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Abstract

The Casimir operator of a Lie algebra L is C2 =
∑

gijXiXj and
the action of the Casimir operator is usually taken to be C2Y =∑

gijXiXjY , with ordinary matrix multiplication. With this defini-
tion, the eigenvalues of the Casimir operator depend upon the repre-
sentation showing that the action of the Casimir operator is not well
defined. We prove that the action of the Casimir operator should
be interpreted as C2Y =

∑
gij [Xi, [Xj ,Y ]]. This intrinsic definition

does not depend upon the representation. Similar results hold for the
higher order Casimir operators. We construct higher order Casimir
operators which do not exist in the standard theory including a new
type of Casimir operator which defines a complex structure and third
order intrinsic Casimir operators for so(3) and so(3, 1). These opera-
tors are not multiples of the identity. The standard theory of Casimir
operators predicts neither the correct operators nor the correct num-
ber of invariant operators. The quantum theory of angular momentum
and spin, Wigner’s classification of elementary particles as represen-
tations of the Poincaré Group and quark theory are based on faulty
mathematics. The “no-go theorems” are shown to be invalid.
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1



1 Introduction

Lie groups and Lie algebras play a fundamental role in classical mechan-
ics, electrodynamics, quantum mechanics, relativity, and elementary particle
physics. Many hope that the Lie group/algebra setting will provide an ap-
propriate framework for the unification of quantum theory, general relativ-
ity and particle physics. Within the unification via group theory program,
the so-called Casimir operators or invariant operators play a pivotal role.
In quantum mechanics, the quadratic Casimir operator of so(3) is either
L2, the total angular momentum or J2, the total spin. In the program of
dynamical groups or spectrum generating algebras, the eigenvalues of the
Casimir operators can be interpreted as mass, energy, momentum, or other
dynamical quantities. H. Schwartz [28] emphasized the role of the Casimir
operator in Relativity, while W. Greiner and B. Muller [7] emphasized the
role of the Casimir operator in quantum mechanics. Thus it seems likely
that the Casimir operators of some Lie algebra will play a major role in the
unification of the two theories. The author [17] suggested that u(3, 2) is the
unique Lie algebra capable of such a unification. A Theory of Matter based
on the geometry of u(3, 2) was developed in Love [18, 19, 20]. In this pro-
gram, the field equations arise as eigenvalue equations involving the Casimir
operators of u(3, 2), with the conserved quantities as the eigenvalues. Thus
identification of the proper operators is essential to progress in the Theory
Of Matter.

A Casimir operator, C, of a Lie Algebra L is an operator constructed as
a polynomial in the elements of L which commutes with every element of L.
With an abuse of notation, this is written as

[C, X] = 0 ∀X ∈ L.

This is an abuse of notation because the bracket is use to denote the operation
defined on the Lie algebra so writing [A, B] = 0 implies that both A and B
are in the Lie algebra. The Casimir operator is not in the Lie algebra itself,
rather the Casimir operator is in the Enveloping algebra of the Lie algebra.
So

[C, X] = 0

really means that CXY = XCY , but this equation makes no sense in a Lie
algebra since the product XY is not defined, only the bracket is defined.
Putting brackets in, we have: [CX, Y ] = [X, CY ], or should it be C[X, Y ] =
[X, CY ]? We need to examine this issue.
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We begin with Schur’s lemma as phrased in Proposition 2 of Chevalley
[3]:

Let P be an irreducible representation of a group G in an
algebraically closed field K. The only matrices which commute
simultaneously with all matrices P (σ), σ ∈ G are the scalar mul-
tiples of the unit matrix. (page 183)

In many treatments of the Casimir operator, an appeal is made to Schur’s
Lemma to show that the Casimir operator (and every generalized Casimir
operator) is a multiple of the identity matrix. As we will show, this statement
as it stands is not true. In the context of representation by differential
operators, the phrase doesn’t even make sense. We will show that Schur’s
Lemma is not true for differential operator representations of Lie algebras.

Suppose that each element of a Lie algebra is an eigenvector of the Casimir
operator C of the Lie algebra L, thus:

CX = αX ∀X ∈ L (1)

Now let ρ be an isomorphism of the Lie Algebra L and apply ρ to both
sides of (1) to obtain:

ρ(CX) = ρ(αX) (2)

Commutivity of the diagram:

L C
−→ L

ρ ↓ ρ ↓
ρ(L) ρ(C)

−→ ρ(L)

requires that:
ρ(CX) = ρ(C)ρ(X)

In the representation space we have:

ρ(C)ρ(X) = αρ(X).

In order to be a scalar, α must be the same in all representations (that is the
definition of scalar). In the standard approach, with

C =
∑

gijXiXj
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and
CY =

∑
gijXiXjY

for Y ∈ L for consistency we must have:

ρ(C2)ρ(Y ) =
∑

gijρ(Xi)ρ(Xj)ρ(Y )

But this is not the case, as the examples considered by Schiff [26] show. Schiff
asserts (p. 199): “Direct substitution from the matrices (27.11) shows that

S2 = S2
x + S2

y + S2
z

is equal to 2h̄2 times the unit matrix”. This is indeed true, if we just multiply
the matrices (recall that physicists put in a factor of i to make the matrix
hermitean):

Sx = ih̄

 0 0 0
0 0 −1
0 1 0



Sy = ih̄

 0 0 1
0 0 0
−1 0 0



Sz = ih̄

 0 1 0
−1 0 0
0 0 0


Then we have:

S2A = S2
xA + S2

yA + S2
zA = 2h̄A

A ∈ so(3)

This calculation also ‘proves’ that S2A = 2h̄A for any three by three
matrix, and in particular for A ∈ su(3). Consequently, if this proof were
valid, S2 would be a Casimir operator for su(3), sl(3) and any other Lie
algebra of 3 by 3 matrices which contains so(3). It is not. Thus, the ‘proof’
is not valid.

Switching representations, Schiff contends on page 203 that

Jx =
h̄

2

(
0 1
1 0

)
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Jy =
h̄

2

(
0 −i
i 0

)

Jz =
h̄

2

(
1 0
0 −1

)
Summing, we obtain:

J2 = J2
x + J2

y + J2
z =

3

4
h̄2

(
1 0
0 1

)

Schiff continues with two more representations and finds:

J2 = h̄2

 1 0 0
0 1 0
0 0 1


or

J2 =
1

2
h̄2


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1


Now we ask the question “What is J2A for A ∈ so(3)?.” And the stan-

dard answer is: “That depends on which representation you are in”. In the
standard approach, the eigenvalue of the Casimir operator changes with each
representation, thus it is a “varying invariant”, the ultimate oxymoron. If
the eigenvalue of an operator changes from representation to representation,
the operator cannot be an invariant of the Lie algebra. From the viewpoint of
differential geometry, a representation is essentially a coordinate system. Ex-
ponentiate a representation of the Lie algebra and you have a local coordinate
system for the manifold underlying the Lie group. Differential Geometry re-
quires that in order to be well defined, “geometric objects” be independent of
the coordinate system. Thus the dependence of the eigenvalue of the Casimir
operator on the representation shows that with the standard definition the
Casimir operator is not well defined as a geometric object. In the parlance
of classical Differential geometry, it does not transform properly. The reason
for this is clear: in the standard approach, the Casimir operator is defined in
terms of matrix multiplication and a Lie algebra isomorphism does not pre-
serve matrix multiplication. Fulton and Harris [6] (page 108) observe ‘. . . that
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the “composition” X ◦ Y of elements of a Lie algebra is not well defined.’
In order to be well defined within the category of Lie algebras, the action of
the Casimir operator cannot be defined in terms of matrix multiplication, it
must be defined in terms of the Lie bracket.

Consequently, although the standard results about the Casimir operator
follow from direct calculation, those calculations are meaningless from a ge-
ometric (or a categorical) viewpoint. Our immediate goal must be to find
a way of defining the Casimir operator in a way which is geometrically and
categorically satisfactory.

We begin by looking at the geometric origin of the Lie bracket. Let
F (t) be the flow of the vector field X and F ∗ the pullback map under the
diffeomorphism induced by that flow, then the Lie derivative of a tensor field
K with respect to the vector field X is defined by

LXK(p) = lim
t→0

(K(p)− F ∗(t)K(p))/t

It is a standard exercise in differential geometry to prove that the Lie
derivative of a vector field Y with respect to another vector field X is given
by:

LXY = [X, Y ] = XY − Y X

(Kobayashi and Nomizu [14],p.29).
Within differential geometry, the commutator is then a secondary tool

used to compute the Lie brackets. Any computations using a matrix repre-
sentation of a Lie algebra which comes from a Lie group must be consistant
with the geometric origin of the Lie derivative, matrix multiplication is not.
The reader interested in more detail should read the entire discussion of the
matter in Fulton and Harris [6].

In the standard approach, the Casimir operator for a Lie algebra L , is

C2 =
∑

gijXiXj (3)

and the action of the Casimir operator is

C2Y =
∑

gijXiXjY (4)

with ordinary matrix multiplication. However, matrix multiplication is not
defined in a Lie algebra, only the Lie bracket, addition and scalar multi-
plication are defined. Since a Lie Algebra with the bracket operation is
nonassociative, this expression is meaningless. Since the action (4) is not
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well defined, we look for other ways to interpret the symbols. In another
standard treatment, the Casimir operator is taken to be an element of the
Enveloping Algebra in which case

C2Y =
∑

gijXi ⊗Xj⊗Y

with the tensor product as the multiplication. We will look at this treatment
after discussing yet another way to interpret the symbols.

Since the Casimir operator is defined in terms of the generators of the
Lie algebra and the generators are defined in terms of the Lie derivative, it
seems appropriate to have the Casimir operators defined in terms of the Lie
derivative.

Kobayashi and Nomizu [15](p.128) prove that a vector field X is an in-
finitesimal automorphism of an almost complex structure J iff

J [X, Y ] = [X, JY ]

Phrased another way, this condition insures the almost complex structure
J is invariant under the flow generated by the vector field X. This theorem is
relevant since we will construct a Casimir operator which defines a complex
structure. We can use their proof verbatim, replacing J by C to prove:

Theorem:
Given a Lie Algebra L , if C :→ L is a linear operator, then C is invariant

under the flow generated by the vector field X, iff

C[X, Y ] = [X, CY ] = [CX, Y ] (5)

for all X,Y ∈ L .
Proof:
Consider the Lie algebra as the tangent space of M , the manifold under-

lying the Lie group. Then the Casimir operator is a mapping

C : TM → TM.

Let X and Y be any vector fields on M . Then

[X, CY ] = LX(CY ) = (LXC)Y + CLX(Y ) = (LXC)Y + C[X, Y ]

Hence, LXC = 0 iff
[X, CY ] = C[X, Y ].
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The condition that the Lie derivative of C with respect to X is zero, LXC = 0
is the definition of invariant.

Then we also have

C[X, Y ] = −C[Y, X] = −[Y,CX] = [CX, Y ]

The standard approach requires that CX = XC, or putting in another
element Y for these operators to act on, the standard approach requires that
C commutes with X under the operation of matrix multiplication:

CXY = XCY (6)

In the approach taken here, we require that C interacts with X under the
operation of the Lie algebra, the Lie bracket and thus:

C[X, Y ] = [X,CY ] (7)

Again, the standard approach cannot be correct simply because matrix
multiplication is not defined in a Lie Algebra. This is a different interpre-
tation of the phrase “commutes with X” than the standard theory and is
justified because it is local invariance under the action of the Lie algebra
which leads to global invariance under the action of the Lie Group.

Theorem
In any representation, the action of the Casimir operator C is given by

CY =
∑

gij[Xi, [Xj, Y ]] (8)

Proof:
In the standard treatment of the Casimir operator, C ,

CXk =
∑
ij

gijXiXjXk

In the adjoint representation, we have the Casimir operator acting on an
element of the Lie algebra:

CA =
∑
ij

gijad(Xi)ad(Xj)A

then, by definition of the adjoint representation,

(adC)(adA) =
∑
ij

gij[adXi, [adXj, adA]]
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Now, let ρ be a representation of the Lie algebra, and note that any
representation can be factored through the adjoint representation:

L ad
−→ hom(L)

ρ ↘ ↙ ρ′

hom(V )

Then
ρ = ρ′ad.

We have the corresponding diagram for C:

C ad
−→ ad(C)

ρ ↘ ↙ ρ′

ρ(C)

Then commutivity of the diagram requires that

ρ(C) = ρ′(adC)

ρ(CA) = ρ(C)ρ(A) = ρ′(adC)ρ′(adA) = ρ′
∑
ij

gij[adXi, [adXj, adA]]

=
∑
ij

gij[ρ′(adXi), [ρ
′(adXj), ρ

′(adA)]]

=
∑
ij

gij[ρ(Xi), [ρ(Xj), ρ(A)]]

This last equality holds because a Lie algebra isomorphism preserves the
bracket. Thus proving that the Casimir operator must be interpreted as an
intrinsic Casimir operator.

In the expansion of the intrinsic Casimir operator, C, define the coeffi-
cients gij by:

CXk =
∑
ij

gij[Xi, [Xj, Xk]]

In the standard treatment of the Casimir operator the matrix gij is the
inverse of the Killing form:

gij = Tr(adXi)(adXj) =
∑
km

Cm
ikCk

jm
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However, with the reinterpretation of the Casimir operator, this relation-
ship is not valid. As a direct calculation with the normalized intrinsic Casimir
operator shows:

CXk =
∑
ij

gij[Xi, [Xj, Xk]]

=
∑
ij

gij[Xi,
∑

l

C l
jkXl]

=
∑
ijl

gij[Xi, C
l
jkXl]

=
∑
ijl

gijC l
jk[Xi, Xl]

=
∑
ijlm

gijC l
jkC

m
il Xm

Denote the inverse of gij by hjk then the relation between a matrix and
its inverse is given by

gijhjk = δi
k

and is summed over the index j only. Since the expression

∑
ijlm

gijC l
jkC

m
il Xm (9)

is summed over both i and j, the relation between gij and C l
jkC

m
il is not that

between a matrix and its inverse.
O’Raifeartaigh [24] claimed that the Casimir operator could be written

as

CXk =
∑
ij

Tr(adXi)(adXj)[Xi, [Xj, Xk]].

However, this expression cannot be correct since Tr(adXi)(adXj) is the
Killing form and according to the standard formula, it is the inverse of the
Killing form which defines the coefficients of the Casimir operator. But (9)
shows that this doesn’t work. Instead of taking the inverse of the matrix, we
need to take the inverse of each term individually and define:
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CXk =
∑
ij

( Tr(adXi)(adXj) )−1 [Xi, [Xj, Xk]]. (10)

(The sum is over nonzero traces)
O’Raifeartaigh’s calculations work out because he only considers cases

where Tr(adXi)(adXj) is 1 or -1.
Note that (adXi)(adXj) = [Xi, [Xj, ; so we could write:

CXk =
∑
ij

(Tr[Xi, [Xj, )
−1[Xi, [Xj, Xk]] (11)

(The sum is over nonzero traces)
We will call the operator defined in (10) the normalized intrinsic Casimir

operator. With a slight change of notation, this agrees with the definition
of the Casimir operator given by Knapp [13]. This operator is scale invari-
ant, that is, if each Xi is multiplied by a scalar ai, the normalized intrinsic
Casimir operator is unchanged (in the standard picture, this is only true for
an orthogonal basis). Such rescalings will be necessary to properly scale field
strengths [31].

The intrinsic Casimir operator is one of the invariants of the Lie algebra.
When we speak of invariants in differential geometry, we mean a differential
operator which is invariant under the action of the Lie Group. This imme-
diately leads to the criteria that in the representation of the Lie algebra as
differential operators the invariant operator commutes with elements of the
Lie algebra as in Theorem 5. But here arises the main point of confusion
when we work with a matrix representation. If we want an operator which
commutes with every element of the Lie algebra, does that mean that the op-
erator commutes with the matrices in some representation under the action
of ordinary matrix multiplication or that the operator commutes with the ac-
tion of that matrix as an element of the Lie algebra? The standard approach
takes the first route and requires that the operator commutes with every
matrix in the representation. Then, supposedly Schur’s lemma requires that
these “invariant operators” are just multiples of the unit matrix. But then
the “invariants” are a different multiple of the identity for each representa-
tion and can hardly be called “invariant”. Noting that matrix multiplication
is not defined in a Lie algebra, we take the second tack and require that
the operator commute with the action of the matrices as elements of the Lie
algebra, as required by Theorem 5. The eigenvalue of these operators does
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not change with the representation and they are truly invariant. We will
also show that the invocation of Schur’s lemma is not justified since these
operators are not representable by matrix operators.

Since this approach is such a break with tradition, perhaps further dis-
cussion is warranted. If A is an element of the Lie algebra of a Lie group,
then A is the infinitesimal generator of a one parameter subgroup with the
group action on B ∈ L given by: exp(tA)Bexp(−tA)

In order to prove the invariance of an operator C we need to show that:

Cexp(tA)Bexp(−tA) = exp(tA)(CB)exp(−tA)

Using the Baker-Campbell-Hausdorff identity, we can expand the group
action in terms of the Lie algebra action:

exp(tA)Bexp(−tA) = (B + t[A, B] +
t2

2!
[A, [A, B]] +

t3

3!
[A, [A, [A, B]]] + . . .

Then

exp(tA)(CB)exp(−tA) = (CB+t[A, CB]+
t2

2!
[A, [A, CB]]+

t3

3!
[A, [A, [A, CB]]]+. . .

= (CB + Ct[A, B] + C
t2

2!
[A, [A, B]] + C

t3

3!
[A, [A, [A, B]]] + . . .

= C(B + t[A, B] +
t2

2!
[A, [A, B]] +

t3

3!
[A, [A, [A, B]]] + . . .)

= Cexp(tA)Bexp(−tA)

An invariant operator is one whose action commutes with that of the
Lie Group. The above calculation shows that in order for an operator to
commute with the action of the Lie group, it must commute with the action
of the Lie algebra in the sense of 5.

2 The Lie Algebra of Vectors and The Intrin-

sic Casimir Operator of so(3)

Consider the Lie Algebra of vector fields on R3 with bracket defined by cross
product:

~i×~i = ~0 ~j ×~i = −~k ~k ×~i = ~j
~i×~j = ~k ~j ×~j = ~0 ~k ×~j = −~i

~i× ~k = −~j ~j × ~k =~i ~k × ~k = ~0
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It follows immediately from the cross product that:

~i× (~i×~j) =~i× ~k = −~j

~i× (~i× ~k) =~i× (−~j) = −~k

Thus Tr(~i× (~i×) = −2.

Likewise, Tr(~j × (~j×) = −2 and Tr(~k × (~k×) = −2
On the space of 3 dimensional vectors, define the operator C by

CA =~i× (~i× A) +~j × (~j × A) + ~k × (~k × A) (12)

Clearly, C is linear, so it suffices to compute C on the basis ~i,~j,~k:

C~i =~i× (~i×~i)+~j× (~j×~i)+~k× (~k×~i) = ~0+~j× (−~k)+~k×~j = −~i−~i = −2i

Likewise, C~j = −2~j and C~k = −2~k. Thus, C ~A = −2 ~A for any ~A ∈ R3.
At some point,we must confront some of the misunderstandings which

abound in the physics literature. Let’s begin with a comment by Sudarshan
[30](page 170):

. . . notions such as “the square x2” of an element x, -and, more
generally, any power, polynomial or power series in one or more
elements, - are not defined in a Lie-algebra. In fact, if the existing
definition of a product is used,-i.e., the Lie-bracket [x, y]- , x2 etc.
would be identically zero!

We confront the same problem addressed by Dirac in his treatment of
Bras and Kets, [x, y] represents the operator [x, acting on the vector y] Thus
“the square x2” is not defined by [x, x], rather “the square x2” is [x, [x, and
it is not necessarily zero. We work towards an example.

