞.

Theorem 7.2.4. The map

ϕ : C/Λ −→ E(C)

z + Λ 7−→ ϕ(z + Λ) =

{
[℘(z), ℘′(z), 1], z 6∈ Λ

[0, 1, 0], z ∈ Λ

is a bijective, biholomorphic map.

Proof. Assume z1, z2 ∈ C are such that z1 + Λ 6= z2 + Λ. Without loss of generality we may
assume z1, z2 ∈ Π, the fundamental domain of Λ (otherwise, translate). If ℘(z1) = ℘(z2) and
℘′(z1) = ℘′(z2), then with the notation of Theorem 7.1.13, we must have z2 = z∗1 6= z1 and
thus z1, z2 6∈ Θ =

{
0, ω1

2
, ω2

2
, ω1+ω2

2

}
. Since ℘′(z) is odd, we get ℘′(z1) = ℘′(z2) = −℘′(−z2) =

−℘′(z1), but this implies ℘(z1) = 0, contradicting z1 6∈ Θ. Therefore ϕ is one-to-one.
Next, we must show that for any (x0, y0) ∈ E(C), x0 = ℘(z) and y0 = ℘′(z) for some

z ∈ C. If ℘(z1) = x0, then it’s clear that ℘′(z1) = y0 or −y0. Now one shows as in the
previous paragraph that we must have ℘′(z1) = y0.

Now consider F (x, y) = y2 − p(x), where p(x) = 4x3 − g2x − g3. If (x0, y0) satisfies
F (x0, y0) = 0 and y0 6= 0, then ∂F

∂y
(x0, y0) 6= 0 and thus the assignment (x, y) 7→ x is a local

chart about (x0, y0). Likewise, (x, y) 7→ y defines a local chart about (x0, y0) when x0 6= 0.
Finally, we conclude by observing that a locally biholomorphic map is biholomorphic.

In general, an elliptic curve can be defined by a Weierstrass equation

E : y2 = f(x) = ax3 + bx2 + cx+ d.

This embeds into projective space via (x, y) 7→ [x, y, 1]. Setting x = X
Z

and y = Y
Z

, we also
obtain a homogeneous equation for the curve:

E : ZY 2 = aX3 + bX2Z + cXZ2 + dZ3.

The single point at infinity, [0, 1, 0], can be studied by dehomogenizing via the coordinates
z̃ = Z

Y
and x̃ = X

Y
, which yield

E : z̃ = ax̃3 + bx̃2z̃ + ax̃z̃2 + dz̃3.

We have shown that a lattice Λ ⊆ C determines elliptic functions ℘(z) and ℘′(z) that satisfy
℘′(z)2 = 4℘(z)3 − g2℘(z) − g3 and that this polynomial expression has no multiple roots.
Therefore the mapping z 7→ (℘(z), ℘′(z)) determines a bijective correspondence C/Λr{0} →
E(C)r {∞} which can be extended to all of C/Λ→ E(C) (this is Theorem 7.2.4). There is
a natural group structure on C/Λ induced from C, but what is not so obvious is that E(C)
also possesses a group structure, the so-called “chord-and-tangent method”.

Let E be an elliptic curve over an arbitrary field k, let O ∈ E(k) be the point at infinity
and fix two points P,Q ∈ E(k). In the plane P2

k, there is a unique line containing P and Q;
call it L. (If P = Q, then take L to be the tangent line to E at P .) By Bézout’s theorem,
E ∩L = {P,Q,R} for some third point R ∈ E(k), which may not be distinct from P and Q
if multiplicity is counted. Let L′ be the line through R and O and call its third point R′.
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P
Q

R

P +Q

Addition of two points P,Q ∈ E(k) is defined by P + Q = R′, where R′ is the unique
point lying on the line through R and O. If R = O, we set R′ = O.

Proposition 7.2.5. Let E be an elliptic curve with O ∈ E(k). Then

(a) If L is a line in P2 such that E ∩ L = {P,Q,R}, then (P +Q) +R = O.

(b) For all P ∈ E(k), P +O = P .

(c) For all P,Q ∈ E(k), P +Q = Q+ P .

