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 SLAM (Simultaneous Localization and Mapping) is a fundamental problem when an 

autonomous mobile robot explores an unknown environment by constructing/updating the 

environment map and localizing itself in this built map. The all-important problem of 

SLAM is revisited in this paper and a solution based on Adaptive Unscented Kalman Filter 

(AUKF) is presented. We will explain the detailed algorithm and demonstrate that the 

estimation error is significantly reduced and the accuracy of the navigation is improved. A 

comparison among AUKF, Unscented Kalman Filter (UKF) and Extended Kalman Filter 

(EKF) algorithms is investigated through simulated as well as experimental dataset. An 

indoor dataset is generated from a two-wheel differential mobile robot in order to validate 

the robustness of AUKF-SLAM to noise of modeling and observation, and to examine the 

applicability of the method for real-time navigation. Both experimental and simulation 

results illustrate that AUKF-SLAM is more accurate than the standard UKF-SLAM and 

the EKF-SLAM. Finally, the well-known Victoria Park dataset is used to prove the 

applicability of the AUKF algorithm in large-scale environments. 
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1. Introduction  

SLAM is regarded as an essential attribute of an 

autonomous robot whereby the robot position and its 

pose are concurrently estimated. Many navigation 

functions such as goal determination and motion 

planning depend on successful solution of the SLAM 

problem. The problem has been extensively addressed 

via probability based approaches in particular Extended 

Kalman filter (EKF). Guivant and Nebot [1] investigated 

a real-time implementation of SLAM by a compressed 

EKF to reduce the computational efforts. Linearization 

of kinematic and observation equations in EKF leads to 

errors and inconsistency in estimation [2]. To overcome 

this drawback, nonlinear filters have been investigated 

by many researchers. A particle filter based SLAM 

method (Fast SLAM) was proposed by [3] wherein each 

particle stores the map as well as the robot pose. 

However, this algorithm is prone to computational costs 

as the number of particles increases. The performance 

and accuracy of a particle filter highly depend on the 

number of particles, but there is a restriction on 

increasing the particles in SLAM, due to demanding 

higher computational efforts [4]. Due to these 

drawbacks, it has been suggested that UKF is an 

attractive alternative as it requires low computations. For 

nonlinear systems, UKF represents the state uncertainty 

by its approximate mean and variance [5]. 

Implementation of UKF is also not complicated as it 

does not need linearization of kinematic and observation 

equations. In contrary to EKF, it does not require the 

computation of Jacobian at each time step. A review of 

SLAM literature shows the popularity of UKF among 

robotics researchers. Unscented SLAM for large-scale 

outdoor environments was investigated in [6]. In this 

work, the applicability of UKF-SLAM to a real large-

scale outdoor exploration mission was examined by an 

innovation-based consistency checking. The 
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combination of UKF, inverse depth parameterization 

and bearing-only SLAM were applied on an autonomous 

airship in [7]. Huang et al. [8] proposed a formulation of 

UKF-based SLAM that improves its overall 

computational complexity. Shao et al. [9] proposed a 

layered SLAM approach for building hierarchical maps 

based on UKF-SLAM for an autonomous underwater 

vehicle. A UKF-SLAM based gravity gradient aided 

navigation was proposed in [10] to avoid the influence 

of time-varying noise and terrain fluctuations during 

localization and mapping. An augmented UKF-SLAM 

was proposed in [11] to estimate the parameters 

associated with odometry while performing SLAM. 

Recent developments on SLAM can be found in [12-15].  

Recently, adaptation of UKF-SLAM has attracted the 

attention of many researchers to improve the 

performance of estimation [16-20]. The scaling 

parameter is a crucial design parameter in the UKF, 

which contributes to the approximation error. Although, 

it is possible to compute the scaling parameter 

analytically or off-line [21], proper tuning of the scaling 

parameter improves the quality of the approximations 

yielded by the unscented transformation (UT) [22]. 

However, finding a closed-form solution for proper 

adaptive parameter is not possible and it is necessary to 

use a numerical technique to compute it. The search for 

the appropriate scaling parameter can be systematic or 

random. In the current paper, we employ a systematic 

search method or the grid method [23]. The information 

obtained from the measurements plays an important role 

in adaptation of the scaling parameter [24]. Straka et al. 

[24] proposed several different criteria for the adaptation 

of the scaling parameter.  