The Adjoint representation is:

Ad(i) =

 0 0 0
0 0 −1
0 1 0

 = X1

Ad(j) =

 0 0 1
0 0 0
−1 0 0

 = X2
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Ad(k) =

 0 −1 0
1 0 0
0 0 0

 = X3

Thus the adjoint representation of the cross product algebra is

so(3) = {X1, X2, X3}

The Adjoint representation, applied to 12, yields for A ∈ so(3):

CA = [X1, [X1, A]] + [X2, [X2, A]] + [X3, [X3, A]] = −2A (13)

for any A ∈ so(3). The placement of brackets in 13 is dictated by the
isomorphism between 12 and 13. The operator C is clearly a multiple of the
intrinsic Casimir operator since it is quadratic in the generators of so(3) and
C commutes with all X ∈ so(3):

[X, CY ] = [X,Y ] = C [X, Y ]

Since the trace of each term is -2, the normalized intrinsic Casimir oper-
ator is:

1

−2
CA =

1

−2
([X1, [X1, A]] + [X2, [X2, A]] + [X3, [X3, A]]) = A

Suppose C ′′ is an intrinsic Casimir operator of so(3), then C ′′ is a linear
operator on so(3) and there are coefficients satisfying:

C ′′X1 = a11X1 + a12X2 + a13X3

C ′′X2 = a21X1 + a22X2 + a23X3

C ′′X3 = a31X1 + a32X2 + a33X3

Determining the possible coefficients will allow us to determine which
eigenvalues are possible although it will not allow us to determine which
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brackets actually yield those eigenvalues. We can greatly simplify our calcu-
lations once we note a few limitations on the possible images of any intrinsic
Casimir operator.

The first limitation on the image of the intrinsic Casimir operator is:

[CX, X] = C [X, X] = 0 (14)

Thus, CX commutes with X.
The second and third go together:
Theorem
If D is an element of the Cartan subalgebra, so is CD.
Proof:
Let DI be a maximal commuting subalgebra (the Cartan subalgebra),

then C[DI , DJ ] = [DI , CDJ ] = 0 Thus CDJ commutes with all the DI and
is thus in the Cartan subalgebra.

Theorem
If X is not in the Cartan subalgebra, neither is CX.
Proof: If X is not in the Cartan subalgebra, then there is a D ∈ the Cartan

Subalgebra such that [D, X] = Y 6= 0 Then C[D, X] = [D, CX] = CY 6= 0
then: C [D, X] = αCX
C [D, X] = [CD,X] = [D, CX] = αCX
From [D, CX] = αCX we conclude that CX is not in the Cartan subal-

gebra since such operators commute. Furthermore, CX is an eigenvector of
D with the same eigenvalue as X.

From the first limitation, [CX, X] = C [X, X] = 0, we see that we can
easily find the possible coefficients of an intrinsic Casimir operator of so(3):

C ′′X1 = aX1 (15)

C ′′X2 = aX2

C ′′X3 = aX3

This calculation would make it appear that the operator C ′′ is merely a
multiple of the identity matrix. We have the operator C, so we must ask if
C is merely a multiple of the identity matrix as is often claimed and as the
above would indicate? To answer this question, let us compute CM where
M is a generic 3× 3 matrix.
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[X1, M ] =


 0 0 0

0 0 −1
0 1 0

 ,

 m11 m12 m13

m21 m22 m23

m31 m32 m33




 0 0 0
−m31 −m32 −m33

m21 m22 m23

−
 0 m13 −m12

0 m23 −m22

0 m33 −m32


=  0 −m13 m12

−m31 −m23 −m32 m22 −m33

m21 m22 −m33 m23 + m32


Then

[X1, [X1, M ]] =


 0 0 0

0 0 −1
0 1 0

 ,

 0 −m13 m12

−m31 −m23 −m32 m22 −m33

m21 m22 −m33 m23 + m32




=

 0 −m12 −m13

−m21 −2m22 + 2m33 −2m23 − 2m32

−m31 −2m23 − 2m32 2m22 − 2m33


Likewise:

[X2, [X2, M ]] =

 2m33 − 2m11 −m12 −2m13 − 2m31

−m21 0 −m23

−2m31 − 2m13 −m32 −2m33 + 2m11



[X3, [X3, M ]] =

 −2m11 + 2m22 −2m12 − 2m21 −m13

−2m12 − 2m21 2m11 − 2m22 −m23

−m31 −m32 0


Summing, we obtain:

CM =

 −4m11 + 2m22 + 2m33 −4m12 − 2m21 −4m13 − 2m31

−4m12 − 2m12 2m11 − 4m22 + 2m33 −4m23 − 2m32

−4m31 − 2m13 −2m23 − 4m32 2m11 + 2m22 − 4m33


16



Thus C is not a multiple of the identity matrix, but the operator C has an
eigenvalue of -2 which we need to investigate. Requiring that CM = −2M ,
we have for the off diagonal terms:

2m12 + m21 = m12

Therefore,
m12 = −m21

2m13 + m31 = m13

Therefore,
m13 = −m31

2m23 + m32 = m23

It follows that
m23 = −m32

For the diagonal terms:

2m11 −m22 −m33 = m11

−m11 + 2m22 −m33 = m22

−m11 −m22 + 2m33 = m33

This system has only the solution m11 = m22 = m33 = 0
Thus CM = −2M iff M is skew-symmetric, i.e. iff M ∈ so(3)! Hence, in

the defining representation, the intrinsic Casimir operator of so(3) charac-
terizes the Lie algebra. This also happens to be the adjoint representation,
so it is not clear which is important.

Writing
C = ([X1)

2 + ([X2)
2 + ([X3)

2

Then it is clear that

C = ([X1)
2n + ([X2)

2n + ([X3)
2n

is also a Casimir operator for any n. Similiar remarks hold for every Casimir
operator we will construct.
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3 Third Order Intrinsic Casimir Operators

for so(3)

In this section we construct third order intrinsic Casimir operators for so(3),
contrary to the standard wisdom in which so(3) has no third order Casimir
operators. Once again, we begin with the Lie Algebra of vectors on R3 with
the cross product as bracket.

~i× (~j × (~k ×~i)) = 0 (16)

~k × (~i× (~j ×~i))

= ~k × (~i× (−~k))

= ~k ×~j = −~i

~j × (~k × (~i×~i)) = 0

~i× (~j × (~k ×~j)) (17)

=~i× (~j × (−~i))

=~i× ~k = −~j

~k × (~i× (~j ×~j)) = 0

~j × (~k × (~i×~j)) = 0

~i× (~j × (~k × ~k)) = 0 (18)

~k × (~i× (~j × ~k)) = 0

~j × (~k × (~i× ~k)) = ~j × (~k × (−~j))

= ~j ×~i = −~k

Define for ~A ∈ R3,

C3
−

~A =~i× (~j × (~k × ~A)) + ~k × (~i× (~j × ~A)) +~j × (~k × (~i× ~A))

It follows immediately that

C3
−

~A = − ~A.

18



Now reverse the order of ~i,~j, and ~k:

~k × (~j × (~i×~i)) = 0 (19)

~i× (~k × (~j ×~i)) = 0

~j × (~i× (~k ×~i)) = ~j × (~i×~j)

= ~j × ~k =~i

~k × (~j × (~i×~j)) = ~k × (~j × ~k) (20)

= ~k ×~i = ~j

~i× (~k × (~j ×~j)) = 0

~j × (~i× (~k ×~j)) = 0

~k × (~j × (~i× ~k)) = 0 (21)

~i× (~k × (~j × ~k)) =~i× (~k ×~i)

=~i×~j = ~k

~j × (~i× (~k × ~k)) = 0

Define for ~A ∈ R3

C3
+

~A = ~k × (~j × (~i× ~A)) +~i× (~k × (~j × ~A)) +~j × (~i× (~k × ~A)) (22)

It follows immediately that C3
+

~A = ~A. Furthermore, note that the same
calculations show that the three terms of this operator are the projection
operators, if ~A = A1

~i + A2
~j + A3

~k then

~j × (~i× (~k × ~A)) = A1
~i

~k × (~j × (~i× ~A)) = A2
~j

~i× (~k × (~j × ~A)) = A3
~k

19



Passing to the adjoint representation, we have for A ∈ so(3)

C3
−A = [X1, [X2, [X3, A]]] + [X3, [X1, [X2, A]]] + [X2, [X3, [X1, A]]] = −A

and

C3
+A = [X3, [X2, [X1, A]]] + [X1, [X3, [X2, A]]] + [X2, [X1, [X3, A]]] = A

Thus C3
− and C3

+ are third order intrinsic Casimir operators of eigenvalue
type for so(3). But according to the standard treatment of higher order
Casimir elements, so(3) should not have any third order Casimir operators
which are not multiples of the second order operator. Thus the standard
treatment of higher order Casimir operators is fundamentally flawed.

The discovery of these third order operators was accomplished by what
appears to be a systematic way to construct candidate third order invariants
for any Lie algebra, beginning with the second order invariant:

L2Y = [X1, [X1, Y ]] + [X2, [X2, Y ]] + [X3, [X3, Y ]]

In the term [X1, [X1, Y ]], for the first X1, use the substitution: X1 =
[X2, X3]

Thus
[X1, [X1, Y ]] = [[X2, X3], [X1, Y ]]

Now when we ask how this term could have arisen from the Jacobi identity
in a third order operation we are led to consider the operator:

[X2, [X3, [X1, Y ]]]

In the term [X2, [X2, Y ]], for the first[X2, use the substitution:

X2 = [X3, X1]

Thus
[X2, [X2, Y ]] = [[X3, X1], [X2, Y ]]

This term could have arisen from the Jacobi identity in a third order
operation:

[X3, [X1, [X2, Y ]]] = [[X3, X1], [X2, Y ]] + [X1, [X3, [X2, Y ]]]
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= [X2, [X2, Y ]] + [X1, [X3, [X2, Y ]]]

In the term [X3, [X3, Y ]], for the first [X3, use the substitution:

X3 = [X1, X2]

Thus
[X3, [X3, Y ]] = [[X1, X2], [X3, Y ]]

This term could have arisen from the Jacobi identity from an expansion
of the operator:

[X1, [X2, [X3, Y ]]] = [[X1, X2], [X3, Y ]] + [X2, [X1, [X3, Y ]]]

= [X3, [X3, Y ]] + [X2, [X1, [X3, Y ]]]

Now we sum the three operators:

[X1, [X2, [X3, Y ]]] + [X2, [X3, [X1, Y ]]] + [X3, [X1, [X2, Y ]]]

Which we recognize as the operator:

C3
−Y = [X1, [X2, [X3, Y ]]] + [X3, [X1, [X2, Y ]]] + [X2, [X3, [X1, Y ]]]

which we have already shown is an invariant. We could also use this method
to arrive at:

C3
+Y = [X3, [X2, [X1, Y ]]] + [X2, [X1, [X3, Y ]]] + [X1, [X3, [X2, Y ]]]

We compute the action on a generic three by three matrix:

C3
+M = [X3, [X2, [X1, M ]]] + [X2, [X1, [X3, M ]]] + [X1, [X3, [X2, M ]]]

by calculating each term separately.
For the first term, we first calculate

[X2, [X1, M ]]

=


 0 0 1

0 0 0
−1 0 0

 ,

 0 −m13 m12

−m31 −m23 −m32 m22 −m33

m21 m22 −m33 m23 + m32




=
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 m21 + m12 m22 −m33 m23 + m32

m22 −m33 0 m31

m23 + m32 m13 −m21 −m12


Then

[X3, [X2, [X1, M ]]]

=


 0 −1 0

1 0 0
0 0 0

 ,

 m21 + m21 m22 −m33 m23 + m32

m22 −m33 0 m31

m23 + m32 m13 −m21 −m12




=

 −2m22 + 2m33 m21 + m12 −m13

m21 + m12 2m22 − 2m33 m23 + m32

−m13 m23 + m32 0


The second and third terms are calculated in the same manner:

[X1, [X3, [X2, M ]]]

=

 0 −m21 m13 + m31

−m12 2m11 − 2m33 m23 + m32

m13 + m31 m23 + m32 −2m11 + 2m33



[X2, [X1, [X3, M ]]]

=

 2m11 − 2m22 m21 + m12 m13 + m31

m21 + m12 0 −m32

m13 + m31 −m23 −2m11 + 2m22


Summing the three terms we obtain:

C3
+M =

 2m11 − 4m22 + 2m33 2m12 + m21 2m13 + m31

2m21 + m12 2m11 + 2m22 − 4m33 2m23 + m32

m13 + 2m31 m23 + 2m32 −4m11 + 2m22 + 2m33


First we note that although C3

+A = A,∀A ∈ so(3), C3
+ is not just a

multiple of the identity matrix.
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If it were, we would have C3
+M = M as an identity. Also, note that C3

+M
is not a multiple of CM as calculated in section II. To solve the eigenvalue
equation C3

+M = M we have 9 equations.
For the diagonal terms:

2m11 − 4m22 + 2m33 = m11

2m11 + 2m22 − 4m33 = m22

−4m11 + 2m22 + 2m33 = m33

which has the unique solution m11 = m22 = m33 = 0.
For the off diagonal terms, the equations are the same as C(M) from

above. Thus C3
+M = M iff M ∈ so(3) .

By the Jacobi identity:

[X1, [X2, [X3, Y ]]] = [[X1, X2], [X3, Y ]] + [X2, [X1, [X3, Y ]]]

= [X3, [X3, Y ]] + [X2, [X1, [X3, Y ]]]

Likewise,

[X2, [X3, [X1, Y ]]] = [[X2, X3], [X1, Y ]] + [X3, [X2, [X1, Y ]]]

= [X1, [X1, Y ]] + [X3, [X2, [X1, Y ]]]

and
[X3, [X1, [X2]]] = [X2, [X2, Y ]] + [X1, [X3, [X2, Y ]]]

Summing the three terms we obtain:

C3
−Y = C2Y + C3

+ (23)

The calculations above show that C3
+ and C3

− are each intrinsic Casimir
operators, contrary to the standard claim (e.g. Wybourne [34]) that any
Casimir operator is a multiple of C2.

The general eigenvalue equation C3
−M = −M again holds iff M ∈ so(3) .

Wybourne (p. 141) calculates the third order Casimir element of so(3) and
claims that C3 is proportional to C2. The expression Wybourne calculates
is our C3

+ + C3
−. While it is true that, when operating on elements of the

Lie algebra, the eigenvalues of the operators are multiples of each other,
when we apply these results to differential geometry, we will be dealing with

23



representations by differential operators where C3
+ and C3

− will be third order
differential operators and C2 will be a second order differential operator.

Now (C3
+ + C3

−)A = 0 for all A ∈ so(3), while for an arbitrary matrix M :

(C3
+ + C3

−)M = −6m22 + 6m33 0 0
0 6m11 − 6m33 0
0 0 −6m11 + 6m22


The equation (C3

+ + C3
−)M = 0 has the solution m11 = m22 = m33 =

arbitrary constant, while the other entries of M are arbitrary. Thus C3
+ and

C3
− each independently characterize the Lie algebra so(3) but the standard

Casimir operator C3
+ + C3

− does not.

4 Higher Powers and the Theory of Angular

Momentum

Revisiting the cross product algebra, we will look at higher powers of the
operators. Let’s start with one multiplication:

~k ×~i = ~j

Now, let’s remultiply by ~k×:

~k × (~k ×~i) = ~k ×~j = −~i

~k × (~k × (~k ×~i)) = ~k × (~k ×~j) = ~k × (−~i) = ~j

~k × (~k × (~k × (~k ×~i))) = ~k × (~k × (~k ×~j)) = ~k × (~k × (−~i)) = ~k × (−~j) =~i

We need a short hand:
(~k×)2(~i) = −~i

(~k×)3(~i) = ~j

(~k×)4(~i) =~i

Then we see that multiplication by ~k× satisfies an algebraic equation.

(~k×)4(~i) + (~k×)2(~i) = 0
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(~k×)4(~j) + (~k×)2(~j) = 0

(~k×)4(~k) + (~k×)2(~k) = 0

This defines a second Casimir operator, with eigenvalue zero. Although
a third order equation exists, we go to the fourth power. The motivation for
going to the fourth power will be obvious momentarily.

The passage from Lie Algebra to Lie Group requires the exponential func-
tion. Having calculated the powers of ~k×, we can exponentiate it:

exp(γ~k×)~i =
∞∑

n=0

(γ~k×)n

n!
~j

=~i+ γ(~j)+
γ2

2!
(−~i)+

γ3

3!
(−~j)+

γ4

4!
(~i)+

γ5

5!
(~j)+

γ6

6!
(−~i)+

γ7

7!
(−~j)+

γ8

8!
(~i) . . .

=~i(1− γ2

2!
+

γ4

4!
− γ6

6!
+

γ8

8!
. . .) +~j(γ − γ3

3!
+

γ5

5!
− γ7

7!
. . .)

= cos(γ)~i + sin(γ)~j

Thus, exponentiating ~k yields a circle in the same way that exponentiating
the square root of -1 via de Moivre’s formula:

exp(iθ) = cos θ + i sin θ

Thus, the group action can be calculated without a matrix representation.
Now, define x as the coefficient of ~i and y as the coefficient of ~j:

x = cos γ

y = sin γ

By the chain rule, we obtain:

∂

∂γ
=

∂x

∂γ

∂

∂x
+

∂y

∂γ

∂

∂y

= − sin γ
∂

∂x
+ cos γ

∂

∂y
= −y

∂

∂x
+ x

∂

∂y

We can repeat the calculation for ~i×
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~i×~j = ~k
~i× (~i×~j) =~i× ~k = −~j

(~i×)3~j =~i× (−~j) = −~k

(~i×)4~j =~i× (−~k) = ~j

(~i×)5~j =~i×~j = ~k

(~i×)6~j =~i× ~k = −~j

(~i×)7~j =~i× (−~j) = −~k

(~i×)8~j =~i× (−~k) = ~j

Then we see that multiplication by ~i× satisfies an algebraic equation.

(~i×)4(~i) + (~i×)2(~i) = 0

(~i×)4(~j) + (~i×)2(~j) = 0

(~i×)4(~k) + (~i×)2(~k) = 0

This defines a third Casimir operator, with eigenvalue zero.
Exponentiating ~i×:

exp(α~i×)~j =
∞∑

n=0

(α~i×)n

n!
~j

= ~j+α(~k)+
α2

2!
(−~j)+

α3

3!
(−~k)+

α4

4!
(~j)+

α5

5!
(~k)+

α6

6!
(−~j)+

γ7

7!
(−~k)+

γ8

8!
(~j) . . .

= ~j(1− α2

2!
+

α4

4!
− α6

6!
+

α8

8!
. . .) + ~k(α− α3

3!
+

α5

5!
− α7

7!
. . .)

= cos(α)~j + sin(α)~k

Let y = cos(α), the coefficient of ~j and z = sin(α). By the chain rule, we
obtain:

∂

∂α
=

∂x

∂α

∂

∂x
+

∂y

∂α

∂

∂y

= − sin α
∂

∂y
+ cos α

∂

∂z
= −z

∂

∂y
+ y

∂

∂z

Finally, we repeat the calculation for ~j×
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~j × ~k =~i
~j × (~j × ~k) = ~j ×~i = −~k

(~j×)3~k = ~j × (−~k) = −~i

(~j×)4~k = ~j × (−~i) = ~k

(~j×)5~k = ~j × ~k =~i

(~j×)6~k = ~j ×~i = −~k

(~j×)7~k = ~j × (−~k) = −~i

(~j×)8~k = ~j × (−~i) = ~k

Then we see that multiplication by ~j satisfies the same algebraic equation.

(~j×)4(~i) + (~j×)2(~i) = 0

(~j×)4(~j) + (~j×)2(~j) = 0

(~j×)4(~k) + (~j×)2(~k) = 0

This defines a fourth Casimir operator, with eigenvalue zero.
Now to exponentiate ~j×:

exp(β~j×)~k =
∞∑

n=0

(β~j×)n

n!
~k

= ~k+β(~i)+
β2

2!
(−~k)+

β3

3!
(−~i)+

β4

4!
(~k)+

β5

5!
(~i)+

β6

6!
(−~k)+

γ7

7!
(−~i)+

γ8

8!
(~j) . . .

= ~k(1− β2

2!
+

β4

4!
− β6

6!
+

β8

8!
. . .) +~i(β − β3

3!
+

β5

5!
− β7

7!
. . .)