(d) For all P ∈ E(k), there exists a point −P ∈ E(k) satisfying P + (−P ) = O.

(e) For all P,Q,R ∈ E(k), (P +Q) +R = P + (Q+R).

Together, (b) – (e) say that chord-and-tangent addition of points defines an associative,
commutative group law on E(k). The proofs of (a) – (d) are rather routine using the
definition of this addition law, whereas verifying associativity is notoriously difficult. There
are formulas for the coordinates of P +Q that make this possible though (see Silverman).

Theorem 7.2.6. The map ϕ : C/Λ→ E(C) is an isomorphism of abelian groups.

Proof. Consider the diagram

C/Λ× C/Λ E(C)× E(C)

C/Λ E(C)

ϕ× ϕ

α β

ϕ

where α and β are the respective group operations. Since C/Λ×C/Λ is a topological group,
it’s enough to show the diagram commutes on a dense subset of C/Λ× C/Λ. Consider

X̃ = {(u1, u2) ∈ C2 | u1, u2, u1 ± u2, 2u1 + u2, u1 + 2u2 6∈ Λ}.
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Then X̃ ∼= C2 so X = X̃ mod Λ × Λ is dense in C/Λ × C/Λ. Take (u1 + Λ, u2 + Λ) ∈ X
and set u3 = −(u1 + u2). Then u1 + u2 + u3 = 0 in C/Λ. Set P = ϕ(u1), Q = ϕ(u2) and
R = ϕ(u3) ∈ E(C). By the assumptions on X, the points P,Q,R are distinct. We want to
show ϕ(u1 + u2) = ϕ(u1) + ϕ(u2) = P +Q. Since ℘(z) is even and ℘′(z) is odd, we see that
ϕ(−z) = −ϕ(z) for all z ∈ C/Λ. Thus ϕ(u1 + u2) = −ϕ(−(u1 + u2)) = −R so we need to
show P + Q + R = O, i.e. P,Q,R are colinear. Since u1 6= u2, the line PQ is not vertical,
so there exist a, b such that ℘′(ui) = a℘(ui) + b for i = 1, 2. Consider the elliptic function

f(z) = ℘′(z)− (a℘(z) + b).

Then on the fundamental domain Π, f only has a pole at 0, so ord0 f = −3. Also, u1 and u2

are distinct zeroes of f , so there is a third point ω ∈ Π such that deg(f) = u1+u2+ω−3·0 = 0,
i.e. u1 + u2 + ω = 0. Solving for ω, we get ω = −(u1 + u2) = u3. It follows that R = ϕ(u3)
is on the same line as P and Q, so we are done.

The compatibility of the group operations of C/Λ and E(C) is highly useful. For example,
fix N ∈ N and let

E[N ] = {P ∈ E(C) | [N ]P = O},

where [N ]P = P + . . .+ P︸ ︷︷ ︸
N

. The points of E[N ] are called the N -torsion points of E. For

N = 2, the points P such that P = −P are exactly the intersection points of E with the
x-axis along with O = [0, 1, 0]:

In general, one can show that #E[N ] = N2. This is hard to see from the geometric
picture, but working with the isomorphism E(C) ∼= C/Λ from Theorem 7.2.6, we see that
since C/Λ = R/Z×R/Z as an abelian group, the N -torsion is given by (C/Λ)[N ] = 1

N
Z/Z×

1
N
Z/Z. This is a group of order N2.

A morphism in the category of elliptic curves is called an isogeny. Explicitly, ϕ : E1 → E2

is an isogeny between two elliptic curves if it is a (nonconstant) morphism of schemes that
takes the basepoint O1 ∈ E1 to the basepoint O2 ∈ E2.
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Proposition 7.2.7. Suppose Λ1,Λ2 ⊆ C are lattices and f : C/Λ1 → C/Λ2 is a holomorphic
map. Then there exist a, b ∈ C such that aΛ1 ⊆ Λ2 and

f(z mod Λ1) = az + b mod Λ2.

