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Chapter 9 - Frequently used Symbols

o

aano

o
—
=

CH70ITI-O00L TIT0Qp, O

<

Q
~
—

> << X <

variance of the number of arrivals per cycle

mean number of arrivals per cycle

cumulative lost time for phasésec)

total lost time in cycle (sec)

A(t) = cumulative number of arrivals from beginning of cycle starts yntil
index of dispersion for the departure process,

variance of number of departures during cycle
mean number of departures during cycle

B =

cycle length (sec)

capacity rate (veh/sec, or veh/cycle, or veh/h)

average delay (sec)

average uniform delay (sec)

average overflow delay (sec)

number of departures after the cycle starts until titaeh)
green extension time beyond the time to clear a queue (sec)
effective green time (sec)

displayed green time (sec)

time headway (sec)

index of dispersion for the arrival process

arrival flow rate (veh/sec)

expected overflow queue length (veh)

gueue length at tinte(veh)

effective red time (sec)

displayed red time (sec)

departure (saturation) flow rate from queue during effective green (veh/sec)
time

duration of analysis period in time dependent delay models
actuated controller unit extension time (sec)

variance of (.)

total waiting time of all vehicles during some period of time
degree of saturatio®,= (q/9 / (g/c), orx =q/C

flow ratio,y = q/S

yellow (or clearance) time (sec)

minimum headway
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TRAFFIC FLOW AT SIGNALIZED INTERSECTIONS

9.1 Introduction

The theory of traffic signals focuses on the estimation of delays
and queue lengths that result from the adoption of a signal
control strategy at individual intersections, as well as on a
sequence of intersections. Traffic delays and queues are
principal performance measures that enter into the
determination of intersection level of service (LOS), in the
evaluation of the adequacy of lane lengths, and in the estimation
of fuel consumption and emissions. The following material
emphasizes the theory @éscriptive models of traffic flows
opposed to prescriptive (i.e. signal timing) models. The
rationale for concentrating on descriptive models is that a better
understanding of the interaction between demand (i.e. arrival
pattern) and supply (i.e. signal indications and types) at traffic
signals is a prerequisite to the formulation of optimal signal
control strategies. Performance estimation is based on
assumptions regarding the characterization of the traffic arrival
and service processes. In general, currently used delay models
at intersections are described in terms of a deterministic and
stochastic component to reflect both the fluid and random
properties of traffic flow.

The deterministic component of traffic is founded on the fluid
theory of traffic in which demand and service are treated as
continuous variables described by flow rates which vary over the
time and space domain. A complete treatment of the fluid
theory application to traffic signals has been presented in
Chapter 5 of the monograph.

The stochastic component of delays is founded on steady-state
gueuing theory which defines the traffic arrival and service time
distributions. Appropriate queuing models are then used to
express the resulting distribution of the performance measures.
The theory of unsignalized intersections, discussed in Chapter 8
of this monograph, is representative of a purely stochastic
approach to determining traffic performance.

Models which incorporate both deterministic (often called
uniform) and stochastic (random or overflow) components of
traffic performance are very appealing in the area of traffic
signals since they can be applied to a wide range of traffic
intensities, as well as to various types of signal control. They are
approximations of the more theoretically rigorous models, in
which delay terms that are numerically inconsequential to the
final result have been dropped. Because of their simplicity, they

have received greater attention since the pioneering work
Webster (1958) and have been incorporated in me
intersection control and analysis tools throughout the world.

This chapter traces the evolution of delay and queue len
models for traffic signals. Chronologically speaking, earl
modeling efforts in this area focused on the adagadiion of st

state queuing theory to estimate the random component of del
and queues at intersections. This approach was valid so long as
the average flow rate did not exceed the average capacity rate.
In this case, stochastic equilibrium is achieved and expectations
of queues and delays are finite and therefore can be estimated by
the theory. Depending on the assumptions regarding the
distribution of traffic arrivals and departures, a plethora of
steady-state queuing models were developed in the literature.
These are described in Section 9.3 of this chapter.

As traffic flow rate approaches or exceeds the capacity rate, at
least for a finite period of time, the steady-state models
assumptions are violated since a state of stochastic equilibrium
cannot be achieved. In response to the need for improved
estimation of traffic performance in both under and oversaturated
conditions, and the lack of a theoretically rigorous approach to
the problem, other methods were pursued. A prime example is
the time-dependent approach originally conceived by Whiting
(unpublished) and further developed by Kimber and Hollis
(1979). The time-dependent approach has been adopted in many
capacity guides in the U.S., Europe and Australia. Because it is
currently in wide use, it is discussed in some detail in Section 9.4
of this chapter.

Another limitation of the steady-state queuing approach is the
assumption of certain types of arrival processes (e.g Binomial,
Poisson, Compound Poisson) at the signal. While valid in the
case of an isolated signal, this assumption does not reflect the
impact of adjacent signals and control which may alter the
pattern and number of arrivals at a downstream signal. Therefore
performance in a system of signals will differ considerably from
that at an isolated signal. For example, signal coordination will
tend to reduce delays and stops since the arrival process will be
different in the red and green portions of the phase. The benefits
of coordination are somewhat subdued due to the dispersion of
platoons between signals. Further, critical signals in a system
could have a metering effect on traffic which proceeds
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9. TRAFFIC FLOW AT SIGNALIZED INTERSECTIONS

downstream. This metering reflects the finite capacity of the without reference to their impact on signal performance. TI
critical intersection which tends to truncate the arrival manner in which these controls affect performance is quit
distribution at the next signal. Obviously, this phenomenon has diverse and therefore difficult to model in a generalize
profound implications on signal performance as well, fashion. In this chapter, basic methodological approaches a
particularly if the critical signal is oversaturated. The impact of concepts are introduced and discussed in Section 9.6.
upstream signals is treated in Section 9.5 of this chapter. complete survey of adaptive signal theory is aypadthe

this document.
With the proliferation of traffic-responsive signal control
technology, a treatise on signal theory would not be complete

9.2 Basic Concepts of Delay Models at Isolated Signals

As stated earlier, delay models contain both deterministic and time is that portion of green where flows are sustained at
stochastic components of traffic performance. The deterministic saturation flow rate level. It is typically calculated at th
component is estimated according to the following assumptions: displayed green time minus an initial start-up lost time (2
a) a zero initial queue at the start of the green phase, b) a seconds) plus an end gain during the clearance interval
uniform arrival pattern at the arrival flow rat) throughout the seconds depending on the length of the clearance phase).

cycle c) a uniform departure pattern at the saturation flow rate

(S while a queue is present, and at the arrival rate when the A simple diagram describing the delay process in shown in
gueue vanishes, and d) arrivals do not exceed the signal capacity, Figure 9.1. The queue profile resulting from this application is
defined as the product of the approach saturation flow Sate ( shown in Figure 9.2. The area under the queue profile

and its effective green to cycle rat@wd). The effective green diagram represents the total (deterministic) cyclic delay. Several
( a) Arrival and Departure Process
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Figure 9.1
Deterministic Component of Delay Models.
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Figure 9.2
Queuing Process During One Signal Cycle
(Adapted from McNeil 1968).

performance measures can be derive including the average delay

per vehicle (total delay divided by total cyclic arrivals) the
number of vehicle stopped)(), the maximum number of
vehicles in the queud),) , and the average queue length
(Qa- Performance models of this type are applicable to low
flow to capacity ratios (up to about 0.50), since the assumption
of zero initial and end queues is not violated in most cases.

As traffic intensity increases, however, there is a increased
likelihood of “cycle failures”. That is, some cycles will begin to
experience an overflow queue of vehicles that could not
discharge from a previous cycle. This phenomenon occurs at
random, depending on which cycle happens to experience
higher-than-capacity flow rates. The presence of an initial queue
(Q, causes an additional delay which must be considered in the
estimation of traffic performance. Delay models based on queue
theory (e.g. M/D/n/FIFO) have been applied to account for this
effect.

Interestingly, at extremely congested conditions, the stoch
gueuing effect are minimal in comparison with the size of
oversaturation queues. Therefore, a fluid theory approach may
be appropriate to use for highly oversaturated intersections.
This leaves a gap in delay models that are applicable to the
range of traffic flows that are numerically close to the signal
capacity. Considering that most real-world signals are timed to
operate within that domain, the value of time-dependent models
are of particular relevance for this range of conditions.

