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Chapter 1

Complex Numbers

1.1 The Parts of a Complex Number

A complex number, z, is an ordered pair of real numbers similar to the points
in the real plane, R2.

z ≡ (x, y) (1.1)

The first and second components of z is called the real and imaginary parts
respectively.

Re(z) = x, Im(z) = y (1.2)

The imaginary unit, i, is defined by

i ≡ (0, 1) (1.3)

Thus, an equivalent notation to the ordered pair, is to write a complex num-
ber in terms of its components by

z = x + iy (1.4)

with the real unit (1, 0) assumed next to the term without an i because that
term is real.

1.2 The Complex Product

The plane of complex numbers, C, deviates from R2 in that the product of
two complex numbers is defined by

z1 · z2 = (x1, y1) · (x2, y2) ≡ (x1x2 − y1y2, x1y2 + x2y1) (1.5)

= (x1x2 − y1y2) + i(x1y2 + x2y1) (1.6)
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Multiplying two imaginary units, one can see why i is sometimes identified
with

√
−1.

(0, 1) · (0, 1) = (−1, 0) (1.7)

i2 = −1 (1.8)

However, one should take caution when writing the imaginary unit as
√
−1,

or else one can be lead to contradicting conclusions like

− 1 = i · i =
√
−1 ·

√
−1

?
=
√
−1 · −1 =

√
1 = 1 (1.9)

One should always fall back to the definition of the imaginary unit and the
complex product when there is confusion.

1.3 Functions

In this context, a function f takes a complex number z as its argument
and returns another complex number. The real and imaginary parts of the
returned complex number are often denoted u and v respectively.

u ≡ Re (f(z)) , v ≡ Im (f(z)) (1.10)

1.4 Euler’s Formula

Consider the exponential of an imaginary number, eiθ, where θ ∈ R.

eiθ =
∞∑

n=0

(iθ)2

n!
(1.11)

= 1 + iθ − 1

2
θ2 − i

3!
θ3 +

1

4!
θ4 +

i

5!
θ5 . . . (1.12)

=

(
1− 1

2
θ2 +

1

4!
θ4 − . . .

)
+ i

(
θ − 1

3!
θ3 +

1

5!
θ5 − . . .

)
(1.13)

= cos θ + i sin θ (1.14)

This gives Euler’s Formula

eiθ = cos θ + i sin θ (1.15)
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Figure 1.1: Geometric Interpretation of Euler’s Formula

Now we see that for a general complex number, η + iθ, {η, θ} ∈ R, we have

eη+iθ = eη (cos θ + i sin θ) (1.16)

Defining r ≡ eη, we see that any nonzero complex number, z, can be written
in polar coordinates using

z = eη+iθ = r eiθ = r (cos θ + i sin θ) (1.17)

Figure 1.1 demonstrates how writing a complex number as r eiθ is a point in
the complex plane with polar coordinates (r, θ).

1.5 Argument, Magnitude, and Conjugate

When thinking of a complex number, z, in polar coordinates, it is customary
to call the angle “the argument of z,” denoted

θ = Arg(z) (1.18)

r is known as “the magnitude of z,” denoted

r = |z| (1.19)

The complex conjugate is an operation which flips the sign of the imagi-
nary part of the complex number on which it acts. The complex conjugate
of z is denoted z∗. For z = x + iy = r eiθ, we have that

z∗ = x− iy = r e−iθ (1.20)
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Figure 1.2: Geometric Interpretation of Complex Conjugate

In polar coordinates, we know that flipping the sign of the argument will flip
the sign of the imaginary part because

Im(z) = r sin θ (1.21)

and
r sin (−θ) = −r sin θ = −Im(z) (1.22)

Taking the product of two complex numbers, we have

z1 z2 =
(
r1 eiθ1

) (
r2 eiθ2

)
(1.23)

= r1 r2 ei(θ1+θ2) (1.24)

From this, we see that the geometric interpretation of the complex product
is that it multiplies the magnitudes and adds the arguments.

Taking the product of a complex number with its complex conjugate, we
have

z z∗ =
(
r eiθ

) (
r e−iθ

)
(1.25)

= r2 (1.26)

= |z|2 (1.27)

giving us a relation for the magnitude of a complex number.
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Chapter 2

Differentiation

2.1 Motivation

One might expect that we could define the complex derivative in a way
analogous to that of the reals.

df

dz
= lim

h→0

f(z + h)− f(z)

h
(2.1)

But there is an additional complication because C forms a plane, and there-
fore we must specify a direction to step with the differential element h when
taking the derivative, similar to a directional derivative in R2. In general,
the derivative at a single point can take on many values depending on the
direction we choose to step. We will consider a subset of the complex func-
tions called holomorphic functions that have a single valued derivative at
every point in some region. That is, those functions whose derivative at
some point is the same in all directions.

