
Lecture 7:

Complex Analysis

c©
In Lecture 1 we jumped the gun and introduced i =

√−1, which can be regarded as a solution to

x2 + 1 = 0. In the early history of mathematics the appearance of i was first regarded as an embarrassment,

and later as a springboard for philosophical debate. Today the appearance of i is commonplace. In addition

to being routinely encountered in solving algebraic equations, it is encountered in many branches of applied

mathematics, and often permits simplifications.

As a concrete example

x2 − 2x+ 2 = 0 (7.1)

has the two solutions: x = 1 + i; x = 1 − i. Typically, complex numbers are viewed as locations in a 2-

dimensional space, termed z-space, where z = x + iy, x and y real. The two roots of (7.1) are indicated

in the figure as mirror images in the x-axis, and in general pairs of numbers in this relation are said to be

(complex) conjugates. If z = x+ iy then its conjugate, denoted by z∗ or z is denoted by x− iy. As will be

indicated in a moment, a real equation, i.e., one in which i does not explicitly appear such as (7.1), with a

complex root must also have the conjugate as a root.
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118 Lecture 7: Complex Analysis

Fig. 7.1: The complex z-plane, with z and z indicated in the cartesian, and polar

coordinates

The addition of the complex numbers,

a = a1 + ia2 (7.2)

and

b = b1 + ib2 (7.3)

is the complex number

a+ b = (a1 + b1) + i(a2 + b2). (7.4)

and therefore follows vector addition in 2-space. Hence the distance of a point z = x+ iy from the origin is

still given by the Pythagorean theorem,

r2 = x2 + y2 (7.5)

Multiplication of complex numbers is given by

a · b = (a1b1 − a2b2) + i(a1b2 + a2b1), (7.6)

and therefore (7.5) can be written as

r2 = zz∗. (7.7)

Division is given by
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a

b
=
a · b∗
b · b∗ =

a1b1 + a2b2
b21 + b22

+ i
a2b1 − a1b2
b21 + b22

. (7.8)

(The reals are a subset of the complex numbers, viz., the x-axis of the z-plane.)

These operations, as well as others, are subsumed in Matlab, where e.g. z = x + iy defines the complex

number z.1 It is not necessary to have an ∗ between i and y although you can do so. If a and b are real you

write A =comp(a, b) to get A = a+ ib. Inversely for any quantity A = a+ ib

imag(A) = b

real(A) = a. (7.9)

In polar coordinates

z = r(cos θ + i sin θ) (7.10)

where r cos θ = x and r sin θ = y, i.e., r defined by (7.5) is sometimes called the modulus, and

θ = tan−1 y/x. (7.11)

Recall that

θ = atan2(y, x) (7.12)

gives −π < θ ≤ π. The command angle(z) gives θ directly and can be applied to arrays. It should be clear

that angle(z) = atan2(imag(z), real(z)). r, sometimes called the modules of z in Matlab is r = norm(z)

or r = abs(z).

Exercise 7.1. Create an m-File to return 0 ≤ θ < 2π.

It is clear from (1.52) that we can write

z = reiθ, (7.13)

and hence the product of two complex numbers is

z1z2 = r1r2e
i(θ1+θ2) (7.14)

so that angles add. It also follows from (7.13) that the logarithm of z is

1 In deference to electrical engineers, Matlab also allows j to represent i =
√−1.
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log z = log r + iθ. (7.15)

But from the multivaluedness of θ = tan−1y/x we can also write

log z = log r + i(θ + 2nπ) (7.16)

for any positive or negative integer n.

Matlab contains a convenient framework for visualizing complex functions. You can create a grid in the

complex plane with cplxgrid and plot a function using cplxmap2. In Figure 7.2 we plot (7.16) with height

= real(log z) and gray level = imag(log z).

Fig. 7.2: Visualization of log z, (7.15). Height indicates the real part, shading the

imaginary parts.

Note that .1 < r ≤ 1. The sharp change in shading indicates a phase jump of 2π across the negative x-axis.