= cos(β)~k + sin(β)~i

Let z = cos(β), the coefficient of ~k and x = sin(β). Again using the chain
rule, we obtain:

∂

∂β
=

∂z

∂β

∂

∂z
+

∂x

∂β

∂

∂x

= − sin β
∂

∂z
+ cos β

∂

∂x

= −x
∂

∂z
+ z

∂

∂x
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We can write the quadratic Casimir as:

(~i×)2 ~A + (~j×)2 ~A + (~k×)2 ~A = −2 ~A

It is easy to prove that:

(~i×)2n ~A + (~j×)2n ~A + (~k×)2n ~A = (−1)n2 ~A

Beginning with the cross product, we wound up with three partial deriva-
tives:

∂α = −z∂y + y∂z

∂β = −x∂z + z∂x

∂γ = −y∂x + x∂y

These operators generate rotations in three dimensions.
The Lie bracket for these operators is

[∂α, ∂β]f = (∂α∂β − ∂β∂α)f = ∂α∂βf − ∂β∂αf

= (−z∂y + y∂z)(−x∂z + z∂x)f − (−x∂z + z∂x)(−z∂y + y∂z)f

= (−z∂y + y∂z)(−x∂zf + z∂xf)− (−x∂z + z∂x)(−z∂yf + y∂zf)

= −z∂y(−x∂zf) + y∂z(−x∂zf)− z∂y(z∂xf) + y∂z(z∂xf)

+x∂z(−z∂yf)− z∂x(−z∂yf) + x∂z(y∂zf)− z∂x(y∂zf)

= xz∂y∂zf − xy∂2
zf − z2∂y∂xf + y∂xf + yz∂z∂xf

−x∂yf − xz∂z∂yf − z2∂x∂yf + xy∂2
zf)− yz∂x∂zf

= −x∂yf + y∂xf = −∂γ

In the differential operator formalism, the quadratic Casimir operator
becomes a second order differential operator:

j2 = ∂2
α + ∂2

β + ∂2
γ

The eigenvalue of this differential operator acting on either elements of
the Lie algebra or on functions is a conserved quantity.

Likewise, the equations for ~i,~j and ~k become differential operators:

∂4
α + ∂2

α

∂4
β + ∂2

β
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∂4
γ + ∂2

γ

These are Casimir operators of so(3). The eigenvalue of each of these dif-
ferential operators acting on either elements of the Lie algebra or on functions
is a conserved quantity.

In the standard theory of angular momentum [35] one goes on to

. . . construct states |jm > that are simultaneously eigenfunctions
of j2 and any one component of j, say, jz. . .

This procedure is not acceptable considering the arbitrariness of picking
one component when classically all three components of angular momentum
are conserved. The new formalism introduced here allows for a new theory of
angular momentum. The three operators ∂2

α, ∂2
β and ∂2

γ mutually commute.
Thus a theory of angular momentum based on these operators would allow
for the conservation of angular momentum in three directions.

The fourth order differential operators are constructed from these second
order mutually commuting operators. They are also invariant operators and
a theory of angular momentum built on three invariant operators would have
to be better than the current theory of angular momentum which is built on
one invariant operator plus a noninvariant operator. Obviously putting in
the details of such a theory is a long term project and is not attempted here.

5 The Intrinsic Casimir Operators of so(2, 1)

All of the constructions for so(3) can also be done for so(2, 1). A basis for
so(2, 1) is:

Y1 =

 0 1 0
−1 0 0
0 0 0



Y2 =

 0 0 1
0 0 0
1 0 0



Y3 =

 0 0 0
0 0 1
0 1 0


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The commutation relations for so(2, 1) are:

[Y1, Y2] = −Y3

[Y1, Y3] = Y2

[Y2, Y3] = Y1

Computing the traces:

[Y1, [Y1, Y2]] = [Y1,−Y3] = −Y2

[Y1, [Y1, Y3]] = [Y1, Y2] = −Y3

Thus, tr([Y1, [Y1, ) = −2

[Y2, [Y2, Y1]] = [Y2, Y3] = Y1

[Y2, [Y2, Y3]] = [Y2, Y1] = Y3

Thus, tr([Y2, [Y2, ) = 2

[Y3, [Y3, Y1]] = [Y3,−Y2] = Y1

[Y3, [Y3, Y2]] = [Y3,−Y1] = Y2

Thus, tr([Y3, [Y3, ) = 2
The normalized intrinsic Casimir operator for so(2, 1) is then:

2C2A = −[Y1, [Y1, A]] + [Y2, [Y2, A]] + [Y3, [Y3, A]]

We will work with 2C2 instead of C2 because the lack of fractions makes
the calculations easier to follow:

2C2Y1 = ([Y2, [Y2, Y1] + [Y3, [Y3, Y1]])

= ([Y2, Y3] + [Y3,−Y2])

= (Y1 + Y1) = 2Y1

2C2Y2 = (−[Y1, [Y1, Y2] + [Y3, [Y3, Y2]])

= (−[Y1,−Y3] + [Y3,−Y1]) = 2Y2
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2C2Y3 = (−[Y1, [Y1, Y3]] + [Y2, [Y2, Y3]])

= (−[Y1,−Y2] + [Y2, Y1]) = 2Y3

Thus, the eigenvalue of C2 is 1.
Acting on the generic 3× 3 matrix, M we leave it to the reader to verify

that
2C2M = 4m11 − 2m22 − 2m33 4m12 + 2m21 4m13 − 2m31

4m21 + 2m12 −2m11 + 4m22 − 2m33 4m23 − 2m32

4m13 − 2m31 −2m23 + 4m32 −2m11 − 2m22 + 4m33


There are three things to note about this calculation. Acting on generic

matrices, the intrinsic Casimir operators of so(3) and so(2, 1) give different
results. The actions of C and C2 on matrices are not representable by matrix
multiplication as 3 × 3 matrices. Also, if 2C2M = 2M , we can solve the
resulting equations just as we did for so(3) .

The equations for the diagonal terms of 2C2M = 2M are identical to
those for CM = −2M , thus the diagonal terms are zero. The off diagonal
equations lead to

m12 + m21 = 0

m13 −m31 = 0

m23 −m32 = 0

Thus C2(M) = M iff M ∈ so(2, 1).
Hence, as was the case for so(3), in the defining representation, the in-

trinsic Casimir operator of so(2, 1) characterizes the Lie algebra. Again, this
also happens to be the adjoint representation, so it is not clear which is
important.

Our next goal is to generalize the construction of the third order intrinsic
Casimir operators for so(3) to so(2, 1). We would like for an identity like 23
to hold. Again, we calculate using the Jacobi identity:

[Y1, [Y2, [Y3, A]]] = [[Y1, Y2], [Y3, A]] + [Y2, [Y1, [Y3, A]]]

= −[Y3, [Y3, A]] + [Y2, [Y1, [Y3, A]]]
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Likewise

[Y2, [Y3, [Y1, A]]] = [[Y2, Y3], [Y1, A]] + [Y3, [Y2, [Y1, A]]]

= [Y1, [Y1, A]] + [Y3, [Y2, [Y1, A]]]

and

[Y3, [Y1, [Y2, A]]] = [[Y3, Y1], [Y2, A]] + [Y1, [Y3, [Y2, A]]]

= −[Y2, [Y2, A]] + [Y1, [Y3, [Y2, A]]]

Recall that

2C2A = −[Y1, [Y1, A]] + [Y2, [Y2, A]] + [Y3, [Y3, A]]

If we define for A ∈ so(2, 1):

C3′

−A = [Y1, [Y2, [Y3, A]]] + [Y3, [Y1, [Y2, A]]] + [Y2, [Y3, [Y1, A]]]

and

C3′

+A = [Y3, [Y2, [Y1, A]]] + [Y1, [Y3, [Y2, A]]] + [Y2, [Y1, [Y3, A]]]

Then adding the three above terms we have

C3′

−A = −2C2A + C3′

+A

And we calculate:

C3′

−Y1 = [Y1, [Y2, [Y3, Y1]]] + [Y3, [Y1, [Y2, Y1]]] + [Y2, [Y3, [Y1, Y1]]]

= 0 + [Y3, [Y1, Y3]] + 0

= [Y3, Y2] = −Y1

C3′

−Y2 = [Y1, [Y2, [Y3, Y2]]] + [Y3, [Y1, [Y2, Y2]]] + [Y2, [Y3, [Y1, Y2]]]

= +[Y1, [Y2,−Y1]] + 0 + 0

= −[Y1, Y3] = −Y2

C3′

−Y3 = [Y1, [Y2, [Y3, Y3]]] + [Y3, [Y1, [Y2, Y3]]] + [Y2, [Y3, [Y1, Y3]]]
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= +0 + 0 + [Y2, [Y3, Y2]]

= [Y2,−Y1] = −Y3

We have C3′
−A = −A for all A ∈ so(2, 1).

C3′

+Y1 = [Y3, [Y2, [Y1, Y1]]] + [Y1, [Y3, [Y2, Y1]]] + [Y2, [Y1, [Y3, Y1]]]

= [Y2, [Y1,−Y2]]

= [Y2, Y3] = Y1

C3′

+Y2 = [Y3, [Y2, [Y1, Y2]]] + [Y1, [Y3, [Y2, Y2]]] + [Y2, [Y1, [Y3, Y2]]]

= [Y3, [Y2,−Y3]] = [Y3,−Y1]] = Y2

C3′

+Y3 = [Y3, [Y2, [Y1, Y3]]] + [Y1, [Y3, [Y2, Y3]]] + [Y2, [Y1, [Y3, Y3]]]

= [Y1, [Y3, Y1]] = [Y1,−Y2] = Y3

We have C3′
+A = A for all A ∈ so(2, 1).

Thus C3′
−A = A and C3′

+ are verified as third order intrinsic Casimir
operators of eigenvalue type for so(2, 1). But according to the standard
treatment of higher order Casimir elements, so(2, 1) should not have any
third order Casimir operators which are not a multiple of the second order
Casimir operator. Thus, again, the standard treatment of Casimir operators
is fundamentally flawed. The construction of higher order intrinsic operators
follows the pattern of so(3) and is left to the reader.

6 The Intrinsic Casimir Operators of sl(2, R)

A basis for the Lie Algebra sl(2, R) consists of the matrices:

H =

(
1 0
0 −1

)

X+ =

(
0 1
0 0

)
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X− =

(
0 0
1 0

)

The commutation relations are then

[H, X+] = 2X+

[H, X−] = −2X−

[X+, X−] = H

Lang [16] (p. 194) defines the Casimir operator for sl(2, R) as

Ω = H2 + 2(X+X− + X−X+)

Which we interpret as:

ΩA = [H, [H, A]] + 2[X+, [X−, A]] + 2[X−, [X+, A]]

Calculating via our method we have

ΩX+ = [H, [H, X+]] + 2[X+, [X−, X+]]

= [H, 2X+] + 2[X+,−H] = 4X+ + 4X+ = 8X+

ΩX− = [H, [H, X−]] + 2[X−, [X+, X−]]

= 4X− + 4X− = 8X−

ΩH = 2[X+, [X−, H]] + 2[X−, [X+, H]]

= 2[X+, 2X−] + 2[X−,−2X+] = 8H

Thus the eigenvalue of this Intrinsic Casimir operator is 8.
Humphreys [10](pp. 27-28) defines the Casimir operator of sl(2, R) as

φ =
Ω

2
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and claims that:

φ =

(
3
2

0
0 3

2

)
which is clearly not correct since our calculation shows that the eigenvalue
of φ is 4, not 3

2
. Also, the intrinsic Casimir operator is not merely a multiple

of the identity matrix.
Actually, none of the above calculations gives the intrinsic Casimir oper-

ator, i.e. the normalized intrinsic Casimir operator. From the commutation
relations, we obtain:

[H, [H, X+]] = [H, 2X+] = 4X+

[H, [H, X−]] = [H,−2X−] = 4X−

Trace([H, [H, ) = 8

[X+, [X−, H]] = [X+, 2X−] = 2H

[X+, [X−, X+]] = [X+,−H]

= 2X+

Thus Trace([X+, [X−, ) = 4

[X−, [X+, X−]] = [X−, H]

= 2X−[X−, [X+, H]]

= [X−,−2X+] = 2H

And so, Trace([X−, [X+, ) = 4
Thus the normalized intrinsic Casimir operator of sl(2, R) is:

CW =
1

8
[H, [H, W ]] +

1

4
[X+, [X−, W ]] +

1

4
[X−, [X+, W ]] = W

and the normalized intrinsic Casimir operator of sl(2, R) acting on an element
of sl(2, R) is the identity operator.

After another calculation, the reader can show that acting on an arbitrary
2 by 2 matrix

M =

(
m11 m12

m21 m22

)
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ΩM =

(
4m11 − 4m22 8m12

8m21 4m22 − 4m11

)

Setting ΩM = 8M , we obtain

4m11 − 4m22 = 8m11

8m12 = 8m12

8m21 = 8m21

4m22 − 4m11 = 8m22

These equations require that m12 and m21 be arbitrary while m22 = −m11.
Thus ΩM = 8M implies M ∈ sl(2, R) . And again, at least in this

representation, the intrinsic Casimir operator characterizes the Lie Algebra.
Within the standard representation, sl(2, R) is the eigenspace of the intrinsic
Casimir operator.

Now we will investigate the existence of a third order intrinsic Casimir
Operator for sl(2, R). We make the same type of substitution into the second
order intrinsic Casimir operator of sl(2, R) as we did for so(3).

ΩA = [H, [H, A]] + 2[X+, [X−, A]] + 2[X−, [X+, A]]

= [[X+, X−], [H, A]] + [[H, X+], [X−, A]] + [[X−, H], [X+, A]]

Then we note that these terms appear in the expansion of

C3A = [X+, [X−, [H, A]]] + [[H, [X+, [X−, A]]] + [X−, [H, [X+, A]]]

And we check to see if we have indeed constructed an intrinsic Casimir
operator:

C3H = [X+, [X−, [H, H]]] + [[H, [X+, [X−, H]]] + [X−, [H, [X+, H]]]

= [H, [X+, 2X−]] + [X−, [H,− 2X+]]

= 2[H, H] +−2[X−, 2X+] = 4H

C3X− = [X+, [X−, [H, X−]]] + [[H, [X+, [X−, X−]]] + [X−, [H, [X+, X−]]]
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= [X+, [X−,−2X−]] + [X−, [H, H]] = 0

C3X+ = [X+, [X−, [H, X+]]] + [[H, [X+, [X−, X+]]] + [X−, [H, [X+, X+]]]

= [X+, [X−, 2X+]] + [[H, [X+,−H]]

= 2[X+,−H] + [H, 2X+] = 4X+

Since C3 is not an intrinsic Casimir operator for sl(2, R), the procedure
is not universally applicable. Suppose we experiment with a new basis:

J = X+ + X−

K = X+ −X−

We obtain the new Lie brackets from the old:

[H, J ] = 2K

[H, K] = 2J

[J, K] = [X+ + X−, X+ −X−]

= [X−, X+]− [X+X−] = −2H

The construction of the intrinsic Casimir operator requires the trace of
each quadratic term:

[H, [H, J ] = [H, 2K] = 4J

[H, [H, K] = [H, 2J ] = 4K

tr([H, [H, ) = 8.

[J, [J, H] = [J,−2K] = 4H

[J, [J, K]] = [J,−2H] = 4K

tr([J, [J, ) = 8.

[K, [K, H]] = [K,−2J ] = −4H

[K, [K, J ]] = [K, 2H] = −4J

tr([K, [K, ) = −8.
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Since the absolute value of the traces is the same, we will not include
it, but we need to have a negative sign with the [K,[K, term. The intrinsic
Casimir operator in the new basis is:

CA = [H, [H, A]] + [J, [J, A]]− [K, [K, A]]

And we calculate:

[J, [J, H] = [J,−2K] = 4H

−[K, [K, H]] = −[K,−2J ] = 4H

CH = 8H

[H, [H, J ]] = [H, 2K] = 4J

−[K, [K, J ]] = −[K, 2H] = 4J

CJ = 8J

[H, [H, K]] = [H, 2J ] = 4K

[J, [J, K]] = [J,−2H] = 4K

CK = 8K

Thus, we do have an intrinsic Casimir operator. Note that after dividing
by 8, the normalized intrinsic Casimir operator has eigenvalue 1.

In order to avoid fractions, we will apply the transition to third order
trick to a multiple of the intrinsic Casimir operator:

2CA = [2H, [H, A]] + [2J, [J, A]]− [2K, [K, A]]

Substituting 2H = [K, J ], 2J = [H, K] and −2K = [J, K], we obtain

2CA = [2H, [H, A]] + [2J, [J, A]]− [2K, [K, A]]

= [[K, J ], [H, A]] + [[H, K], [J, A]] + [[J, H], [K, A]]

This arises in the expansion of:

C3
+A = [K, [J, [H, A]]] + [H, [K, [J, A]]] + [J, [H, [K, A]]]

The candidate third order intrinsic Casimir operator checks out:

C3
+H = [K, [J, [H, H]]] + [H, [K, [J, H]]] + [J, [H, [K, H]]]
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= 0 + [H, [K,−2K]] + [J, [H,−2J ]]

= −2[J, 2K] = 8H

C3
+J = [K, [J, [H, J ]]] + [H, [K, [J, J ]]] + [J, [H, [K, J ]]]

= [K, [J, 2K]] + 0 + [J, [H, 2H]]]

= 2[K,−2H] = 8J

C3
+K = [K, [J, [H, K]]] + [H, [K, [J, K]]] + [J, [H, [K, K]]]

= [K, [J, 2J ]] + [H, [K,−2H]]

= −2[H,−2J ] = 8K

As with the third order intrinsic Casimir operator of so(3) we try reversing
the order of the operators and define:

C3
−A = [H, [J, [K, A]]] + [J, [K, [H, A]]] + [K, [H, [J, A]]]

C3
−H = [H, [J, [K,H]]] + [J, [K, [H, H]]] + [K, [H, [J, H]]]

= [H, [J,−2J ]] + 0 + [K, [H,−2K]]

= −2[K, 2J ] = −8H

C3
−J = [H, [J, [K, J ]]] + [J, [K, [H, J ]]] + [K, [H, [J, J ]]]

= [H, [J, 2H]] + [J, [K, 2K]]] + 0

= 2[H,−2K] = −8J

C3
−K = [H, [J, [K, K]]] + [J, [K, [H, K]]] + [K, [H, [J, K]]]

= [J, [K, 2J ]] + [K, [H,−2H]]

= 2[J, 2H] = −8K

This shows that C3
− is another third order intrinsic Casimir operator.
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7 The Intrinsic Casimir Operators for so(3, 1)

The standard theory of Casimir operators predicts that the Lorentz Lie al-
gebra, so(3, 1) possesses two, both of order 2. In this section, we construct
several intrinsic Casimir operators of order 2, providing even more evidence
that the standard theory is fatally flawed. A standard basis for so(3, 1) con-
sists of the six matrices

X1 =


0 0 0 0
0 0 −1 0
0 1 0 0
0 0 0 0



X2 =


0 0 1 0
0 0 0 0
−1 0 0 0
0 0 0 0



X3 =


0 −1 0 0
1 0 0 0
0 0 0 0
0 0 0 0



N1 =


0 0 0 1
0 0 0 0
0 0 0 0
1 0 0 0



N2 =


0 0 0 0
0 0 0 1
0 0 0 0
0 1 0 0



N3 =


0 0 0 0
0 0 0 0
0 0 0 1
0 0 1 0


The Xi generate so(3) and are compact, while the Ni are the noncompact

generators. The brackets of so(3, 1) are given in Table I.
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TABLE I The commutators for so(3, 1)

[X1, X2] = X3 [X2, X3] = X1 [X3, X1] = X2

[X1, N1] = 0 [X2, N1] = −N3 [X3, N1] = N2

[X1, N2] = N3 [X2, N2] = 0 [X3, N2] = −N1

[X1, N3] = −N2 [X2, N3] = N1 [X3, N3] = 0
[N1, N2] = −X3 [N3, N1] = −X2 [N2, N3] = −X1

The standard Casimir operators of so(3, 1) are (a scalar multiple of):

C2 = X2
1 + X2

2 + X2
3 −N2

1 −N2
2 −N2

3

and
C ′ = X1N1 + X2N2 + X3N3

To construct the normalized intrinsic Casimir operator, we first need to cal-
culate the traces:

[X1, [X1, X2]] = [X1, X3] = −X2

[X1, [X1, X3]] = [X1,−X2] = −X3

[X1, [X1, N2]] = [X1, N3] = −N2

[X1, [X1, N3]] = [X1,−N2] = −N3

Tr([X1, [X1, ) = −4

Likewise:

Tr([X2, [X2, ) = −4

Tr([X3, [X3, ) = −4

[N1, [N1, X2]] = [N1, N3] = X2

[N1, [N1, X3]] = [N1,−N2] = X3

[N1, [N1, N2]] = [N1,−X3] = N2

[N1, [N1, N3]] = [N1, X2] = N3

Tr([N1, [N1, ) = 4

Likewise:
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Tr([N2, [N2, ) = 4

Tr([N3, [N3, ) = 4

Thus the normalized intrinsic Casimir operator is:

C2
nY = −1

4
[X1, [X1, Y ]]− 1

4
[X2, [X2, Y ]]− 1

4
[X3, [X3, Y ]] +

1

4
[N1, [N1, Y ]]

+
1

4
[N2, [N2, Y ]] +

1

4
[N3, [N3, Y ]]

However, for typographical reasons we will work with

C2Y = [X1, [X1, Y ]] + [X2, [X2, Y ]] + [X3, [X3, Y ]]

−[N1, [N1, Y ]]− [N2, [N2, Y ]]− [N3, [N3, Y ]]

We will see, by direct computation, that C2 is actually the sum of two
simpler intrinsic Casimir operators while C ′ is a different type of Casimir
operator than those encountered so far.

