
https://www.sqreen.io/?utm_medium=social-owned&utm_source=Ebook&utm_campaign=Node.js%20Security%20Handbook

INTRODUCTION
Damn, but security is hard.

It’s not always obvious what needs doing, and the payoffs of good security are at
best obscure. Who is surprised when it falls off our priority lists?
We’d like to offer a little help if you don’t mind. And by “help” we don’t mean
“pitch you our product”—we genuinely mean it.
Sqreen’s mission is to empower engineers to build secure, reliable web applications.
We’ve put our security knowledge to work in compiling an actionable list of best
practices to help you get a grip on your security priorities. It’s all on the following
pages.
We hope you find it useful. If you do, share it with your network. And if you don’t,
please take to Twitter to complain loudly—it’s the best way to get our attention 😉

The Sqreen Team 
@SqreenIO
howdy@sqreen.io

WANT THIS HANDBOOK AS A PDF? GO TO:
https://www.sqreen.io/resources/nodejs-security-handbook

 !1

https://twitter.com/SqreenIO
mailto:howdy@sqreen.io
https://www.sqreen.io/resources/nodejs-security-handbook?utm_medium=social-owned&utm_source=Ebook&utm_campaign=Node.js%20Security%20Handbook

CODE

✔ Use a prepublish/pre-commit script to protect yourself
Before committing your code or publishing your package to a repository, you
should ensure no sensitive data will be shipped. Using a pre-commit hook or a pre-
publish script helps to prevent such leaks. You should particularly look for:
Database credentials, API keys or configuration files.

A few npm packages can help placing pre-commit hooks:
https://www.npmjs.com/package/pre-commit
Use publish-please package:
https://www.npmjs.com/package/publish-please  
Add a pre-publish script in your package.json file:
https://docs.npmjs.com/misc/scripts

✔ When using a templating engine, do not use unsafe methods
When using a templating engine, you should know which syntax can introduce XSS
vulnerabilities. For instance, Pug (formerly, Jade) escapes all inputs by default
unless you use the '!' symbol.

Check Pug's documentation:
https://pug js.org/language/code.html
Mustache documentation:
https://mustache.github.io/mustache.5.html

✔ Perform data validation on everything you don't control
All user data that get into your application should be validated and escaped to
avoid various kinds of injections.

Learn more about MongoDB injections:

 !2

https://www.npmjs.com/package/pre-commit
https://www.npmjs.com/package/publish-please
https://docs.npmjs.com/misc/scripts
https://pugjs.org/language/code.html
https://mustache.github.io/mustache.5.html

https://blog.sqreen.io/mongodb-will-not-prevent-nosql-injections-in-your-node-
js-app/
Use Joi to perform data validation:
https://www.npmjs.com/package/joi
Learn more about SQL injections:
https://en.wikipedia.org/wiki/SQL_injection
Learn more about code injections in Node.js:
https://ckarande.gitbooks.io/owasp-nodegoat-tutorial/content/tutorial/a1_-
_server_side_js_injection.html

✔ Avoid using fs, child_process and vm modules with user data
The fs module allows access to the file system. Using it with unsafe data can allow a
malicious user to tamper with the content of your server.
The child_process module is used to create new processes. Using it can allow a
malicious user to run their own commands on your server.
The vm module provides APIs for compiling and running code within V8 Virtual
Machine contexts. If not used with a sandbox, a malicious user could run arbitrary
code within your web application.

Node.js fs module documentation:
https://nodejs.org/api/fs.html
Node.js child_process module documentation:
https://nodejs.org/api/child_process.html
Node.js vm module documentation:
https://nodejs.org/api/vm.html

✔ Don't implement your own crypto
The problem with cryptography is that you don’t know you are wrong until you are
hacked. So don’t do your own crypto. Use standards instead. For most crypto
related operations, the 'crypto' core module can help you.
https://nodejs.org/dist/latest-v8.x/docs/api/crypto.html
https://en.wikipedia.org/wiki/Bcrypt