A second example is

√
z =

√
reiθ =

√
reiθ/2 (7.17)

for which the analogous plot is given in Figure 7.3. Along the negative real axis the real
√
z = 0, and also

there is a jump of π in phase

2 Use the Matlab help command to view the inputs.
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Fig. 7.3: Visualization of
√
z, (7.17). Same as 7.2. Note that imag(

√
2) = r1/2 sin θ/2,

which explains the variation in the color bar.

Exercise 7.2. (a) Carry out the steps in order to obtain Figures 7.2 & 7.3 and fill in the details of the

discontinuity in shading.

(b) For the two cases (7.15) & (7.17) provide separate plots of the real and imaginary parts of functions of

the plane. In each case you should get multi-valued surfaces in the phase.

Suppose for complex a and b defined by (7.3) and (7.4) we consider ab, i.e., a complex number raised to

a complex number. To deal with this recall that

ab = eb log a, (7.18)

and therefore for

a = |a|eiθa

ab = e(b1+ib2)(ln|a|+iθa) (7.19)

which is clearly computable. For example for i = eiπ/2 and then

−2 ln ii = −2 ln ei(iπ/2) = π, (7.20)

is one evaluation and is a purely real quantity! Obviously an eccentric way to compute π.

The fundamental theorem of algebra is a statement of what most people might regard as obvious, viz.,

that a polynomial of degree N has N roots. In particular consider the algebraic equation
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zN = 1. (7.21)

Obviously any root of (7.21) has unit magnitude and we can write that any root has the form

z = eiθ (7.22)

it then follows that with

Nθ = 2πn (7.23)

(7.22) is satisfied. Therefore the solution to (7.21) is

z = eiθn (7.24)

with

θn =
2πin
N

, (7.25)

n = 0, 1, · · ·N − 1, after which the roots repeat.

Fig. 7.4: The roots of unity, (7.21), for N = 3, 4, ..., 11.

As illustrated in Figure 7.2 these roots might be said to uniformly decorate the unit circle with points at the

vertices of a regular N -gon. The root

z(N) = e2πi/N (7.26)
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is called a primitive N th root of unity since all N roots of (7.21) can be generated from it by

zk = z(N)k; k = 1, · · · , N. (7.27)

As a little study of Figure 7.2 shows there are other possibilities, as well as interesting symmetries. Another

illustration is given in Figure 7.5 which shows real(z3 − 1), the monkey saddle mentioned earlier in Lecture

3.

Fig. 7.5: Real part of z3 − 1. Observe this vanishes at z = 1, ei2π/3, e−i2π/3.

Taylor Series

The geometric series

1
1 − x

= 1 + x+ x2 + x3 + · · · (7.28)

understandably fails to make sense as x ↑ 1 since the left hand side of (7.28) diverges at x = 1. There are

problems as x ↓ −1, even though the terms alternate in sign, since they don’t get smaller in magnitude, and

the series fails to make sense. On the other hand if we consider

1
1 + x2

= 1 − x2 + x4 − x6 · · · , (7.29)

we see that for |x| ≥ 1 the series fails to have meaning, since the individual terms increase in magnitude,

but there is no apparent reason for the implied convergence failure, since (7.29) tends to 1/2 for x → ±1.
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However, if we extend our perspective to include the complex plane, it is immediate that the left hand side

of (7.29) is singular at x = ±i.
When a function tends to ∞ as O(1/z) it is said to possess a pole of order one at z = 0, and if it diverges as O(1/zn), for

integer n, it is said to possess a pole of order n at z = 0. The function e1/z diverges more rapidly than any pole, as z → 0, and

is said to have an essential singularity at the origin.

More generally consider the power series,

P (z) =
∞∑

n=0

an(z − z0)n, (7.30)

of which a Taylor series is an example inside the circle. Then the triangle inequality

|a+ b| < |a| + |b| (7.31)

which simply follows from looking at a triangle of sides a, b and a+ b, applied to (7.30) gives

|P (z)| ≤
∞∑

n=0

|an||z − zo|n. (7.32)

If this summation converges for |z − zo| < R, i.e., it is a finite number then P (z) clearly converges. If as

n ↑ ∞,

|an||z − zo|n < rn < 1 (7.33)

then we have a geometric series for n large enough, which we know converges. It then follows that

R = 1/|an|1/n. (7.34)

Based on the examples above we should believe that R is the radius of the circle around z0 containing the

nearest singularity of P (z).