In the case of vehicle actuated control, neither the cycle length
nor green times are known in advance. Rather, the length of the
green is determined partly by controller-coded parameters such
as minimum and maximum green times, and partly by the pattern
of traffic arrivals. In the simplest case of a basic actuated
controller, the green time is extended beyond its minimum so
long as a) the time headway between vehicle arrivals does not
exceed the controll&s unit extension), and b) the maximum
green has not been reached. Actuated control models are
discussed further in Section 9.6.
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9.3 Steady-State Delay Models

9.3.1 Exact Expressions

This category of models attempts to characterize traffic delays

based on statistical distributions of the arrival and departure

processes. Because of the purely theoretical foundation of the
models, they require very strong assumptions to be considered
valid. The following section describes how delays are estimated
for this class of models, including the necessary data

requirements.

The expected delay at fixed-time signals was first derived by
Beckman (1956) with the assumption of the binomial arrival
process and deterministic service:

cg (2 cgil
c(l-99 q 2

] (9.1)

where,

signal cycle,

effective green signal time,

traffic arrival flow rate,

departure flow rate from queue during green,

, = expected overflow queue from previous cycles.

O mwaeao

The expected overflow queue used in the formula and the
restrictive assumption of the binomial arrival process reduce the
practical usefulness of Equation 9.1. Litl®61) analyzed the
expected delay at or near traffic signals to a turning vehicle
crossing a Poisson traffic stream. The analysis, however, did not
include the effect of turners on delay to other vehicles. Darroch
(1964a) studied a single stream of vehicles arriving at a
fixed-time signal. The arrival process is the generalized Poisson
process with the Index of Dispersion:

var(A)
gh

|- (9.10)

where,
var(.)= variance of (.)
g = arrival flow rate,
h = interval length,
A = number of arrivals during intervial= gh.

The departure process is described by a flexible service mecha-
nism and may include the effect of an opposing stream by defin-
ing an additional queue length distribution caused by this factor.
Although this approach leads to expressions for the expected
gueue length and expected delay, the resulting models are
complex and they include elements requiring further modeling
such as the overflow queue or the additional queue component
mentioned earlier. From this perspective, the formula is not of
practical importance. McNeil (1968) derived a formula for the
expected signal delay with the assumption of a general arrival
process, and constant departure time. Following his work, we
express the total vehicle delay during one signal cycle as a sum
of two components

W = Wl + W2! (93)

where
W, = total delay experienced in the red phase and
W, = total delay experienced in the green phase.
W, = [€P[Q0) +Am]dt (9.4)
and
W, = [© Q(ydt
A f( c_g)Q( ) (9.5)
where,
Q(t) = vehicle queue at tinte
A(t) = cumulative arrivals dt
Taking expectations in Equation 9.4 it is found that:
1
EW) = (c-0)Q, + Salc-9” (9.6)

Let us define a random varialdg as the total vehicle delay
experienced during green when the signal cycle is infinite. The
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variable Z, is considered as the total waiting time in a busy
period for a queuing proces3(t) with compound Poisson
arrivals of intensityg, constant service time3and an initial

system stat@(t=t,). McNeil showed that provideg/S<1:

(1+19/S-9/9 EQ(t)] E[Q(t)]

EZ) -

Now W, can be expressed using the variahle

EW,) = E[Z,| Q(t=c-9)] - E[Z,| Q(t=0)]

and
gy - LIS EQ-g) - QAP
25(1- q/s)2
E[Q*c-g)] - E[Q* O]
2S(1-g/9

The queue is in statistical equilibrium, only if the degree of

saturatiorx is below 1,
X = 9S < 1.

glc

For the above condition, the average number of arrivals per cycle
can discharge in a single green period. In this Ea&Q&0)

1 = E[Q()]andE[Q?*(0)] = E[Q*c) ]. AlsoQ (c-g) =

Q(0) + A(c) so that:

E[Q(c-9) -Q(9)] = E[A(c-9)] = a(c-9)

and

E[Q?(c-9) -Q?(0)] - 2E[A(c-9)] E[Q(0)] +
E[A%(c-g)]
2q(c-9)Q,+a’(c-g)*+
q(c-gl

2S(1- /9> 2s(1-99°

(9.7)

(9.8)

(9.9)

(9.10)

(9.11)

(9.12)

Equations 9.9, 9.11, and 9.12 yield:
1

EW) = ————[(1+1a/S-a/9g(c-9)
25(1-0/9

- (1-U9(ac-9Q, + (5-13)
9%(c-9)* + a(c-g)I)]

and using Equations 9.3, 9.4 and 9.13, the following is obtained:
& “9fge 41
s 1-g/S

The average vehicle deldyis obtained by dividing (W) by the
average number of vehicles in the cy@e).

1 I
d= m[( -g) + §(1+17q/8)] (9.15)

__(9
=W c(1-a9

(9.14)

which is in essence the formula obtained by Darroch when the
departure process is deterministic. For a binomial arrival
procesd=1-g/S and Equation 9.15 becomes identical to that
obtained by Beckmann (1956) for binomial arrivals. McNeil
and Weiss (in Gazis 1974) considered the case of the compound
Poisson arrival process and general departure process obtaining
the following model:

e {(C 0-2[1, A9 Bq,

2¢(1-g/9 2S 016

S

L 1+B%y
S q,;)

An examination of the above equation indicates that in the case
of no overflow Q= 0), and no randomness in the traffic process
(1=0), the resultant delay becomes the uniform delay component.
This component can be derived from a simple input-output
model of uniform arrivals throughout the cycle and departures as
described in Section 9.2. The more general case in Equation
9.16 requires knowledge of the size of the average overflow
gueue (or queue at the beginning of green), a major limitation on
the practical usefulness of the derived formulae, since these are
usually unknown.
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A substantial research effort followed to obtain a closed-form
analytical estimate of the overflow queue. For example, Haight
(1959) specified theanditional probability of the overflow
gueue at the end of the cycle when the queue at the beginning of
the cycle is known, assuming a homogeneous Poisson arrival
process at fixed traffic signals. The obtained results were then
modified to the case of semi-actuated signals. Shortly thereatfter,
Newell (1960) tilized a bulk service queuing model with an
underlying binomial arrival process and constant departure time,
using generating function technique. Explicit expressions for
overflow queues were given for special cases of the signal split.

Other related work can be found in DarrotB§4a) who used

a more general arrival distribution but did not produce a closed
form expression of queue length, and Kleinecke (1964), whose
work included a set of exact but complicated series expansion
for Q,, for the case of constant service time and Poisson arrival
process.

9.3.2 Approximate Expressions

The difficulty in obtaining exact expressions for delay which are
reasonably simple and can cover a variety of real world condi-
tions, gave impetus to a broad effort for signal delay estimation
using approximate models and bounds. The first, widely used
approximate delay formula was developed by Webster (1961,
reprint of 1958 work with minor amendments) from a

combination of theoretical and numerical simulation approaches:

_ dl-glo? ¥
2[1-(g/0)x]  20q(1-x)

1

70.65(%)§x2*5<9’°) (9.17)
q

where,
d = average delay per vehicle (sec),
¢ = cycle length (sec),
g = effective green time (sec),
x = degree of saturation (flow to capacity ratio),
g = arrival rate (veh/sec).

The first term in Equation 9.17 represents delay when traffic can
be considered arriving at a uniform rate, while the second term
makes some allowance for the random nature of the arrivals.
This is known as the "random delay’, assuming a Poisson arrival

process and departures at constant rate which corresponds to the

signal capacity. The latter assumption does not reflect actual

signal performance, since vehicles are served only during 1
effective green, obviously at a higher rate than theteapacity r:
The third term, calibrated based on simulation experiments, is a
corrective term to the estimate, typically in the range of
percent of the first two terms in Equation 9.17.

Delays were also estimated indirectly, through timeoéstimatio
Q,, the average overflow queue. Milldr963) for example ob-
tained a approximate formulae 1@y, that are applicable to any
arrival and departure distributions. He started with the general
equality true for any general arrival and departure processes:

Q(c) = Q0) + A - C +AC (9.18)

where,
Q(c) = vehicle queue at the end of cycle,
Q@) = vehicle queue at the beginning of cycle,
A = number of arrivals during cycle,
C = maximum possible number of departures
during green,
AC = reserve capacity in cycle equal to

(C-QO)-A) if Q0)+A < C, zero otherwise.

Taking expectation of both sides of Equation 9.18, Miller
obtained:

E(AC) - E(C-A), (9.19)

since in equilibriunQ() = Q(c).