 !3

https://blog.sqreen.io/mongodb-will-not-prevent-nosql-injections-in-your-node-js-app/
https://blog.sqreen.io/mongodb-will-not-prevent-nosql-injections-in-your-node-js-app/
https://www.npmjs.com/package/joi
https://en.wikipedia.org/wiki/SQL_injection
https://ckarande.gitbooks.io/owasp-nodegoat-tutorial/content/tutorial/a1_-_server_side_js_injection.html
https://ckarande.gitbooks.io/owasp-nodegoat-tutorial/content/tutorial/a1_-_server_side_js_injection.html
https://nodejs.org/api/fs.html
https://nodejs.org/api/child_process.html
https://nodejs.org/api/vm.html
https://nodejs.org/dist/latest-v8.x/docs/api/crypto.html
https://en.wikipedia.org/wiki/Bcrypt

http://crypto.stackexchange.com/questions/43272/why-is-writing-your-own-
encryption-discouraged
https://blogs.dropbox.com/tech/2016/09/how-dropbox-securely-stores-your-
passwords/

✔ Ensure you are using security headers
Modern browsers support a set of headers dedicated to blocking certain types of
attacks. Make sure you have properly implemented all security headers. Don’t
forget about the Content Security Policy.

https://www.npmjs.com/package/helmet
https://myheaders.sqreen.io/
https://securityheaders.io/
https://blog.appcanary.com/2017/http-security-headers.html

✔ Go hack yourself
Once in a while, the entire technical team should sit together and spend time
targeting all parts of the application, looking for vulnerabilities. This is a great time
to test for account isolation, token unicity, unauthenticated paths, etc. You will
heavily rely on your browser’s web console, curl, and 3rd party tools such as Burp.

https://portswigger.net/burp/
http://www.devsecops.org/blog/2015/12/10/red-team-pwning-the-hearts-and-
minds-one-ticket-at-a-time

✔ Run security linters on your code
Static Application Security Testing (SAST) is an easy and fast way to find unsafe
patterns in your code. You can enforce SAST security checks with a pre or post-
commit hook, but be aware of the high number of false positives.

http://eslint.org/ with https://github.com/nodesecurity/eslint-plugin-security
https://github.com/mre/awesome-static-analysis

 !4

http://crypto.stackexchange.com/questions/43272/why-is-writing-your-own-encryption-discouraged
http://crypto.stackexchange.com/questions/43272/why-is-writing-your-own-encryption-discouraged
https://blogs.dropbox.com/tech/2016/09/how-dropbox-securely-stores-your-passwords/
https://blogs.dropbox.com/tech/2016/09/how-dropbox-securely-stores-your-passwords/
https://www.npmjs.com/package/helmet
https://myheaders.sqreen.io/
https://securityheaders.io/
https://blog.appcanary.com/2017/http-security-headers.html
https://portswigger.net/burp/
http://www.devsecops.org/blog/2015/12/10/red-team-pwning-the-hearts-and-minds-one-ticket-at-a-time
http://www.devsecops.org/blog/2015/12/10/red-team-pwning-the-hearts-and-minds-one-ticket-at-a-time
http://eslint.org/
https://github.com/nodesecurity/eslint-plugin-security
https://github.com/mre/awesome-static-analysis

✔ Integrate security scanners in your CI pipeline
Integrate a Dynamic Application Security Testing (DAST) tool in your CI, but just
like SAST be aware of the high number of false positives.

http://www.arachni-scanner.com/
https://www.owasp.org/index.php/OWASP_Zed_Attack_Proxy_Project
https://www.acunetix.com/vulnerability-scanner/

✔ Keep your dependencies up to date
Third-party libraries can put your application at risk. Make sure you track your
vulnerable packages and update them regularly.

https://snyk.io/
https://www.sqreen.io/
https://nodesource.com/products/certified-modules

✔ Enforce a secure code review checklist
Security should always be kept in mind while coding. Enforce security reviews for
pull requests.

https://www.owasp.org/index.php/Category:OWASP_Code_Review_Project

✔ Keep secrets away from code
Never commit secrets in your code. They should be handled separately in order to
prevent them accidentally being shared or exposed. This allows a clear separation
between your environments (typically development, staging and production).

https://12factor.net/
Use a configuration file/en variable
Use a configuration management module:
https://www.npmjs.com/package/config

 !5

http://www.arachni-scanner.com/
https://www.owasp.org/index.php/OWASP_Zed_Attack_Proxy_Project
https://www.acunetix.com/vulnerability-scanner/
https://snyk.io/
https://www.sqreen.io/?utm_medium=social-owned&utm_source=Ebook&utm_campaign=Node.js%20Security%20Handbook
https://nodesource.com/products/certified-modules
https://www.owasp.org/index.php/Category:OWASP_Code_Review_Project
https://12factor.net/
https://www.npmjs.com/package/config

✔ Use a secure development life cycle
The secure development lifecycle is a process that helps tackle security issues at
the beginning of a project. While rarely used as is, it provides good insights at all
stages of the project, from the specification to the release. It will allow you to
enforce good practices at every stage of the project life.

https://en.wikipedia.org/wiki/Systems_development_life_cycle

 

 !6

https://en.wikipedia.org/wiki/Systems_development_life_cycle

INFRASTRUCTURE

✔ Automatically configure & update your servers
An automated configuration management tool helps you ensure that your servers
are updated and secured.