Example. Consider

1
2 − z

=
1

1 + (1 − z)
=

⎧⎨
⎩

1 + (z − 1) + (z − 1)2 · · · ; |z − 1| < 1

1
2

(
1 + z

2 + ( z
2 )2 + ...

)
; |z| < 2

(7.35)
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Fig. 7.6: Regions of convergence for (7.35). The first series converges in the gray circle,

|z − 1| < 1, and the second in |z| < 2. In both cases cases convergence is stopped at the

singularity at z = 2, heavy dot.

The idea of the Taylor expansion in the complex plane is conceptually very appealing. It says if we know

the function on a tiny element, a micro-dot, big enough to compute all derivatives then

F (z) =
∞∑

n=0

F (n)(z0)
(z − z0)n

n!
;Fn(z) =

dnF (z)
dzn

, (7.36)

then the series converges and defines F (z) in the circle R < |z − z0| which is only limited by the presence of

a singularity. Thus knowing ez in a micro-dot at the origin gives us

ez = 1 + z +
z2

2!
· · · (7.37)

which converges for all z <∞. (For any z, |z|/k! → 0 for k large enough.)

The large class of familiar functions such as sine, cosine, etc. discussed in Lectures 1 & 2 immediately

carry over to the complex z-plane.

As always functions such as f(z), can be conceptualized as a look up table. Therefore for any z = z0,

f(z0) is a complex number having a real and an imaginary part. If this process is carried out at each possible

point of the z-plane

f(z) = f(x+ iy) = ϕ(x, y) + iψ(x, y) (7.38)
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where ϕ = (f + f∗)/2 is the real, and ψ(x, y) = (f − f∗)/2i, the imaginary part of f(z) at z = x + iy. For

example if we write

ez = ϕ+ iψ (7.39)

then ϕ = ex cos y and ψ = ex sin y.

There is something very special about the complex functions being discussed. To see this consider the

transformation

x =
1
2
(z + z)

y =
1
2i

(z − z) (7.40)

which in matrix notation is

⎛
⎝x

y

⎞
⎠ =

⎛
⎝ 1

2
1
2

1
2i − 1

2i

⎞
⎠

⎛
⎝ z

z

⎞
⎠ (7.41)

so that

⎛
⎝ z

z

⎞
⎠ =

⎛
⎝1 i

1 − i

⎞
⎠

⎛
⎝x

y

⎞
⎠ , (7.42)

which is where we started.

This suggests that any function F (x, y), defined the (x, y)-plane can be written as,

F (x, y) = F

(
z + z

2
,
z − z

2i

)
= F(z, z) (7.43)

But the functions we have been considering do not depend on z. Another way to say this is that ∂
∂z = 0, for

the cases we have considered. Observe (7.41)

∂

∂z
=
∂x

∂z

∂

∂x
+
∂y

∂z

∂

∂y
=

1
2
∂

∂x
+
i

2
∂

∂y
, (7.44)

and therefore for F = ϕ(x, y) + iψ(x, y) (7.44) yields,

∂

∂z
F =

(
1
2
∂

∂x
+
i

2
∂

∂y

)(
φ(x, y) + iψ(x, y)

)
=

1
2

(
∂φ

∂x
− ∂ψ

∂y

)
+
i

2

(
∂ψ

∂x
+
∂φ

∂y

)
, (7.45)

For ∂
∂zF = 0 this implies that the real and imaginary parts are zero

∂φ

∂x
=
∂ψ

∂y
(7.46)
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∂φ

∂y
= −∂ψ

∂x
(7.47)

known as the Cauchy-Riemann equations. Functions satisfying (7.46) and (7.47) are said to be analytic

functions. Analytic function theory is a stunningly beautiful piece of mathematics, but we will touch on it

only very lightly.

Exercise 7.3 (a) Another way of defining analytic functions is by demanding that

lim
Δz→0

f(z +Δz) − f(z)
Δz

(7.48)

be independent of how Δz → 0. Show that Cauchy-Riemann equations are obtained if: (1) Δz = Δx; and

(2) Δz = iΔy.