The value of the scaling parameter is usually selected 

before the estimation experiment in a standard UKF and 

it remains constant during the whole experiment. A 

review of recent adaptive approaches and comparison of 

their performances with those of the standard UKF 

indicated that the performance of the UKF could be 

greatly affected by tuning of the scaling parameter [22]. 

A computationally efficient algorithm can provide the 

adaptation of the scaling parameter in real time 

applications. In this work, we propose an AUKF-SLAM 

algorithm to enhance the accuracy of the estimation in 

comparison to UKF-SLAM by adapting the scaling 

parameter. An adaptive systematic search method is 

performed to find the suitable value for the scaling 

parameter and to improve the accuracy of estimation. 

First, the performance of proposed AUKF-SLAM is 

compared with the standard UKF-SLAM and the EKF-

SLAM through simulation studies. Then, an indoor 

dataset is used to validate the algorithm and to 

demonstrate the possibility of implementation of the 

algorithm for real world applications. Comparison of 

AUKF-SLAM, UKF-SLAM and EKF-SLAM results for 

this real-life application is also provided. Finally, the 

robustness of AUKF to real sensor noise is validated in 

a large-scale environment using Victoria Park dataset 

[25]. 

This paper is organized as follows: Section 2 briefly 

reviews the UKF algorithm and method of the scaling 

parameter adaptation. Section 3 revisits the fundamental 

models for SLAM problem. Section 4 provides 

simulation and experimental results, and Section 5 

concludes the paper. 

2. Adaption of UKF Algorithm 

UKF is an extension of the Kalman filter that 

alleviates the linearization errors of the EKF. The use of 

the UKF can improve the accuracy of the estimation as 

compared to using the EKF [5].  

2.1. UKF Algorithm 

The UKF was first proposed by Julier and Uhlmann 

[26]. The algorithm constructs a minimal set of 

deterministic sampling points in the state distribution 

(sigma points) to accurately capture the true mean and 

the true covariance up to the second order approximation 

for a nonlinear system. The sigma points are substituted 

into the nonlinear system to obtain the corresponding 

point set of the nonlinear function. Applying a specified 

nonlinear transformation to each sigma point and 

computing the statistics (mean, estimate variance, and 

measurement variance) of the transformed set give the 

unscented estimate.  

Consider an n-state discrete-time nonlinear stochastic 

system with the state vector n
k Rx  , the input vector 

m
k Ru  , the observation vector p

k Rz   at time tk. 
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where nn RRf →: and mn RRh →: are known as 

vector functions, Q is the system noise covariance and R 

is the observation noise covariance. The noise wk and vk 

are assumed to be zero-mean, Gaussian, uncorrelated 

white sequences. The structure of the UKF algorithm for 

the system described by (1) can be summarized as 

follows [5]. 

2.1.1.  Initialization 

The UKF is initialized by the initial state vector x0 and 

the initial covariance matrix P0: 
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2.1.2. Prediction (time update): 

To propagate the state estimates and their covariances 

from step (k-1) to k, first choose the sigma points 

described by:  
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(3) 

The sigma points are then propagated through the 

nonlinear equations of the system: 

( ).,,1 kkkk tuf +
−

− =   (4) 

Finally, the mean and the covariance of the a priori 

state estimate at time k are obtained by: 
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2.1.3.  Filtering (measurement update): 

The equations (7-14) will be used to implement the 

measurement update. The step of choosing sigma points 

can be omitted if the saving of computational effort is 

desired. Instead of generating new sigma points, those 

obtained from the time update can be reused. The sigma 

points can be projected into predicted measurements 

using the known nonlinear measurement equation. The 

weighted sigma points are rearranged to estimate the 

covariance of the predicted measurement. The 

covariance matrix Rk must be added to account for the 

measurement noise. Then the cross covariance is 

estimated by (11).  
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Finally, the measurement update of the state estimate 

can be performed using the normal Kalman filter 

equations. 

1−= zxzk PPK  (12) 

( )kkkkk zzKxx ˆˆˆ −+= −+  (13) 

T
kzkkk KPKPP −= −+  (14) 

Let k = k + 1, the algorithm then continues by Step 2. 

Where nx is the length of state vector, κ is the scaling 

parameter, K is the Kalman gain, and Wi is the weight of 

the mean and covariance in which it can be computed as 

follow. 