Just as we did for so(3), we look for the possible coefficients of an intrinsic
Casimir operator on so(3, 1):

CX1 = a11X1 + a12X2 + a13X3 + a14N1 + a15N2 + a16N3

CX2 = a21X1 + a22X2 + a23X3 + a24N1 + a25N2 + a26N3

CX3 = a31X1 + a32X2 + a33X3 + a34N1 + a35N2 + a36N3

CN1 = a41X1 + a42X2 + a43X3 + a44N1 + a45N2 + a46N3

CN2 = a51X1 + a52X2 + a53X3 + a54N1 + a55N2 + a56N3

CN3 = a61X1 + a62X2 + a63X3 + a64N1 + a65N2 + a66N3

The intrinsic Casimir operator must satisfy the first limitation on intrinsic
Casimir operators:

CX1 = a11X1 + a14N1

CX2 = a22X2 + a25N2

CX3 = a33X3 + a36N3
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CN1 = a41X1 + a44N1

CN2 = a52X2 + a55N2

CN3 = a63X3 + a66N3

Starting with the first relation:

CX1 = a11X1 + a14N1

We bracket each term on the right with X2:

C[X1, X2] = a11[X1, X2] + a14[N1, X2]

obtaining:

CX3 = a11X3 + a14N3

thus we conclude that: a33 = a11 and a14 = a36

Again, we bracket the first relationship on the left with X3:

C[X3, X1] = a11[X3, X1] + a14[X3, N1]

obtaining:

CX2 = a11X2 + a14N2

Thus we have shown that a22 = a11 and a14 = a26.
Beginning again with the first relation, we bracket each term
with N2:

C[X1, N2] = a11[X1, N2] + a14[N1, N2]

CN3 = a11X3 + a14N3

From which we conclude that
a63 = a11 and a14 = a66.
Applying the same technique again, we bracket the first relationship with

N3:

C[X1, N3] = a11[X1, N3] + a14[N1, N3]

obtaining:
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CN2 = a11N2 + a14X2

This final relationship we bracket with X3:

C[N2, X3] = a11[N2, X3] + a14[X2, X3]

obtaining:

CN1 = a11N1 + a14X1

The rest of the coefficients are zero.
Let

a = a11 = a22 = a33 = a44 = a55 = a66

and
b = a14 = a25 = a36 = −a63 = −a52 = −a41

We are left with:

CX1 = aX1 + bN1 (24)

CX2 = aX2 + bN2

CX3 = aX3 + bN3

CN1 = −bX1 + aN1

CN2 = −bX2 + aN2

CN3 = −bX3 + aN3

There are then two independent possibilities for the image of C:

C1X1 = aX1 (25)

C1X2 = aX2

C1X3 = aX3

C1N1 = aN1

C1N2 = aN2
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C1N3 = aN3

and:

C2X1 = bN1 (26)

C2X2 = bN2

C2X3 = bN3

C2N1 = −bX1

C2N2 = −bX2

C2N3 = −bX3

The limitations on intrinsic Casimir operators are necessary, but not suf-
ficient. We have not yet constructed an operator like C2, but assuming that
one exists we now show that C2 satisfies the conditions of 5.

C2[X1, X2] = [X1, C2X2] = [C2X1, X2]

C2X3 = [X1, bN2] = [bN1, X2]

bN3 = bN3 = bN3

A similar calculation may be done for each entry in Table I.
Thus, we have proven that C2 commutes with the action of the Lie alge-

bra. This new type of intrinsic Casimir operator, C2, is not “a multiple of
the identity”, but we still need to construct operators from the generators of
so(3,1) with this type of action.

Define:

L2Y = [X1, [X1, Y ]] + [X2, [X2, Y ]] + [X3, [X3, Y ]]

If XI is an element of the so(3) subalgebra of so(3, 1) , it follows from
previous work that

L2XI = −2XI

Let us compute the action of L2 on the non-compact generators:

L2N1 = [X1, [X1, N1]] + [X2, [X2, N1]] + [X3, [X3, N1]]
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= [X2,−N3] + [X3, N2] = −N1 −N1 = −2N1

L2N2 = [X1, [X1, N2]] + [X2, [X2, N2]] + [X3, [X3, N2]]

= [X1, N3] + [X3,−N1] = −N2 −N2 = −2N2

L2N3 = [X1, [X1, N3]] + [X2, [X2, N3]] + [X3, [X3, N3]]

= [X1,−N2] + [X2, N1] = −N3 −N3 = −2N3

Thus L2Y = −2Y ∀Y ∈ so(3, 1). Hence, surprisingly, L2 is an
intrinsic Casimir operator for so(3, 1). This was unexpected because the
operator L2 is only half of the standard Casimir operator of so(3, 1). This
result is physically interesting because it shows that angular momentum is
conserved even under the action of so(3, 1). What can we say about the other
half of the standard Casimir operator? To this end, we define:

N2Y = [N1, [N1, Y ]] + [N2, [N2, Y ]] + [N3, [N3, Y ]]

We calculate:

N2X1 = [N1, [N1, X1]] + [N2, [N2, X1]] + [N3, [N3, X1]]

= [N2,−N3] + [N3, +N2] = 2X1

N2X2 = [N1, [N1, X2]] + [N2, [N2, X2]] + [N3, [N3, X2]]

= [N1, N3] + [N3,−N1] = 2X2

N2X3 = [N1, [N1, X3]] + [N2, [N2, X3]] + [N3, [N3, X3]]

= [N1,−N2] + [N2, N1] = 2X3

N2N1 = [N1, [N1, N1]] + [N2, [N2, N1]] + [N3, [N3, N1]]

= [N2, X3] + [N3,−X2] = 2N1

N2N2 = [N1, [N1, N2]] + [N2, [N2, N2]] + [N3, [N3, N2]]

= [N1,−X3] + [N3, X1] = 2N2

N2N3 = [N1, [N1, N3]] + [N2, [N2, N3]] + [N3, [N3, N3]]

= [N1, X2] + [N2,−X1] = 2N3

Thus N2Y = 2Y for all Y ∈ so(3, 1) Hence, N2 is an intrinsic Casimir
operator for so(3, 1). We have seen that L2 and N2 are both intrinsic Casimir
operators for so(3, 1) while the standard approach admits only L2 −N2 .
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Neither L2 nor N2, considered as in the standard approach, is a multiple
of the identity. Hence having a polynomial of matrices which sum to the
identity is not necessary to construct an intrinsic Casimir operator.

Acting on an arbitrary 4 by 4 matrix M , neither L2 nor N2 is the identity
operator. Requiring

L2M = −2M

does not M to be in so(3, 1). Requiring

N2M = 2M

does not force M to be in so(3, 1). However, requiring both

L2M = −2M

and
N2M = 2M

does force M ∈ so(3, 1). Or, alternatively, requiring that

(L2 −N2)M = −4M

forces M ∈ so(3, 1). These calculations are so similar to those done for other
algebras that we leave the details to the interested reader.

Define

C2n = ([X1)
2n + ([X2)

2n + ([X3)
2n − ([N1)

2n − ([N2)
2n − ([N3)

2n

Another routine calculation shows that we have an infinite number of intrinsic
Casimir operators for so(3, 1).

The second Casimir operator of so(3, 1) in the standard approach trans-
lates to

C ′Y = [X1, [N1, Y ]] + [X2, [N2, Y ]] + [X3, [N3, Y ]]

We calculate:

C ′X1 = [X1, [N1, X1]] + [X2, [N2, X1]] + [X3, [N3, X1]]

= [X2,−N3] + [X3, N2] = −N1 −N1 = −2N1

Likewise,
C ′X2 = −2N2
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C ′X3 = −2N3

C ′N1 = 2X1

C ′N2 = 2X2

C ′N3 = 2X3

In short, C’ satisfies:
C ′XI = −2NI

C ′NI = 2XI

And C ′ is the second sort of intrinsic Casimir operator, i.e. in 26, we have
b = -2. Thus, C ′ satisfies the conditions of 5 for each entry in Table I.

Note that:
C ′(XI + iNI) = 2i(XI + iNI)

C ′(XI − iNI) = −2i(XI − iNI)

showing that we can put C ′ in eigenvalue form, if we leave the Lie algebra
for its complexification. However, there are then two different eigenvalues.
Thus, although C ′ commutes with the action of the Lie algebra, it is not in
any sense “a multiple of the identity.”

Since XI and NI are not eigenvectors of C ′ , C ′ is not a Casimir operator
of the form we are used to seeing. If CY = αY for all Y in a Lie algebra, we
will call C an intrinsic Casimir operator of eigenvalue type. The standard ap-
proach does recognize a difference and calls C ′ a “pseudoscalar.” The above
calculations show there are other types of intrinsic Casimir operators. We
will call C ′ an intrinsic Casimir operator of complex structure type because
if we define J = 1

2
C ′ then:

JXI = −NI

JNI = XI

so

J2XI = −XI

J2NI = −NI

Thus J is a complex structure, and we have:
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J(XI + iNI) = i(XI + iNI)

J(XI − iNI) = −i(XI − iNI)

This construction works simply because so(3, 1) is isomorphic to the com-
plexification of so(3): so(3) + iso(3). Clearly, analogous complex structures
can be constructed on the complexification of any simple real Lie algebra.

Using this observation about the complexification allows us to construct
three more new Casimir operators for so(3, 1). We will show that (no sum):

[XI , [XI , Y ]] + [NI , [NI , Y ]] = 0

for I = 1, 2, 3 for all Y ∈ so(3, 1).
The proof is by direct calculation:

[X1, [X1, X1]] + [N1, [N1, X1]] = 0

[X1, [X1, X2]] + [N1, [N1, X2]]

= [X1, X3] + [N1, N3] = −X2 + X2 = 0

[X1, [X1, X3]] + [N1, [N1, X3]]

= [X1,−X2] + [N1, N2] = X3 −X3 = 0

[X1, [X1, N1]] + [N1, [N1, N1]] = 0

[X1, [X1, N2]] + [N1, [N1, N2]]

= [X1, N3] + [N1,−X3] = −N2 + N2 = 0

[X1, [X1, N3]] + [N1, [N1, N3]]

= [X1, N2] + [N1, X2] = N3 −N3 = 0

[X2, [X2, X1]] + [N2, [N2, X1]]

= [X2,−X3] + [N2,−N3] = −X1 + X1 = 0

[X2, [X2, X2]] + [N2, [N2, X2]] = 0

[X2, [X2, X3]] + [N2, [N2, X3]]

= [X2, X1] + [N2, N1] = −X3 + X3 = 0
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[X2, [X2, N1]] + [N2, [N2, N1]]

= [X2,−N3] + [N2, X3] = −N1 + N1 = 0

[X2, [X2, N2]] + [N2, [N2, N2]] = 0

[X2, [X2, N3]] + [N2, [N2, N3]]

= [X2, N1] + [N2,−X1] = −N3 + N3 = 0

[X3, [X3, X1]] + [N3, [N3, X1]]

= [X3, X2] + [N3, N2] = −X1 + X1 = 0

[X3, [X3, X2]] + [N3, [N3, X2]]

= [X3,−X1] + [N3,−N1] = −X2 + X2 = 0

[X3, [X3, X3]] + [N3, [N3, X3]] = 0

[X3, [X3, N1]] + [N3, [N3, N1]]

= [X3, N2] + [N3,−X2] = −N1 + N1 = 0

[X3, [X3, N2]] + [N3, [N3, N2]]

= [X3,−N1] + [N3, X1] = −N2 + N2 = 0

[X3, [X3, N3]] + [N3, [N3, N3]] = 0

This yields three intrinsic Casimir operators of degree two for so(3, 1) which
do not exist in the standard approach:

[X1, [X1, +[N1, [N1,

[X2, [X2, +[N2, [N2,

[X3, [X3, +[N3, [N3,

To these add the previously confirmed intrinsic Casimir operators of degree
two:

L2 = [X1, [X1, +[X2, [X2, +[X3, [X3,

= ([X1, )
2n + ([X2, )

2n + ([X3, )
2n

N2 = [N1, [N1, +[N2, [N2, +[N3, [N3,

= ([N1, )
2n + ([N2, )

2n + ([N3, )
2n

C ′ = [X1, [N1, +[X2, [N2, +[X3, [N3,
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The standard theory predicts that the Lorentz Lie algebra, so(3, 1) has only
two Casimir operators, both of order 2. In this section, we constructed six
intrinsic Casimir operators for so(3, 1) of order 2.

Now things explode, we use the above second order operators to construct
families of intrinsic Casimir operators:

([X1, [X1, )
n + ([N1, [N1, )

n

([X2, [X2, )
n + ([N2, [N2, )

n

([X3, [X3, )
n + ([N3, [N3, )

n

L2n = ([X1, )
2n + ([X2, )

2n + ([X3, )
2n

N2n = ([N1, )
2n + ([N2, )

2n + ([N3, )
2n

C ′
n = ([X1, [N1, )

n + ([X2, [N2, )
n + ([X3, [N3, )

n

We will do one representative calculation for n = 2:

C ′
2 = ([X1, [N1, )

2 + ([X2, [N2, )
2 + ([X3, [N3, )

2

C ′
2Y = [X1, [N1, [X1, [N1, Y ]]]]+[X2, [N2, [X2, [N2, Y ]]]]+[X3, [N3, [X3, [N3, Y ]]]]

We calculate

C ′
2X1 = [X1, [N1, [X1, [N1, X1]]]]+[X2, [N2, [X2, [N2, X1]]]]+[X3, [N3, [X3, [N3, X1]]]]

= [X2, [N2,−N1]] + [X3, [N3,−N1]]

= −X1 −X1 = −2X1

C ′
2X2 = [X1, [N1, [X1, [N1, X2]]]]+[X2, [N2, [X2, [N2, X2]]]]+[X3, [N3, [X3, [N3, X2]]]]

= [X1, [N1,−N2]] + [X3, [N3,−N2]]

= [X1, X3] + [X3,−X1]

= −X2 −X2 = −2X2

C ′
2X3 = [X1, [N1, [X1, [N1, X3]]]]+[X2, [N2, [X2, [N2, X3]]]]+[X3, [N3, [X3, [N3, X3]]]]

= [X1, [N1,−N3]] + [X2, [N2,−N3]]

= [X1,−X2] + [X2, X1]

= −2X3
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C ′
2N1 = [X1, [N1, [X1, [N1, N1]]]]+[X2, [N2, [X2, [N2, N1]]]]+[X3, [N3, [X3, [N3, N1]]]]

= [X2, [N2, X1]] + [X3, [N3, X1]]

= −N1 −N1 = −2N1

C ′
2N2 = [X1, [N1, [X1, [N1, N2]]]]+[X2, [N2, [X2, [N2, N2]]]]+[X3, [N3, [X3, [N3, N2]]]]

= [X1, [N1, X2]] + [X3, [N3, X2]]

= −N2 −N2 = −2N2

C ′
2N3 = [X1, [N1, [X1, [N1, N3]]]]+[X2, [N2, [X2, [N2, N3]]]]+[X3, [N3, [X3, [N3, N3]]]]

= [X1, [N1, X3]] + [X2[N2, X3]]

= −2N3

These calculations show that C ′
2Y = −2Y ∀ Y ∈ so(3, 1). Thus C ′

2 is
confirmed as a Casimir Operator of so(3, 1) of eigenvalue type. The Jacobi
identity is of no use in reducing this operator, so it is not clear if it is inde-
pendent of the others.

8 Third Order intrinsic Casimir Operators

for so(3, 1)

In this section, we construct several intrinsic Casimir operators of order 3,
providing even more confirmation that the standard theory is defective.

One third order intrinsic Casimir Operator for so(3) is:

C3
−Y = [X1, [X2, [X3, Y ]]] + [X3, [X1, [X2, Y ]]] + [X2, [X3, [X1, Y ]]]

Thus, as we calculated before:

C3
−X1 = −X1

C3
−X2 = −X2

C3
−X3 = −X3
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And we now calculate the action of C3
− on the noncompact generators of

so(3, 1):

C3
−N1 = [X1, [X2, [X3, N1]]] + [X3, [X1, [X2, N1]]] + [X2, [X3, [X1, N1]]]

= [X1, [X2, N2]] + [X3, [X1,−N3]]

= [X3, N2] = −N1

C3
−N2 = [X1, [X2, [X3, N2]]] + [X3, [X1, [X2, N2]]] + [X2, [X3, [X1, N2]]]

= [X1, [X2,−N1]] = [X1, N3] = −N2

C3
−N3 = [X1, [X2, [X3, N3]]] + [X3, [X1, [X2, N3]]] + [X2, [X3, [X1, N3]]]

= [X2, [X3,−N2]] = [X2, N1] = −N3

Thus C3
−Y = −Y for all Y ∈ so(3, 1) and C3

− is confirmed as an intrinsic
Casimir operator of so(3, 1) of eigenvalue type. Again, it is surprising that
an intrinsic Casimir operator of a subalgebra is an intrinsic Casimir operator
of the entire algebra. This does not happen in the standard approach. Since
we will need to discuss this situation in more detail, we need a term for
the situation. If the Casimir operator of a subalgebra is also a Casimir
operator for the entire Lie algebra, we will say that the subalgebra is a
replete subalgebra. Thus, so(3) is a replete subalgebra of so(3, 1). Clearly,
any real Lie algebra is a replete subalgebra of its complexification.

Now we begin a search for other intrinsic Casimir operators of so(3, 1). If
an operator is to be an intrinsic Casimir operator of the eigenvalue type for
so(3, 1), there must be an even number of NI as factors. If in C3

−, we replace 2
of the XI by the corresponding NI , we might obtain another intrinsic Casimir
operator for so(3, 1). To this end we define A3 by:

A3Y = [N1, [X2, [N3, Y ]]] + [N3, [X1, [N2, Y ]]] + [N2, [X3, [N1, Y ]]]

We calculate:

A3X2 = [N1, [X2, [N3, X2]]]

= [N1, [X2,−N1]] = [N1, N3] = X2

A3X1 = [N3, [X1, [N2, X1]]] = [N3, [X1,−N3]] = [N3, N2] = X1

A3X3 = [N2, [X3, [N1, X3]]] = [N2, [X3,−N2]] = [N2, N1] = X3
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A3N1 = [N3, [X1, [N2, N1]]] = [N3, [X1, X3]] = [N3,−X2] = N1

A3N2 = [N1, [X2, [N3, N2]]] = [N1, [X2, X1]] = [N1,−X3] = N2

A3N3 = [N2, [X3, [N1, N3]]] = [N2, [X3, X2]] = [N2,−X1] = N3

Thus A3Y = Y for all Y ∈ so(3, 1) and A3 is confirmed as yet another
intrinsic Casimir operator of so(3, 1) of eigenvalue type. When we have
several operators, we have to look for relations between them. Again applying
the Jacobi identity:

A3Y = [N1, [X2, [N3, Y ]]] + [N3, [X1, [N2, Y ]]] + [N2, [X3, [N1, Y ]]]

= [[N1, X2], [N3, Y ]]+[X2, [N1, [N3, Y ]]]+[[N3, X1], [N2, Y ]]+[X1, [N3, [N2, Y ]]]

+[[N2, X3], [N1, Y ]]] + [X3, [N2, [N1, Y ]]]

= [N3, [N3, Y ]] + [X2, [N1, [N3, Y ]]] + [N2, [N2, Y ]] + [X1, [N3, [N2, Y ]]]

+[N1, [N1, Y ]]] + [X3, [N2, [N1, Y ]]]

= C ′Y + [X2, [N1, [N3, Y ]]] + [X1, [N3, [N2, Y ]]] + [X3, [N2, [N1, Y ]]]

If in A3, we replace each of the XI by the corresponding NI , we might
obtain another intrinsic Casimir operator for so(3, 1) .To this end we define
F3 by:

F 3Y = [N1, [N2, [N3, Y ]]] + [N3, [N1, [N2, Y ]]] + [N2, [N3, [N1, Y ]]]

We calculate:

F 3N1 = [N3, [N1, [N2, N1]]] = [N3, [N1, X3]] = [N3,−N2] = −X1

F 3N2 = [N1, [N2, [N3, N2]]] = [N1, [N2, X1]] = [N1,−N3] = −X2

F 3N3 = [N2, [N3, [N1, N3]]] = [N2, [N3, X2]] = [N2,−N1] = −X3

F 3X1 = [N3, [N1, [N2, X1]]] = [N3, [N1,−N3]] = [N3,−X2] = N1

F 3X2 = [N1, [N2, [N3, X2]]] = [N1, [N2,−N1]] = [N1,−X3] = N2

F 3X3 = [N2, [N3, [N1, X3]]] = [N2, [N3,−N2]] = [N2,−X1] = N3

Thus
F 3XI = NI

F 3NI = −XI
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and:
F 3(XI + iNI) = −i(XI + iNI)

F 3(XI − iNI) = i(XI − iNI)

So,F 3 is confirmed as another intrinsic Casimir operator of complex struc-
ture type of so(3, 1). For F 3, in 26, we take b = -1 and thus F 3 satisfies the
conditions of Theorem 5.