2.2 Cauchy-Riemann Equations

Following the expression in equation (2.1), if we pick h to be real, we get

df

dz
= lim

h→0

f(x + h + iy)− f(x + iy)

h
(2.2)

= lim
h→0

f(x + h, y)− f(x, y)

h
(2.3)

=
∂f

∂x
(2.4)
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If we pick h to be imaginary, h = i`, ` ∈ R, we get

df

dz
= lim

`→0

f(x + i(y + `))− f(x + iy)

i`
(2.5)

= lim
`→0

f(x, y + `)− f(x, y)

i`
(2.6)

=
1

i

∂f

∂y
(2.7)

Requiring that the derivative be the same in all directions, we have

∂f

∂x
=

1

i

∂f

∂y
(2.8)

∂u

∂x
+ i

∂v

∂x
=

1

i

(
∂u

∂y
+ i

∂v

∂y

)
(2.9)

⇒ The Cauchy-Riemann Equations :

∂u

∂x
=

∂v

∂y
and

∂u

∂y
= −∂v

∂x
(2.10)

If the partial derivatives of a function are continuous in some region and
satisfy the Cauchy-Riemann Equations in that region, then the function is
holomorphic in that region.

2.3 Expressions for the Complex Derivative

Using the fact that the derivative is the same in both the x and y directions for
holomorphic functions, and also using the Cauchy-Riemann Equations, one
can see that all of the following are equivalent expressions for the derivative
of a holomorphic function.

df

dz
=

∂f

∂x
=

1

i

∂f

∂y
=

∂u

∂x
+ i

∂v

∂x
= −i

∂u

∂y
+

∂v

∂y
(2.11)
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2.4 Conjugate Harmonic Functions

If we take the Laplacian of the real part of a holomorphic function, using the
Cauchy-Riemann Equations, we get

∇2u =
∂2u

∂x2
+

∂2u

∂y2
(2.12)

=
∂

∂x

∂v

∂y
− ∂

∂y

∂v

∂x
(2.13)

= 0 (2.14)

Similarly, for the imaginary part

∇2v = 0 (2.15)

A function whose Laplacian is zero is called harmonic. Any harmonic func-
tion is the real or imaginary part of some holomorphic function. A pair of
harmonic functions that are the real and imaginary parts of the same holo-
morphic function are called conjugate harmonic functions.

2.5 Same Rules Apply

TODO

2.6 Examples of Holomorphic Functions

TODO
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Chapter 3

Integration

3.1 Cauchy’s Integral Theorem

Often one is interested in evaluating integrals along closed contours. Cauchy’s
Integral Theorem shows us that if a function is holomorphic everywhere inside
the region bound by some closed contour, then the integral of that function
along that contour is zero. In the following proof, Γ denotes a closed contour
that is the boundary of some region R. Green’s theorem is used to get from
equation (3.2) to (3.3). In equation (3.3), we recognize that the integrands
are zero using the Cauchy-Riemann Equations because we are requiring that
the function be holomorphic everywhere in R.∮

Γ

f(z) dz =

∮
Γ

(u + iv)(dx + i dy) (3.1)

=

∮
Γ

(u dx− v dy) + i

∮
Γ

(v dx + u dy) (3.2)

= −
∫∫
R

���
����*0(

∂v

∂x
+

∂u

∂y

)
dx dy + i

∫∫
R

�
���

���*0(
∂u

∂x
− ∂v

∂y

)
dx dy(3.3)

= 0 (3.4)
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∴ Cauchy’s Integral Theorem:
If f(z) is holomorphic everywhere in the region bounded by Γ, then∮

Γ

f(z) dz = 0 (3.5)

3.2 The Fundamental Theorem of Calculus

TODO

3.3 The Deformation Theorem

Consider a function f(z) that is holomorphic everywhere in some region
except for at a point z0, where it diverges. Γ, shown in Figure 3.1(a), is
some closed contour along which we want to integrate f(z). Now consider
a small circular contour centered at z0, denoted ΓR and shown in Figure
3.1(b). By connecting these two contours, a new closed contour, Γ′, shown in
Figure 3.1(c), is made that does not enclose the singular point, z0. The two
opposing segments of contour that connect Γ and ΓR can be made arbitrarily
close together such that their contributions to the integral along Γ′ completely
cancel. ∮