Now Equation 9.18 can be rewritten as:

Q(c) -[AC-E(AC)] = Q(0) - [C-A-E(C-A)] (9.20)

Squaring both sides, taking expectations, the following is
obtained:

E[Q(c)]?+ 2E[Q(c)] E(AC] + Var(AC) =

E[Q(0))*+ Var(C - A) (9-21)

9-6
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For equilibrium onditions, Equation 9.21 can be rearranged as
follows:

_Var(C-A) - Var(AC)
2E(C-A)

Q, (9.22)

where,
C = maximum possible humber of departures in
one cycle,
A = number of arrivals in one cycle,
AC = reserve capacity in one cycle.

The componenVar(AC) is positive and approaches 0 when
E(C) approache&(A). Thus an upper bound on the expected
overflow queue is obtained by deleting that term. Thus:

B Var(C-A)

Qs 2E(C-A)

(9.23)

For example, using Darroch's arrival process BE@)=qc,
Var(A)=Iqc) and constant departure time during green
(E(C)=Sg Var(C)=0) the upper bound is shown to be:

IX
2(1-x)

Qy< (9.24)

wherex=(qc)/(Sg)

Miller also considered an approximation of the excluded term
Var(4AC). He postulates that:

I~ Var(AC)

EC A (9.25)

and thus, an approximation of the overflow queue is

Qoz% , x>0.50 (9.26)

which can now be substituted in Equation 9.15. Furth
approximations of Equation 9.15 were aimed at simplifying it for
practical purposes by neglecting the third and fourth terms which
are typically of much lower order of magnitude than the first two

terms. This approach is exemplified by Mill&968a) who
proposed the approximate formula:
_ 2
- (209 g g o QO] (9.27)
2(1-g/s) q

which can be obtained by deleting the second and third terms in
McNeil's formula 9.15. Mler also gave an expression for the
overflow queue formula under Poisson arrivals and fixed service
time during the green:

o & |-1.33/SgT 0

X TS (9.28)

Equations 9.15, 9.16, 9.17, 9.27, and 9.28 are limited to specific
arrival and departure processes. Newell (1965) aimed at devel-
oping delay formulae for general arrival and departure distribu-
tions. First, he concluded from a heuristic graphical argument
that for most reasonable arrival and departure processes, the
total delay per cycle differs from that calculated with the
assumption of uniform arrivals and fixed service times (Clayton,
1941), by a negligible amount if the traffic intensity is sufficient-

ly small. Then, by assuming a queue discipline LIFO (Last In
First Out) which does not effect the average delay estimate, he
concluded that the expected delay when the traffic is sufficiently
heavy can be approximated:

g
>

- 20-03 (9.29)

This formula gives identical results to formula (Equation 9.15)

if one neglects components oSWrder in (Equation 9.15) and
when 1¢/S=1-g/c. The last condition, however, is never met if
equilibrium conditions apply. To estimate the overflow queue,
Newell (1965) define&,, as the cumulative distribution of the
overflow queue lengtl;, , as the cumulative distribution of the
overflow in the cycle, where the indicdsandD represent
cumulative arrivals and departures, respectively. He showed that
under equilibrium conditions:
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N where,
Fo(d-= fo Fo(@dF, p(x-2) (9.30)
_Sg-qc

. . . 12’
The integral in Equation 9.30 can be solved only under the (1S9
restrictive assumption that the overflow in a cycle is normally
distributed. The resultant Newell formula is as follows:

(9.33)

The functionH(u) has been provided in a graphical form.

Moreover, Newell compared the results given by expressions
(9.31) (Equation 9.29) and (Equation 9.31) with Webster's formula and

added additional correction terms to improve the results for

medium traffic intensity conditions. Newell's final formula is:

Q - qo(l—x)fn/z tarfo
° II Jo —1+expSgl-%?(2cod)]

A more convenient expression has been proposed by Newell in
the form:

(L-glo)
251-¢/9%

+

o

C2(1-
o - H (X (1-99

2020 (9.32)

Table 9.1
Maximum Relative Discrepancy between the Approximate Expressions
and Ohno's Algorithm (Ohno 1978).

.
I Range ofy = 0.0 = 0.5 Range of g/c=0.4 ~ 1.0 I

Approximate Expressions s=0.5v/s s=1.5v/s s=0.5Vv/s sF1.5v/s
(Equation #, Q, computed according
to Equation #)

c=90s c=30s c=90s c=30s c=30s c=90s

g=46s g=16s g=4533s g=1533s gqg=02s q=06s

Modified Newell's expression (9.15, 0.82 2.53 0.25 0.82 2.83 0.25-
9.31)

McNeil's expression (9.15, Miller 1969) 0.49 1.79 0.12 0.49 151 0.08

I Modified Miller's expression (9.15, 0.22 2.60 -0.53 0.22 2.24 0.26 I
9.28)

W ebster's full expression (9.17) -8.04 -21.47 3.49 -7.75 119.24 1381.10
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More recently, Cronje 1083b) proposed an analytical
approximation of the functioH(u):

H(u) = exp[-p-(u72)] (9.35)

where,

H=(1-x) (S9*2 (9.36)

He also proposed that the correction (third) component in Equa-
tion 9.34 could be neglected.

Earlier evaluations of delay models by Allsop (1972) and
Hutchinson (1972) were based on the Webster model form.
Later on, OhnoX978) carried out a comparison of the existing

overflow queue calculated with théochadescribed by

Miller 1969), McNeil's formula with overflow queue according
to Miller (Equation 9.28) (modified Miller's expression),
McNeil's formula with overflow queue according to Newell
(Equation 9.31) (modified Newell's expression), Webster
expression (Equation 9.17) and the original Newell expression
(Equation 9.34). Comparative results are depicted in Table 9.1
and Figures 9.3 and 9.4. Newell's expression appear to be more
accurate than Webster, a conclusion shared by Hutchinson
(1972) in his evaluation of three simplified models (Newell,
Miller, and Webster). Figure 9.3 represents the percentage
relative errors of the approximate delay models measured against
Ohno’s algorithm (Ohnd978) for a range of flow ratios. The
modified Miller's and Newell's expressions give almost exact
average delay values, but they are not superior to the original
McNeil formula. Figure 9.4 shows the same type of errors,

categorized lgydinatio. Further efforts to improve on their

delay formulae for a Poisson arrival process and constant
departure time during green. He developed a computational
procedure to provide the basis for evaluating the selected
models, namely McNeil's expression, Equation 9.15 (with

estimates will not give any appreciable reduction in the errc
The modified Miller expression was recommended by Oh
because of its simpler form compared to McNeil's and Newe

9.4 Time-Dependent Delay Models

The stochastic equilibrium assumed in steady-state models
requires an infinite time period of stable traffic conditions
(arrival, service and control processes) to be achieved. At low
flow to capacity ratios equilibrium is reached in a reasonable
period of time, thus the equilibrium models are an acceptable
approximation of the real-world process. When traffic flow ap-
proaches signal capacity, the time to reach statistical equilibrium
usually exceeds the period over which demand is sustained.
Further, in many cases the traffic flow exceeds capacity, a
situation where steady-state models break down. Finally, traffic
flows during the peak hours are seldom stationary, thus violating
an important assumption of steady-state mod&lsere has

been many attempts at circumventing the limiting assumption
of steady-state conditions. The first and simplest way is to deal
with arrival and departure rates as a function of time in a
deterministic fashion. Another view is to model traffic at signals, ~ and departures D(t) under continuous presence of vehicle
assuming stationary arrival and departure processes but not gueue over the period [0,4:

necessarily under stochastic equilibrium conditions, in order to t

estimate the average delay and queues over the modeled period D@ = fo Sm)de
of time. The latter approach approximates the time-dependent

arrival profile by some mathematical function (step-function,

paraboliogedaridunctions) and calculates the cormsp

ing delay. In May and Keller (1967) delay and queues are calci
lated for an unsignalized bottleneck. Their work issgeverthel
representative of the deterministic modeling approach and ¢
be easily modified for signalized intersections. The gene

assumption in their research is that the random quel
fluctuations can be neglected in delay calthlationslel

defines a cumulative number of arrivals A(?):

At)- fO‘q(r)dr (9.37)

(9.38)
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Relative errors of Expressions (N), (MM), (MN)

Percentage Relative Errors for Approximate Delay

2

Models by Flow Ratios (Ohno 1978).
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The current number of vehicles in the system (queue) is

Q1) =Q(0)+A(t) -D(t) (9.39)

and the average delay of vehicles queuing during the time period
[0,T]is
1

d=—_
A(T)

fOTQ(t)dt (9.40)

The above models have been applied by May and Keller to a
trapezoidal-shaped arrival profile and constant departure rate.
One can readily apply the above models to a signal with known
signal states over the analysis period by substit@iqvy for

S(7) in Equation 9.38:

C(r) = 0Oifsignalis red,

= Y1) if signal is green anQ(t) > 0,
= q(t) if signal is green anQ(t) = 0.