Chef: https://learn.chef.io/tutorials/
Puppet: https://www.digitalocean.com/community/tutorials/how-to-install-
puppet-4-in-a-master-agent-setup-on-ubuntu-14-04
Ansible: http://docs.ansible.com/ansible/intro_getting_started.html
Salt: https://docs.saltstack.com/en/latest/topics/tutorials/walkthrough.html

✔ Backup regularly
Your data is likely to be your business’s most precious asset. Be sure not to lose it.
Implement proper backups and check for backup integrity.

MongoDB Backup: https://docs.mongodb.com/manual/core/backups/
Postgresql: https://www.postgresql.org/docs/current/static/backup.html
Linux: http://www.tecmint.com/linux-system-backup-tools/
https://www.dataone.org/best-practices/ensure-integrity-and-accessibility-when-
making-backups-data

✔ Check your SSL / TLS configurations
Use free tools to scan your infrastructure regularly and make sure the SSL
configurations are correct.

https://observatory.mozilla.org/
https://www.ssllabs.com/
https://diogomonica.com/2015/12/29/from-double-f-to-double-a/

 !7

https://learn.chef.io/tutorials/
https://www.digitalocean.com/community/tutorials/how-to-install-puppet-4-in-a-master-agent-setup-on-ubuntu-14-04
https://www.digitalocean.com/community/tutorials/how-to-install-puppet-4-in-a-master-agent-setup-on-ubuntu-14-04
https://www.digitalocean.com/community/tutorials/how-to-install-puppet-4-in-a-master-agent-setup-on-ubuntu-14-04
http://docs.ansible.com/ansible/intro_getting_started.html
https://docs.saltstack.com/en/latest/topics/tutorials/walkthrough.html
https://docs.mongodb.com/manual/core/backups/
https://www.postgresql.org/docs/current/static/backup.html
http://www.tecmint.com/linux-system-backup-tools/
https://www.dataone.org/best-practices/ensure-integrity-and-accessibility-when-making-backups-data
https://www.dataone.org/best-practices/ensure-integrity-and-accessibility-when-making-backups-data
https://observatory.mozilla.org/
https://www.ssllabs.com/
https://diogomonica.com/2015/12/29/from-double-f-to-double-a/

✔ Control access on your cloud providers
The best way to protect your services (database, file storage) is to not use
passwords at all. Use the built-in Identity and Access Management (IAM)
functions to securely control access to your resources.

http://docs.aws.amazon.com/IAM/latest/UserGuide/introduction.html
https://cloud.google.com/compute/docs/access/create-enable-service-accounts-
for-instances

✔ Run it unprivileged
In case an attacker successfully attacks your application, having it running as a user
with restricted privileges will make it harder for the attacker to take over the host
and/or to bounce to other services. Privileged users are root on Unix systems, and
Administrator or System on Windows systems.

✔ Log all the things
Infrastructure logs and application logs are your most precious allies for
investigating a data breach. Make sure your logs are stored somewhere safe and
central. Also make sure you whitelist- or blacklist-specific incoming data to avoid
storing personally identifiable information (PII) data.

https://qbox.io/blog/welcome-to-the-elk-stack-elasticsearch-logstash-kibana
https://www.loggly.com/

✔ Manage secrets with dedicated tools and vaults
When you need to store cryptographic secrets (other than database password, TLS
certificate, etc.) and perform encryption with them, you should use dedicated
tools. This way the cryptographic secret never leaves the tool and you get auditing
features.

https://www.vaultproject.io/

 !8

http://docs.aws.amazon.com/IAM/latest/UserGuide/introduction.html
https://cloud.google.com/compute/docs/access/create-enable-service-accounts-for-instances
https://cloud.google.com/compute/docs/access/create-enable-service-accounts-for-instances
https://qbox.io/blog/welcome-to-the-elk-stack-elasticsearch-logstash-kibana
https://www.loggly.com/
https://www.vaultproject.io/

https://github.com/square/keywhiz
https://aws.amazon.com/cloudhsm/
https://aws.amazon.com/kms/

✔ Store encrypted passwords in your configuration
management
Storing passwords (like for your database) can be done on a dedicated database
with restricted access. The other solution is to store them encrypted in your
Source Code Management (SCM) system. That way, you just need the master key
to decrypt them.