Now we have two operators whose action on a basis is the same, are we
to conclude that these two intrinsic Casimir operators are identical? Acting
on elements of the Lie algebra, the two operators are the same, but in a
representation by differential operators, their actions on functions will be
different, so we conclude that they are not identical operators. Physically,
we hope they will lead to different conserved quantities.

If we expand

F 3Y = [N1, [N2, [N3, Y ]]] + [N3, [N1, [N2, Y ]]] + [N2, [N3, [N1, Y ]]]

using the Jacobi identity, term by term:

[N1, [N2, [N3, Y ]]] = [N1, [[N2, N3], Y ]]] + [N1, [N3, [N2, Y ]]]

= [N1, [−X1, Y ]] + [N1, [N3, [N2, Y ]]]

= −[N1, [X1, Y ]] + [N1, [N3, [N2, Y ]]] + [N2, [N3, [N1, Y ]]]

= [N2, [[N3, N1], Y ]]] + [N2, [N1, [N3, Y ]]]

= [N2, [−X2, Y ]] + [N2, [N1, [N3, Y ]]]

= −[N2, [X2, Y ]] + [N2, [N1, [N3, Y ]]] + [N3, [N1, [N2, Y ]]]

= [N3, [[N1, N2], Y ]]] + [N3, [N2, [N1, Y ]]]

= [N3, [−X3, Y ]] + [N3, [N2, [N1, Y ]]]

= −[N3, [X3, Y ]] + [N3, [N2, [N1, Y ]]]

Summing, we obtain the identity

F 3Y = −[N1, [X1, Y ]] + [N1, [N3, [N2, Y ]]]− [N2, [X2, Y ]]

+[N2, [N1, [N3, Y ]]]− [N3, [X3, Y ]] + [N3, [N2, [N1, Y ]]]

= −C ′Y + [N1, [N3, [N2, Y ]]] + [N2, [N1, [N3, Y ]]] + [N3, [N2, [N1, Y ]]]
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9 Replete Subalgebras of so(3, 1)

As we showed in section II, the second order intrinsic Casimir Operator for
so(3) is:

L2Y = [X1, [X1, Y ]] + [X2, [X2, Y ]] + [X3, [X3, Y ]] = −2Y

In section III, we showed that the third order intrinsic Casimir Operators for
so(3) are:

C3
−Y = [X1, [X2, [X3, Y ]]] + [X3, [X1, [X2, Y ]]] + [X2, [X3, [X1, Y ]]] = −Y

C3
+Y = [X3, [X2, [X1, Y ]]] + [X1, [X3, [X2, Y ]]] + [X2, [X1, [X3, Y ]]] = Y

The three intrinsic Casimir operators are related by:

C3
−Y = L2Y + C3

+Y

These relations clearly hold for all Y ∈ so(3). Somewhat surprisingly,
we showed that these relations also hold for all Y ∈ so(3, 1). Hence these
intrinsic Casimir operators for the subalgebra so(3) are also intrinsic Casimir
operators for the entire algebra so(3, 1), in this situation, we called so(3) a
replete subalgebra of so(3, 1).

It was unanticipated that the intrinsic Casimir operator for a subalgebra
would be an intrinsic Casimir operator for the entire algebra. In this section
we will investigate other subalgebras to see if their intrinsic Casimir operators
are also intrinsic Casimir operators for the entire algebra. Are there other
replete subalgebras of so(3, 1) or was so(3) a fluke?

The first subalgebra we investigated was that generated by

{X1, X2, X3, }

which is isomorphic to so(3).
The next subalgebra to be investigated will be denoted subalgebra 2 and

is generated by: {X1, N2, N3}. We demonstrate closure:

[X1, N2] = N3

[X1, N3] = −N2
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[N2, N3] = −X1

Subalgebra 2 is isomorphic to so(2, 1) and its second order intrinsic Casimir
operator is:

L2
2Y = [X1, [X1, Y ]]− [N2, [N2, Y ]]− [N3, [N3, Y ]]

We demonstrate that this is an intrinsic Casimir operator of the entire so(3,1):

L2
2X1 = [X1, [X1, X1]]− [N2, [N2, X1]]− [N3, [N3, X1]]

= [N2, N3]− [N3, N2] = −2X1

Likewise, as similar calculations show, L2
2Y = −2Y for all Y ∈ so(3, 1).

One of the third order intrinsic Casimir operators of this so(2, 1) subal-
gebra is:

C3
2+Y = [X1, [N2, [N3, Y ]]] + [N3, [X1, [N2, Y ]]] + [N2, [N3, [X1, Y ]]]

For all Y ∈ so(3, 1), C3
2+Y = Y and so C3

2+ is an intrinsic Casimir operator
of the entire so(3,1). We will do just one representative calculation:

C3
2+N1 = [X1, [N2, [N3, N1]]] + [N3, [X1, [N2, N1]]] + [N2, [N3, [X1, N1]]]

= [N3, [X1, X3]] = [N3,−X2]] = N1

Expanding via the Jacobi identity we obtain:

C3
2+Y = [X1, [N2, [N3, Y ]]] + [N3, [X1, [N2, Y ]]] + [N2, [N3, [X1, Y ]]]

= [[X1, N2], [N3, Y ]]] + [[N3, X1], [N2, Y ]]] + [[N2, N3], [X1, Y ]]]

+[N2, [X1, [N3, Y ]]] + [X1, [N3, [N2, Y ]]] + [N3, [N2, [X1, Y ]]]

= −[X1, [X1, Y ]] + [N2, [N2, Y ]] + [N3, [N3, Y ]] + [N2, [X1, [N3, Y ]]]

+[X1, [N3, [N2, Y ]] + [N3, [N2, [X1, Y ]]]

= −L2
2Y + C3

2−Y

From the complement of subalgebra 2, we can construct a third order
operator which is the difference between the third order intrinsic Casimir
operator of the subalgebra and that of the whole Lie algebra.
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H3
2+Y = [N1, [X2, [X3, Y ]]] + [X3, [N1, [X2, Y ]]] + [X2, [X3, [N1, Y ]]]

We calculate its action:

H3
2+X1 = [N1, [X2, [X3, X1]]] + [X3, [N1, [X2, X1]]] + [X2, [X3, [N1, X1]]]

= [X3, [N1,−X3]] = [X3, N2] = −N1

H3
2+X2 = [N1, [X2, [X3, X2]]] + [X3, [N1, [X2, X2]]] + [X2, [X3, [N1, X2]]]

= [N1, [X2,−X1]] = [N1, X3] = −N2

H3
2+X3 = [N1, [X2, [X3, X3]]] + [X3, [N1, [X2, X3]]] + [X2, [X3, [N1, X3]]]

= [X2, [X3,−N2] = [X2, N1] = −N3

H3
2+N1 = [N1, [X2, [X3, N1]]] + [X3, [N1, [X2, N1]]] + [X2, [X3, [N1, N1]]]

= [X3, [N1,−N3]] = [X3,−X2] = X1

H3
2+N2 = [N1, [X2, [X3, N2]]] + [X3, [N1, [X2, N2]]] + [X2, [X3, [N1, N2]]]

= [N1, [X2,−N1]] = [N1, N3] = X2

H3
2+N3 = [N1, [X2, [X3, N3]]] + [X3, [N1, [X2, N3]]] + [X2, [X3, [N1, N3]]]

= [X2, [X3, X2] = [X2,−X1] = X3

For H3
2+ take b = −1 in 26, thus H3

2+ satisfies the conditions of Theorem 5
and is an intrinsic Casimir operator of complex structure type.

Since the subalgebra is the tangent space of the corresponding homoge-
neous space, we have constructed an invariant operator on the homogeneous
space so(3, 1)/so(2, 1).

Subalgebra 3 of so(3, 1) is generated by N1, X2, N3. We demonstrate
closure:

[X2, N1] = −N3
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[X2, N3] = N1

[N3, N1] = −X2

Again, this subalgebra is isomorphic to so(2, 1) and its second order in-
trinsic Casimir operator is:

L2
3Y = [X2, [X2, Y ]]− [N1, [N1, Y ]]− [N3, [N3, Y ]]]

which is easily confirmed as an intrinsic Casimir operator for the entire
so(3, 1):

L2
3X1 = [X2, [X2, X1]]− [N1, [N1, X1]]− [N3, [N3, X1]]]

= [X2,−X3]− [N3, N2] = −2X1

The other calculations are left to the interested reader.
One of the third order intrinsic Casimir operators of subalgebra 3 is:

C3
3+Y = [N1, [X2, [N3, Y ]]] + [N3, [N1, [X2, Y ]]] + [X2, [N3, [N1, Y ]]]

which we confirm is an intrinsic Casimir operator of the entire algebra:

C3
3+X1 = [N1, [X2, [N3, X1]]] + [N3, [N1, [X2, X1]]] + [X2, [N3, [N1, X1]]]

= [N3, [N1,−X3]] = [N3, N2] = X1

The other five calculations are again left to the reader.
Expanding, using the Jacobi identity, we obtain:

C3
3+Y = [N1, [X2, [N3, Y ]]] + [N3, [N1, [X2, Y ]]] + [X2, [N3, [N1, Y ]]]

= [[N1, X2], [N3, Y ]] + [[N3, N1], [X2, Y ]]] + [[X2, N3], [N1, Y ]]]

+[X2, [N1, [N3, Y ]]] + [N1, [N3, [X2, Y ]]] + [N3, [X2, [N1, Y ]]]

= [N3, [N3, Y ]]− [X2, [X2, Y ]] + [N1, [N1, Y ]] + [X2, [N1, [N3, Y ]]]

+[N1, [N3, [X2, Y ]]] + [N3, [X2, [N1, Y ]]]

= −L2
3Y + [X2, [N1, [N3, Y ]]] + [N1, [N3, [X2, Y ]]] + [N3, [X2, [N1, Y ]]]

From the complement of Subalgebra 3, we construct:

H3
3+Y = [X1, [N2, [X3, Y ]]] + [X3, [X1, [N2, Y ]]] + [N2, [X3, [X1, Y ]]]
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Which we confirm is an intrinsic Casimir operator for the entire subalge-
bra:

H3
3+X1 = [X1, [N2, [X3, X1]]] + [X3, [X1, [N2, X1]]] + [N2, [X3, [X1, X1]]]

= [X3, [X1,−N3]] = [X3, N2] = −N1

H3
3+N1 = [X1, [N2, [X3, N1]]] + [X3, [X1, [N2, N1]]] + [N2, [X3, [X1, N1]]]

= [X3, [X1, X3]] = [X3,−X2] = X1

Just like H3
2+, H3

3+ is then an intrinsic Casimir operator of Complex structure
type. We expand using the Jacobi identity:

H3
3+Y = [X1, [N2, [X3, Y ]]] + [X3, [X1, [N2, Y ]]] + [N2, [X3, [X1, Y ]]]

= [[X1, N2], [X3, Y ]]+[[X3, X1], [N2, Y ]]+[[N2, X3], [X1, Y ]]+[N2, [X1, [X3, Y ]]]

+[X1, [X3, [N2, Y ]]] + [X3, [N2, [X1, Y ]]]

= [N3, [X3, Y ]] + [X2, [N2, Y ]] + [N1, [X1, Y ]] + [N2, [X1, [X3, Y ]]]

+[X1, [X3, [N2, Y ]]] + [X3, [N2, [X1, Y ]]]

= C ′′Y + [N2, [X1, [X3, Y ]]] + [X1, [X3, [N2, Y ]]] + [X3, [N2, [X1, Y ]]]

Subalgebra 4 of so(3, 1) is generated by N1, N2, and X3. We demonstrate
closure:

[X3, N1] = N2

[N1, N2] = −X3

[X3, N2] = −N1

Again, this subalgebra is isomorphic to so(2, 1) and its second order in-
trinsic Casimir operator is:

L2
4Y = [X3, [X3, Y ]]− [N1, [N1, Y ]]− [N2, [N2, Y ]]]

which is easily confirmed as an intrinsic Casimir operator for the entire
so(3,1):

L2
4X1 = [X3, [X3, X1]]− [N1, [N1, X1]]− [N2, [N2, X1]]
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= [X3, X2]− [N2,−N3] = −2X1

The others are left to the reader.
One of the third order intrinsic Casimir operators of the subalgebra is:

C3
4+Y = [N1, [N2, [X3, Y ]]] + [X3, [N1, [N2, Y ]]] + [N2, [X3, [N1, Y ]]]

We confirm that C3
4+ is an intrinsic Casimir operator for the entire Lie

algebra:

C3
4+X1 = [N1, [N2, [X3, X1]]] + [X3, [N1, [N2, X1]]] + [N2, [X3, [N1, X1]]]

= [X3, [N1,−N3]] = [X3,−X2] = X1

Thus C3
4+ is confirmed as another intrinsic Casimir operator of eigenvalue

type. We expand:

C3
4+Y = [N1, [N2, [X3, Y ]]] + [X3, [N1, [N2, Y ]]] + [N2, [X3, [N1, Y ]]]

= [[N1, N2], [X3, Y ]] + [[X3, N1], [N2, Y ]]] + [[N2, X3], [N1, Y ]]]

+[N2, [N1, [X3, Y ]]] + [N1, [X3, [N2, Y ]]] + [X3, [N2, [N1, Y ]]]

= −[[X3, [X3, Y ]] + [[N2, [N2, Y ]] + [[N1, [N1, Y ]] + [N2, [N1, [X3, Y ]]]

+[N1, [X3, [N2, Y ]]] + [X3, [N2, [N1, Y ]]]

= −L2
4Y + [N2, [N1, [X3, Y ]]] + [N1, [X3, [N2, Y ]]] + [X3, [N2, [N1, Y ]]]

The complement of Subalgebra 4 is X1, X2, and N3, from which we con-
struct the third order operator:

H3
4+Y = [X1, [X2, [N3, Y ]]] + [N3, [X1, [X2, Y ]]] + [X2, [N3, [X1, Y ]]]

We confirm that H3
4+ is an intrinsic Casimir operator for the entire alge-

bra.

H3
4+X1 = [X1, [X2, [N3, X1]]] + [N3, [X1, [X2, X1]]] + [X2, [N3, [X1, X1]]]

= [N3, [X1,−X3]] = [N3, X2] = −N1

H3
4+N1 = [X1, [X2, [N3, N1]]] + [N3, [X1, [X2, N1]]] + [X2, [N3, [X1, N1]]]

= [N3, [X1,−N3]] = [N3, N2] = X1
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This, together with the similar calculations left for the reader show that
H3

4+ is an intrinsic Casimir operator of complex structure type.
Expanding using the Jacobi identity, as in previous cases:

H3
4+Y = C ′Y + [X2, [X1, [N3, Y ]]] + [X1, [N3, [X2, Y ]]] + [N3, [X2, [X1, Y ]]]

For each replete subalgebra of so(3, 1), higher order intrinsic Casimir
operators can be constructed in the same manner as so(3). These are all
intrinsic Casimir operators of so(3, 1).

10 The Intrinsic Quadratic Casimir Operator

of so(n)

Let eIJ denote the n by n matrix with 1 in the IJ position and zero elsewhere.
A basis for so(n) consists of the matrices XIJ = eIJ − eJI , I < J, with the
Lie bracket:

[XIJ , XKL] = XIJXKL −XKLXIJ

We will calculate the trace of [X12, [X12 in so(5), so(4) and so(3). For so(5):

[X12, [X12, X12] = 0

[X12, [X12, X13] = [X12,−X23] = −X13

[X12, [X12, X14] = [X12,−X24] = −X14

[X12, [X12, X15] = [X12,−X25] = −X15

[X12, [X12, X23] = [X12, X13] = −X23

[X12, [X12, X24] = [X12, X14] = −X24

[X12, [X12, X25] = [X12, X15] = −X25

[X12, [X12, X34] = 0

[X12, [X12, X35] = 0

[X12, [X12, X45] = 0

Thus Trace([X12, [X12, ) = −6 in so(5)
Simultaneously, we will compute the eigenvalue of the unnormalized in-

trinsic Casimir operators. In each case, we will only do one representative
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calculation. The intent is to show that in each case, the eigenvalue is equal
to the trace. The unnormalized intrinsic Casimir operator of so(5):

[X12, [X12, X45]] = 0

[X13, [X13, X45]] = 0

[X14, [X14, X45]] = [X14, X15] = −X45

[X15, [X15, X45]] = [X15,−X14] = −X45

[X23, [X23, X45]] = 0

[X24, [X24, X45]] = [X24, X25] = −X45

[X25, [X25, X45]] = [X25,−X24] = −X45

[X34, [X34, X45]] = [X34, X35] = −X45

[X35, [X35, X45]] = [X35,−X34] = −X45

[X45, [X45, X45]] = 0

Summing the above, we obtain −6X45. Thus the eigenvalue of the un-
normalized Intrinsic Casimir operator in so(5) is -6.

For so(4):
[X12, [X12, X12]] = 0

[X12, [X12, X13]] = [X12,−X23] = −X13

[X12, [X12, X14]] = [X12,−X24] = −X14

[X12, [X12, X23]] = [X12, X13] = −X23

[X12, [X12, X24]] = [X12, X14] = −X24

[X12, [X12, X34]] = 0

Trace[X12, [X12, = −4 in so(4)

[X12, [X12, X34]] = 0

[X13, [X13, X34]] = [X13, X14] = −X34

[X14, [X14, X34]] = [X14,−X13] = −X34

[X23, [X23, X34]] = [X23, X24] = −X34

[X24, [X24, X34]] = [X24,−X23] = −X34
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[X34, [X34, X34]] = 0

Summing the above, we obtain −4X34. Thus the eigenvalue of the un-
normalized Intrinsic Casimir operator in so(4) is -4.

For so(3):

[X12, [X12, X12]] = 0

[X12, [X12, X13]] = [X12,−X23] = −X13

[X12, [X12, X23]] = [X12, X13] = −X23

Thus, Trace([X12, [X12, ) = −2 in so(3).

[X12, [X12, X12]] = 0

[X13, [X13, X12]] = [X13, X23] = −X12

[X23, [X23, X12]] = [X23,−X13] = −X12

Summing the above, we obtain −2X12 . Thus, the eigenvalue of the
unnormalized Intrinsic Casimir operator in so(3) is -2.

Theorem
In so(n), Trace([XIJ , [XIJ , ) = −2n + 4 ,which is also the eigenvalue of

the unnormalized Intrinsic Casimir operator in so(n). Thus, the eigenvalue
of the normalized Intrinsic Casimir operator is 1.

Proof:
There are two statements to prove: in so(n), the trace of [XIJ , [XIJ , is

−2n + 4 and in so(n), the eigenvalue of the unnormalized Intrinsic Casimir
operator in so(n) is −2n+4. We will prove the statements by induction. We
have already shown them to be true for n= 3,4, and 5. Those calculations
reveal the pattern. The dimension of so(n) is n(n − 1)/2. Thus going from

so(n) to so(n + 1) we add (n+1)n
2

− n(n−1)
2

= n generators.
Computing the trace of XIJ , I < J < n + 1 in so(n + 1), we see that all

terms are zero except

[XIJ , [XIJ , XI(n+1)]] = −XI(n+1)

[XIJ , [XIJ , XJ(n+1)]] = −XJ(n+1)

Thus the trace of [XIJ , [XIJ , in so(n+1) is the trace of [XIJ , [XIJ , in so(n)
minus 2, which by the induction hypothesis is −2n + 4− 2 = −2(n + 1) + 4
Thus proving the formula for the trace.
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In the intrinsic Casimir operator, going from so(n) to so(n+1), there are
n new terms and when acting on XIJ , they are all zero except:

[XI(n+1), [XI(n+1), XIJ ]] = −XIJ

[XJ(n+1), [XJ(n+1), XIJ ]] = −XIJ

Thus, the eigenvalue of the intrinsic Casimir operator is also decreased by
2 and the same calculation shows the validity of the formula for the eigenvalue
of the intrinsic Casimir operator.