(b) Show that z, which is a continuous function of z, has a derivative that depends on Δz.

An immediate consequence of (7.46) is that

∇2φ =
∂2φ

∂x2
+
∂2φ

∂y2
= 0 = ∇2ψ, (7.49)

i.e. both the real and imaginary parts of an analytic function satisfy Laplace’s equation. Such functions, also

called harmonic, play a central role in heat flow, diffusion, fluid mechanics, electrostatics and so forth. Recall

that the Laplacian appears in the model of diffusion discussed in Lecture 3.

If we consider the dynamical system

dx

dt
=
∂φ

∂x
dy

dt
=
∂φ

∂y
(7.50)

we obtain a flow in two-dimensions, and according to (3.69) this flow is volume (area) preserving if ϕ(x, y)

is harmonic, recall (3.70).

Exercise 7.4. Show that

dx

dt
=
∂ψ

∂x
dy

dt
=
∂ψ

∂y
(7.51)

generates a set of lines orthogonal to (7.50).

A few of the beautiful results of analytic function theory bear mention, at least in fine print. To begin, if Γab is some curve

(contour), from za to zb, in the z-plane the integral of f(z) along it is defined in the usual way by a limit process of the form



128 Lecture 7: Complex Analysis

�
Γab

f(z)dz ≈
�

j

f(zj)Δzj (7.52)

and can be numerically calculated as indicated in (7.52). Next from (7.45)

�
R

∂f

∂z
dxdy =

1

2

�
R

�
∂φ

∂x
− ∂ψ

∂y

�
dxdy +

i

2

�
R

�
∂φ

∂y
+
∂ψ

∂x

�
dxdy (7.53)

where R is a region enclosed by a simple closed loop C.

If we refer back to the Green’s Theorem (3.65) and for the 1st term on the right take (V1, V2) = (φ,−ψ) and for the 2nd

term (V1, V2) = (ψ, φ), (7.53) becomes

�
R

∂f

∂z
dxdy =

i

2

�
(ψdx+ φdy) +

1

2

�
C

(−φdx+ ψdy)

= −1

2

�
C
fdz. (7.54)

Therefore if f is analytic, ∂f
∂z

= 0, then

�
C
fdz = 0 (7.55)

for Γ any closed loop inside which f is analytic. This is known as Cauchy’s theorem. At the risk of trivializing Cauchy’s theorem

observe that

�
zkdz =

zk

k + 1
(7.56)

except for k = −1 in which case

�
dz

z
= log z. (7.57)

Thus for k �= 1

�
zkdz = 0. (7.58)
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Fig. 7.7: Construction corresponding to (7.50) demonstrating the equivalence of the con-

tour integrations around C and C0.

For a second result again take f(z) analytic in R and consider the ratio f(z)/(z − z0), where z0 lies in R. Clearly this

function has a pole at z0. However, if we consider the closed loop of the figure we enclose a region in which the ratio is analytic

and if we apply (7.55) to this region we obtain

�
C0

f(z)

z − z0
dz =

�
C

f(z)

z − z0
dz (7.59)

since the integrals along the two straight portions just cancel. To evaluate the left hand side of (7.59), which is a circle,

(z − z0) = Reiθ, we can expand in a Taylor series

f(z) = f(z0) + f ′(z0)(z − z0) + · · · (7.60)

and observe under the variable change (z − z0) = Reiθ

�
c0

f (k)(z − z0)kdz

(z − z0)
= i

� 2π

0
f (k)Rkeikθdθ =

���
��

2πi, k = 0

0, k �= 0
(7.61)

This yields

f(z0) =
1

2πi

�
C

f(z)

(z − z0)
dz, (7.62)

known as Cauchy’s integral formula.

From Cauchy’s formula, (7.62), we can make the interesting observation that an analytic function, at any interior point, z0,

is determined by its values on any perimeter closed loop, C.