Deterministic models of a single term like Equation 9.39 yield
acceptablaccuracy only wher<<1 orx>>1. Otherwise, they

tend to underestimate queues and delays since the extra queues
causes by random fluctuationsgandC are neglected.

According to Catling (1977), the now popular coordinate
transformation technique was first proposed by Whiting, who did
not publish it. The technique when applied to a steady-state
curve derived from standard queuing theory, produces a time-
dependent formula for delays. Delay estimates from the new
models when flow approaches capacity are far more realistic
than those obtained from the steady-state model. The following
observations led to the development of this technique.

m At low degree of saturatiorx€<1) delay is almost equal
to that occurring when the traffic intensity is uniform
(constant over time).

m At high degrees of saturationx>1) delay can be
satisfactory described by the following deterministic model
with a reasonable degree of accuracy:

dzdﬁg(x—l) (9.41)

whered, is the delay experienced at very low traffic
intensity, (uniform delay) = analysis period over which
flows are sustained.

steady-state delay models are asymptotic to the y-axis (i.e
generate infinite delays) at unit traffic intensiy{). The
coordinate transformation method shifts the original
steady-state curve to become asymptotic to the
deterministic oversaturation delay line--i.e.-- the second
term in Equation 9.41--see Figure 9.5. The horizontal
distance between the proposed delay curve and its
asymptote is the same as that between the steady-state
curve and the vertical line=1.

There are two restrictions regarding the application of the
formula: (1) no initial queue exists at the beginning of the
interval [0]T], (2) traffic intensity is constant over the interval
[0,T]. The time-dependent model behaves reasonably within the
period [0T] as indicated from simulation experiments. Thus,
this technique is very useful in practice. Its principal drawback,
in addition to the above stated restrictions (1) and (2) is the lack
of a theoretical foundation. Catling overcame the latter diffi-
culties by approximating the actual traffic intensity profile with
a step-function. Using an example of the time-dependent
version of the Pollaczek-Khintchine equation (T282), he
illustrated the calculation of average queue and delay fol
time interval starting from an initial, non-zero queue.

Kimber and Hollis {979) presented a computational algorithm
to calculate the expected queue length for a system with random
arrivals, general service times and single channel service
(M/G/1). The initial queue can be defined through its
distribution. To speed up computation, the average initial queue
is used unless it is substantially different from the queue at
equilibrium. In this case, the full computational algorithm
should be applied. The non-stationary arrival process is approxi-
mated with a step-function. The total delay in a time period is
calculated by integrating the queue size over time. The
coordinate transformation method is described next in some
detail.

Suppose, at tim&=0 there ar&)(0) waiting vehicles in queue
and that the degree of saturation changes rapidly ko a deter-
ministic model the vehicle queue changes as follows:

QM) = Q) + (x-1)CT. (9.42)
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The Coordinate Transformation Method.
The steady-state expected queue length from the modified The following derivation considers the case of exponent
Pollaczek-Khintczine formula is: service times, for which? = p?, B =1. Letx, be the degree of
saturation in the deterministic model (Equation 9.42&fers to
- Bx2 the steady-state conditions in model (Equation 9.44), while
Q=x+ 1-x (9.43) refers to the time-dependent model such @@ T)=Q(x ,T)

To meet the postulate of equal distances between the curves and
the appropriate asymptotes, the following is true from Figure
whereB is a constant depending on the arrival and departure 9.5:
processes and is expressed by the following equation.

2 I-x=x%-X (9.45)
B=051+— (9.44)
u2
and hence
whereo? andp are the variance and mean of the service time X = X - (xg-1) (9.46)

distribution, respectively.
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and from Equation 9.42:

b - 4[Q(0) +xCT[CT - (1-B)(Q(0) + xCT)]

-Q(0 ~ - (9.54)
y, - QD-QO , (0.47) CT+(1-B)
CT
the transformation is equivalent to setting: The equation for the average delay for vehicles arriving during
the period of analysis is also derived starting from the average
X = X - M_ (9.48) delay per arriving vehicld, over the period [(],
CT '
1
0)+1]+=(x-1)CT
| 7[Q( )+1] 2( ) (9.55)
=
C
From Figure 9.5, it is evident that the queue length at Time
Q(T) is the same at, x;,andx,. By substituting folQ(T) in
Equation 9.44, and rewriting Equation 9.48 gives: and the steady-stateldelay
QN ., QAN-Q) d. - L@+ BXy 9.56
By eliminating the indeX in X, and solving the second degree The transformed time dependent equation is
polynomial in Equation 9.49 fd(T), it can be shown that: 1
1 dZE[(a2+b)”2fa] (9.57)
Q(DZE[(a%b)”Zfa] (9.50)
with the corresponding parameters:
where T 1
a=—(1-x)-=[Q(0)-B+2
a-(1-Y)CT+1-Q(0) (9.51) 510 ¢l B2] (9.58)
and and
b = 4[Q(0) +xCT]. (9.52) b-2T1-xLIxe- 014 gy (9.59)
c 2 2 C
If the more general steady state Equation 9.43 is used, the result
for Equation 9.51 and 9.52 is: The derivation of the coordinate transformation technique has
) been presented. The steady-state formula (Equation 9.43) does
a= (1-x)(CN"+[1-Q0)ICT-2(1-B)[Q(0)+xCT] (9.53) not appear to adequately reflect traffic signal performance, since
CT+(1-B) a) the first term (queue for uniform traffic) needs further

elaboration and b) the constdhinust be calibrated for cases
that do not exactly fit the assumptions of the theoretical queuing
and models.
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Akgelik (1980) utilized the coordinate transformation technique
to obtain a time-dependent formula which is intended to be more
applicable to signalized intersection performance than Kimber-
Hollis's. In order to fdtitate the derivation of a time-dependent
function for the average overflow queQe, Akcelik used the
following expression for undersaturated signals as a simple
approximation to Miller's second formula for steady-state queue
length (Equation 9.28):

1.5(k-x
15kx) when »x,,

Q, = 1-x (9.60)
0 otherwise

where
Sg

x_ = 0.67
o + 600 (9.61)

Akcelik's time-dependent function for the average overflow
queue is

12(X7XO)

o (CENACRAEEy

when %X,

Q, = (9.62)

0 otherwise

The formula for the average uniform delay during the interval
[0,T] for vehicles which arrive in that interval is

LW when x1
2(1-9/9

(c-9)/2

d =

Q,
r 5 (063

when x1

Generalizations of Equations 9.60 and 9.61 were discussed by
Akgelik (1988) and Akgelik and Rouphail (1994). hosild be
noted that the average overflow queRgis an approximation

of the McNeil (Equation 9.15) and Miller (Equation 9.28)
formulae applied to the time-dependent conditions, and differs
from Newell's approximations Equation 9.29 and Equation 9.34
of the steady-state conditions. According to Akcelik (1980), this

approximation is relevant to high degrees of saturatiemd its
effect is negligible for most practical purposes.

Following certain aspects of earlier works by Haight (1963),
Cronje (1983a), andllst (1968a); Olszewski (1990) used
non-homogeneous Markov chain techniques to calculate
stochastic queue distribution using the arrival distribUgiim)
and capacity distributioR(C). Probabilities of transition from
a queue of to j vehicles during one cycle are expressed by the
following equation:

Pi,j(t):g(:) P,(LOP(C) (9.64)
and
C-i
P(t,A=K) when kC,
PotO) = { i (9.65)
0 otherwise
and
P(t,A=j-i+C) when ji-C,
P (tC)= (9.66)
’ 0 otherwise

The probabilities of queue states transitions at tifoem the
transition matrixP(t). The system state at tihés defined with
the overflow queue distribution in the form of a row ve&gft).
The initial system state variable distribution at titne0 is
assumed to be knowi(0)=[P,(0), P40),..P (0)], whereP (0)

is the probability of queue of lengtlat time zero. The vector of
state probabilities in any cyctecan now be found by matrix
multiplication:

Po(t) = Po(t-1) P(t). (9.67)

Equation 9.67, when applied sequentially, allows for the calcula-
tion of queue probability evolution from any initial state.