Thus the normalized Intrinsic Casimir Operator of so(n), when acting on
so(n), is not just a multiple of the identity, it is the identity operator.

The higher order intrinsic Casimir operators of so(n) follow the pattern
of so(3).

11 The intrinsic Casimir Operators of su(2)

and su(3)

The “so(3) basis” for su(2) is:

α1 =

(
0 −i/2

−i/2 0

)

α2 =

(
0 −1/2

1/2 0

)

α3 =

(
−i/2 0

0 i/2

)
and the commutation relations are:

[α1, α2] = α3

[α2, α3] = α1

[α3, α1] = α2

In this basis, the commutation relations are identical with those of so(3) and
hence the intrinsic Casimir operators are the same:

C2A = [α1, [α1, A]] + [α2, [α2, A]] + [α3, [α3, A]] = −2A
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Since su(2) is isomorphic to so(3), it also possesses third order intrinsic
Casimir operators. The third order intrinsic Casimir operators of su(2) are:

C3
−A = [α1, [α2, [α3, A]]] + [α3, [α1, [α2, A]]]

+[α2, [α3, [α1, A]]] = −A

C3
+A = [α3, [α2, [α1, A]]] + [α1, [α3, [α2, A]]]

+[α2, [α1, [α3, A]]] = A

And we have the identity in su(2):

C3
−A = C2A + C3

+A

The standard basis for su(2) is:

β1 =

(
0 −i
−i 0

)

β2 =

(
0 −1
1 0

)

β3 =

(
−i 0
0 i

)
and the commutation relations are:
[β1, β2] = 2β3, [β2, β3] = 2β1, [β3, β1] = 2β2

Since βi = 2αi, in this basis, the intrinsic Casimir operator is:

CA = [β1, [β1, A]] + [β2, [β2, A]] + [β3, [β3, A]] = −8A

The Lie Algebra u(3) consists of the matrices:

X1 =

 0 0 0
0 0 −1
0 1 0



X2 =

 0 0 1
0 0 0
−1 0 0


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X3 =

 0 −1 0
1 0 0
0 0 0



Y1 =

 0 0 0
0 0 i
0 i 0



Y2 =

 0 0 i
0 0 0
i 0 0



Y3 =

 0 i 0
i 0 0
0 0 0



D1 =

 i 0 0
0 0 0
0 0 0



D2 =

 0 0 0
0 i 0
0 0 0



D3 =

 0 0 0
0 0 0
0 0 i


The intrinsic Casimir operator is a linear combination of the basis el-

ements applied twice. The diagonal elements acting on diagonal elements
must yield zero. Thus the non-diagonal elements determine the eigenvalue
of the intrinsic Casimir operator acting on diagonal elements. Thus, in order
to determine the eigenvalue of the intrinsic Casimir Operator for u(3), all
we need to do is to calculate the action of the non-diagonal elements on the
diagonal elements. The action of the diagonal elements is given by:

[D1, X1] = 0

[D2, X1] = −Y1

67



[D3, X1] = Y1

[D1, X2] = Y2

[D2, X2] = 0

[D3, X2] = −Y2

[D1, X3] = −Y3

[D2, X3] = Y3

[D3, X3] = 0

[D1, Y1] = 0

[D2, Y1] = X1

[D3, Y1] = −X1

[D1, Y2] = −X2

[D2, Y2] = 0

[D3, Y2] = X2

[D1, Y3] = X3

[D2, Y3] = −X3

[D3, Y3] = 0

Now we proceed to calculate the action of the intrinsic Casimir operator
on the diagonal operators.

[X1, [X1, D1]] = 0

[X2, [X2, D1]] = [X2,−Y2] = −2D1 + 2D3

[X3, [X3, D1]] = [X3, Y3] = −2D1 + 2D2

[Y1, [Y1, D1]] = 0

[Y2, [Y2, D1]] = [Y2, X2] = −2D1 + 2D3

[Y3, [Y3, D1]] = [Y3,−X3] = −2D1 + 2D2

Summing, we obtain: CD1 = −8D1 + 4D2 + 4D3

[X1, [X1, D2]] = [X1, Y1] = −2D2 + 2D3
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[X2, [X2, D2]] = 0

[X3, [X3, D2]] = [X3,−Y3] = 2D1 − 2D2

[Y1, [Y1, D2]] = [Y1,−X1] = −2D2 + 2D3

[Y2, [Y2, D2]] = 0

[Y3, [Y3, D2]] = [Y3, X3] = 2D1 − 2D2

Summing, we obtain: CD2 = 4D1 − 8D2 + 4D3

[X1, [X1, D3]] = [X1,−Y1] = 2D2 − 2D3

[X2, [X2, D3]] = [X2, Y2] = 2D1 − 2D3

[X3, [X3, D3]] = 0

[Y1, [Y1, D3]] = [Y1, X1] = 2D2 − 2D3

[Y2, [Y2, D3]] = [Y2,−X2] = 2D1 − 2D3

[Y3, [Y3, D3]] = 0

Summing, we obtain: CD3 = 4D1 + 4D2 − 8D3

We have the action of C on the diagonal elements as follows:

CD1 = −8D1 + 4D2 + 4D3

CD2 = 4D1 − 8D2 + 4D3

CD3 = 4D1 + 4D2 − 8D3

When we diagonalize the matrix −8 4 4
4 −8 4
4 4 −8


we obtain the eigenvectors
D = D1 + D2 + D3 with eigenvalue 0
R = D1 −D2 with eigenvalue -12
S = D1 + D2 − 2D3 with eigenvalue -12
We will take D, R and S as our new diagonal elements. This calculation

has given us the eigenvalue of -12 for the intrinsic Casimir operator of su(3)
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when operating on the diagonal operators. The eigenvalue for the intrin-
sic Casimir operator must still be -12 when operating on the non-diagonal
operators.

R =

 i 0 0
0 −i 0
0 0 0



S =

 i 0 0
0 i 0
0 0 −2i


TABLE II The commutators for su(3)

[X1, X2] = X3 [X1, X3] = −X2 [X1, Y1] = R− S
[X1, Y2] = −Y3 [X1, Y3] = Y2 [X2, X3] = X1

[X2, Y1] = Y3 [X2, Y2] = R + S [X2, Y3] = −Y1

[X3, Y1] = −Y2 [X3, Y2] = Y1 [X3, Y3] = −2R
[Y1, Y2] = −X3 [Y1, Y3] = X2 [Y2, Y3] = −X1

[R,X1] = Y1 [R,X2] = Y2 [R,X3] = −2Y3

[R, Y1] = −X1 [R, Y2] = −X2 [R, Y3] = 2X3

[S, X1] = −3Y1 [S, X2] = 3Y2 [S, X3] = 0
[S, Y1] = 3X1 [S, Y2] = −3X2 [S, Y3] = 0

We compute the traces necessary to obtain the normalized intrinsic Casimir
operator:

[X1, [X1, X1]] = 0

[X1, [X1, X2]] = [X1, X3] = −X2

[X1, [X1, X3]] = [X1,−X2] = −X3

[X1, [X1, Y1]] = [X1, R− S] = −4Y1

[X1, [X1, Y2]] = [X1,−Y3] = −Y2

[X1, [X1, Y3]] = [X1, Y2] = −Y3

[X1, [X1, R]] = [X1,−Y1] = S −R

[X1, [X1, S]] = [X1, 3Y1] = −3S + 3R
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Then the trace of [X1, [X1, is -12. In the same manner, the trace of
[X2, [X2, and [X3, [X3, are shown to be -12.

[Y1, [Y1, X1]] = [Y1, S −R] = −4X1

[Y1, [Y1, X2]] = [Y1,−Y3] = −X2

[Y1, [Y1, X3]] = [Y1, Y2] = −X3

[Y1, [Y1, Y1]] = 0

[Y1, [Y1, Y2]] = [Y1,−X3] = −Y2

[Y1, [Y1, Y3]] = [Y1, X2] = −Y3

[Y1, [Y1, R]] = [Y1, X1] = S −R

[Y1, [Y1, S]] = [Y1,−3X1] = −3S + 3R

Thus, the trace of [Y1, [Y1, is -12.
In the same manner, the traces of [Y2, [Y2, and [Y3, [Y3, are shown to be

-12.

[R, [R,X1]] = [R, Y1] = −X1

[R, [R,X2]] = [R, Y2] = −X2

[R, [R,X3]] = [R,−2Y3] = −4X3

[R, [R, Y1]] = [R,−X1] = −Y1

[R, [R, Y2]] = [R,−X2] = −Y2

[R, [R, Y3]] = [R, 2X3] = −4Y3

[R, [R,R]] = 0

[R, [R,S]] = 0

Thus, the trace of [R, [R, is -12.

[S, [S, X1]] = [S,−3Y1] = −9X1

[S, [S, X2]] = [S, 3Y2] = −9X2

[S, [S, X3]] = 0

[S, [S, Y1]] = [S, 3X1] = −9Y1
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[S, [S, Y2]] = [S,−3X2] = −9Y2

[S, [S, Y3]] = 0

[S, [S, R]] = 0

[S, [S, S]] = 0

Showing that the trace of [S, [S, is -36.
The normalized intrinsic Casimir operator for su(3) is:

CNW =
−1

12
([X1, [X1, W ]] + [X2, [X2, W ]] + [X3, [X3, W ]]

+[Y1, [Y1, W ]] + [Y2, [Y2, W ]] + [Y3, [Y3, W ]]

+[R, [R,W ]]) +
−1

36
[S, [S, W ]]

If we multiply the normalized intrinsic Casimir operator by -12, we obtain
the standard intrinsic Casimir operator for su(3):

CW = [X1, [X1, W ]] + [X2, [X2, W ]] + [X3, [X3, W ]]

+[Y1, [Y1, W ]] + [Y2, [Y2, W ]]+

[Y3, [Y3, W ]] + [R, [R,W ]] +
1

3
[S, [S, W ]]

Now we calculate the action of the intrinsic Casimir operator on the non-
diagonal elements:

[X1, [X1, X1]] = 0

[X2, [X2, X1]] = −X1

[X3, [X3, X1]] = −X1

[Y1, [Y1, X1]] = −4X1

[Y2, [Y2, X1]] = −X1

[Y3, [Y3, X1]] = −X1

[R, [R,X1]] = −X1(1/3)[S, [S, X1]] = −3X1

Summing we obtain: CX1 = −12X1. Similar calculations show:
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CX2 = −12X2

CX3 = −12X3

CY1 = −12Y1

CY2 = −12Y2

CY3 = −12Y3

CR = −12R

CS = −12S

Thus the eigenvalue of the standard intrinsic Casimir operator of su(3)
is -12 and the eigenvalue of the normalized intrinsic Casimir operator is 1.

12 The Casimir Operator of su(n)

As with so(n), let eIJ denote the n by n matrix with 1 in the IJ position
and zero elsewhere. A basis for u(n) consists of the matrices

XIJ = eIJ − eJI

YIJ = i(eIJ + eJI)

DI = ieII

I < J, with the Lie brackets:

[XIJ , XKL] = δJKXIL + δJLXKI + δIKXLJ + δILXJK

[XIJ , YKL] = δJKYIL + δJLYKI − δIKYLJ − δILYJK

[YIJ , YKL] = −δJKXIL − δJLXKI − δIKXLJ − δILXJK

[XIJ , YIJ ] = DI −DJ

[DI , XIJ ] = YIJ

[DJ , XIJ ] = −YIJ

[DI , YIJ ] = −XIJ

[DJ , YIJ ] = XIJ
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We first need to compute the trace of the elements of the Lie algebra. We
start with the trace of X12 in su(5) as a representative calculation:

[X12, [X12, X12]] = 0

[X12, [X12, X13]] = [X12,−X23] = −X13

[X12, [X12, X14]] = [X12,−X24] = −X14

[X12, [X12, X15]] = [X12,−X25] = −X15

[X12, [X12, X23]] = [X12, X13] = −X23

[X12, [X12, X24]] = [X12, X14] = −X24

[X12, [X12, X25]] = [X12, X15] = −X25

[X12, [X12, X34]] = 0

[X12, [X12, X35]] = 0

[X12, [X12, X45]] = 0

[X12, [X12, Y12]] = −4Y12

[X12, [X12, Y13]] = [X12,−Y23] = −Y13

[X12, [X12, Y14]] = [X12,−Y24] = −Y14

[X12, [X12, Y15]] = [X12,−Y25] = −Y15

[X12, [X12, Y23]] = [X12, Y13] = −Y23

[X12, [X12, Y24]] = [X12, Y14] = −Y24

[X12, [X12, Y25]] = [X12, Y15] = −Y25

[X12, [X12, Y34]] = 0

[X12, [X12, Y35]] = 0

[X12, [X12, Y45]] = 0

Trace of [X12, [X12, = −20 in su(5).
We proceed with the terms of the Casimir operator of su(5):

[X12, [X12, X45]] = 0
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[X13, [X13, X45]] = 0

[X14, [X14, X45]] = [X14, X15] = −X45

[X15, [X15, X45]] = [X15,−X14] = −X45

[X23, [X23, X45]] = 0

[X24, [X24, X45]] = [X24, X25] = −X45

[X25, [X25, X45]] = [X25,−X24] = −X45

[X34, [X34, X45]] = [X34, X35] = −X45

[X35, [X35, X45]] = [X35,−X34] = −X45

[X45, [X45, X45]] = 0

[Y12, [Y12, X45]] = 0

[Y13, [Y13, X45]] = 0

[Y14, [Y14, X45]] = [Y14, Y15] = −X45

[Y15, [Y15, X45]] = [Y15,−Y14] = −X45

[Y23, [Y23, X45]] = 0

[Y24, [Y24, X45]] = [Y24, Y25] = −X45

[Y25, [Y25, X45]] = [Y25,−Y24] = −X45

[Y34, [Y34, X45]] = [Y34, Y35] = −X45

[Y35, [Y35, X45]] = [Y35,−Y34] = −X45

[Y45, [Y45, X45]] = −4X45

Summing the above, we obtain CX45 = −20X45. Thus the eigenvalue of the
unnormalized Intrinsic Casimir operator in su(5) is −20.

We continue with the trace of X12 in su(4):

[X12, [X12, X12]] = 0

[X12, [X12, X13]] = [X12,−X23] = −X13

[X12, [X12, X14]] = [X12,−X24] = −X14

[X12, [X12, X23]] = [X12, X13] = −X23
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[X12, [X12, X24]] = [X12, X14] = −X24

[X12, [X12, X34]] = 0

[X12, [X12, Y12]] = −4Y12

[X12, [X12, Y13]] = [X12,−Y23] = −Y13

[X12, [X12, Y14]] = [X12,−Y24] = −Y14

[X12, [X12, Y23]] = [X12, Y13] = −Y23

[X12, [X12, Y24]] = [X12, Y14] = −Y24

[X12, [X12, Y34]] = 0

Trace of [X12, [X12, = −16 in su(4).
We proceed with the terms of the Casimir operator of su(4):

[X12, [X12, X34]] = 0

[X13, [X13, X34]] = [X13, X14] = −X34

[X14, [X14, X34]] = [X14,−X13] = −X34

[X23, [X23, X34]] = [X23, X24] = −X34

[X24, [X24, X34]] = [X24,−X23] = −X34

[X34, [X34, X34]] = 0

[Y12, [Y12, X34]] = 0

[Y13, [Y13, X34]] = [Y13, X14] = −X34

[Y14, [Y14, X34]] = [Y14,−X13] = −X34

[Y23, [Y23, X34]] = [Y23, X24] = −X34

[Y24, [Y24, X34]] = [Y24,−X23] = −X34

[Y34, [Y34, X34]] = −4X34

Summing the above, we obtain CX34 = −16X34. Thus the eigenvalue of the
unnormalized Intrinsic Casimir operator in su(4) is −16.

We continue with the trace of X12 in su(3):

[X12, [X12, X12]] = 0
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[X12, [X12, X13]] = [X12,−X23] = −X13

[X12, [X12, X23]] = [X12, X13] = −X23

[X12, [X12, Y12]] = −4Y12

[X12, [X12, Y13]] = [X12,−X23] = −X13

[X12, [X12, Y23]] = [X12, Y13] = −X23

Trace of [X12, [X12, = −12 in su(3).
We proceed with the terms of the Casimir operator of su(3):

[X12, [X12, X12]] = 0

[X13, [X13, X12]] = [X13, X23] = −X12

[X23, [X23, X12]] = [X23,−X13] = −X12

[Y12, [Y12, X12]] = 0

[Y13, [Y13, X12]] = [Y13, Y23] = −X12

[Y23, [Y23, X12]] = [Y23,−Y13] = −X12

Summing the above, we obtain CX34 = −12X34. Thus, the eigenvalue of
the unnormalized Intrinsic Casimir operator in su(3) is −12.

Theorem In su(n), the trace of [XIJ , [XIJ , is −4n which is also the eigen-
value of the unnormalized Intrinsic Casimir operator in su(n). Thus, the
eigenvalue of the normalized Intrinsic Casimir operator is 1.

Proof There are two statements to prove: in su(n), the trace of [XIJ , [XIJ ,
is −4n and in su(n), the eigenvalue of the unnormalized Intrinsic Casimir
operator in su(n) is −4n. We will prove the statements by induction. We
have already shown them to be true for n = 3, 4, and 5. Those calculations
reveal the patterns. The dimension of su(n) is n2−1. Thus going from su(n)
to su(n + 1) we add (n + 1)2− 1− (n2− 1) = 2n + 1 generators. Computing
the trace of XIJ , I < J < n + 1. we see that all terms are zero except

[XIJ , [XIJ , XI(n+1)]] = −XI(n+1)

[XIJ , [XIJ , XJ(n+1)]] = −XJ(n+1)

[XIJ , [XIJ , YI(n+1)]] = −YI(n+1)

[XIJ , [XIJ , YJ(n+1)]] = −YJ(n+1)
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Thus the trace of [XIJ , [XIJ , in su(n + 1) = the trace of [XIJ , [XIJ , in
su(n) minus 4, which by the induction hypothesis is −4n − 4 = −4(n + 1)
Thus proving the formula for the trace.

In the intrinsic Casimir operator, there are n new terms and when acting
on XIJ , they are all zero except:

[XI(n+1), [XI(n+1), XIJ ]] = −XIJ

[XJ(n+1), [XJ(n+1), XIJ ]] = −XIJ

[YI(n+1), [YI(n+1), XIJ ]] = −XIJ

[YJ(n+1), [YJ(n+1), XIJ ]] = −XIJ

Thus, the eigenvalue of the intrinsic Casimir operator is also decreased by
4 and the same calculation show the validity of the formula for the eigenvalue
of the intrinsic Casimir operator. Thus the normalized Intrinsic intrinsic
Casimir Operator of su(n) is not just a multiple of the identity, it is the
identity operator, but only when acting on elements of su(n)!

13 An Attempt at Reconciliation

Perhaps we can reconcile the two different ways of looking at the Casimir
operator if we expand the action of the intrinsic Casimir operator of so(3) in
terms of matrix multiplication:

CA = [X1, [X1, A]] + [X2, [X2, A]] + [X3, [X3, A]] (27)

= [X1, X1A− AX1] + [X2, X2A− AX2]] + [X3, X3A−X3]

= X1X1A−X1AX1 + X2X2A−X2AX2 + X3X3A−X3AX3

−(X1AX1 − AX1X1 + X2AX2 − AX2X2 + X3AX3 − AX3X3)

= X1X1A + X2X2A + X3X3A− 2X1AX1 − 2X2AX2 − 2X3AX3

+AX1X1 + AX2X2 + AX3X3

= (X1X1 + X2X2 + X3X3)A− 2X1AX1 − 2X2AX2 − 2X3AX3

+A(X1X1 + X2X2 + X3X3)
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= (X1X1 + X2X2 + X3X3)A (28)

(a)
−2(X1AX1 + X2AX2 + X3AX3)

(b)
+A(X1X1 + X2X2 + X3X3)

(c)
The terms in (28) have been labeled in order to facilitate discussion. The

expressions in parentheses in (28) (a and c), i.e. the sum of the squares

(X1X1 + X2X2 + X3X3)

is the standard way of interpreting the intrinsic Casimir operator. Thus,
the sum of the squares of the matrices is a multiple of the identity matrix,
but this is not an invariant operator since the eigenvalue varies with the
representation. The invariant operator is obtained as the sum of the matrix
terms and its eigenvalue does not depend on the representation.