Chef: https://github.com/chef/chef-vault
Puppet: https://puppet.com/blog/encrypt-your-data-using-hiera-eyaml
Salt: https://docs.saltstack.com/en/latest/ref/renderers/all/salt.renderers.gpg.html
Ansible: http://docs.ansible.com/ansible/playbooks_vault.html

✔ Upgrade your servers regularly
Server packages and libraries are often updated when security vulnerabilities are
found. You should update them as soon as a security vulnerability is found.

https://www.ubuntu.com/usn/
https://help.ubuntu.com/community/AutomaticSecurityUpdates
https://access.redhat.com/security/vulnerabilities

✔ Encrypt all the things
SSL performance problems are a myth and you have no good reason not to use
SSL on all your public services.

https://letsencrypt.org/
https://certbot.eff.org/

 !9

https://github.com/square/keywhiz
https://aws.amazon.com/cloudhsm/
https://aws.amazon.com/kms/
https://github.com/chef/chef-vault
https://puppet.com/blog/encrypt-your-data-using-hiera-eyaml
https://docs.saltstack.com/en/latest/ref/renderers/all/salt.renderers.gpg.html
http://docs.ansible.com/ansible/playbooks_vault.html
https://www.ubuntu.com/usn/
https://help.ubuntu.com/community/AutomaticSecurityUpdates
https://access.redhat.com/security/vulnerabilities
https://letsencrypt.org/
https://certbot.eff.org/

https://www.digitalocean.com/community/tutorials/how-to-secure-nginx-with-
let-s-encrypt-on-ubuntu-14-04
https://www.digitalocean.com/community/tutorials/how-to-secure-apache-with-
let-s-encrypt-on-ubuntu-14-04

✔ Use an immutable infrastructure
Use immutable infrastructure to avoid having to manage and update your servers.

https://martinfowler.com/bliki/ImmutableServer.html
https://hackernoon.com/configuration-management-is-an-antipattern-
e677e34be64c#.n68b1i3eo

✔ Renew your certificates on time
You should be using TLS certificates. It can be a hassle to configure and monitor,
but don’t forget to renew them!

https://www.ssllabs.com/
https://serverlesscode.com/post/ssl-expiration-alerts-with-lambda/

✔ Monitor your authorizations
Be proactive and be alerted when authorizations or keys binary are changed in
production.

http://techblog.netflix.com/2017/03/netflix-security-monkey-on-google-
cloud.html
https://cloudsploit.com/events
http://ossec.github.io/
https://security.stackexchange.com/a/19386

 !10

https://www.digitalocean.com/community/tutorials/how-to-secure-apache-with-let-s-encrypt-on-ubuntu-14-04
https://www.digitalocean.com/community/tutorials/how-to-secure-apache-with-let-s-encrypt-on-ubuntu-14-04
https://martinfowler.com/bliki/ImmutableServer.html
https://hackernoon.com/configuration-management-is-an-antipattern-e677e34be64c#.n68b1i3eo
https://hackernoon.com/configuration-management-is-an-antipattern-e677e34be64c#.n68b1i3eo
https://www.ssllabs.com/
https://serverlesscode.com/post/ssl-expiration-alerts-with-lambda/
http://techblog.netflix.com/2017/03/netflix-security-monkey-on-google-cloud.html
http://techblog.netflix.com/2017/03/netflix-security-monkey-on-google-cloud.html
https://cloudsploit.com/events
http://ossec.github.io/
https://security.stackexchange.com/a/19386

✔ Monitor your DNS expiration date
Just like TLS certificates, DNS can expire. Make sure you monitor your DNS
expiration automatically.

https://github.com/glensc/monitoring-plugin-check_domain

 !11

https://github.com/glensc/monitoring-plugin-check_domain

PROTECTION

✔ Protect your applications against breaches
Detect and block attacks in real-time using a protection solution. At least all the
OWASP top-10 vulnerabilities (SQL injections, NoSQL injections, cross-site
scripting attacks, code/command injections, etc.) should be covered.