The real and imaginary parts of f(z), satisfy Laplace’s equation, and as mentioned earlier equilibrium heat flow (diffusion,

etc) is governed by Laplace’s equation. Thus the observation above should make perfectly good sense (physically) to you since

the temperature on the boundary fully determines the interior equilibrium temperature.
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Julia Sets

As an exercise in exploring the complex plane consider the iterative procedure

zn+1 = f(zn) (7.63)

where f is a function to be defined and in which zo will be referred to as the seed. The set of seed points zo

that stay in the finite z-plane is called the Julia set. For example if

f = z2 (7.64)

the Julia set is obviously the

r = |z| ≤ 1, (7.65)

although a point on r = 1 cycles around the unit circle. A more interesting outcome results if

f = z2 + c (7.66)

In fact if c = −.8 + 0.156i the Julia set is indicated by the purple color shown in Figure 7.8. The remaining

colors indicate the speed at which seed points march off to infinity, with red indicating the most rapid

tendency to become unbounded.

Fig. 7.8: The Julia set, purple, for c = −.8 + 0.156i.
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Exercise 7.5 (Special). Choose a c of your own with which to generate a Julia set within Matlab. Some

of the most interesting Julia sets seem to be associated with real c < 0 and with a small imaginary part.

You can find many examples on the internet. A download of one of these without a Matlab M-file which

generates it will not be regarded as acceptable.

There are two main reasons for introducing complex variables. The first, as we will see in a moment,

is that our discussion of linear algebra has been incomplete without the topic. The second has to do with

Fourier analysis.

Linear Algebra

In our discussion of Linear Algebra we avoided complex eigenvalues and complex eigenvectors. We are

now in a position to remedy this. For this purpose consider the matrix.

A =

⎛
⎝0 −1

1 0

⎞
⎠ (7.67)

which since

A

⎡
⎣x
y

⎤
⎦ =

⎡
⎣−y
x

⎤
⎦ (7.68)

is easily seen to be just a (counterclockwise) rotation by π/2. If we ask about the eigentheory of A

Au = A

⎡
⎣u1

u2

⎤
⎦ = λu, (7.69)

it is immediate that this is fool’s quest, since there is no way for a pure rotation to have a self-reproducing

vector.

Nevertheless, if we pursue eigentheory the characteristic equation is

λ2 + 1 = 0, (7.70)

so that the eigenvalues are ±i, a reflection of the fact that we cannot have (real) self reproducing vectors of

A. Further, the full analysis yields

λ1 = i; u1 =

⎛
⎝ 1

−i

⎞
⎠ (7.71)

and

λ2 = −i; u2 =

⎛
⎝1

i

⎞
⎠ (7.72)
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with the embarrassing result

(u1)†u1 = 0 (7.73)

which seems to say that u1 is perpendicular to itself!

With the inclusion of complex numbers we are in new territory, and to get a desired feature, viz., that

(v,v) = ‖v‖2 give the distance from the origin we have to extend the definition of an inner product. What

to do is clear from (7.5), and in general for vectors v and w,

v =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

v1

v2
...

vN

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

& w =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

w1

w2

...

wN

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(7.74)

with possible complex components the inner product is defined as

(v,w) =
N∑

j=1

vjwj = v†w (7.75)

where the adjoint now is

v† = [v1, v2 · · · , vn]. (7.76)

The real vector inner product remains the same, but this clearly takes care of the embarrassment of (7.73)

since now

‖u1‖2 = (u1,u1) = 2, (7.77)

which is the correct squared distance to the origin. Note that this means

(cx,y) = c(x,y), (7.78)

and

(x, cy) = c(x,y). (7.79)

This also changes the definition of what we mean by an adjoint matrix, and therefore the definition of a

symmetric matrix. Recall the discussion of adjoint, (4.19) and (4.20) which in the present context is
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(u,Av) =
∑
m,n

unAnmvm

=
∑
m,n

(Anmun)vm

= (A†u,v). (7.80)

Therefore the adjoint, A†, is the complex conjugate transpose of A. A matrix is symmetric (or also said to

be Hermitian), if it is equal to its conjugate transpose. E.g.,

⎛
⎝0 −i
i 0

⎞
⎠ (7.81)

is Hermitian and observe

⎛
⎝0 −i
i 0

⎞
⎠

⎛
⎝x

y

⎞
⎠ = λ

⎛
⎝x

y

⎞
⎠ (7.82)

implies the real eigenvalues

λ2 = 1;λ = ±1. (7.83)