Γ′

f(z) dz =

∮
Γ

f(z) dz −
∮
ΓR

f(z) dz (3.6)

Because Γ′ does not include any singularities, its integral is zero by
Cauchy’s Integral Theorem. Therefore,∮

Γ

f(z) dz =

∮
ΓR

f(z) dz (3.7)

Because the size and shape of ΓR was arbitrary (though it is often con-
venient to choose small circles), this demonstrates that a contour can be
continuously deformed to any other path enclosing the same singularities
without changing the value of its integral. This is the meaning of Deforma-
tion Theorem.

Two contours that can continuously deformed into each other without
crossing any singularities are known to be homotopic to each other.
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(a) Contour of the integral we
want to evaluate

(b) Consider a small circular con-
tour

(c) Closed contour with integral
zero

Figure 3.1: Demonstrating the Deformation Theorem

Figure 3.2 shows how a general contour, enclosing some multitude of
singularities, can be broken up into several contours, each enclosing one of
the singularities.

3.4 Cauchy’s Integral Formula

Consider the following integral, where f(z) is holomorophic everywhere in
the region integrated.

I =

∮
f(z)

(z − z0)n
dz (3.8)

We deform the contour to an arbitrarily small circle around the singularity,
z0. Therefore, along the entire path of integration, f(z) is arbitrarily close
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(a) Original contour (b) Deforming to small circles

(c) Contours equivalent to the
original

Figure 3.2: Deformation Example

to the value of f(z0) and may be pulled out of the integral.

I = f(z0)

∮
1

(z − z0)n
dz (3.9)

Then, we make a change of variables: z − z0 = r eiθ, dz = i r eiθ dθ.

I = f(z0)

∫ 2π

0

i r eiθ

rn eiθ
dθ (3.10)

= i rn−1 f(z0)

∫ 2π

0

ei(n−1)θ dθ (3.11)

∮
f(z)

(z − z0)n
dz =

{
2πi f(z0), n = 1

0, n 6= 1
(3.12)

Solving for f(z0) we get Cauchy’s Integral Formula:

f(z0) =
1

2πi

∮
f(z)

z − z0

dz (3.13)
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3.5 Holomorphic = Analytic

Taking the n-th derivative of Cauchy’s Integral Formula formula, we have
Cauchy’s Differentiation Formula:

f (n)(z0) =
n!

2πi

∮
f(z)

(z − z0)n+1
dz (3.14)

Because the integral on the right is well defined for any n, we conclude that
holomorphic functions are infinitely differentiable.

Consider a function f(z), for which we want to derive an expansion that is
good for values of z near some point z0. Imagine a circular contour, centered
at z0, and small enough such that f(z) is holomorphic everywhere inside that
contour, including at the point z0. Let z be some point inside the contour,
and z′, being the integration variable, is some point on the contour.

Figure 3.3: Region for Taylor Expansion

We can write f(z) using Cauchy’s Integral Formula:

f(z) =
1

2πi

∮
f(z′)

z′ − z
dz′ (3.15)

We need to expand the denominator of the integrand in terms of (z − z0).

1

z′ − z
=

1

z′ − z0 + z0 − z
(3.16)

=
1

(z′ − z0)
(
1− z−z0

z′−z0

) (3.17)

Noting that
|z − z0| < |z′ − z0| (3.18)
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we recognize a geometric series

1

1− z−z0

z′−z0

=
∞∑

n=0

(
z − z0

z′ − z0

)n

(3.19)

Therefore
1

z′ − z
=

1

z′ − z0

∞∑
n=0

(
z − z0

z′ − z0

)n

(3.20)

f(z) =
1

2πi

∮
f(z′)

z′ − z0

∞∑
n=0

(
z − z0

z′ − z0

)n

dz′ (3.21)

=
1

2πi

∞∑
n=0

(z − z0)
n

∮
f(z′)

(z′ − z0)
n+1 dz′ (3.22)

Now we recognize that the integral can be written in terms of derivatives of
f(z0) using Cauchy’s Differentiation Formula.

f(z) =
1

��2πi

∞∑
n=0

(z − z0)
n ��2πi f (n)(z0)

n!
(3.23)

=
∞∑

n=0

f (n)(z0)

n!
(z − z0)

n (3.24)

which is the formula for the Taylor series of f(z). Therefore, every holo-
morphic function has a convergent Taylor series. That is, every holomorphic
function is analytic.