Proof. As topological spaces, C/Λ1 and C/Λ2 are complex tori with the same universal
covering space C, so any f : C/Λ1 → C/Λ2 lifts to F : C → C making the diagram
commute:

C C

C/Λ1 C/Λ2

F

π1 π2

f

Since covers are local homeomorphisms, it follows that F is holomorphic as well. Thus for
any z ∈ C, ` ∈ Λ1,

π2(F (z + `)− F (z)) = f(π1(z + `)− π1(z)) = f(π1(z)− π1(z)) = f(0) = 0.

So F (z+ `)−F (z) ∈ Λ1 for any ` ∈ Λ1 and the function L(z) = F (z+ `)−F (z) is constant.
It follows that F ′(z + `) = F ′(z), so F ′ is holomorphic and elliptic, but this means by
Proposition 7.1.4 that F ′(z) = a for some constant a. Hence F (z) = az + b as claimed.

Corollary 7.2.8. Any holomorphic map f : C/Λ1 → C/Λ2 is, up to translation, a group
homomorphism. In particular, if f(0) = 0 then f is a homomorphism.

Corollary 7.2.9. For any elliptic curve E, the group of endomorphisms End(E) has rank
at most 2.

Proof. Viewing E(C) = C/Λ for some Λ = Z + Zτ , we get

End(E) = {f : E → E | f is an isogeny}
= {f : C/Λ→ C/Λ | f is holomorphic and f(0) = 0} by Corollary 7.2.8

= {z ∈ C | zΛ ⊆ Λ}
= {z ∈ C | z(Z + Zτ) ⊆ (Z + Zτ)}
⊆ Z + Zτ.

Hence rank End(E) ≤ 2.

It turns out that there are two possible cases for the rank of End(E), breaking down as
follows:

� End(E) = Z.

� End(E) is an order O in some imaginary quadratic number field K/Q. In this case, E
is said to have complex multiplication.
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7.3 The Classical Jacobian

For the isomorphism ϕ : C/Λ→ E(C) in Theorem 7.2.6, let ψ = ϕ−1 : E(C)→ C/Λ be the
inverse map. To understand this map explicitly, we will show how to construct a torus for
every elliptic curve, i.e. find a lattice Λ ⊆ C such that C/Λ ∼= E(C).

Lemma 7.3.1. Any lattice Λ ⊆ C can be written

Λ =

{∫ P

0

dz : P ∈ Λ

}
.

Notice that each differential form dz on C satisfies d(z + `) = dz for all ` ∈ Λ by
Lemma 7.3.1. Thus dz descends to a differential form on C/Λ, which by abuse of notation
we will also denote by dz. Formally, this is the pushforward of dz along the quotient π :
C→ C/Λ. This implies:

Lemma 7.3.2. Any lattice Λ ⊆ C can be written

Λ =

{∫
γ

dz : γ is a closed curve in C/Λ passing through 0

}
.

For an elliptic curve E defined by the equation y2 = f(x), fix a holomorphic differential
form ω on E(C). (In general, the space of holomorphic differential forms on a curve has
dimension equal to the genus of the curve, so in the elliptic curve case, there is exactly one
such ω, up to scaling.)

Definition. The lattice of periods for an elliptic curve E is

Λ =

{∫
γ

ω : γ is a closed curve in E passing through P

}
where P ∈ E(C) is fixed.

Example 7.3.3. Under the map ϕ : C/Λ→ E(C), z 7→ (x, y) = (℘(z), ℘′(z)), we see that

dx = ℘′(z) dz = y dz

so ω = dx
y

is a differential form on E(C). In fact, ω = dx
f ′(x)

, where E is defined by y2 = f(x),

is holomorphic because f ′(x) 6≡ 0. This differential form is also holomorphic at O = [0, 1, 0],
so up to scaling, this is the unique holomorphic form on E.

Historically, mathematicians were interested in studying solutions to elliptic integrals, or
integrals of the form ∫

dx√
ax3 + bx+ c

.

When f(x) = ax3 + bx + c, the expression ω = dx√
ax3+bx+c

is precisely the holomorphic

differential form defining the lattice of periods of the elliptic curve E : y2 = f(x).
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For a more functorial description, let VE = Γ(E,ΩE) be the space of all holomorphic
differential forms on E. If γ is a curve in E(C), there is an associated linear functional
ϕγ ∈ V ∗E defined by

ϕγ : VE −→ C

ω 7−→
∫
γ

ω.