As you can easily verify the corresponding eigenvectors are

λ1 = +1; u1 =

⎡
⎣1

i

⎤
⎦ /√2 : λ2 = −1; u2 =

⎡
⎣ 1

−i

⎤
⎦ /√2, (7.84)

from which it is easily seen that

‖u1‖2 = 1 = ‖u2‖2 and (u1,u2) = 0 (7.85)

This is representative of any hermitian matrix, A, viz, that the eigenvalues are real and the eigenvectors can

be taken to be orthonormal.

Suppose A is hermitian and

Av = λv (7.86)

then

(v,Av) = (Av,v) = (λv,v) = (v, λv) (7.87)

therefore

λ∗(v,v) = λ(v,v) (7.88)

so λ is real.

Next if λ �= μ and
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Aw = μw (7.89)

then

(v,Aw) = (Av,w) = λ(v,w) = μ(v,w) (7.90)

and hence

(λ− μ)(v,w) = 0, (7.91)

which by hypothesis demonstrates that v and w are orthogonal. As usual the eigenvectors can be taken to have unit length,

‖v‖ = 1.

Fourier Analysis

Suppose f(z) = 2
∑∞

n=0 anz
n is a power series that defines f(z) and for which the series converges in the

disk |z| < R > 1. In particular on the circle, r = 1, we can write, with z = reiθ,

f(z)
∣∣
r=1

= f(eiθ) = 2
∞∑

n=0

ane
inθ = φ(θ) + iψ(θ), (7.92)

where the last form gives f in terms of its real and imaginary parts. Since the real part ϕ, is 1
2 (f + f) we

have

φ(θ) = Re f(|z| = 1) =
∞∑

n=0

ane
inθ +

∞∑
n=0

ane
−inθ =

∞∑
−∞

ane
inθ; a−n = an, (7.93)

and a0 is twice its value in (7.92). Equation (7.84) says that a function defined on the unit circle ϕ(θ), which

is therefore 2π-period, can be expressed as a sum over the infinite set of 2π-periodic functions {einθ}, n =

0,±1,±2 · · · . There is a certain reasonableness to this statement, and we have demonstrated this, at least in

the framework of analytic functions. However, it is also reasonable to expect that any 2π-periodic function

has a Fourier expansion, (7.93). So for an arbitrary, but known, 2π-periodic function g(θ) we expect that

exists a Fourier series representation

g(θ) =
∞∑
−∞

ane
inθ. (7.94)

In order to determine an, first note that

∫ 2π

0

eimθdθ =

⎧⎨
⎩

0; m 
= 0

2π; m = 0
. (7.95)
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No analysis is necessary to see this, just the observation that any, non-constant, sinusoid over its period has

equal positive and negative area. Next, based on our earlier discussion of the complex inner product, the

inner product of two complex functions, v(θ) and u(θ) say on (0, 2π), is given by

(u, v) =
∫ 2π

0

u(θ)v(θ)dθ. (7.96)

It therefore follows from (7.94) and (7.96) that

(eimθ, g(θ)) =
∫ 2π

0

e−imθg(θ)dθ = 2πam. (7.97)

At this point we can imagine g(θ) to be any function defined on (0, 2π), and by expanding it in a Fourier

series we extend its definition to be a 2π-periodic function as a result of (7.94). For a continuous function the

summation in (7.94) converges pointwise to g(θ), and if it is discontinuous say at θ0 then the summation,

(7.94), converges to the average value, 1
2{g(θ+0 ) + g(θ−0 )}. 3 An alternate form is obtained if we set θ = 2πs

then the interval (0, 2π) goes to (0, 1), and

f(s) =
∑

n

ane
2πins; an =

∫ 1

0

e−2πintf(s)ds. (7.98)

In either case the index n informs us of the number of cycles in the period for the corresponding sinusoid.

3 This is more or less obvious from the continuous case if we regard the discontinuous case as a limit of the continuous

approximations.