https://www.sqreen.io/
https://en.wikipedia.org/wiki/Web_application_firewall

✔ Enforce Two-factor authentication (2FA)
Enforce 2FA on all the services used (whenever possible).

https://duo.com/
https://auth0.com/
https://nakedsecurity.sophos.com/2016/08/18/nists-new-password-rules-what-
you-need-to-know/

✔ Have a public bug bounty program
A bug bounty program will allow external hackers to report vulnerabilities. Most of
the bug bounties program set rewards in place. You need security-aware people
inside your development teams to evaluate the reports you receive.

https://www.tripwire.com/state-of-security/vulnerability-management/launching-
an-efficient-and-cost-effective-bug-bounty-program/
https://www.hackerone.com/
https://www.bugcrowd.com/

 !12

https://www.sqreen.io/?utm_medium=social-owned&utm_source=Ebook&utm_campaign=Node.js%20Security%20Handbook
https://en.wikipedia.org/wiki/Web_application_firewall
https://duo.com/
https://auth0.com/
https://nakedsecurity.sophos.com/2016/08/18/nists-new-password-rules-what-you-need-to-know/
https://nakedsecurity.sophos.com/2016/08/18/nists-new-password-rules-what-you-need-to-know/
https://www.tripwire.com/state-of-security/vulnerability-management/launching-an-efficient-and-cost-effective-bug-bounty-program/
https://www.tripwire.com/state-of-security/vulnerability-management/launching-an-efficient-and-cost-effective-bug-bounty-program/
https://www.hackerone.com/
https://www.bugcrowd.com/

✔ Have a public security policy
This is a page on your corporate website describing how you plan to respond to
external security reports. This page should say that you support responsible
disclosure. Keep in mind that most of the reports that you receive probably won’t
be relevant.

https://www.intercom.com/security
https://www.zendesk.com/product/zendesk-security/
https://www.apple.com/support/security/

✔ Protect against Denial Of Service (DoS)
DoS attacks are meant to break your application and make it unavailable to your
customers. Use a specific service to protect your app against Denial of Service
attacks.

https://www.akamai.com/
https://www.cloudflare.com/ddos/
https://www.ovh.com/us/news/articles/a1171.protection-anti-ddos-service-
standard

✔ Protect your servers and infrastructure from scanners
Your servers will be scanned in order to fingerprint your application and locate
open services, misconfiguration, etc. You can setup tools to keep these scanners
away from your servers.

https://www.sqreen.io/
https://www.digitalocean.com/community/tutorials/how-to-protect-ssh-with-
fail2ban-on-ubuntu-14-04

 !13

https://en.wikipedia.org/wiki/Responsible_disclosure
https://en.wikipedia.org/wiki/Responsible_disclosure
https://www.intercom.com/security
https://www.zendesk.com/product/zendesk-security/
https://www.apple.com/support/security/
https://www.akamai.com/
https://www.cloudflare.com/ddos/
https://www.ovh.com/us/news/articles/a1171.protection-anti-ddos-service-standard
https://www.ovh.com/us/news/articles/a1171.protection-anti-ddos-service-standard
https://www.sqreen.io/?utm_medium=social-owned&utm_source=Ebook&utm_campaign=Node.js%20Security%20Handbook
https://www.digitalocean.com/community/tutorials/how-to-protect-ssh-with-fail2ban-on-ubuntu-14-04
https://www.digitalocean.com/community/tutorials/how-to-protect-ssh-with-fail2ban-on-ubuntu-14-04

✔ Protect your users against account takeovers
Account takeovers or brute force attacks are easy to set up. You should make sure
your users are protected against account takeovers.

https://www.sqreen.io/
https://www.owasp.org/index.php/Blocking_Brute_Force_Attacks
https://security.stackexchange.com/questions/94432/should-i-implement-
incorrect-password-delay-in-a-website-or-a-webservice

✔ Keep your containers secure
Use Docker (or Kubernetes), and ensure that they are patched and secure. Use
tools to automatically update and scan your containers for security vulnerabilities.

https://blog.sqreen.io/docker-security/
https://docs.docker.com/docker-cloud/builds/image-scan/

✔ Don’t store credit card information (if you don’t need to)
Use third-party services to store credit card information to avoid having to manage
and protect them.

https://stripe.com/
https://www.braintreepayments.com
https://www.pcisecuritystandards.org/pdfs/pciscc_ten_common_myths.pdf
https://medium.com/@folsen/accepting-payments-is-getting-
harder-1b2f342e4ea#.897akko4q

✔ Ensure Compliance with Relevant Industry Standards
Comply with standards to ensure you follow industry best practices and answer
your customer needs. But simple compliance will never protect your apps.

