
Page 1 of 5

A Brief Introduction to Matlab for Econometrics Simulations

Greg Fischer
MIT

February 2006

Introduction
First, Don’t Panic! As the problem set assured you, the point of the programming exercises is to
help you develop intuition and quantitative skills in econometrics, not to drop you into some
Sartre-esque morass of endless help files, inscrutable code, and excessive Mountain Dew
consumption. We’ll try to introduce key programming tips before you write your problem sets.
Occasionally we’ll cruelly leave something out, offering you a teachable moment during which
to familiarize yourself with Matlab’s or the program of your choice’s help files, but odds are we
just forgot to explain it. Again, if something seems unduly time consuming, don’t be shy about
asking for advice

I am in no way a Matlab wizard. For most applied work, you’ll want to work with software,
such as Stata, that has more user-friendly canned packages. But our goal in 382 is to familiarize
you with the nuts & bolts of econometrics and these packages make it hard to do so.1 In this
regard, Matlab is great as its strength is matrix manipulation and it’s also a very intuitive
programming language.

There are some decent on-line tutorials and references available from which I will occasionally
draw (without reference) and which offer a more comprehensive introduction that this will. A
decent place to start is http://www.math.utah.edu/lab/ms/matlab/matlab.html. For something
more thorough, try http://www.math.siu.edu/matlab/tutorials.html. It’s the best I’ve seen (though
I’m not sure that says much) and is a useful starting place if you really want to figure out the

1 Rumor has it that Stata 9 actually does a very good job with matrix manipulation, but since few of us have access
to it let’s pretend it doesn’t exist for now.

Page 2 of 5

program. Finally, let us and your classmates know if you find a better source. We’d all be
thankful. With that, let’s get started.

Getting Started
Matlab is available on the lab machines, on the department server (blackmarket),2 and through
free download for students at https://web.mit.edu/ist/products/vsls/matlab/matlab-license.html.
You’ll have to either run the program from campus or set-up a VPN connection, but the whole
process is described well on IST’s website. Note, all of my instructions will be based on the
Windows version of the program. I don’t use UNIX; it scares me.

Open up Matlab. You’ll see something that looks like Figure 1. The pane to the right is the
Command Window and allows you to enter simple commands. Go ahead and try it. Enter
something like a=1 and hit enter. You’ll see the results of your handiwork both in the Command
Window and in the Command History on the lower left. Now set b equal to 2. Add a plus b.
Voila. a + b = 3. It doesn’t get all that much harder. You’ll notice in the remaining commands
shown in Figure 1 that Matlab truncates by default to 4 decimals. You can change this either by
entering “format long” in the command line or by changing your preferences under the File-
Preferences menu.

Figure 1

2 See Chris Smith’s “How to use programs on blackmarket or shadydealings” posted on the GEA website’s
Computer Help section for help in setting up a Matlab session; available only to Course 14 students.

Page 3 of 5

Defining & Manipulating Matrices and Vectors
You can define matrices and row vectors in much the same way you do a scalar. Say you wanted
to enter a column vector (4,5,6)’. You can type a=[4; 5; 6], a=[4,5,6]’, or a=[4 5 6]’.
Matlab interprets semicolons as the end of a row and interprets commas or spaces as spaces
between entries within a row. So you would define the 2 x 2 identity matrix as X=[1 0; 0 1].
You can also use a short cut and just say X=eye(n). This will generate an n x n identity matrix.
Here are some of the matrix commands you may find useful:

Transpose: X’
Inverse: inv(X)
Identity: eye(n)
Element: X(i,j)
Operators: +, -, etc. work as you’d expect
Element-wise operator: Insert a . before the operator

The element-wise operator. Do the following: define X to be a 3 x 1 column vector equal to (1,
2, 3)’ and e to be a 3 x 1 column vector equal to (1, 1.1, 1.2)’. Now run through the commands
shown in Figure 2. If you try to multiply X by e, you’ll get an error since the matrices don’t
conform. X’e will give you the inner product, and X.*e will give you element-wise
multiplication. This can be quite handy.

Figure 2

Page 4 of 5

Programs
While you can do quick calculations in the Command Window, for programming you’ll want to
put your work in an m-file. To open a new file, select File-New-Mfile. Type something trivial
in this file, as you see in Figure 3.

Figure 3

Save your file somewhere, and then run it by either hitting F5 of selecting Debug-Run. Toggle
back to your Command Window and you’ll see the results. You may have a lot of entries the
results for which you don’t want to see in the command window. To suppress the output of these
lines them with a semicolon as in lines 6, 7, 10, and 11. This also works in the Command
Window.