In their recent work, Brilon and WuUL990) used a similar
computational technique to Olszewski's (1990a) in order to
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evaluate existing time-dependent formulae by Catling (1977), which incorporate the impact of the arrival profile shape (e.g. t
Kimber-Hollis (1979), and Akgelik (1980). A comparison of peaking intensity) on delay. In this examination of delay models
the models results is given in Figures 9.6 and 9.7 for a parabolic in the time dependent mode, delay is defined according to
arrival rate profile in the analysis peridg They found that the path trace method of measurement (Rouphail and Akgelik
Catling method gives the best approximation of the average 1992a). This method keeps track of the departure time of each
delay. The underestimation of delays observed in the Akgelik's vehicle, even if this time occurs beyond the analyBis period
model is interpreted as a consequence of the authors' using an The path trace method will tend to generate delays tha
average arrival rate over the analyzed time period instead of the typically longer than the queue sampling method, in wh
step function, as in the Catling's method. When the peak flow stopped vehicles are sampled every 15-20 seconds for
rate derived from a step function approximation of the parabolic duration of the analysis period. In oversaturated tomditions,
profile is used in Akgelik's formula, the results were virtually measurement of delay may yield vastly different results a
indistinguishable from Brilon and Wu's (Akcelik and Rouphail vehicles may discharge 15 or 30 minutes beyond the analys
1993). period. Thus it is important to maintain consistency between
delay measurements and estimation methods. For a detailed
Using numeric results obtained from the Markov Chains discussion of the delay measurement methods and their imp
approach, Brilon and Wu developed analytical approximate (and on oversaturation delay estimation, the reader is referrec
rather complicated) delay formulae of a form similar to Akgelik's Rouphail and Akgelik (1992a).
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Figure 9.6
Compatrison of Delay Models Evaluated by Brilon
and Wu (1990) with Moderate Peaking (z=0.50).

Figure 9.7
Compatrison of Delay Models Evaluated by Brilon
and Wu (1990) with High Peaking (z=0.70).
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9.5 Effect of Upstream Signals

The arrival process observed at a point located downstream of
some traffic signal is expected to differ from that observed
upstream of the same signal. Two principal observations are
made: a) vehicles pass the signal in "bunches" that are separated
by a time equivalent to the red signal (platooning effect), and b)
the number of vehicles passing the signal during one cycle does
not exceed some maximum value corresponding to the signal
throughput (filtering effect).

9.5.1 Platooning Effect On Signal
Performance

The effect of vehicle bunching weakens as the platoon moves
downstream, since vehicles in it travel at various speeds,
spreading over the downstream road section. This phenomenon,
known as platoon diffusion or dispersion, was modeleddoe?
(1956). He derived the travel time distributigr) along a road
section assuming normally distributed speeds and unrestricted
overtaking:

(2 -2y
T

-~ (9.68)
[0)

where,
D= distance from the signal to the point where arrivals
are observed,
T= individual vehicle travel time along distaride
T= mean travel time, and
o= standard deviation of speed.

The travel time distribution is then used to transform a traffic
flow profile along the road section of distarige

du(ty) dt, = ft 0y (ty) f(t,-t) dt; dt (9.69)

where,

0,(t,)dt,= total number of vehicles passing some
point downstream of the signal in the
interval ¢, t+dt),

g,(t)dt, = total number of vehicles passing the
signal in the intervalt( t+dt), and

f(t-t) = probability density of travel time,(- t,)

according to Equation 9.68.

The discrete version of the diffusion model in Equation 9.69 is

%) = X () al-i) (9.70)

wherei andj are discrete intervals of the arrival histograms.

Platoon diffusion effects were observed by Hillier and Rothery
(1967) at several consecutive points located downstream of
signals (Figure 9.8). They analyzed vehicle delays at pretimed
signals using the observed traffic profiles and drew the following
conclusions:

u the deterministic delay (first term in approximate delay
formulae) strongly depends on the time lag between the
start of the upstream and downstream green signals
(offset effect);

the minimum delay, observed at the optimal offset,
increases substantially as the distance between signals
increases; and

the signal offset does not appear to influence the
overflow delay component.

The TRANSYT model (Robertson 1969) is a waibwn
example of a platoon diffusion model used in the estimation of
deterministic delays in a signalized network. It incorporates the
Robertson's diffusion model, similar to the discrete version of the
Pacey's model in Equation 9.70, but derived with the assumption
of the binomial distribution of vehicle travel time:

|
a,(0) = Toan

a,) - (1*1+—1m) a0-1) (9.71)

wherer is the average travel time aads a parameter which
must be calibrated from field observations. The Robertson
model of dispersion gives results which are satisfactory for the
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Figure 9.8
Observations of Platoon Diffusion
by Hillier and Rothery ( 1967).
purpose of signal optimization and traffic performance analysis In the TRANSYT model, a flow histogram of traffic servec
in signalized networks. The main advantage of this model over (departure profile) at the stopline of the upstream stgnal is fi
the former one is much lower computational demand which is a constructed, then transformed between two signals using m
critical issue in the traffic control optimization for a large size (Equation 9.71) in order to obtain the arrival patteens at t
network. stopline of the downstream signal. Deterministic delays at

the downstream signal are computed using the transformed
arrival and output histograms.

9-17
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To incorporate the upstream signal effect on vehicle delays, the
Highway Capacity Manual (TRB 1985) uses a progression factor
(PF) applied to the delay computed assuming an isolated signal.
A PF is selected out of the several values based on a platoon
ratiof, . The platoon ratio is estimated from field measurement
and by applying the following formula:

(9.72)

where,

PVG = percentage of vehicles arriving during the
effective green,

g = effective green time,

C = cycle length.

Courage et al. (1988) compared progression factor values
obtained from Highway Capacity Manual (HCM) with those
estimated based on the results given by the TRANSYT model.
They indicated general agreement between the methods,
although the HCM method is less precise (Figure 9.9). To avoid
field measurements for selecting a progression factor, they
suggested to compute the plan ratiof, from the ratios of
bandwidths measured in the time-space diagram. They showed
that the proposed method gives values of the progression factor
comparable to the original method.

Rouphail (1989) developed a set of analytical models for direct
estimation of the progression factor based on a time-space
diagram and traffic flow rates. His method can be considered a
simplified version of TRANSYT, where the arrival histogram
consists of two uniform rates with in-platoon and out-of-platoon
traffic intensities. In his method, pdain dispersion is also based
on a simplified TRANSYT-like model. The model is thus
sensitive to both the size and flow rate of platoons. More
recently, empirical work by Fambro et @1991) and theoretical
analyses by Olszewski (1990b) have independently confirmed
the fact that signal progression does not influence overflow
gueues and delays. This finding is also reflected in the most
recent update of the Signalized Intersections chapter of the
Highway Capacity Manual (1994). Morecently, Akcelik
(1995a) applied the HCM progression factor concept to queue
length, queue clearance time, and proportion queued at signals.

The remainder of this section briefly summarizes recent w

pertaining to the filtering effect of upstream signals, and t
resultant overflow delays and queues that can be anticipated at
downstream traffic signals.

9.5.2 Filtering Effect on Signal Performance

The most general steady-state delay models have been derived
by Darroch (1964a), Newell965), and McNeil (1968) for the
binomial and compound Poisson arrival processes. Since these
efforts did not deal directly with upstream signals effect, the
guestion arises whether they are appropriate for estimating
overflow delays in such conditions. Van As (1991) addressed
this problem using the Markov chain technique to model delays
and arrivals at two closely spaced signals. He concluded that the
Miller's model (Equation 9.27) improvesngom delay estima-

tion in comparison to the Webster model (Equation 9.17).
Further, he developed an approximate formula to transform the
dispersion index of arrival$,, at some traffic signal into the
dispersion index of departurds, from that signal:

B = | exp(-1.3F%62% (9.73)

with the factorF given by

(9.74)

This model (Equation 9.73) can be used for closely spaced
signals, if one assumes the same value of thelratomg a road
section between signals.

Tarko et al. (1993) investigated the impact of an upstream signal
on random delay using cycle-by-cycle macrosimulation. They
found that in some cases the rdtaoes not properly represent
the non-Poisson arrival process, generally ltieguin delay
overestimation (Figure 9.10).

They proposed to replace the dispersion intlewith an
adjustment factdrwhich is a function of the difference between
the maximum possible number of arrivaisobservable during
one cycle, and signal capacig
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HCM Progression Adjustment Factor vs Platoon Ratio
Derived from TRANSYT-7F (Courage et al. 1988).
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Analysis of Random Delay with Respect to the Differential Capacity Factor (f)
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f-1-eXmS9 (9.75)

wherea is a model parametex,< 0.