+
=

2

1
...,,

2

1
,

1


x
i

n
W  

(15) 

2.2. AUKF Algorithm 

The scaling parameter κ represents a design parameter 

in the UKF. Julier et al. [27] proposed a setting for the 

scaling parameter using an analysis of the UT, which 

was κ=3-nx. However, this recommendation suffers a 

possible loss of positive definiteness of Py (10) for a 

multidimensional variable x due to negative value of κ 

(if nx > 3 in the recommendation formula, then κ < 0) 

[28]. 

Dunik et al. [21] proposed maximizing of the 

likelihood function as the criterion for adaptation of 

scaling parameter. The adaptive setting technique for the 

scaling parameter is based on maximum likelihood 

criterion. The adaptive scaling parameter is chosen in the 

filtering step, at each time instant. The likelihood 

function can be approximated by the Gaussian pdf, since 

it is generally unknown. The approximate likelihood 

function is given by: 

( ) ( ) ( )  1|,1|
1 ,ˆ:,|ˆ

−−
−  kkzkkk

k
k Np Pzzzz  (16) 

Dependence of the measurement and covariance 

quantities on κ can be seen in (16). By taking the 

measurement zk at each time step k, the estimate of the 

scaling parameter can be obtained by maximizing the 

approximate likelihood function 

 
( )
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, maxmin

−


= k

kk p zz  
(17) 

The likelihood function is evaluated in domain [κmin, 

κmax] and the κ with maximal value of the approximate 
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likelihood function is considered as the adaptive scaling 

parameter k̂ [21]. An overall scheme for UKF 

algorithm along with the proposed adaptation technique 

is illustrated in Fig. 1. 

 

Figure 1. Overall scheme for adaptation of the scaling 

parameter in UKF. 

 

3. SLAM Algorithm Based on AUKF 

In this section, the basic formulations of SLAM 

algorithm are revisited such as nonlinear model of a 

differential mobile robot, features model and 

observation kinematics. Then, the data association 

method is described.  

 

3.1. SLAM System Model 

The SLAM problem is a fundamental capability for a 

vehicle exploring in unknown environments where 

external signals such as global position system (GPS) is 

not available. In the SLAM, the vehicle typically starting 

at an unknown initial location, moving through an 

unknown environment containing a population of 

landmarks. The vehicle is equipped with a sensor, which 

is capable of taking measurements of the relative 

positions between any individual landmarks. The 

ordinary sensor used for SLAM is a laser, which 

identifies the range and bearing of the landmarks. While 

the robot is navigation through the environment, it builds 

a complete map of landmarks in surrounding area and 

provides estimates of the robot location by a recursive 

process of prediction and update. The basic layout of the 

observation process and vehicle model is presented in 

Fig. 2. 

3.1.1. Nonlinear Dynamic Model 

For a differential drive robot, the kinematic model can 

be presented as: 
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(18) 

by defining ( ) ( )( ) 2/rkk LR
r
k  +  and 

( ) ( )( ) Drkk LR
d
k / − , where r is the active 

wheels’ radius, D is the distance between them, and Δt is 

the sample time of the discrete fusion process. Position 

and orientation of the robot established the state vector, 

where index r stands for robot in the robot state vector. 

The increment of encoder readings can be used to 

approximate the velocity input in this model. It should 

be noted that XG and YG denote the global coordinate, XR 

and YR denote the robot coordinate, and xv and yv 

represent the position of the observation device in Fig. 

2.  

 

Figure 2. Vehicle and observation kinematics [15]. 

The process noise wk is eliminated in (18). It can be 

inserted in process model by adding the noise term into 

the control signal u. 

k
n
kk wuu +=  (19) 

where n
ku  is a nominal control signal and wk is a 

Gaussian distribution noise vector which its mean and 

covariance matrix are zero and Q, respectively. 