3.6 Laurent Series

We will see when we get to the calculus of residues that it is often beneficial
to expand a function around a singular point. This can not be done with the
Taylor series as we have derived it because the Cauchy Integral Formula we
used requires that the function be analytic inside the entire region bounded
by the contour one would make to use the formula. This leads us to the
development of the Laurent Series as follows.

Consider a function that is analytic in some annulus centered at z0, bound
by the dashed circles shown in Figure 3.4(a). The inner boundary could
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(a) Some contour, Γ, to use
Cauchy’s Integral Formula

(b) The same contour deformed

(c) The integral over Γ can be
written in terms of integrals over
Γi and Γo

Figure 3.4: Deriving Laurent Series
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enclose a single isolated singularity at z0 or a collection of singularities. We
draw some closed contour Γ within the annulus, around a point z, with hopes
of finding a way of using it for Cauchy’s Integral Formula. The contour can
be deformed within the annulus such that integration along it is equivalent
to integration along the inner and outer circular contours, Γi and Γo, shown
in Figure 3.4(c).

f(z) =
1

2πi

∮
Γ

f(ξ)

ξ − z
dξ (3.25)

=
1

2πi

∮
Γo

f(z′)

z′ − z
dz′ − 1

2πi

∮
Γi

f(z′′)

z′′ − z
dz′′ (3.26)

≡ 1

2πi
O − 1

2πi
I (3.27)

Following the same reasoning used in section 3.5, the outer integral, O,
is given by

O =
∞∑

n=0

(z − z0)
n

∮
Γo

f(z′)

(z′ − z0)
n+1 dz′ (3.28)

But for the inner integral, I, the inequality analogous to the one we used to
make the geometric series for O is flipped the other way (compare to equation
(3.18)):

|z − z0| > |z′′ − z0| (3.29)

Therefore, instead of factoring out (z′′ − z0), like we did in equation (3.17),
we will factor out the point (z−z0), leading us to a suitable geometric series.

1

z′′ − z
=

1

z′′ − z0 + z0 − z
(3.30)

=
1

(z − z0)
(

z′′−z0

z−z0
− 1

) (3.31)

=
−1

z − z0

1

1− z′′−z0

z−z0

(3.32)

=
−1

z − z0

∞∑
n=0

(
z′′ − z0

z − z0

)n

(3.33)
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I = −
∮
Γi

f(z′′)

z − z0

∞∑
n=0

(
z′′ − z0

z − z0

)n

dz′′ (3.34)

= −
∞∑

n=0

1

(z − z0)n+1

∮
Γi

f(z′′) (z′′ − z0)
n

dz′′ (3.35)

= −
∞∑

n=0

(z − z0)
−n−1

∮
Γi

f(z′′)

(z′′ − z0)
−n dz′′ (3.36)

n → −n− 1 (3.37)

= −
−∞∑

n=−1

(z − z0)
n

∮
Γi

f(z′′)

(z′′ − z0)
n+1 dz′′ (3.38)

Putting these results together, we have

f(z) =
1

2πi

∞∑
n=0

(z − z0)
n

∮
Γo

f(z′)

(z′ − z0)
n+1 dz′

+
1

2πi

−∞∑
n=−1

(z − z0)
n

∮
Γi

f(z′′)

(z′′ − z0)
n+1 dz′′ (3.39)

Lastly, we notice that the contours Γo and Γi are homotopic, and therefore
we may write the coefficients of these series in a single compact form:

an =
1

2πi

∮
f(z′)

(z′ − z0)
n+1 dz′ (3.40)

f(z) =
∞∑

n=−∞

an (z − z0)
n (3.41)

Equation (3.40) is more of a formal expression for the Laurent series
coeficients than a practical one. In chapters 4 and 5, we will see examples of
expanding a function in a Laurent series and why it is useful.