A recent paper by Newelll90) proposes an interesting
hypothesis. The author questions the validity of using random
delay expressions derived for isolated intersections at internal
signals in an arterial system. He goes on to suggest that the sum
of random delays at all intersections in an arterial system with no
turning movements is equivalent to the random delay at the
critical intersection, assuming that it is isolated. Tarko et al.
(1993) tested the Newell hypothesis using a computational

9.6 Theory of Actuated and Adaptive Signals

The material presented in previous sections assumed fixed time
signal control, i.e. a fixed signal capacity. The introduction of
traffic-responsive control, either in the form of actuated or

model which considers a bulk service queuing model and a set
of arrival distribution transformations. They concluded that
Newell's model estimates provide a close upper bound to the
results from their model. The review of traffic delay models at
fixed-timed traffic signals indicate that the state of the art has
shifted over time from a purely theoretical approach grounded
in queuing theory, to heuristic models that have deterministic
and stochastic components in a time-dependent domain. This
move was motivated by the need to incorporate additional factors
such as non-stationarity of traffic demand, oversaturation, traffic
platooning and filtering effect of upstream signals. It is
anticipated that further work in that direction will continue,
with a view towards using the performance-based models for
signal design and route planning purposes.

traffic-adaptive systems requires new delay formulations that
isigasto this process. In this section, delay models for
actuated signal control are presented in some detail, whi

9-20
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incorporate controller settings such as minimum and maximum
greens and unit extensions. A brief discussion of the state of the
art in adaptive signal control follows, but no models are
presented. For additional details on this topic, the reader is
encouraged to consult the references listed at the end of the
chapter.

9.6.1 Theoretically-Based Expressions

As stated by Newell (1989), the theory on vehicle actuated
signals and related work on queues with alternating priorities is
very large, however, little of it has direct practical value. For
example, "exact” models of queuing theory are too idealized to
be very realistic. In fact the issue of performance modeling of
vehicle actuated signals is too complex to be described by a
comprehensive theory which is simple enough to be useful.
Actuated controllers are normally categorized into: fully-
actuated, semi-actuated, and volume-density control. To date,
the majority of the theoretical work related to vehicle actuated
signals is limited to fully and semi-actuated controllers, but not
to the more sophisticated volume-density controllers with
features such as variable initial and extension intervals. Two

types of detectors are used in practice: passage and presence.

Passage detectors, also called point or small-area detectors,
include a small loop and detect motion or passage when a

and maximum greens, the phase will be extended for e
arriving vehicle, as long as its headway does not exceec
value of unit extension. An intersection with two one-wa)
streets was studied. It was found that, associated with e
traffic flow condition, there is an optimal vehicle interval fi
which the average delay per vehicle is minimized. The value of
the optimal vehicle interval decreases and becomes more critical,
as the traffic flow increases. It was also found that by using the
constraints of minimum and maximum greens, the efficiency and
capacity of the signal are decreased. Darroch (1964b) also
investigated a method to obtain optimal estimates of the unit
extension which minimizes total vehicle delays.

The behavior of vehicle-actuated signals at the intersection of
two one-way streets was investigated by Newell (1969). The
arrival process was assumed to be stationary with a flow rate just
slightly below the saturation rate, i.e. any probability
distributions associated with the arrival pattern are time
invariant. It is also assumed that the system is undersaturated
but that traffic flows are sufficiently heavy, so that the queue
lengths are considerably larger than one car. No turning
movements were considered. The minimum green is
disregarded since the study focused on moderate heavy traffic
and the maximum green is assumed to be arbitrarily large. No
specific arrival process is assumed, except that it is stationary.

vehicle crosses the detector zone. Presence detectors, also called Figure 9.11 shows the evolution of the queue length when the
area detectors, have a larger loop and detect presence of vehicles dueues are large. Traffic arrives at a ratg 06n one approach,

in the detector zone. This discussion focuses on traffic actuated
intersection analysis with passage detectors only.

Delays at traffic actuated control intersections largely depend on
the controller setting parameters, which include the following
aspects: unit extension, minimum green, and maximum green.
Unit extensior{also called vehicle interval, vehicle extension, or
gap time) is the extension green time for each vehicle as it
arrives at the detectoMinimum greensummation of the initial
interval and one unit extension. The initial interval is designed
to clear vehicles between the detector and the stop line.
Maximum greerthe maximum green times allowed to a specific
phase, beyond which, even if there are continuous calls for the
current phase, green will be switched to the competing approach.

The relationship between delay and controller setting parameters
for a simple vehicle actuated type was originally studied by
Morris and Pak-Poy (1967). In this type of control, minimum
and maximum greens are preset. Within the range of minimum

andd,, on the otherr;, g;, andY; represent the effective red,
green, and yellow times in cydle Here the signal timings are
random variables, which may vary from cycle to cycle. For any
specific cyclej, the total delay of all card), is the area of a
triangular shaped curve and can be approximated by:

_ RV
B /sl)[(E“} Y2+ Var(r) -
LE Y vl]
S(1-9/S) Sa,
% )
S e {I(Etg} v o

S(1-6/S) S,
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Queue Development Over Time Under
Fully-Actuated Intersection Control (Newell 1969).

where

E{W,;}, E{(W,} the total wait of all cars during

cyclej for approach 1 and 2;

S, S = saturation flow rate for approach 1
and 2;
E{r},E{g} = expectation of the effective red

and green times;

variance of the effective red and
green time;

.1, = variance to mean ratio of arrivals

for approach 1 and 2; and

the constant part of the variance of
departures for approach 1 and 2.

Var(r), Var(g)

V,,V,

Since the arrival process is assumed to be stationary,

E{r}-E{r}, E{g}-E{g} (9.78)
Var(r)-Var(r), Var(g)-Var(g) (9.79)
E{W-E{Wd  k-1.2 (9.80)

The first moments of andg were also derived based on the
properties of the Markov process:

. YglS
M Tas 0 &8
o Ya/S
E{g}*m (9.82)

Variances of andg were also derived, they are not listed here
for the sake of brevity. Extensions to the multiple lane case
were investigated by Newell and Osuna (1969).

A delay model with vehicle actuated control was derived by
Dunne (967) by assuming that the arrival process follows a
binomial distribution. The departure rates were assumed to be
constant and the control strategy was to switch the signal when
the queue vanishes. A single intersection with two one-lane one-
way streets controlled by a two phase signal was considered.

For each of the interval&{, kz+ 1), k=0,1,2... the probability of
one arrival in approach = 1, 2 is denoted by, and the
probability of no arrival byp,=1-¢. The time intervalyz, is
taken as the time between vehicle departures. Saturation flow
rate was assumed to be equal for both approaches. Denote
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W® as the total delay for approach 2 for a cycle having effective
red time of length, then it can be shown that:
W@ W@ p[d,+crd,)]

rel (9.83)

wherec is the cycle lengthd,, andd, are increases in delay at
the beginning and at the end of the cycle, respectively, when one
vehicle arrives in the extra time unit at the beginning of the
phase and:

u=0 with probablity p, ,

1 with probalility q, . (9.84)

Equation 9.83 means that if there is no arrivals in the extra time
unit at the beginning of the phase, thgf@,,=W®  otherwise
W(Z)r+1:W(2)r + 61 tC+ 62'

Taking the expectation of Equation 9.83 and substituting for
E(5), E(6):

E(W2) =E(W?) +a,(r +1)/p, (9.85)

Solving the above difference equation for the initial condiéon
@,=0 gives,

E(W2)=qy(r 2+1)/2p, (9.86)

Finally, taking the expectation of Equation 9.86 with respect to
r gives

E(W®)-g{varr][Eqr]+E[r]}/(2p,)  (9.87)

Therefore, if the mean and variancerfgre known, delay can
be obtained from the above formul&(W® )for approach 2 is
obtained by interchanging the subscripts.

Cowan (1978) studied an intersection with two single-lane one-
way approaches controlled by a two-phase signal. The control
policy is that the green is switched to the other approach at the
earliest timef, such that there is no departures in the interval
[t-5 -1,1. Ingeneralf > 0. It was assumed that departure
headways are 1 time unit, thus the arrival headways are at least
1 time unit. The arrival process on approachassumed to
follow a bunched exponential distribution. It comprises random-

sized bunches separated by inter-bunch headways. All bunched
vehicles are assumed to have the same headway of 1 time unit.
All inter-bunch headways follow the exponential distribution.
Bunch size was assumed to have a general probability
distribution with meanyy, and varianceg”. The cumulative
probability distribution of a headway less thaecondsk(t), is

1-pe Y for t=A
F(t){ ? 0 for t<A (9-88)
where,
A = minimum headway in the arrival streafyx1
time unit;
¢ = proportion of free (unbunched) vehicles; and
p = adelay parameter.

Formulae for average signal timingsafhdg) and average delays

for the cases g§ = 0 andg > 0 are derived separatelgf. = 0

means that the green ends as soon as the queues for the approact
clear whilef > 0 means that after queues clear there will be a
post green time assigned to the approach. By analyzing the
property of Markov process, the following formula are derived

for the case g = 0.