3.1.2. Feature Model 

The landmarks are assumed to be stationary and can 

be represented by the following expression: 
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where Xm denotes the location of the ith landmark and can 

be augmented to the vehicle state vector vX .  
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3.1.3. Observation Model 

The observation model can be expressed by a 

nonlinear function: 
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(22) 

It is assumed that the vehicle is equipped with a laser 

range-bearing scanner that takes observations of the 

landmarks in the surrounding environment. In addition, 

the vehicle speed and the steer angle can be obtained 

from the wheel encoders. The observation defined in 

vehicle coordinates can be transformed into absolute 

world coordinates by transformation matrix [29]. Note 

that there is a distance offset between the mounting 

positions of laser ranging finder and the wheelbase of 

vehicle. 
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where 
kvx  and 

kvy are the position of the laser scanner 

at time step k. The position of the laser scanner is defined 

by parameters a and b with respect to the vehicle frame. 

mi represents the ith landmark in the surrounding 

environment with the pose of ( ))()( , i
m

i
m yx  in the global 

coordinate XG-YG. The position of ith landmark is 

indicated by ( ))()( , iir   with respect to the observation 

device frame XR-YR. 

3.2. Data Association 

The most common method for validity of potential 

associations between observations and features relies on 

the Mahalanobis distance 

min
1 dvSvT −

 (24) 

where v and S are respectively the innovation and 

innovation covariance of observations. The Mahalanobis 

distance between the estimated and observed feature 

location is then compared against a validation gate, dmin 

for the association being considered. More details about 

data association can be found in [29]. 

4. Simulation Results 

To verify the proposed approach, a simulated dataset 

and a RGBD dataset are selected. In both of experiments, 

it is assumed that robot is moving through an unknown 

environment, whilst it was simultaneously building the 

map of the environment and localizing itself in this 

environment. 

4.1. Simulation results with simulated data 

Bailey et al. developed the SLAM simulator which is 

open-source software packages for SLAM [20]. This 

simulator permits comparison of the different map 

building algorithms. The preliminary simulation was 

executed on rectangular shaped trajectories of 50m × 

50m, in which 35 randomly placed landmarks together 

with the robot are to be localized and mapped, as shown 

in Fig. 3. The vehicle was assumed to admit a kinematic 

model that is subject to rolling motion constraints [30]. 

The vehicle was moving with maximum speed of 3 m/s. 

It has had the active wheels’ radius 10 cm and the 

distance of 40 cm between them. It was equipped by a 

range-bearing sensor with a maximum range of 30m and 

180º frontal field-of-view. Gaussian noise covariance 

was generated for both the measurement and the motion. 

The control frequency was 40 Hz, and observation scans 

were obtained at 5 Hz. The measurement noise was 0.1m 

in range and 1º in bearing and the control noises in the 

simulation were σV = 0.3 m/s, σγ = 3º. The likelihood 

function (16) was maximized at each time step k by 

means of the systematic search method or the grid 

method on interval 0 and 10 with the increment 0.5. 

 

Figure 3. Estimated and true vehicle paths with estimated and 

true landmarks using AUKF by the grid method and 

κ{0:0.5:10} - The (red) dashed line and (blue) asterisks 

denote the true path and landmark positions, respectively. The 
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(black) continuous line is the estimated path of the vehicle and 

the (red) plus sign is estimated landmarks with uncertainty 

ellipse. 

 

Figure 4. Estimated and true vehicle paths with estimated and 

true landmarks using UKF - The (red) dashed line and (blue) 

asterisks denote the true path and landmark positions, 

respectively. The (black) continuous line is the estimated path 

of the vehicle and the (red) plus sign is estimated landmarks 

with uncertainty ellipse.  

 

Figure 5. Estimated and true vehicle paths with estimated and 

true landmarks using EKF - The (red) dashed line and (blue) 

asterisks denote the true path and landmark positions, 

respectively. The (black) continuous line is the estimated path 

of the vehicle and the (red) plus sign is estimated landmarks 

with uncertainty ellipse. 

 

Figures 3 to 5 show the estimated robot path and the 

estimated landmark with the true path of the robot and 

the true positions of the landmarks, using AUKF, UKF 

and EKF algorithm, respectively. The estimated 

trajectories of the robot and the estimated positions of 

the landmarks are compared using the AUKF, UKF and 

EKF. The total errors of AUKF, UKF and EKF 

estimations are listed in Table 1. The variation of the 

scaling parameter with the increment 0.5 during SLAM 

simulation is plotted in Fig. 6. The values of positions 

errors in Fig. 7 show that the proposed algorithm has the 

most accurate estimates of the vehicle positions. From 

Table 1 and Fig.7, we conclude that the AUKF 

outperforms the standard UKF and EKF in estimating 

the vehicle path and the landmarks positions.  