Note that if f(z) analytic in the region in the center of the annulus, then
the inner boundary of the annulus can be completely collapsed, changing the
annulus to a disk. In this case, the Laurent series of f(z) does not contain
any negative powers because the integrand in equation (3.40) is analytic for
all negative n, giving an = 0 by Cauchy’s Integral Theorem. Therefore we
recover the Taylor series as a special case of the Laurent series.
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3.7 Classifying Singularities

Given a function, f(z) has the following Laurent series around z0

f(z) =
∞∑

n=−∞

an(z − z0)
n (3.42)

f(z) has the following at z0

• simple pole: if a−1 6= 0 and an = 0 for all n < −1. This is also
known as a pole of order 1.

• pole of order m: if there exists m < 0 such that an = 0 for all n < m
and am 6= 0.

• essential singularity: if there does not exist m such that an = 0 for
all n < m.

• branch point: TODO

• removable singularity: TODO

3.8 The Residue Theorem

Consider the general problem of evaluating the integral of some function, f(z)
along a closed contour, Γ. We have shown by Cauchy’s Integral Theorem that
if f(z) is analytic everywhere in the region bound by Γ, the integral is zero.
We are now equipped with the tools required to answer this problem in the
case where f(z) is singular at one or more isolated points in the region bound
by Γ. To summarize what we needed to get here: after proving Cauchy’s
Integral Theorem, we could prove the Deformation Theorem, which allowed
us to prove Cauchy’s Integral Formula, which we used to demonstrate that
a function could be written as a Laurent series.

Let the singularities of f(z) inside Γ be denoted {z0, z1, z2 . . . zN}. The
Deformation Theorem tells us that the contour can be deformed to small
circles, {Γ0, Γ1, Γ2 . . . ΓN}, surrounding each of the singularities like in Figure
3.2. ∮

Γ

f(z) dz =
N∑

k=0

∮
Γk

f(z) dz (3.43)
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Now consider the integral along one these circular contours, Γ0. Expand-
ing f(z) in a Laurent series around the singular point z0, we have∮

Γ0

f(z) dz =

∮
Γ0

∞∑
n=−∞

an (z − z0)
n dz (3.44)

Now we need to restate equation (3.12), an important lemma we arrived at
in deriving Cauchy’s Integral Formula:∮

(z − z0)
n dz =

{
2πi, n = −1

0, n 6= −1
(3.45)

Using this we have ∮
Γ0

f(z) dz = 2πi a−1 (3.46)

Seeing that the n = −1 coefficient in the Laurent series is especially impor-
tant, it is customary to give a−1 as special name: the “residue of f(z) at z0.”
It is denoted Res(f(z), z0).

Performing the integrals along each Γk this way, we have the Residue
Theorem: ∮

Γ

f(z) dz = 2πi
N∑

k=0

Res(f(z), zk) (3.47)

Therefore, we have shown that the task of evaluating the integral of a function
along a closed contour can be reduced to finding the residues of that function
at that function’s singular points enclosed by the contour. The next section
will deal with how one calculates these residues.

3.9 Residue Calculus

3.9.1 Simple Pole

A function, f(z), with a simple pole at z0 can be written

f(z) =
g(z)

z − z0

=
1

z − z0

(
g0 + g1(z − z0) + g2(z − z0)

2 + . . .
)

(3.48)
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where g(z) is analytic at z0 and therefore has been expanded in a Taylor
series around z0. This expansion, including the factor of 1

z−z0
, is the Laurent

series expansion of f(z) around z0. Evidently, g0 is the residue of f(z) at z0.
A direct way of calculating the residue is given by

Res(f(z), z0) =
[
f(z) · (z − z0)

]
z=z0

(3.49)

3.9.2 Pole of Order n

The more general case is where f(z) has a pole of order n at z0, and can be
written

f(z) =
g(z)

(z − z0)n
(3.50)

=
1

(z − z0)n

(
g0 + g1(z − z0) + . . .

+ gn−1(z − z0)
n−1 + gn(z − z0)

n + . . .
)

(3.51)

where g(z) is analytic at z0. Evidently, gn−1 is the residue of f(z) at z0. A
direct way of calculating this residue is given by

Res(f(z), z0) =
1

(n− 1)!

[(
d

dz

)n−1

f(z) · (z − z0)
n

]
z=z0

(3.52)

because

=
1

(n− 1)!

[(
d

dz

)n−1 (
g0 + g1(z − z0) + . . .

+ gn−1(z − z0)
n−1 + gn(z − z0)

n + . . .
)]

z=z0

(3.53)

=
[
gn−1 + gn(z − z0) + . . .