E(9,)- 1211Lq2 (9.89)
E(gz)%ll_qz (9.90)
E(ry)=l,+ 1?121ng (9.91)
E(rp)-l,+ 1211L : (9.92)
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where,

E(g,), E(9,) = expected effective green for
approach 1 and 2;

E(r), E(r) = expected effective red for approach 1
and 2;

L = lost time in cycle;

[, 1, = lost time for phase 1 and 2; and

d;, a, = the stationary flow rate for

approach 1 and 2.

The average delay for approach 1 is:

L(1-0)  65(1-0)°P,(05+1) +(1-6)*(1-G)py(07 1)
2(17q17q2) 2(17q17q2)(17q1792+2q1q2)

(9.93)

Akcelik (1994, 1995b) developed an analytical moet for
estimating average green times and cycle time at a basic vehicle
actuated controller that uses a fixed unit extension setting by
assuming that the arrival headway follows the bunched
exponential distribution proposed by Cowan (1978). In his
model, the minimum headway in the arrival stre&ns not
equal to one. The delay paramegeris taken a®q/0, where

q, is the total arrival flow rate arftk=1-Aq. In the model, the

free (unbunched) vehicles are defined as those with headways
greater than the minimum headway Further, all bunched
vehicles are assumed to have the same heafiwadkcelik
(1994) proposed two different models to estimate the proportion
of free (unbunched) vehiclgs The total timeg, allocated to a
movement can be estimated as wigereis the minimum green
time andg,, the green extension time. This green timds
subject to the following constraint

9<% Y 9e<Gomax (9.94)

whereg,., andg,,,, are maximum green and extension time
settings separately. If it is assumed that the unit extension is set
so that a gap change does not occur during the saturated portion
of green period, the green time can be estimated by:

g =06, (9.95)

whereg;is the saturated portion of the green periodegymgithe
extension time assuming that gap change occurs after the queue
clearance period. This green time is subject to the boundaries:

(9.96)

gminé g< gmax

The saturated portion of green period can be estimated from the
following formula:
_foyr

1y (9.97)

where,

—h
1

gueue length calibration factor to allow for
variations in queue clearance time;
saturation flow;

red time; and

g/S ratio of arrival to saturation flow rate.

< =W

The average extension time beyond the saturated portion can be
estimated from:

& = Nghy + & (9.98)
where,
n, = average number of arrivals before a gap
change after queue clearance;
h, = average headway of arrivals before a gap
change after queue clearance; and
e = terminating time at gap change (in most case

it is equal to the unit extensidh.

For the case whe® = U, Equation 9.98 becomes

A + E)eq(U—A)

eg:,iJr(
a ¢ q

(9.99)

9.6.2 Approximate Delay Expressions

Courage and Papapandi®{7) refined Webster's (1958) delay
model for pretimed control to estimate delay at vehicle-actuated
signals. For clarity, Webster's simplified delay formula is
restated below.

09 d) - 09U, X2
d = 0.9(,+d) 0'9[2(17q/s) ZQ(l’X)]

(9.100)

Courage and Papapanou used two control strategies: (1) the
available green time is distributed in proportion to demand on
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the critical approaches; and (2) wasted time is minimized by

terminating each green interval as the queue has been properly

serviced. They propose the use of the cycle lengths shown in
Table 9.2 for delay estimation under pretimed and actuated
signal control:

Table 9.2

Cycle Length Used For Delay Estimation for Fixed-
Time and Actuated Signals Using Webster's
Formula (Courage and Papapanou 1977 ).

I
Cycle Length
Type of Signal |in 1st Term

Cycle Length
n2nd Term

:

Pretimed

Optimum

Optimum

Actuated

f

Average Maximum I
L

The optimal cycle lengtle,, is Webster's:

oo 1.5.+5
% 1-Yy,

(9.101)

wherelL is total cycle lost time ang, is the volume to saturation
flow ratio of critical movemerit The average cycle length,is
defined as:

Ca:ﬁyd (9.102)

and the maximum cycle lengtt),,, is the controller maximum
cycle setting. Note that the optimal cycle length under pretimed
control will generally bednger than that under actuated control.
The model was tested by simulation and satisfactory results
obtained for a wide range of operations.

In the U. S. Highway Capacity Manual (1994), the average
approach delay per vehicle is estimated for fully-actuated
signalized lane groups according to the following:

d = d,«DF + d, (9.103)
_c(1-glo)?
d,- 2 xg0 (9.104)

- 2(v—1)+ _1)2, M% )
d,=900Tx(x-1)+, | (x-1) CT] (9.105)

where,d, d,, d,, g, andc are as defined earlier and

DF = delay factor to account for signal coordination and
controller type;

X = ¢g/C, ratio of arrival flow rate to capacity;

m = calibration parameter which depends on the arrival
pattern;

C = capacityin veh/hr; and

T = flow period in hoursT=0.25 in 1994 HCM).

The delay fadf=0.85, reduces the queuing delay to account
for the more efficient operation with fully-actuated operation
when compared to isolated, pretimed control. In an upcoming
revision to the signalized intersection chapter in the HCM, the
delay factor will continue to be applied to the uniform delay term
only.

As delay estimation requires knowledge of signal timings in the
average cycle, the HCM provides a simplified estimation
method. The average signal cycle length is computed from:

Lx

C

(9.106)

Ca

) chzyci

wherex, = criticalg/Cratio under fully-actuated controt.£0.95
in HCM). For the critical lane groupthe effective green:

Y.
gi:ica

(9.107)

This signal timing parameter estimation method has been the
subject of criticism in the literature. Lid989), arong others,
compared the predicted cycle length from Equation 9.106 with
field observations in New York state. In all cases, the observed
cycle lengths were higher than predicted, while the obsegved
ratios were lower.

Lin and Mazdeysa(1983) proposed a general delay model of the
following form consistent with Webster's approximate delay
formula:
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_k 92
CLKD™ 360062
X

2q(1-K)

d=0.9

(9.10)
2(1- K1%K2x)

whereg, ¢, g, X are as defined earlier akd andK, are two
coefficients of sensitivity which reflect different sensitivities of
traffic actuated and pretimed delay to bgth andx ratios. In

this studyK, andK , are calibrated from the simulation model
for semi-actuated and fully-actuated control separately. More

importantly, the above delay model has to be used in conjunction

with the method for estimating effective green and cycle length.
In earlier work, Lin (1982a, 1982b) described a model to

estimate the average green duration for a two phase fully-
actuated signal control. The model formulation is based on the
following assumption: (1) the detector in use is small area
passage detector; (2) right-turn-on-red is either prohibited or its
effect can be ignored; and (3) left turns are made only from
exclusive left turn lanes. The arrival pattern for each lane was
assumed to follow a Poisson distribution. Thus, the headway
distribution follows a shifted negative exponential distribution.

Figure 9.12 shows the timing sequence for a two phase fully
actuated controller. For phasebeyond the initial green
interval,g,,;;; green extends fd¥, based on the control logic and
the settings of the control parameteffscan be further divided
into two components: (B, — the additional green extended by

n vehicles that form moving queues upstream of the detectors
after the initial intervalG,,; (2) E,, — the additional green
extended by vehicles with headways of no more than one unit
extensionU, afterG,,; ore,. Note that, andE, are random
variables that vary from cycle to cycle. Lin (1982a, 1982hb)
developed the procedures to estimatandE, the expected
value ofe, andE,, as follows. A moving queue upstream of a
detector may exist whe@,;,; is timed out in case the flow rate

of the critical laneg, is high. If there ara vehicles arriving in

the critical lane during timé&,, then the time required for timéh
vehicle to reach the detector afty,, is timed out can be
estimated by the following equation:

(9.109)

wherew is the average time required for each queuing vehicle to
start moving after the green phase staitsjs the average
vehicle length,ais the vehicle acceleration rate from a standing
position., ands is the detector setback. tJk0, there is no
moving queue exists and theis0; otherwise the green will be
extended by the moving queue. Letbe the rate at
which the queuing vehicle move across the detector.
Considering that additional vehicles may join the queue during
the time intervat,, if t >0 ands>0, then:

b

e (9.110)

ni

To account for the probability that no moving queues exist
upstream of the detector at the end of the initial interval, the
expected value &, e is expressed as:
- P(T) e,

&=

2 T p(nen (9.111)

min)

wheren_,.is the minimum number of vehicles required to form
a moving queue.