 !14

https://www.sqreen.io/?utm_medium=social-owned&utm_source=Ebook&utm_campaign=Node.js%20Security%20Handbook
https://www.owasp.org/index.php/Blocking_Brute_Force_Attacks
https://security.stackexchange.com/questions/94432/should-i-implement-incorrect-password-delay-in-a-website-or-a-webservice
https://security.stackexchange.com/questions/94432/should-i-implement-incorrect-password-delay-in-a-website-or-a-webservice
https://blog.sqreen.io/docker-security/
https://docs.docker.com/docker-cloud/builds/image-scan/
https://stripe.com/
https://www.braintreepayments.com/
https://www.pcisecuritystandards.org/pdfs/pciscc_ten_common_myths.pdf
https://medium.com/@folsen/accepting-payments-is-getting-harder-1b2f342e4ea#.897akko4q
https://medium.com/@folsen/accepting-payments-is-getting-harder-1b2f342e4ea#.897akko4q

https://cloudsecurityalliance.org/
https://en.wikipedia.org/wiki/ISO/IEC_27001:2013
https://en.wikipedia.org/wiki/Payment_Card_Industry_Data_Security_Standard

MONITORING

✔ Get notified when your app is under attack
You will be attacked. Make sure you have a monitoring system in place that will
detect security events targeting your application before it’s too late. Knowing
when your application is starting to get massively scanned is key to stop more
advanced attacks.

https://www.sqreen.io/
https://www.linode.com/docs/security/using-fail2ban-for-security#email-alerts
http://alerta.io/

✔ Audit your infrastructure on a regular basis
With cloud providers, it’s easy to start instances and forget about them. You will
need to create and maintain a list of your assets (servers, network devices, services
exposed etc…), and review it regularly to determine if you still need them, keep
them up to date, and ensure that they benefit from your latest deployments.

http://docs.aws.amazon.com/general/latest/gr/aws-security-audit-guide.html
http://searchenterpriselinux.techtarget.com/tip/Creating-an-inventory-with-
nmap-network-scanning
https://github.com/Netflix/security_monkey

✔ Detect attackers early
The most important attacks will come from attackers who have acquired larger
attack surfaces. Those can be attackers with regular user accounts or users having

 !15

https://cloudsecurityalliance.org/
https://en.wikipedia.org/wiki/ISO/IEC_27001:2013
https://en.wikipedia.org/wiki/Payment_Card_Industry_Data_Security_Standard
https://www.sqreen.io/?utm_medium=social-owned&utm_source=Ebook&utm_campaign=Node.js%20Security%20Handbook
https://www.linode.com/docs/security/using-fail2ban-for-security#email-alerts
http://alerta.io/
http://docs.aws.amazon.com/general/latest/gr/aws-security-audit-guide.html
http://searchenterpriselinux.techtarget.com/tip/Creating-an-inventory-with-nmap-network-scanning
http://searchenterpriselinux.techtarget.com/tip/Creating-an-inventory-with-nmap-network-scanning
https://github.com/Netflix/security_monkey

gained access to privileged user accounts. Make sure you monitor your users to
detect attackers early.

https://www.sqreen.io/

✔ Monitor third party vendors
You’re likely to use third-party products to manage your servers / payrolls / logs or
even just social media. Just like you’re likely to be hacked, they can be too. Make
sure you follow the news and react immediately after a breach.

https://haveibeenpwned.com/
https://twitter.com/SecurityNewsbot

 
 
 
 
 
 

 !16

https://www.sqreen.io/
https://haveibeenpwned.com/
https://twitter.com/SecurityNewsbot

https://www.sqreen.io/?utm_medium=social-owned&utm_source=Ebook&utm_campaign=Node.js%20Security%20Handbook
https://www.sqreen.io/?utm_medium=social-owned&utm_source=Ebook&utm_campaign=Node.js%20Security%20Handbook

https://www.sqreen.io/?utm_medium=social-owned&utm_source=Ebook&utm_campaign=Node.js%20Security%20Handbook