]
z=z0

(3.54)

= gn−1 (3.55)
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Chapter 4

Evaluating Real Integrals

The Residue Theorem and Cauchy’s Theorem sometimes can be used to
calculate real integrals that would otherwise be difficult or impossible to
calculate using methods from real analysis. The general strategy is to find a
way to equate the real integral to one with a closed contour in the complex
plane, allowing one to use Residue Theorem or Cauchy’s Theorem (in the
case that the contour encloses no singularities) to evaluate the integral.

4.1 Example 1

I =

∫ ∞

−∞

1

x2 + 1
dx (4.1)

To evaluate this integral along the real axis we consider a corresponding
contour integral∮

Γ

1

z2 + 1
dz =

∫ R

−R

1

x2 + 1
dx +

∫ π

0

1

R2ei2θ + 1
iReiθ dθ (4.2)

By the following argument, we see that the curved part of the path con-
tributes nothing to the integral in the limit R →∞

lim
R→∞

∮
Γ

1

z2 + 1
dz = lim

R→∞


�

���
����*I∫ R

−R

1

x2 + 1
dx +

�������������:0∫ π

0

1

R2ei2θ + 1
iReiθ dθ


= I (4.3)
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Now we can use the Residue Theorem to evaluate the integral. Note that
the integrand is singular at ±i. Because we have chosen to close the contour
in the upper half of the complex plane, the residue at +i is the only one
enclosed by the contour. We could have chosen to close the contour in the
lower half plane, and then we would use the residue at −i. In this case it
does not matter which way one closes the contour, but in general, one may
have to be careful about chosing which way to close the contour such that
the integral along the curved part of the contour goes to zero.

I = 2πi Res

(
1

z2 + 1
, i

)
(4.4)

1

z2 + 1
=

1

(z − i)(z + i)
(4.5)

Res

(
1

z2 + 1
, i

)
=

1

z + i

∣∣∣∣
z=i

=
1

2i
(4.6)

∴ I = π (4.7)

4.2 Example 2

I =

∫ ∞

0

1

1 + x4
(4.8)

f(z) ≡ 1

1 + z4
(4.9)

Finding the singularites of f(z):

− 1 = z4, z = eiθ (4.10)

ei(π+2πN) = ei4θ (4.11)

θ =
π

4
+

π

2
N (4.12)

The closed contour integral is given by the following three contour integrals.

∮
f(z) dz =

�
�

�
�

��>
I∫

C1

f(z) dz +

�
�

�
�

��>
0∫

C2

f(z) dz +

∫
C3

f(z) dz (4.13)
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We have not yet chosen which angle, θ, should be used to evaluate the integral
along C3. ∫

C3

f(z) dz =

∫ 0

∞
dr eiθ 1

1 + r4ei4θ
, z = r eiθ (4.14)

We can conveniently choose 4θ = 2π ⇒ θ = π
2

such that ei4θ = 1.∫ 0

∞
dr eiπ/2 1

1 + r4
= −i

∫ ∞

0

dr eiπ/2 1

1 + r4
= −iI (4.15)

∴ 2πi Res
(
f(z), eiπ/4

)
= I − iI = I(1− i) (4.16)

Res
(
f(z), eiπ/4

)
=

z − eiπ/4

1 + z4

∣∣∣∣
eiπ/4

(4.17)

=
1

4z3

∣∣∣∣
eiπ/4

(4.18)

=
1

4ei3π/4
(4.19)

=
1

4
(
−1√

2
+ i 1√

2

) (4.20)

=

√
2

4 (i− 1)
(4.21)

I(1− i) = 2πi Res
(
f(z), eiπ/4

)
(4.22)

= 2πi

√
2

4 (i− 1)
(4.23)

I =
πi√
2

1

(i− 1) (i− 1)
(4.24)

=
πi√
2

1

i− �1 + �1 + i
(4.25)

=
π

2
√

2
(4.26)
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Chapter 5

Summing Series

5.1 Non-alternating Series

Consider the residues of cot(πz) when z is an integer, n. Take note that
cot(πz + πn) = cot(πz), and therefore it sufficent to expand cot(πz) near
z = 0 to have an expansion for cot(πz) when z is near any integer.

cot(πz) =
cos(πz)

sin(πz)
(5.1)

=
1− 1

2
(πz)2 + O[(πz)4]

πz − 1
6
(πz)3 + O[(πz)5]

(5.2)

=
1− 1

2
(πz)2 + O[(πz)4]

πz
(
1− 1

6
(πz)2 + O[(πz)4]

) (5.3)