 

Figure 6. Scaling parameter values in time steps for simulation 

dataset. 

 

Figure 7. Error of the vehicle trajectory estimation with respect 

to time using EKF, UKF and AUKF. 

 

Table 1. Total errors of AUKF, UKF and EKF estimates 

 

AUKF UKF EKF 

κ 

{0:0.5:10}  
κ = 3- nx  

 

without 

κ  

estimated 

trajectory error 
14.0193 19.2794 34.1448 

Estimated 

position error of 

landmarks 

19.6480 28.6200 47.9998 

 

The results were obtained over 100 Monte Carlo runs 

for fixed value (κ = 3-nx) and three adaptive choices of 

κ. The comparison of mean square error (MSE) between 

the robot path and true path are listed in Table 2. The 

required time for executing the algorithms is normalized 

with respect to the required time of execution for the 
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standard UKF. The notation  maxstepmin ::    

means that the likelihood function (16) is maximized at 

each time step k by means of the grid method on interval 

κmin and κmax with the increment κstep. From the results, 

the estimation accuracy is improved by applying the 

proposed approach with respect to the standard UKF and 

the EKF. From Table 2, it can be seen that the adaptive 

setting of the scaling parameter in UKF has a significant 

impact on the improvement of the estimation quality, 

measured by the MSE. Also, by comparing the search 

areas κ{0:1:4} and κ{0:1:10}, we conclude that 

changing the search area of κ leads to improvement of 

the results, while saving computational costs. 

Comparing the search areas κ{0:0.5:4} and κ{0:1:4} 

reveals that fining the increment κstep in a constant 

interval, can improve the accuracy of the results, while 

increasing computational efforts. 

4.2. Indoor SLAM with RGB-D sensor 

In this section, the robustness of AUKF to high sensor 

noise is validated in an indoor environment using a 

RGB-D based mobile robot. This robot explored an 

unknown and structured indoor environment, whilst it 

was building the map of the environment and localizing 

itself in this environment. The Microsoft XBOX Kinect 

was attached to the robot to obtain visual and depth 

information. The robot was controlled by two 

independent motors equipped by an incremental 

encoder. Combination of the differential driving output 

and gyro data were used for dead reckoning. The 

technical details about an approximated, discrete-time 

model of two-wheel driven mobile robot can be found in 

[31].  

Kinect sensor camera has three lenses, an infrared 

transmitter for emitting a dotted light pattern, an Infrared 

CMOS camera for capturing reflected patterns, and a 

RGB camera for providing additional information on 

color and texture of the surface. The RGB camera 

supports a maximum resolution of 1280×960, while the 

depth sensors support 640×480 imaging. The view 

angles for the Kinect sensor cameras are 57 degrees 

horizontal and 43 degrees vertical. However, there is a 

practical ranging limit for extracting distance due to 

depth sensing range for 0 to 4095 mm. Microsoft 

recommends extracting distance within the range of 

1220 to 3810 mm for more accuracy and reliability. A 

mobile robot platform has been built in the Department 

of Mechanical Engineering of Yazd University, Yazd, 

Iran for indoor experiments (Fig. 8). 

 

 

Figure 8. Experimental Robot Platform. 

 

An Arduino board was used to collect data from 

sensors and to send them to a laptop for recording. The 

laptop was mounted on the robot to program the Arduino 

board, define the trajectory and record sensors data. 

When the robot navigated through the environment with 

a predefined trajectory, the estimated trajectory and the 

constructed map was recorded. The robot returned to the 

start point after detecting the environmental features 

using RGB-D sensor.  

The Mechatronics Laboratory of Yazd University was 

chosen for obtaining the indoor dataset. This area spans 

a width of 7.3 meters by a length of 14 meters. A 2D 

location of objects and their dimension were collected 

from the environment to compare them with the 

estimated map obtained from the proposed algorithm. 

Unfortunately, the true trajectory was not available for 

Table 2. MSE of UKF, EKF and AUKF estimations 

 

UKF EKF AUKF 

κ = 3-nx without κ κ {0:0.5:4} κ {0:1:4} κ {0:1:10} 

MSE 12.3720 19.8492 9.8808 10.0889 10.5084 

Normalized time 

with respect to UKF 
1 0.8220 1.2635 1.1526 1.2095 
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the experiment like this. Several objects such as tables, 

chairs, boxes and experimental devices were placed in 

the environment. The true positions of objects were 

measured before running the algorithm. Several views of 

the environment along with a few objects are shown in 

Fig. 9. 