Fixing the basepoint O ∈ E(C), the lattice of periods for E can be written

Λ = {ϕγ : γ ∈ π1(E(C), O)}.

In other words, this defines a map π1(E(C), O)→ V ∗E , γ 7→ ϕγ.

Definition. The Jacobian of an elliptic curve E is the quotient J(E) = V ∗E/Λ.

For each point P ∈ E(C), the coset ϕγ + Λ is an element of the Jacobian, where γ is a
path from O to P . This defines an injective map i : E ↪→ J(E).

Proposition 7.3.4. Suppose σ : E1 → E2 is an isogeny between elliptic curves, so that
σ(O1) = O2. Then there is a map τ : J(E1)→ J(E2) making the following diagram commute:

E1 E2

J(E1) J(E2)

σ

i1 i2

τ

Proof. The pullback gives a contravariant map σ∗ : VE2 → VE1 , ω 7→ σ∗ω = ω ◦ σ. Taking
the dual of this gives a linear map σ∗∗ : V ∗E1

→ V ∗E2
defined by (σ∗∗ρ)(ω) = ρ(σ∗ω) for any

ρ ∈ V ∗E1
and ω ∈ VE2 . Taking ρ = ϕγ1 for a path γ1 in E1 gives

ρ(σ∗ω) = ϕγ1(σ
∗ω) =

∫
γ1

σ∗ω =

∫
σ(γ1)

ω = ϕσ(γ1)ω.

Thus σ∗∗ϕγ1 = ϕσ(γ1). If γ1 is a closed curve through O1, then σ(γ1) is a closed curve passing
through O2 = σ(O1). Hence if ΛE1 ,ΛE2 are the lattices of periods for E1, E2, respectively,
we have σ∗∗(λE1) ⊆ ΛE2 . So σ∗∗ factors through the quotients, defining τ :

τ = σ∗∗ : V ∗E1
/ΛE1 −→ V ∗E2

/ΛE2 .

It is immediate the diagram commutes.

Lemma 7.3.5. For any elliptic curve E, the inclusion i : E ↪→ J(E) induces an isomorphism

i∗ : π1(E,O) −→ π1(J(E), i(O)).
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Unfortunately, the construction of the Jacobian given so far is not algebraic so it would
be hard to carry over to curves over an arbitrary ground field. To construct Jacobians
algebraically, we will prove Abel’s theorem:

Theorem 7.3.6 (Abel). Suppose Λ ⊆ C is a lattice with fundamental domain Π and take
any set {ai} ⊂ Π such that there are integers mi ∈ Z satisfying

∑
mi = 0 and

∑
miai ∈ Λ.

Then there exists an elliptic function f(z) whose set of zeroes and poles is {ai} and whose
orders of vanishing/poles are ordai f = mi.

Given a lattice Λ ⊆ C, we may assume Λ = Z + Zτ for some τ ∈ C with Im τ > 0.

Definition. The theta function for a lattice Λ is

θ(z, τ) =
∞∑

n=−∞

eπi(n
2τ+2nz).

One has |eπi(n2τ+2nz)| = e−π(n2 Im τ+2n Im z) for any z ∈ C, which implies that the above
series converges absolutely.

Proposition 7.3.7. Fix a theta function θ(z) = θ(z, τ). Then

(1) θ(z) = θ(−z).

(2) θ(z + 1) = θ(z).

(3) θ(z + τ) = e−πi(τ+2z)θ(z).

Properties (2) and (3) together say that θ(z) is what’s known as a semielliptic function.
For our purposes, this will be good enough. Notice that for z = 1+τ

2
, we have

θ

(
1 + τ

2

)
= θ

(
−1 + τ

2
+ (1 + τ)

)
= eπi(τ+2(− 1+τ

2 ))θ

(
−1 + τ

2

)
= eπiθ

(
−1 + τ

2

)
= −θ

(
1 + τ

2

)
.