Let x = 1
6
(πz)2 + O[(πz)4], and use the geometric series

1

1− x
= 1 + x + x2 + . . . (5.4)

then

cot(πz) =

(
1

πz
− 1

2
πz + O[(πz)3]

) (
1 +

1

6
(πz)2 + O[(πz)4]

)
(5.5)

=
1

πz
− 1

2
πz +

1

6
πz + O[(πz)3] (5.6)

=
1

πz
− 1

3
πz + O[(πz)3] (5.7)
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⇒ Res (cot(πz), n) =
1

π
(5.8)

Res (π cot(πz), n) = 1 (5.9)

If we have a function g(z) that is not singular at z = n, then

Res (g(z) π cot(πz), n) = g(n) (5.10)

Thus, a summation of terms g(n) can be related to a contour integral of
the function g(z) π cot(πz) using the Residue Theorem. This can be helpful
in summing difficult series, as will be shown in the following example.

Consider the Riemann zeta-function, ζ(s).

ζ(s) =
∞∑

n=1

1

ns
(5.11)

Let’s say we want to evaluate ζ(2).

g(n) ≡ 1

n2
, ζ(2) =

∞∑
n=1

g(n) (5.12)

f(z) ≡ g(z) π cot(πz) (5.13)

1

2πi

∮
f(z) dz =

−∞∑
n=−1

Res (f(z), n) + Res (f(z), 0)

+
∞∑

n=1

Res (f(z), n) (5.14)

=
−∞∑

n=−1

g(n) + Res (f(z), 0) +
∞∑

n=1

g(n) (5.15)

=
−∞∑

n=−1

1

n2
+ Res (f(z), 0) +

∞∑
n=1

1

n2
(5.16)

= Res (f(z), 0) + 2
∞∑

n=1

1

n2
(5.17)

= Res (f(z), 0) + 2 ζ(2) (5.18)
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Note that because g(z) is singular at z = 0, the residue of f(z) at z = 0
cannot be calculated with equation 5.10. It must be calculated independently.

f(z) =
π

z2
cot(πz) (5.19)

=
iπ

z2

eiπz + e−iπz

eiπz − e−iπz
, z = R eiθ (5.20)

as R →∞

→ iπ

R2 ei2θ

eiπR cos θ �����: 0

e−πR sin θ + e−iπR cos θ eπR sin θ

eiπR cos θ �����: 0

e−πR sin θ − e−iπR cos θ eπR sin θ

(5.21)

→ iπ

R2 ei2θ �����������:−1
e−iπR cos θ eπR sin θ

−e−iπR cos θ eπR sin θ
(5.22)

→ 0 (5.23)

∴
∮

f(z) dz = 0, as R →∞ (5.24)

∴ ζ(2) =
−1

2
Res (f(z), 0) (5.25)

Now we need to find the residue at z = 0.

f(z) =
π

z2
cot(πz) (5.26)

=
π

z2

(
1

πz
− 1

3
πz + O[(πz)3]

)
(5.27)

=
1

z3
− π2

3z
+ O[π2z] (5.28)

⇒ Res (f(z), 0) =
−π2

3
(5.29)

∴ ζ(2) =
−1

2

−π2

3
=

π2

6
(5.30)

5.2 Alternating Series

For alternating series, instead of considering the residues of cot(πz), as we
did with non-alternating series, we will consider the residues of csc(πz) at
z = n, an integer.
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Near z = n, w ≡ z − n is near 0.

csc(πz) = csc(πw + πn) (5.31)

= (−1)n csc(πw) (5.32)

=
(−1)n

sin(πw)
(5.33)

=
(−1)n

πw − 1
6
(πw)3 + O[(πw)5]

(5.34)

=
(−1)n

πw
(
1− 1

6
(πw)2 + O[(πw)4]

) (5.35)

Using the geometric series,

=
(−1)n

πw

(
1 +

1

6
(πw)2 + O[(πw)4]

)
(5.36)

= (−1)n

(
1

πw
+

1

6
πw + O[(πw)3]

)
(5.37)

⇒ Res (csc(πz), n) =
(−1)n

π
(5.38)

Res (π csc(πz), n) = (−1)n (5.39)

If we have a function g(z) that is not singular at z = n, then

Res (g(z) π csc(πz), n) = (−1)n g(n) (5.40)

Let’s say we want to evaluate the series

∞∑
n=1

(−1)n−1

n2
(5.41)
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