There is another point of confusion in Quantum Mechanics: the dual role
of the Casimir operator as a matrix operator and as an invariant differential
operator. Acting on elements of the Lie algebra the intrinsic Casimir operator
has only one eigenvalue. Acting on functions, the intrinsic Casimir opera-
tor has an infinite range of eigenvalues. Schiff [26](p. 82) has the Casimir
operator (as differential operator) acting on the spherical harmonics:

L2Ylm(θ, φ) = l(l + 1)Ylm(θ, φ)

This action of L2 is as a differential operator acting on functions defined
on the manifold SO(3). Because Schiff follows the physics tradition and
multiplies each generator by a factor of i in our notation we would have
instead:

CYlm(θ, φ) = −l(l + 1)Ylm(θ, φ)

The standard approach to quantum theory of angular momentum at-
tempts to force the matrix representations do the job the eigenfunctions
should be doing.

In order to obtain a spectrum from the Casimir operator using matrices,
the standard approach requires an new representation. In order to obtain a
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spectrum from a differential operator representation of the intrinsic Casimir
operator, a new representation is not necessary, rather using a representation
by differential operators, a family of eigenfunctions of the same differential
operator is constructed (i.e. the spherical harmonics). Then in any repre-
sentation the eigenvalues are the same, otherwise the differential operator is
not well defined.

In one approach applying group theoretical ideas to quantum theory,
according to Salam [25]:

The wave functions are classified in terms of representations
of the group. . .

Unfortunately, that program degenerated into finding matrix representations.
That program presumes that quantum numbers vary from one matrix repre-
sentation to another matrix representation. In light of the results presented
here, that program must be abandoned and replaced by the geometric pro-
gram in which the only numbers which matter are those which are indepen-
dent of the representation or coordinate system. These numbers are not just
obtained from matrices, but from eigenvalue equations involving the intrinsic
Casimir operators (i.e. from a maximal set of commuting differential opera-
tors). In the standard approach, the quantum numbers are eigenvalues of the
intrinsic Casimir operators operating on matrices. In the author’s approach
to quantum theory, some of those quantum numbers come from the eigen-
values of the intrinsic Casimir operators, as differential operators, acting on
appropriate functions. Since there is a relation between eigenfunctions and
representations, the two approaches are not as disparate as they sound.

We can go one step further and replace the Lie bracket by the Lie deriva-
tive. Recall that the Lie derivative satisfies LXY = [X, Y ]. Then the intrinsic
Casimir operator is:

C =
∑
ij

gijLXi
LXj

and for a vector field Y,

CY =
∑
ij

gijLXi
LXj

Y =
∑
ij

gij[Xi, [Xj, Y ]

This new interpretation of the Casimir operator now allows us to inves-
tigate the action of C on other geometric objects.
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14 The Enveloping Algebra

Let us examine the definition of a Lie algebra:
A real (complex) Lie algebra is a real (complex) vector space with a rule

of composition denoted
[X, Y ] satisfying:
(i) [, ] is R (C) bilinear;
(ii) [X, Y ] = −[Y,X];
(iii) [X, [Y, Z]] + [Y, [Z,X]] + [Z, [X, Y ]]= 0.
This is standard mathematical fare. The algebraic rules for the Lie alge-

bras follow directly from the algebraic rules for Lie groups in much the same
way the rules for logarithms follow from the rules for exponents.

Compare the above rules with the four principle rules for commutator
algebras as given by Messiah [21]:

[A, B] = −[B, A] (V.63)
[A, B + C] = [A, B] + [A, C] (V.64)
[A, BC] = [A, B]C + B[A, C] (V.65)
[A, [B, C]] + [B, [C, A]] + [C, [A, B]] = 0 (V.66)
Clearly, Messiah’s (V.63) is the same as (i); (V.66) is the same as (iii);

(V.64) is part of (i), but Messiah’s (V.65) has no counterpart in the definition
of a Lie algebra.

Barry G. Adams [1] discusses “Commutator Gymnastics”:

The following two identities are useful for moving operators in
products outside the commutator brackets:

[A, BC] = [A, B]C + B[A, C]

[AB, C] = A[B, C] + [A, C]B

These rules are of fundamental importance and are used in vir-
tually all calculations involving the simplification of commuta-
tors. They have the same structure and importance as the prod-
uct rule for differentiation does in the calculus: in fact, defining
DA(B) = [A, B], the first rule becomes

DA(BC) = BDA(C) + DA(B)C.

Beginning with the Jacobi identity:

[X, [Y, Z]] + [Y, [Z,X]] + [Z, [X, Y ]] = 0.
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Take two terms to the right hand side of the equation:

[X, [Y, Z]] = −[Y, [Z,X]]− [Z, [X, Y ]]

Apply the anti-symmetry property to the two terms on the right hand
side:

(iv) [X, [Y, Z]] = [Y, [X, Z]] + [[X,Y ], Z]
Comparing (iv) to the second of Adams’ relations and Messiah’s (v.65)

we see a structural similarity. And, indeed, if we define DX(Y ) = [X, Y ]
then we have the identity:

DX([Y, Z]) = [Y,DX(Z)] + [DX(Y ), Z].

This derivative is well known and is called the Lie derivative.
Thus it seems that the derivative defined by Adams is a cheap parody, a

grotesque caricature of the Lie derivative.
The rules of “commutator gymnastics” are not the rules for Lie algebras

and chaos follows if the two are confused.
Revisit the definition: a Lie algebra is a vector space equipped with an

operation denoted by [A, B]. There is no mention of the Lie algebra being
equipped with a product AB. Indeed, it is not part of the definition. Once
two matrices are multiplied together, the product is outside the structure of
Lie Algebras.

Let us digress and discuss a more elementary example. The allowed
operations on a logarithm are:

log(xy) = logx + logy

log(x/y) = logx− logy

logyr = rlogy

Now, logx and logy are real numbers and real numbers can be multiplied
together: (logx)(logy). But the product has no significance as a logarithm,
unless you are changing bases.

The transition from Lie Algebra to Lie Group is via the exponential map.
Thus the map from Lie Group to Lie Algebra is the logarithm. In this case,
we are dealing with matrices, and matrices (even those which represent Lie
algebras) can be multiplied together, but once you have multiplied them to-
gether, they have ceased to have significance as logarithms, they have ceased
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to represent the Lie algebra. Multiplication of matrices is meaningless in the
context of Lie algebras (except as a tool for computing the Lie bracket within
a given representation).

For a Lie algebra L , the universal enveloping algebra of L , U(L) is
the “free algebra” with the elements of L as generators modulo the relation
XY − Y X − [X, Y ] = 0 [9] (pp. 72-73).

Alternately, [5] the universal enveloping algebra of L can be defined in
terms of the tensor algebra of L which is a vector space over the field k. If
we define

Tn = L ⊗ L⊗ L . . .⊗ L

(n factors of L ), with T0 = k
Define

T = T0 ⊗ T1 ⊗ T2 ⊗ . . . Tn ⊗ . . .

The product in T is just tensor multiplication.
Let J be the two-sided ideal of T generated by all objects

X ⊗ Y − Y ⊗X − [X,Y ]

for all X,Y in L . In this setting, U(L) = T/J . The two definitions are
equivalent but the second is more elegant.

In the enveloping algebra approach, the Casimir operators are the ele-
ments of the center of U(L), which is denoted Z(L). If we are to keep this
relationship with our reinterpretation of the Casimir operator, we must also
reinterpret the universal enveloping algebra formalism.

The relation X ⊗ Y − Y ⊗X − [X, Y ] = 0 holds in U(L) and is supposed
to mimic the relation XY −Y X = [X,Y ], which as Hermann [9] points out is
an attempt to force a meaning to the symbol XY. If this is the case, exactly
what meaning does the theory of the enveloping algebra force upon XY? The
symbol XY can be given a meaning without such elaborate underpinnings.
As we did with the intrinsic Casimir operator, we can interpret XY as an
operator: XY Z becomes [X, [Y, Z]]. To emphasize this interpretation, we
will write [X,[Y instead of just XY.

From the Jacobi identity, for X, Y, Z ∈ L,

[X, [Y, Z]]− [Y, [X, Z]] = [[X, Y ], Z]

Dropping the Z], we obtain an operator equation:
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[X, [Y,−[Y, [X, = [[X, Y ],

With this interpretation, the relation X ⊗ Y − Y ⊗ X − [X, Y ] in the
definition of U(L) is shown to be the Jacobi identity, not the commutator (or
perhaps we should say that the commutator and the Jacobi identity are the
same). Geometrically, we are replacing the element X of the Lie algebra by
the Lie derivative with respect to X. The Lie derivative satisfies:

LXLY − LYLX = L[X,Y ]

Indeed, since LXZ = [X, Z], the rearranged Jacobi identity:

[X, [Y, Z]]− [Y, [X, Z]] = [[X, Y ], Z]

is a Lie derivative equation:

LXLY (Z)− LYLX(Z) = L[X,Y ]Z

So it seems that we are led to interpret the universal enveloping algebra
of L , U(L) as the “free algebra” with generators the Lie derivatives with
respect to the elements of L . The equivalence relation “modulo the relation
XY − Y X − [X, Y ]” is not necessary since it is built into the Lie derivative.

To avoid confusion, we need a name for the new formalism and I suggest
it be called the “geometric enveloping algebra.”

In the Enveloping algebra approach to the Casimir operator, the Casimir
operator is taken to be an element of the Enveloping Algebra in which case
C2Y =

∑
ij gijXi ⊗Xj ⊗ Y , with the tensor product as the multiplication.

In the geometric enveloping algebra, this translates as:

CY =
∑
ij

gij[Xi, [Xj, [Y (29)

This provides an alternative way of interpreting the symbols, but it is
not a definition of the Casimir operator C, instead, (29) is a definition of the
operator CY . Still, some expressions in the standard theory of enveloping
algebras must be interpreted in terms of (29) instead of (8). The difference
between (29) and (8) comes down to the difference in roles of X and Y in the
expression [X, Y ] interpreted as the operator, [X, acting on the element of
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the vector space, Y ]. This is the same problem in mathematical semantics
addressed by Dirac in his treatment of Bras and Kets. If Y is being acted
upon (a ket), then (8) holds and is viewed as

C2(Y ]) =
∑
ij

gij[Xi, [Xj, Y ]] (30)

If instead, Y is viewed as an operator (a bra), then (29) holds and is
viewed as:

C([Y ) =
∑
ij

gij[Xi, [Xj, [Y, (31)

The geometric enveloping algebra is associative because left bracketing
is a function from L to L and composition of functions is associative. The
enveloping algebra has only bras, no kets. Thus, we could say that the Lie
Bracket is “left associative” and becomes non-associative only when left and
right brackets are mixed. A free algebra of only kets would also be associative.
The Lie bracket is also right associative. It is only when bras and kets are
mixed that the algebra becomes nonassociative.

15 Intrinsic Casimir operators with eigenvalue

Zero

Examining the commutators for so(3, 1), we observe that there are precisely
two ways to obtain each XI :

[X2, X3] = X1

[N2, N3] = −X1

[X3, X1] = X2

[N3, N1] = −X2

[X1, X2] = X3

[N1, N2] = −X3

Thus we can write the Zero operator as:

0 = X1 −X1 + X2 −X2 + X3 −X3
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= [X2, X3] + [N2, N3] + [X3, X1] + [N3, N1] + [X1, X2] + [N1, N2]

Which arises in the expansion of

σ2Y = [X1, [X2, Y ]] + [X2, [X3, Y ]] + [X3, [X1, Y ]]

+[N1, [N2, Y ]] + [N2, [N3, Y ]] + [N3, [N1, Y ]]

and we check the eigenvalues:

σ2X1 = [X1, [X2, X1]] + [X2, [X3, X1]] + [X3, [X1, X1]]

+[N1, [N2, X1]] + [N2, [N3, X1]] + [N3, [N1, X1]]

= [X1,−X3] + [N1,−N3] = X2 −X2 = 0

σ2X2 = [X1, [X2, X2]] + [X2, [X3, X2]] + [X3, [X1, X2]]

+[N1, [N2, X2]] + [N2, [N3, X2]] + [N3, [N1, X2]]

= [X2,−X1] + [N2,−N1] = X3 −X3 = 0

σ2X3 = [X1, [X2, X3]] + [X2, [X3, X3]] + [X3, [X1, X3]]

+[N1, [N2, X3]] + [N2, [N3, X3]] + [N3, [N1, X3]]

= [X3,−X2] + [N3,−N2] = X1 −X1 = 0

σ2N1 = [X1, [X2, N1]] + [X2, [X3, N1]] + [X3, [X1, N1]]

+[N1, [N2, N1]] + [N2, [N3, N1]] + [N3, [N1, N1]]

= [X1,−N3] + [N1, X3] = N2 −N2 = 0

σ2N2 = [X1, [X2, N2]] + [X2, [X3, N2]] + [X3, [X1, N2]]

+[N1, [N2, N2]] + [N2, [N3, N2]] + [N3, [N1, N2]]

= [X2,−N1] + [N2, X1] = N3 −N3 = 0

σ2N3 = [X1, [X2, N3]] + [X2, [X3, N3]] + [X3, [X1, N3]]

+[N1, [N2, N3]] + [N2, [N3, N3]] + [N3, [N1, N3]]

86



= [X3,−N2] + [N3, X2] = −N1 + N1 = 0

Thus σ2 is a Casimir operator with eigenvalue zero.
We can repeat the process by noting that there are two ways to obtain

each NI .
Starting with the relations:

[X2, N3] = N1

−[N2, X3] = −N1

[X3, N1] = N2

−[N3, X1] = −N2

[X1, N2] = N3

−[N1, X2] = −N3

we add to obtain:

[X2, N3]− [N2, X3] + [X3, N1]− [N3, X1] + [X1, N2]− [N1, X2] = 0

Which arises in the expansion of:

κY = [X2, [N3, Y ]]− [N2, [X3, Y ]] + [X3, [N1, Y ]]

−[N3, [X1, Y ]] + [X1, [N2, Y ]]− [N1, [X2, Y ]]

Computing the action of κ, we obtain:

κX1 = [X2, [N3, X1]]− [N2, [X3, X1]] + [X3, [N1, X1]]

−[N3, [X1, X1]] + [X1, [N2, X1]]− [N1, [X2, X1]]

= [X1,−N3]− [N1, X3] = N2 −N2 = 0

κX2 = [X2, [N3, X2]]− [N2, [X3, X2]] + [X3, [N1, X2]]

−[N3, [X1, X2]] + [X1, [N2, X2]]− [N1, [X2, X2]]

= [X2,−N1]− [N2,−X1] = N3 −N3 = 0

κX3 = [X2, [N3, X3]]− [N2, [X3, X3]] + [X3, [N1, X3]]
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−[N3, [X1, X3]] + [X1, [N2, X3]]− [N1, [X2, X3]]

= [X3,−N2]− [N3,−X2] = N1 −N1 = 0

κN1 = [X2, [N3, N1]]− [N2, [X3, N1]] + [X3, [N1, N1]]

−[N3, [X1, N1]] + [X1, [N2, N1]]− [N1, [X2, N1]]

= [X1, X3]− [N1,−N3] = −X2 + X2 = 0

κN2 = [X2, [N3, N2]]− [N2, [X3, N2]] + [X3, [N1, N2]]

−[N3, [X1, N2]] + [X1, [N2, N2]]− [N1, [X2, N2]]

= [X2, X1]− [N2,−N1] = −X3 + X3 = 0

κN3 = [X2, [N3, N3]]− [N2, [X3, N3]] + [X3, [N1, N3]]

−[N3, [X1, N3]] + [X1, [N2, N3]]− [N1, [X2, N3]]

= [X3, X2]− [N3,−N2] = −X1 + X1 = 0

Thus we have another unexpected Casimir operator of eigenvalue type.
The Casimir operator

σ2Y = [X1, [X2, Y ]] + [X2, [X3, Y ]] + [X3, [X1, Y ]]

+[N1, [N2, Y ]] + [N2, [N3, Y ]] + [N3, [N1, Y ]]

may be viewed as being associated with the decomposition of so(3, 1) into
the so(3) subalgebra generated by the XI , and its complement, consisting
of the NI . The corresponding operator with respect to the subalgebra 2
decomposition is:

σ2
2Y = [X1, [N2, Y ]] + [N2, [N3, Y ]] + [N3, [X1, Y ]]

−[N1, [X2, Y ]] + [X2, [X3, Y ]]− [X3, [N1, Y ]]

We calculate:

σ2
2X1 = [X1, [N2, X1]] + [N2, [N3, X1]] + [N3, [X1, X1]]

−[N1, [X2, X1]] + [X2, [X3, X1]]− [X3, [N1, X1]]
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= [X1,−N3]− [N1,−X3] = N2 −N2 = 0

σ2
2X2 = [X1, [N2, X2]] + [N2, [N3, X2]] + [N3, [X1, X2]]

−[N1, [X2, X2]] + [X2, [X3, X2]]− [X3, [N1, X2]]

= [N2,−N1] + [X2,−X1] = −X3 + X3 = 0

σ2
2X3 = [X1, [N2, X3]] + [N2, [N3, X3]] + [N3, [X1, X3]]

−[N1, [X2, X3]] + [X2, [X3, X3]]− [X3, [N1, X3]]

= [N3,−X2]− [X3,−N2] = N1 −N1 = 0

σ2
2N1 = [X1, [N2, N1]] + [N2, [N3, N1]] + [N3, [X1, N1]]

−[N1, [X2, N1]] + [X2, [X3, N1]]− [X3, [N1, N1]]

= [X1, X3]− [N1,−N3] = −X2 + X2 = 0

σ2
2N2 = [X1, [N2, N2]] + [N2, [N3, N2]] + [N3, [X1, N2]]

−[N1, [X2, N2]] + [X2, [X3, N2]]− [X3, [N1, N2]]

= [N2, X1] + [X2,−N1] = −N3 + N3 = 0

σ2
2N3 = [X1, [N2, N3]] + [N2, [N3, N3]] + [N3, [X1, N3]]

−[N1, [X2, N3]] + [X2, [X3, N3]]− [X3, [N1, N3]]

= [N3,−N2]− [X3, X2] = −X1 + X1 = 0

Thus σ2
2 is a Casimir operator with eigenvalue 0.

The operator constructed from subalgebra 3, corresponding to σ2 is:

σ2
3Y = [N1, [X2, Y ]] + [X2, [N3, Y ]] + [N3, [N1, Y ]]

−[X1, [N2, Y ]]− [N2, [X3, Y ]] + [X3, [X1, Y ]]

We calculate the action on a basis:

σ2
3X1 = [N1, [X2, X1]] + [X2, [N3, X1]] + [N3, [N1, X1]]

−[X1, [N2, X1]]− [N2, [X3, X1]] + [X3, [X1, X1]]
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= [N1,−X3]− [X1,−N3] = N2 −N2 = 0

σ2
3X2 = [N1, [X2, X2]] + [X2, [N3, X2]] + [N3, [N1, X2]]

−[X1, [N2, X2]]− [N2, [X3, X2]] + [X3, [X1, X2]]

= [X2,−N1] + [N2,−X1] = N3 −N3 = 0

σ2
3X3 = [N1, [X2, X3]] + [X2, [N3, X3]] + [N3, [N1, X3]]

−[X1, [N2, X3]]− [N2, [X3, X3]] + [X3, [X1, X3]]

= [N3,−N2] + [X3,−X2]] = −X1 + X1 = 0

σ2
3N1 = [N1, [X2, N1]] + [X2, [N3, N1]] + [N3, [N1, N1]]

−[X1, [N2, N1]]− [N2, [X3, N1]] + [X3, [X1, N1]]

= [N1,−N3]− [X1, X3] = −X2 + X2 = 0

σ2
3N2 = [N1, [X2, N2]] + [X2, [N3, N2]] + [N3, [N1, N2]]

−[X1, [N2, N2]]− [N2, [X3, N2]] + [X3, [X1, N2]]

= [X2, X1]− [N2,−N1] = −X3 + X3 = 0

σ2
3N3 = [N1, [X2, N3]] + [X2, [N3, N3]] + [N3, [N1, N3]]

−[X1, [N2, N3]]− [N2, [X3, N3]] + [X3, [X1, N3]]

= [N3, X2] + [X3,−N2]] = −N1 + N1 = 0

This confirms that σ2
3 is a Casimir operator with eigenvalue 0.