Investigating the effectiveness of any SLAM 

algorithm requires detecting features. To extract the 

features from RGBD data, two processing steps were 

applied on the data. At the first step, an object detection 

method was applied on the RGBD data based on a 

combination of finding objects from depth image, and 

finding point correspondences between the reference 

and the target image. Then, the positions of these 

features were evaluated from the depth data. It must be 

noted that calibration of this sensor is necessary to 

measure the position of the features, accurately. A 

number of selected RGB and depth images along with 

several features extracted during this experiment, are 

shown in Fig. 10. The constructed SLAM maps and 

trajectories of the robot using AUKF, UKF and EKF are 

also shown in Fig. 11. To demonstrate the applicability 

of AUKF-SLAM algorithm in real applications with 

higher number of search parameter, the values of κ are 

chosen by the grid method in the interval κ{0:0.5:10}. 

These experiments showed that AUKF-SLAM can be 

implemented in real-time applications. Comparison of 

the obtained results in Fig. 11 reveals that applying the 

proposed AUKF on the dataset improves the accuracy of 

SLAM, as compared to the standard UKF and EKF 

algorithms. The values of positions errors are plotted in 

Fig. 12. It can be seen that the proposed algorithm has 

the most accurate estimates as compared to the other 

methods. 

 

 

 

Figure 9. Indoor Environment and features. 
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Figure 10. RGB and depth images along with the extracted object. The red asterisks indicate the center position of extracted features. 

 

 

 

Figure 11. Estimated map and the robot trajectories 

using AUKF, UKF and EKF algorithms by of the grid 

method and the scaling parameter κ{0:0.5:10}. 

 

 

Figure 12. Position of the robot with respect to time using 

AUKF, UKF and EKF algorithms. 
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4.3. Victoria Park Dataset 

Finally, the well-known Victoria Park dataset [25] is 

chosen to prove the applicability of the proposed method 

in large-scale environments. This dataset was recorded 

when a vehicle was driven around Victoria Park for 

about 25 minutes, covering a distance of over 4 km [25].  

The vehicle was equipped with a GPS receiver in order 

to establish its trajectory. The control noises in the 

experiment are σV = 2 m/s, σγ = 6º, and the measurement 

noises are σr = 1 m, σφ = 3º. Figure 13 presents the final 

navigation map and vehicle trajectory estimated for a 

part of Victoria Park dataset by using the AUKF.  

 

Figure 13. Estimated path (continuous line) and 

landmarks (plus sign with the uncertainty ellipse) using 

AUKF for Victoria Park dataset. 

 

 

Figure 14. Estimated path (continuous line) and landmarks 

(plus sign with the uncertainty ellipse) using AUKF for 

Victoria Park dataset along with GPS data (points). 

 

Since the true position of the vehicle was obtained with 

GPS, a true navigation map was available for 

comparison purposes. It can be seen that the GPS sensor 

gave intermittent information due to limited satellite 

availability. Figure 14 shows estimated path and 

landmarks using AUKF algorithm for Victoria Park 

dataset along with GPS path that is represented by blue 

points. 

5. Conclusions 

In this work, an AUKF is applied on the SLAM 

problem in both simulated data and real application. The 

proposed adaptation of the scaling parameter is based on 

the maximum likelihood function at each time step. 

Through simulations, it is shown that the proposed 

approach decreases the estimation errors of the robot 

trajectory and the landmarks positions. MSE of the UKF 

and AUKF are compared by the impact of the chosen 

increment of the scaling parameter. It is shown that 

increasing the dimension of search space for the 

adaptation criteria leads to improving the accuracy of the 

estimation, although it adversely affects the required 

computational effort. Therefore, we should comprise 

between the wideness of the search space and the 

computational costs based on the required accuracy and 

available computational facilities. An RGBD dataset, 

obtained from a real setup, and Victoria Park dataset are 

used to demonstrate the applicability of the results for 

real navigations. The AUKF-SLAM algorithm described 

in this paper provides a more accurate method for 

estimating both the pose of the robot and the features in 

an unknown environment, as compared to the existing 

UKF and EKF methods.  
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