

Solution Stoichiometry

Since many reactions occur in solution we often need to know the number of moles of a particular substance in a given volume of solution.

The most common concentration unit is called the molarity and is represented by an upper case M

The molarity of a compound in a solution is the number of moles of that compound per liter of solution

Example 1 solution stoichiometry

Dissolve 49 g of H_2SO_4 in enough water to make 250 mL of solution.

What is the molarity of the solution?

$$M = \frac{moles \ of \ material}{liters \ of \ solution}$$

Molar mass of $H_2SO_4 = 98 \text{ g/mol}$ 49 g is ½ mole

$$M = \frac{moles}{L} = \frac{0.50}{0.25} = 2.0$$

Empty beaker

2.0 M solution

Example 2 solution stoichiometry

What mass of NaOH in grams, is required to make 15.0L of a 0.200 M solution?

$$M = \frac{moles}{liters} = \frac{moles}{V}$$

$$M = 0.200$$
 $V = 15.0L$ $moles = 0.200 \times 15.0 = 3.00$

Molecular mass of NaOH = 40.0 g/mol

grams
$$NaOH = 3.00mol \times \frac{40.0g}{mol} = 120g$$

Example 3 solution stoichiometry

How many mL of a 6.00 M HCl solution does one need to make 1.00 L of a 0.150 M HCl (aqueous) solution?

$$M = \frac{moles}{V}$$

1.00L of a 0.150M solution contains 0.150 moles of HCl

What volume of a 6.00 M HCl solution contains 0.150 moles of HCl?

$$V = \frac{0.150mol}{6.00mol/L} = 0.0250L \equiv 25.0mL$$

Empty beaker

1.00 L of a 0.150 M solution of HCl

Lecture notes 11

Thermodynamics

Developed initially to understand how one can efficiently convert heat into useful work

We will use it to understand the energy changes that take place in a chemical reaction

Thermodynamics

Reactants \rightarrow Products bonds broken \rightarrow bonds formed energy required \rightarrow energy released

If the energy required is more than the energy released

endothermic reaction

If the energy released is more than the energy required

exothermic reaction

Some definitions

System: a part of the universe under consideration

Surroundings: everything else

System + Surroundings = Universe

Three types of systems

Open system: can exchange both matter and energy with surroundings

Closed system: can exchange only energy with surroundings

Isolated system: cannot exchange energy or matter with the surroundings

$\Delta E_{system} = heat \ transfered + work \ done \ by/on \ system$

Energy in

Add heat

Do work on system

Energy out

Remove heat

Have the system do work

q measure of heat involved

is positive if heat is added to the system and negative if heat is removed from the system

W is measure of the work involved

is positive if work is done on the system and negative if the system does work

First law of Thermodynamics

The energy of the universe is constant

$$\Delta E_{\text{system}} + \Delta E_{\text{surroundings}} = 0$$

Energy cannot be created or destroyed but simply transferred

$$\Delta E_{\text{system}} = \Delta E = q + W$$

Suppose we add 40 Joules of thermal energy to a system and the system does 15 Joules of work. What is the change in the energy of the system?

$$\Delta E = q+W$$

$$q = +40$$
 Joules

$$W = -15$$
 Joules

$$\Delta E = 40-15 = +25 J$$

Heat is a manifestation of the kinetic energy (energy of motion) of the atoms or molecules constituting the system

The hotter the material the faster the atoms and molecules are moving

This motion is random

Consequently heat is an incoherent form of energy

Closed system

Volume doesn't change

Final energy E_f

Final state

$$E_f - E_i = \Delta E = q$$

Initial energy E_i

Initial state

Closed system

Final energy E_f

P_{external}

Final state

Volume changes

W is negative

$$W=-P_{ext}\Delta V$$

Initial energy E_i

Add q joules

P_{external}

Initial state

System does work against the external pressure

Energy change when heat is added and the volume of the system changes.

$$work = Force \times distance = \frac{Force}{Area} \times distance \times Area = Presssure \times Volume$$

"pressure volume work" = $-P_{external} \Delta V = -P\Delta V$

Volume increases work is negative (system is doing work)

Volume decreases work is positive, work is being done on the system

We can measure work by knowing the external pressure and the volume change.

What about heat?

Measure the temperature change in the system and use the specific heat of the system to calculate the heat change.

Calorimeter

What is a specific heat?

The amount of heat required to raise the temperature of 1 gram of material 1 degree Kelvin

Material	specific heat (J/gK)
ice	2.1
water	4.184
steam	2.0
Cu	0.385

$$q(J) = mass(g) \times Temperature\ change(K) \times specific\ heat\left(\frac{J}{gK}\right)$$

Represent specific heat by a lower case "c"

Represent mass of material by a lower case "m"

Represent temperature change by ΔT

$$q(J) = m(g) \times \Delta T(K) \times c \left(\frac{J}{gK}\right)$$

Example 1 lecture notes 11

How much heat is required to raise the temperature of 50 grams of water from 20°C to 45°C?

Specific heat of water = 4.184 Jg⁻¹K⁻¹

$$q(J) = m(g) \times \Delta T(K) \times c \left(\frac{J}{gK}\right)$$

$$q = 50.0g \times 25K \times 4.184 \frac{J}{gK} = 5230J = 5.23 \times 10^3 J = 5.23kJ$$

Temperature in Kelvin and Celsius are related by

$$T(K)=T(^{0}C)+273.15$$

$$\Delta T(K) = \Delta T(^{0}C)$$

Heating curves (plot of temperature versus heat added)