The σ-like operator constructed for subalgebra 4 is:

σ2
4Y = [N1, [N2, Y ]] + [N2, [X3, Y ]] + [X3, [N1, Y ]]

+[X1, [X2, Y ]]− [X2, [N3, Y ]]− [N3, [X1, Y ]]

The calculations proceed as above:

σ2
4X1 = [N1, [N2, X1]] + [N2, [X3, X1]] + [X3, [N1, X1]]

+[X1, [X2, X1]]− [X2, [N3, X1]]− [N3, [X1, X1]]
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= [N1,−N3] + [X1,−X3] = −X2 + X2 = 0

σ2
4X2 = [N1, [N2, X2]] + [N2, [X3, X2]] + [X3, [N1, X2]]

+[X1, [X2, X2]]− [X2, [N3, X2]]− [N3, [X1, X2]]

= [N2,−X1]− [X2,−N1] = N3 −N3 = 0

σ2
4X3 = [N1, [N2, X3]] + [N2, [X3, X3]] + [X3, [N1, X3]]

+[X1, [X2, X3]]− [X2, [N3, X3]]− [N3, [X1, X3]]

= [X3,−N2]− [N3,−X2] = N1 −N1 = 0

σ2
4N1 = [N1, [N2, N1]] + [N2, [X3, N1]] + [X3, [N1, N1]]

+[X1, [X2, N1]]− [X2, [N3, N1]]− [N3, [X1, N1]]

= [N1, X3] + [X1,−N3] = −N2 + N2 = 0

σ2
4N2 = [N1, [N2, N2]] + [N2, [X3, N2]] + [X3, [N1, N2]]

+[X1, [X2, N2]]− [X2, [N3, N2]]− [N3, [X1, N2]]

= [N2,−N1]− [X2, X1] = −X3 + X3 = 0

σ2
4N3 = [N1, [N2, N3]] + [N2, [X3, N3]] + [X3, [N1, N3]]

+[X1, [X2, N3]]− [X2, [N3, N3]]− [N3, [X1, N3]]

= [X3, X2]− [N3,−N2] = −X1 + X1 = 0

Thus σ2
4 is a Casimir operator with eigenvalue 0.
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16 Solo Casimir Operators

Surprisingly, there is yet another type of intrinsic Casimir operator.
The characteristic equation of the adjoint representation of X1 ∈ so(3) is

the determinant of

det

 −λ 0 0
0 −λ −1
0 1 −λ

 = −λ3 − λ

Since a matrix satisfies its own characteristic equation, we have:

−(adX1)
3 − adX1 = 0

We use the property of the adjoint representation to write the operator
equation:

SX1 = [X1, [X1, [X1 + [X1 = 0

and we compute, for verification:

SX1X2 = [X1, [X1, [X1, X2]]] + [X1, X2]

= [X1, [X1, X3]] + X3 = [X1,−X2] + X3

= −X3 + X3 = 0

SX1X3 = [X1, [X1, [X1, X3]]] + [X1, X3] = 0

= [X1, [X1,−X2]]−X2

= [X1,−X3]−X2 = X2 −X2 = 0

Likewise, from the adjoint representation of X2 we obtain:

SX2 = [X2, [X2, [X2 + [X2 = 0

From the adjoint representation of X3 we obtain:

SX3 = [X3, [X3, [X3 + [X3 = 0

Thus, we have three more third order Casimir operators for so(3). Since
the definition of SXi

involves only Xi, these are a novel sort of Casimir
operator which we will call solo-Casimir operators. We state the obvious:
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Theorem on Solo-Casimir Operators
Every element of a simple Lie algebra L generates a solo Casimir operator.
Proof: Let P (λ) be the characteristic equation of the matrix adX. Since

a matrix satisfies its own characteristic equation, we have: P (adX) = 0
Thus, we have the operator equation P ([X) = 0 which defines a solo-Casimir
operator.

Observe that although the characteristic equation of adX has degree equal
to the dimension of the Lie Algebra, there may be a polynomial of lower
degree which adX may satisfy. The lowest degree polynomial which adX
satisfies will be called the degree of X.

We leave it to the interested reader to confirm that for a generic matrix
M ,

SX1M = [X1, [X1, [X1, M ]]]+[X1, M ] =

 0 0 0
0 3m23 + 3m32 −3m22 + 3m33

0 −3m22 + 3m33 −3m23 − 3m32


And furthermore, if a three by three matrix M is an eigenvector of all

three solo operators:

SX1M = [X1, [X1, [X1, M ]]] + [X1, M ] = 0

SX2M = [X2, [X2, [X2, M ]]] + [X2, M ] = 0

SX3M = [X3, [X3, [X3, M ]]] + [X3, M ] = 0

then M ∈ so(3).
The su(2) solo operators follow the pattern for so(3):

S1 = [α1, [α1, [α1 + [α1

S2 = [α2, [α2, [α2 + [α2

S3 = [α3, [α3, [α3 + [α3

This construction of the third order solo-Casimir operators and the cal-
culations done for so(3) needs to be done for so(2, 1). The characteristic
equation for the matrix of Y1 in the adjoint representation is λ3 + λ = 0
which leads us to consider the operator:

SY1 = [Y1, [Y1, [Y1 + [Y1
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and we compute, for verification:

SY1Y2 = [Y1, [Y1, [Y1, Y2]]] + [Y1, Y2]

= [Y1, [Y1,−Y3]]− Y3

= [Y1,−Y2]− Y3 = Y3 − Y3 = 0

The other computations are left to the reader.
Likewise, from the matrix of Y2 in the adjoint representation, we obtain

the characteristic equation λ3 − λ = 0 and hence, the operator:

SY2 = [Y2, [Y2, [Y2 − [Y2 = 0

and we compute, for verification:

SY2Y1 = [Y2, [Y2, [Y2, Y1]]]− [Y2, Y1]

= [Y2, [Y2, Y3]] + Y3

= [Y2, Y1]− Y3 = Y3 − Y3 = 0

Again, from the adjoint representation of Y3 we obtain:

SY3 = [Y3, [Y3, [Y3 − [Y3 = 0

We compute the action of the solo Casimir operator of so(3), SX1 , on the
remaining elements of so(3, 1):

SX1N1 = [X1, [X1, [X1, N1]]] + [X1, N1] = 0

SX1N2 = [X1, [X1, [X1, N2]]] + [X1, N2]

= [X1, [X1, N3]] + N3

= [X1,−N2] + N3 = −N3 + N3 = 0

SX1N3 = [X1, [X1, [X1, N3]]] + [X1, N3]

= [X1, [X1,−N2]]−N2 = [X1,−N3]−N2 = N2 −N2 = 0

Likewise, for the action of SX2 we obtain:
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SX2N1 = [X2, [X2, [X2, N1]]] + [X2, N1]

= [X2, [X2,−N3]]−N3

= [X2,−N1]−N3 = N3 −N3 = 0

SX2N2 = [X2, [X2, [X2, N2]]] + [X2, N2] = 0

SX2N3 = [X2, [X2, [X2, N3]]] + [X2, N3]

= [X2, [X2, N1]] + N1 = [X2,−N3] + N1 = −N1 + N1 = 0

In the same way, for the action of SX3 we obtain:

SX3N1 = [X3, [X3, [X3, N1]]] + [X3, N1] = 0

= [X3, [X3, N2]] + N2

= [X3,−N1] + N2 = −N2 + N2 = 0

SX3N2 = [X3, [X3, [X3, N2]]] + [X3, N2]

= [X3, [X3,−N1]]−N1 = [X3,−N2]−N1 = N1 −N1 = 0

SX3N3 = [X3, [X3, [X3, N3]]] + [X3, N3] = 0

Thus, three more third order Casimir operators of so(3) prove also to be
Casimir operators for so(3, 1). These are solo-Casimir operators of degree
three while the Theorem on solo-Casimir operators would only guarantee
degree six.

We imitate the action of SXI
by replacing the XI with the correspond-

ing NI and defining SNI
(we also replace the + by -, since the N are non-

compact):

SNI
= [NI , [NI , [NI − [NI

and we compute the action of the SNI
on so(3,1):

SN1X1 = [N1, [N1, [N1, X1]]]− [N1, X1] = 0
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SN1X2 = [N1, [N1, [N1, X2]]]− [N1, X2]

= [N1, [N1, N3]]−N3 = [N1, X2]−N3 = N3 −N3 = 0

SN1X3 = [N1, [N1, [N1, X3]]]− [N1, X3]

= [N1, [N1,−N2]] + N2 = [N1,−X3] + N2 = −N2 + N2 = 0

SN1N1 = [N1, [N1, [N1, N1]]]− [N1, N1] = 0

SN1N2 = [N1, [N1, [N1, N2]]]− [N1, N2]

= [N1, [N1,−X3]] + X3 = [N1, N2] + X3 = −X3 + X3 = 0

SN1N3 = [N1, [N1, [N1, N3]]]− [N1, N3]

= [N1, [N1, X2]]−X2 = [N1, N3]−X2 = X2 −X2 = 0

Likewise, for the action of SN2 we obtain:

SN2X1 = [N2, [N2, [N2, X1]]]− [N2, X1]

= [N2, [N2,−N3]] + N3 = [N2, X1] + N3 = −N3 + N3 = 0

SN2X2 = [N2, [N2, [N2, X2]]]− [N2, X2] = 0

SN2X3 = [N2, [N2, [N2, X3]]]− [N2, X3]

= [N2, [N2, N1]]−N1 = [N2, X3]−N1 = N1 −N1 = 0

SN2N1 = [N2, [N2, [N2, N1]]]− [N2, N1]

= [N2, [N2, X3]]−X3 = [N2, N1]−X3 = X3 −X3 = 0

SN2N2 = [N2, [N2, [N2, N2]]]− [N2, N2] = 0
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SN2N3 = [N2, [N2, [N2, N3]]]− [N2, N3] = [N2, [N2,−X1]] + X1

= [N2, N3] + X1 = −X1 + X1 = 0

For the action of SN3 we obtain:

SN3N1 = [N3, [N3, [N3, N1]]]− [N3, N1] = [N3, [N3,−X2]] + X2

= [N3, N1] + X2 = −X2 + X2 = 0

SN3N2 = [N3, [N3, [N3, N2]]]− [N3, N2] = [N3, [N3, X1]]−X1

= [N3, N2]−X1 = X1 −X1 = 0

SN3N3 = [N3, [N3, [N3, N3]]]− [N3, N3] = 0

SN3N1 = [N3, [N3, [N3, N1]]]− [N3, N1] = [N3, [N3,−X2]] + X2

= [N3, N1] + X2 = −X2 + X2 = 0

SN3N2 = [N3, [N3, [N3, N2]]]− [N3, N2]

= [N3, [N3, X1]]−X1

= [N3, N2]−X1 = X1 −X1 = 0

SN3N3 = [N3, [N3, [N3, N3]]]− [N3, N3] = 0

So now we have three more third order Casimir operators for so(3, 1) for
a total of six solo-Casimir operators all of degree three.

The construction of solo-Casimir operators remains to be done for su(3).
We begin by checking to see if:

SX1 = [X1, [X1, [X1 + [X1 = 0

acting on su(3).
From our calculations for so(3) we have:
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SX1X1 = 0

SX1X2 = 0

SX1X3 = 0

and we compute the remaining actions:

SX1Y1 = [X1, [X1, [X1, Y1]]] + [X1, Y1] = 0

= [X1, [X1, R− S]] + R− S

= [X1,−4Y1] + R− S = −3R + 3S

At this point we could stop with the observation that it fails. However,
we will continue to see exactly by how much it fails.

SX1Y2 = [X1, [X1, [X1, Y2]]] + [X1, Y2]

= [X1, [X1,−Y3]]− Y3

= [X1,−Y2]− Y3 = Y3 − Y3 = 0

SX1Y3 = [X1, [X1, [X1, Y3]]] + [X1, Y3]

= [X1, [X1,−Y2]]− Y2

= [X1,−Y3]− Y2 = Y2 − Y2 = 0

SX1R = [X1, [X1, [X1, R]]] + [X1, R] = 0

SX1S = [X1, [X1, [X1, S]]] + [X1, S] = 0

Thus SX1 fails as a solo-Casimir operator for su(3) only in its action on
Y1. To find out why it fails we look at the eigenvalues of [X1, [X1,

[X1, [X1, X1]] = 0

[X1, [X1, X2]] = −X2
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[X1, [X1, X3]] = −X3

[X1, [X1, Y1]] = −4Y1

[X1, [X1, Y2]] = −Y2

[X1, [X1, Y3]] = −Y 3

[X1, [X1, R]] = [X1,−Y1] = S −R

[X1, [X1, S]] = [X1, 3Y1] = 3R− 3S

We can find an eigen-basis: 3R + S with eigenvalue 0 and S − R with
eigenvalue -4.

For each eigenvalue there is a factor in the minimal equation. The eigen-
value 0 leads to the factor [X1,, while the eigenvalue -1 leads to the factor
[X1, [X1, +1 and the eigenvalue -4 leads to the factor [X1, [X1, +4. Note that
the eigenvalue -4 is associated only with the eigenvector Y1].

We multiply to obtain the minimal polynomial:

([X1, )([X1, [X1, +1)([X1, [X1, +4) = ([X1, )
5 + 5([X1, )

3 + 4[X1,

This is degree five, less than the degree eight guaranteed by the theorem
on solo Casimir operators.

The eigenvalues of [X2, [X2, lead to the identical conclusion:

[X2, [X2, X1]] = −X1

[X2, [X2, X2]] = 0

[X2, [X2, X3]] = −X3

[X2, [X2, Y1]] = −Y1

[X2, [X2, Y2]] = −4Y2

[X2, [X2, Y3]] = −Y3

[X2, [X2, R]] = [X2,−Y2] = −S −R

[X2, [X2, S]] = [X2,−3Y2] = −3R− 3S

Again we can diagonalize these last two to obtain an eigen-basis: 3R−S
with eigenvalue 0 and R + S with eigenvalue -4.
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The eigenvalues again lead to factors of the minimal equation: the eigen-
value 0 implies the factor ([X2, [X2,; the eigenvalue −1 implies the factor
([X2, [X2, +1 while the eigenvalue −4 implies the factor ([X2, [X2, +4)

Again, we multiply to obtain the minimal polynomial:

([X2, )([X2, [X2, +1)([X2, [X2, +4) = ([X2)
5 + 5([X2)

3 + 4[X2

In like manner, we observe that the corresponding eigenvalues all of the
other generators of su(3) are 0, -1 and -4 and hence all share the same mini-
mal equation and each one generates the same sort of solo-Casimir operator
except the generator S. The eigenvalues of [S, [S, are -9 and 0, hence the
minimal equation of S is

[S, [S, [S, +9[S = 0.

Each of the elements of u(3) has an associated solo-Casimir operator which
leads to a linear differential operator and hence to eigenvalue equations for
functions. In the author’s geometric model of elementary particles, each
generator of u(3, 1) corresponds to a family of elementary particles. These
elementary particles are modeled as fX, where X is an element of u(3, 1)
and f is a function satisfying certain differential equations, which depend on
X. These solo-operators them seem to offer the possibility of fulfilling that
program.

17 Conclusion

According to the standard wisdom on Casimir operators, the number of
Casimir Operators is equal to the rank of the Lie algebra. The rank of so(3, 1)
is two, but we have constructed an infinite number of intrinsic Casimir oper-
ators with no indication that this exhausts the list (but it has exhausted the
author). The existence of these new intrinsic Casimir operators for so(3, 1)
shows that the standard approach to Casimir operators is fatally flawed, but
for now, we have no program to replace it.

Perhaps the most surprising result presented here is the existence of in-
trinsic Casimir operators of complex structure type. Their existence is not
even hinted at in the standard approach which recognizes only Casimir op-
erators of eigenvalue type (Multiples of the identity). Clearly, one task for
future study is to characterize those Lie algebras which possess each type of
intrinsic Casimir operator and to look for other types.
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Wigner [33] classified elementary particles on the basis of the two invari-
ants (eigenvalues of the Casimir operators) of the inhomogeneous Lorentz
Group (the Poincaré Group). His classification was based on the assump-
tion that these eigenvalues change value with the representation. The work
presented here shows clearly that this program is in error since the eigenval-
ues of the Casimir operators are true invariants and do not change with the
representation. The modern theory based on this assumption (the theory of
quarks) is likewise based on the same faulty mathematics.

Weyl [32] stated the program for the application of group theory to quan-
tum mechanics as it was understood in 1930:

All quantum numbers, with the exception of the so-called princi-
pal quantum number, are indices characterizing representations
of groups.

This program operated under the assumption that the eigenvalues of the
Casimir operators vary from representation to representation. That assump-
tion has been shown to be false and hence the program as stated by Weyl is
mathematically unsound. Indeed, according to Borel [2], Casimir’s work was
a generalization of Weyl’s work on so(3). The Casimir operator is a gener-
alization to an arbitrary Lie algebra of the “square of the magnitude of the
moment of momentum” which Weyl [32] introduced in his book The Theory
of Groups and Quantum Mechanics. Weyl’s operator is defined in terms of
matrix multiplication, which is not defined in a Lie algebra.

The geometry of a four dimensional space-time is required to describe
gravitation. Consequently, the inclusion of additional forces in a geometric
model requires the use of higher dimensions The idea of obtaining additional
forces by embedding the observed space-time in a larger manifold is due to
Kaluza [11]. Kaluza added one extra dimension to Minkowski space in an
attempt to incorporate electromagnetism into the geometric framework of
Einstein’s general theory of relativity. Klein [12] showed that Kaluza’s extra
dimension must be compact in order to account for quantization. In the
early 1960’s, this program experienced a great revival. Most of the early
attempts to unify gravitation with the other forces were by means of com-
bining space-time symmetries with the internal symmetries of compact gauge
groups. Ne’eman [22] discusses the history of these early attempts.

The interest in extensions of the Poincaré group waned after O’Raifeartaigh
[23] ‘proved’ his infamous “no-go theorem” showing that such an extension
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led to an unphysical mass spectrum. This theorem and its ‘improvements’
by others showed that extension of the Poincaré group was not the correct
idea. The article by Coleman [4] was an attempt to put such attempts to
rest.

The no-go theorems of O’Raifeartaigh, I.E. Segal [29] and others relied
heavily on the belief that the eigenvalues of the Casimir operators of the
Poincaré algebra vary from representation to representation. This belief has
been shown to be erroneous and so the “no-go” theorems are not valid. The
theories of supersymmetry, super-gravity and super-strings were attempts to
circumvent these no-go theorems. Since the no-go theorems are not valid,
there no longer exists any reason to pursue supersymmetry.

In the final analysis, as far as physics is concerned, we want to be working
with the invariant differential operators, which leads to invariant differential
equations and we want differential operators which commute with the group
action and hence with every element of the Lie algebra in a representation
as differential operators. To say that a Casimir operator is a multiple of the
identity operator is meaningless in this context, but the same calculations in
terms of Lie Bracket are valid in any representation. Thus, these calculations
in the context of matrix representations of the Lie Algebras are just prelim-
inaries to a treatment of representations in terms of differential operators.
These are also the representations of interest in harmonic analysis.

Helgason [8] defines D(G/K) as the algebra of all differential operators
on G/K which are invariant under the action of G. Harmonic analysis then
is the study of the joint eigenfunctions of D(G/K), i.e. functions which are
simultaneously eigenfunctions of each operator in D(G/K). In order to do
harmonic analysis then, the invariant operators must be properly identified.
The intrinsic Casimir operators are just D(G) and as we showed above, they
have not been correctly identified. Given the importance of the Casimir oper-
ators, a program of finding the true Casimir (invariant) differential operators
of the Lie algebras important in physics seems essential.

It has evidently not been realized before that this program of “conserved
quantities equals eigenvalues of Casimir operators” is inconsistent with the
Lagrangian formalism. According to Noether’s theorem, in a Lagrangian
theory, there is a one to one correspondence between conserved quantities
and elements of the Lie Algebra. For each conserved quantity there is a basis
element of the Lie Algebra and vice-versa. The Lagrangian program is then
inconsistent with the Casimir operator program where the eigenvalues of the
Casimir operators and of the Cartan subalgebra are the only invariants.
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But the Lagrangian approach to conserved quantities is internally in-
consistent. Suppose a Lagrangian system has a maximum of n conserved
quantities. By Noether’s theorem the corresponding Lie Algebra is then n
dimensional. If this Lie Algebra has a Casimir operator, the eigenvalue of the
Casimir operator is also a conserved quantity, resulting in n + 1 conserved
quantities, a contradiction.

The Casimir operator approach to conserved quantities is automatically
built into the Lie Algebra formalism, leading to invariant differential equa-
tions and conserved quantities and quantization via Schrödinger’s [27] ap-
proach to “Quantization as an Eigenvalue Problem”. Fortunately, the Lie
algebras of physical interest have more generalized Casimir operators than
generators.
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