Thus z = 1+τ
2

is a zero of θ(z).

Lemma 7.3.8. All zeroes of θ(z, t) are simple and are of the form 1+τ
2

+ ` for ` ∈ Λ.

Lemma 7.3.9. For x ∈ C, set θ(x)(z, τ) = θ
(
z − 1+τ

2
− x
)
. Then θ(x)(z) = θ(x)(z, τ)

satisfies:

(1) θ(x)(z + 1) = θ(x)(z).

(2) θ(x)(z + τ) = e−πi(2(z−x)−1)θ(x)(z).

We now prove Abel’s theorem (7.3.6).
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Proof. Given such a set {ai} ⊂ Π, let x1, . . . , xn be the list of all ai with mi > 0, listed with
repetitions corresponding to the number mi. For example, if m1 = 2 then x1 = x2 = a1.
Likewise, let y1, . . . , yn be the list of all ai with mi < 0, once again with repetitions. By the
hypothesis

∑
mi = 0, there are indeed an equal number of each. Set

f(z) =

∏n
i=1 θ

(xi)(z)∏n
i=1 θ

(yi)(z)
.

Then by Lemma 7.3.9, f(z + 1) = f(z). On the other hand, the lemma also gives

f(z + τ) =

∏n
i=1 θ

(xi)(z + τ)∏n
i=1 θ

(yi)(z)

= e2πi(
∑n
i=1 xi−

∑n
i=1 yi)f(z)

= e2πi
∑
miaif(z)

= f(z) since
∑

miai = 0.

Therefore f(z) is elliptic.

Note that θ(z) is a meromorphic function, so the integral

1

2πi

∫
∂Π

θ′(z)

θ(z)
dz

counts the number of zeroes of θ(z) in the fundamental domain Π, up to multiplicity. To
ensure no zeroes lying on ∂Π are missed, we may shift Π → Πα for an appropriate α ∈ C.
Parametrize ∂Π as in Proposition 7.1.5. Then once again the integrals along γ2 and γ4 cancel
since θ(z + 1) = θ(z). On the other hand,

θ(z + τ) = e−πi(τ+2z)θ(z)

=⇒ θ′(z + τ) = e−πi(τ+2z)(−2πiθ(z) + θ′(z))

=⇒ θ′(z + τ)

θ(z + τ)
= −2πi+

θ′(z)

θ(z)
.

This implies∫
∂Π

θ′(z)

θ(z)
dz =

∫
γ1

θ′(z)

θ(z)
dz +

∫
γ2

θ′(z)

θ(z)
dz +

∫
γ3

θ′(z)

θ(z)
dz +

∫
γ4

θ′(z)

θ(z)
dz

=

(∫
γ1

θ′(z)

θ(z)
dz +

∫
γ3

θ′(z)

θ(z)
dz

)
+

(∫
γ2

θ′(z)

θ(z)
dz +

∫
γ4

θ′(z)

θ(z)
dz

)
=

(∫
γ1

θ′(z)

θ(z)
dz −

∫
γ1

θ′(z)

θ(z)
dz + 2πi

)
+ 0

= 2πi.

It follows that θ(z) has exactly one zero in Π, and it must be z = 1+τ
2

.
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Definition. For a curve E (need not be elliptic), define:

� A divisor on E is a formal sum D =
∑
nPP over the points P ∈ E, with nP ∈ Z.

The abelian group of all divisors is denoted Div(E).

� The degree of a divisor D =
∑
nPP ∈ Div(E) is deg(D) =

∑
nP . The set of all

degree 0 divisors is denoted Div0(E).

� For a meromorphic function f on E(C) = C/Λ, the principal divisor associated to
f is (f) =

∑
degP P where nP = ordP f . The group of all principal divisors is denoted

PDiv(E).

� The Picard group of E is the quotient group Pic(E) = Div(E)/PDiv(E). The degree
zero part of the Picard group is written Pic0(E) = Div0(E)/PDiv(E).

The inverse map ψ : E → C/Λ extends to the group of divisors on E:

Ψ : Div(E) −→ C/Λ∑
nPP 7−→

∑
nPψ(P ).