To estimateE, let us suppose that after the injiffal and
additional greere, have elapsed, there is a sequenc& of
consecutive headways that are shorter tafollowed by a
headway longer thad. In this case the green will be extended
k times and the resultant green extension timeH$J with
probability[F(h < U)]*F(h > U), whered is the average length
of each extension andf(h) is the cumulative headway
distribution function.

U\
j - lati®at (9.112)
F(h<U,)

and therefore

Ei:ZE:o(kw)[F(hzU)]kF(h>U):féﬂméle‘““*’ (9.113)

where A is the minimum headway in the traffic stream.
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™
~- >
Y1 R1 Gminti F1 Y1 R1
Phase 1 —— - "
I
R2 Gmin2 F2 Y2 R2 Gmin2
Phase 2 - . .
: T2
- -
Legend
Yi = yellow time for phase |
Ri = red time for phase i
Gmini = initial green interval for phase i
Fi = green extension for phase |
Ti = time of queue accumulation for phase,

starting from the termenation of the end gain
in the previous phase untl termination

of initial green

Figure 9.12
Example of a Fully-Actuated Two-Phase Timing Sequence (Lin 1982a).

Referring to Figure 9.12, after the valuesTofandT are
obtainedG, can be estimated as:

G = X .o(Ginite tE) P(NT,) (9.114)

subject to

Grini 78 *E < (Gradi (9.115)
whereP(n/T,)is the probability oh arrivals in the critical lane
of theith phase during time interv@l. Since botiT, andT, are
unknown, an iterative procedure was used to deter@jrend

G,

Li et al. (1994) proposed an approach for estimating overflow
delays for a simple intersection with fully-actuated signal

control. The proposed approach uses the delay format in the
1994 HCM (Equations 204 and 9.105) with some variations,
namely a) the delay factddF, is taken out of the formulation

of delay model and b) the multiplie? is omitted from the
formulation of the overflow delay term to ensure convergence to
the deterministic oversaturated delay model. Thus, the overflow
delay term is expressed as:

d,-900T](x-1)+ (x71)2+i_kTX] (9.116)

where the parametek)(is derived from a numerical calibration
of the steady-state for of Equation 9.105 as shown below.

_ kx
2 C(1-x)

(9.117)
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This expression is based on a more general formula by Akcelik
(1988) and discussed by Akcgelik and Rouph&894). The
calibration results for the parametemlong with the overall
statistical model evaluation criteria (standard errorRidire
depicted in Table 9.3. The parameéktavhich corresponds to
pretimed control, calibrated by Tarko (1993) is also listed. Itis
noted that the pretimed steady-state model was also calibrated
using the same approach, but with fixed signal settings. The first
and most obvious observation is that the pretimed model
produced the highekt(delay) value compared to the actuated
models. Secondly, the parameter wasfl to increase with the
size of the controller's unit extensidd)(

Procedures for estimating the average cycle length and green
intervals for semi-actuated signal operations have been
developed by Lin (1982b, 1990) and Akcelll®93b). Recently,

Lin (1992) proposed a model for estimating average cycle length
and green intervals under semi-actuated signal control operations
with exclusive pedestrian-actuated phase. Luh (1991) studied
the probability distribution of and delay estimation for semi-
actuated signal controllers.

In summary, delay models for vehicle-actuated controllers are
derived from assumptions related to the traffic arrival process,
and are constrained by the actuated controller parameters. The
distribution of vehicle headways directly impact the amount of
green time allocated to an actuated phase, while controller
parameters bound the green times within specified minimums
and maximums. In contrast to fixed-time models, performance
models for actuated have the additional requirement of
estimating the expected signal phase lengths. Further research
is needed to incorporate additional aspects of actuated operations
such as phase skipping, gap reduction and variable maximum
greens. Further, there is a need to develop generalized models
that are applicable to both fixed time and actuated control. Such

models would satisfy the requirement that both controls yi
identical performanceder very light and very heavy traffic
demands. Recent work along these lines has been reported by
Akcelik and Chung1994, 1995).

9.6.3 Adaptive Signal Control

Only a very brief discussion of the topic is presented here.
Adaptive signal control systems are generally considered
superior to actuated control because of their true demand
responsiveness. With recent advances in microprocessor
technology, the gap-based strategies discussed in the previous
section are becoming increasingly outmoded and demonstrably
inefficient. In the past decade, control algorithms that rely on
explicit intersection/network delay minimization in a time-
variant environment, have emerged and been successfully tested.
While the algorithms have matured both in Europe and the U.S.,
evident by the development of the MOVA controller in the U.K.
(Vincent et al. 1988), PRODYN in France (Henry et al. 1983),
and OPAC in the U.S. (Gartner et al. 1982-1983), theoretical
work on traffic performance estimation under adaptive control

is somewhat limited. An example of such efforts is the work by
Brookes and Bell (1991), who investigated the use of Markov
Chains and three heuristic approaches in an attempt to calculate
the expected delays and stops for discrete time adaptive signal
control. Delays are computed by tracing the queue evolution
process over time using a “rolling horizon' approach. The main
problem lies in the estimation (or prediction) of the initial queue

in the current interval. While the Markov Chain approach yields
theoretically correct answers, it is of limited value in practice due
to its extensive computational and storage requirements.
Heuristics that were investigated include the use of the mean
gueue length, in the last interval as the starting queue in this
interval; the “two-spike' approach, in which the queue length

Table 9.3
Calibration Results of the Steady-State Overflow Delay Parameter ( k) (Li et al. 1994).
A
I Control Pretimed u=2.5 U=3.5 U=4.0 U=5.0
I k (m=8k) 0.427 0.084 0.119 0.125 0.231
s.e. NA 0.003 0.002 0.002 0.006 I
R? 0.903 0.834 0.909 0.993 0.861
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distribution has non-zero probabilities at zero and at an integer
value closest to the mean; and finally a technique that propagates
the first and second moment of the queue length distribution
from period to period.

9.7 Concluding Remarks

In this chapter, a summary and evolution of traffic theory
pertaining to the performance of intersections controlled by
traffic signals has been presented. The focus of the discussion
was on the development of stochastic delay models.

Early models focused on the performance of a single intersection
experiencing random arrivals and deterministic service times
emulating fixed-time control. The thrust of these models has
been to produce point estimates--i.e. expectations of-- delay and
gueue length that can be used for timing design and quality of
service evaluation. The model form typically include a
deterministic component to account for the red-time delay and a
stochastic component to account for queue delays. The latter
term is derived from a queue theory approach.

While theoretically appealing, the steady-state queue theory
approach breaks down at high degrees of saturation. The
problem lies in the steady-state assumption of sustained arrival
flows needed to reach stochastic equilibrium (i.e the probability
of observing a queue length of si2es time-independent) . In
reality, flows are seldom sustained for long periods of time and
therefore, stochastic equilibrium is not achieved in the field at
high degrees of saturation.

A compromise approach, using the coordinate transformation
method was presented which overcomes some of these
difficulties. While not theoretically rigorous, it provides a means
for traffic performance estimation across all degrees of saturation
which is also dependent on the time interval in which arrival
flows are sustained.

Further extensions of the models were presented to take into
account the impact of ptaining, which obviously alter the

Overall, the latter method was recommended because it not

produces estimates that are sufficiently close ticdahe theore

estimate, but more importantly it is independent of the traf
arrival distribution.

arrival process at the intersection, and of traffic meterir
which may causes a truncation in the departure distribution frc
a highly saturated intersection. Next, an overview of de
models which are applicable to intersections operating unt
vehicle actuated control was presented. They include stochastic
models which characterize the randomness in the aanal
departure process-- capacity itself is a random variable which
can vary from cycle to cycle, and fixed-time equivalent models
which treat actuated control as equivalent pretimed models
operating at the average cycle and average splits.

Finally, there is a short discussion of concepts related to adaptive
signal control schemes such as the MOVA systems in the United
Kingdom and OPAC in the U.S. eBause these approaches
focus primarily on optimal signal control rather
than performance modeling, they are somewhat beyond the
scope of this document.

There are many areas in traffic signal performance that deserve
further attention and require additional research. To begin with,
the assumption of uncorrelated arrivals found in most models
not appropriate to describe platooned flow--where arrivals a
highly correlated. Secondly, the estimation of the initial
overflow queue at a signal is an area that is not well understood
and documented. There is also a need to develop queuing/c
models that are constrained by the physical space availabl
queuing. Michalopd@lB8) presented such an application
using a continuous flow model approach. Finally, models t
describe the interaction between downstream queue lengths
upstream departures are needed. Initial efforts in this direction
have been documented by Prosser and Duhf@84) and
Rouphail and Akgelik (1992b).
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