An Example
Rather than go through commands and code structure in the abstract, let’s walk through an
example of some code that does something similar to what you’ll be asked to do on the first and
second problem sets. The file is heavily annotated and should cover directly just about
everything you’ll need to do to complete the exercise. And no, I’m not posting the m-file itself,

Page 5 of 5

but short of that, please don’t hesitate to contact Raymond or me if you have questions,
comments, or suggestions. Have fun.

2/12/06 5:16 PM C:\Documents and Settings\Fish\My Documents\MetricsGeneral\382-Spring2006\Eco382MatlabEx1.m 1 of 3

 1 %***
 2 % 14.382, Introduction to Econometrics
 3 % Matlab Introduction
 4 % Written by Greg Fischer
 5 % February 11, 2006
 6 %***
 7 % It's good coding practice to descript what you're doing up front.
 8 % Note the % marks a comment and the asteriks (*) help readability
 9 % You may also want to change the preferences under editor/debugger-language to autowrap at 120, landscape width
 10 %***
 11
 12 clear all % clears all variable from current workspace
 13 clear global % type `help clear' to see why you want to do this
 14
 15 %***
 16 % Problem Summary
 17 % This is NOT your problem set. Just an edited version of some code I% had lying around
 18 % Though it doesn't show up in the pdf, when you write in the editior you'll note the nifty color coding, green for
 19 % comments, black for text, purple for strings,etc. You can change these to suit your preferences too.
 20 %***
 21 % y(i) = x(i)*Beta + epsilon(i) [1]
 22 % x(i) uniformly distributed on (0,1)
 23
 24 % true Beta is 1
 25 % Repeat 1,000 times:
 26 % Generate 200 observations from the model, equation [1]
 27 % Test beta=1 using usual variance, s^2 * (X'X)^-1, for betahat
 28 % Test beta=1 using Eicker-White Variance for betahat
 29 % Comment on fraction of times we can reject for each method
 30 %***
 31
 32 %***
 33 % Inputs & Counters % It's also a good habit to define inputs up front not as you go
 34 %***
 35 % Iterations
 36 % True beta
 37 % Number of replications
 38 % Defining variables that I'll use later

2/12/06 5:16 PM C:\Documents and Settings\Fish\My Documents\MetricsGeneral\382-Spring2006\Eco382MatlabEx1.m 2 of 3

 39
 40 % sets aside an iter x 1 matrix to store results
 41 %***
 42 % The Simulation
 43 %***
 44
 45 for m = 1:iter % this is the formal for all for loops
 46 % Hit Ctrl-c to break out of a loop gone bad
 47 % Step 1: Generate 200 observations from [1]
 48 % Step 1A: Generate 200(n) x 1 vector of x's distributed U(0,1)
 49 % Step 1B: Generate 200(n) x 1 vector of v's distributed N(0,1)
 50 % Step 1C: Caculate e (epsilon) where e(i) = x(i) * v(i)
 51 % This is the element-wise multiplication mentioned in text
 52 % Step 1D: Calculate y per equation [1]
 53 % We've not generated our random sample according to the model above
 54
 55 % Step 2: Calculate BetaHat & Other statistics
 56
 57
 58
 59 % Just a sneaky, low resource way to get SHat
 60 % Stores our estimate of BHat as element m of results vector
 61
 62 % Step 3: Calculate Standard Errors
 63 % Don't worry about the particulars for now. Just get the sense of
 64 % How the programming language is working & decent file structure
 65
 66
 67
 68 % Step 4: Test Hypotheses and Count Rejections
 69 % Step 4A: The Usual Test
 70
 71 if abs (t_usual) > 1.96
 72
 73 end
 74
 75 % Step 4A: The White Test
 76

2/12/06 5:16 PM C:\Documents and Settings\Fish\My Documents\MetricsGeneral\382-Spring2006\Eco382MatlabEx1.m 3 of 3

 77 if abs (t_white) > 1.96
 78
 79 end
 80 end
 81
 82
 83
 84
 85 %***
 86 % Display Results
 87 %***
 88 % By now you will have noticed that most of Matlab's displays are quite ugly. This is just a slight clean up
 89 disp (' '
 90 disp(sprintf('# replications =%8.2f'
 91 disp(sprintf('Prob Rejection, Usual = %6.4f'
 92 disp(sprintf('Prob Rejection, White = %6.4f'
 93
 94 %***
 95 % Histogram
 96 %***
 97 % I'm forcing the bins in my histogram, but you can just as easily cal
 98
 99
100 % An easy way to define a vector with steps of 1/25 between elem
101 figure % Creates a Matlab graphics object. Not necessary if only 1 plot
102 % But still a good habit
103 cdfplot(result)
104 figure
105 hist(result,BRange) % Makes your histogram
106 % Look at ylim, xlabel, ylabel, subplot and title for some beauty tips
107
108

	MatlabIntro-Text.pdf
	Eco382MatlabEx1.pdf