Definition. The map Ψ : Div(E)→ C/Λ is called the Abel-Jacobi map.

Recall that ψ : P 7→
∫
γP
ω + Λ ∈ C/Λ where ω is a fixed holomorphic differential form

on E and γP is a path connecting O ∈ E(C) to P . If O′ is another basepoint and ψ′ is the
corresponding map, we have ψ(P ) = ψ(O′) + ψ′(P ) for all P ∈ E. So it appears that Ψ is
not well-defined. However, this issue vanishes when we restrict Ψ to Div0(E): if D =

∑
nPP

is a degree 0 divisor, then

Ψ(D) =
∑

nPψ(P )

=
∑

nP (ψ(O′) + ψ′(P ))

= ψ(O′)
∑

nP +
∑

nPψ
′(P )

= 0 +
∑

nPψ
′(P ) = Ψ′(D).

Corollary 7.3.10. The map Ψ : Div0(E)→ C/Λ induces an isomorphism Pic0(E) ∼= C/Λ.

Proof. One can prove that Ψ is a surjective group homomorphism. Moreover, Abel’s theorem
(7.3.6) implies that ker Ψ = PDiv(E).

Consider the map iO : E → Div0(E) that sends P 7→ P−O. This fits into a commutative
diagram:

Div0(E)

E

C/Λ

Ψ

iO

ψO
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On the level of the Picard group, this diagram looks like

Pic0(E)

E

C/Λ

Ψ

iO

ψO

and every arrow is a bijection.

7.4 Jacobians of Higher Genus Curves

Let C be a complex curve of genus g ≥ 2 and let V = Γ(C,ΩC) be the vector space of
holomorphic differential forms on C. Then dimC V = g, so V ∗ ∼= Cg. As in the previous
section, for any path ω in C the assignment ϕγ : ω 7→

∫
γ
ω defines a functional ϕγ ∈ V ∗. As

for elliptic curves, we define:

Definition. The lattice of periods for C is

Λ = {ϕγ ∈ V ∗ | γ is a closed curve in C}.

Lemma 7.4.1. Λ is a lattice in V ∗.

Definition. The Jacobian of C is the quotient space J(C) = V ∗/Λ.

As with elliptic curves, we have a map ψ : C → J(C) called the Abel-Jacobi map, which
sends P 7→ ϕγP + Λ, where γP is a curve through P . Also, ψ extends to the divisor group of
C as a map

Ψ : Div(C) −→ J(C)

which is canonical when restricted to Div0(C). The Abel-Jacobi theorem generalizes Theo-
rem 7.3.6 and Corollary 7.3.10.

Theorem 7.4.2. Let C be a curve of genus g > 0 and let Ψ : Div0(C) → J(C) be the
Abel-Jacobi map. Then

(1) (Abel) ker Ψ = PDiv(C).

(2) (Jacobi) Ψ is surjective.

Therefore Ψ induces an isomorphism Pic0(C) ∼= J(C).

Just as with elliptic curves, if we fix a basepoint O ∈ C, the map iO : C → Div0(C), P 7→
P −O determines a commutative diagram
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Pic0(C)

C

J(C)

Ψ

iO

ψO

However, this time not every map is a bijection. In particular, dimC = 1 < g = dim J(C).
To remedy this, let Cg be the g-fold product of C and consider the map

ψg : Cg −→ J(C)

(P1, . . . , Pg) 7−→ ψ(P1) + . . .+ ψ(Pg)

where + denotes the group law on J(C).

Theorem 7.4.3 (Jacobi). ψg : Cg −→ J(C) is surjective.

There is still work to do to show that the natural map Cg → Pic0(C) is surjective.
It turns out that J(C) is birationally equivalent to the symmetric power C(g) = Cg/ ∼,
where (P1, . . . , Pg) ∼ (Pσ(1), . . . , Pσ(g)) for any permutation σ ∈ Sg. Jacobi proved that this
birational equivalence is enough to endow Pic0(C) ∼= J(C) with the structure of an algebraic
group.

Theorem 7.4.4. J(C) is an abelian variety.
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