

Classification of

Parallel Computers

UNIT 2 CLASSIFICATION OF PARALLEL
 COMPUTERS

Structure Page Nos.

2.0 Introduction 27
2.1 Objectives 27
2.2 Types of Classification 28
2.3 Flynn’s Classification 28

2.3.1 Instruction Cycle
2.3.2 Instruction Stream and Data Stream
2.3.3 Flynn’s Classification

2.4 Handler’s Classification 33
2.5 Structural Classification 34

2.5.1 Shared Memory System/Tightly Coupled System
 2.5.1.1 Uniform Memory Access Model
 2.5.1.2 Non-Uniform Memory Access Model
 2.5.1.3 Cache-only Memory Architecture Model

2.5.2 Loosely Coupled Systems
2.6 Classification Based on Grain Size 39

2.6.1 Parallelism Conditions
2.6.2 Bernstein Conditions for Detection of Parallelism
2.6.3 Parallelism Based on Grain Size

2.7 Summary 44
2.8 Solutions/ Answers 44

2.0 INTRODUCTION

Parallel computers are those that emphasize the parallel processing between the
operations in some way. In the previous unit, all the basic terms of parallel processing and
computation have been defined. Parallel computers can be characterized based on the data
and instruction streams forming various types of computer organisations. They can also
be classified based on the computer structure, e.g. multiple processors having separate
memory or one shared global memory. Parallel processing levels can also be defined
based on the size of instructions in a program called grain size. Thus, parallel computers
can be classified based on various criteria. This unit discusses all types of classification of
parallel computers based on the above mentioned criteria.

2.1 OBJECTIVES

After going through this unit, you should be able to:

• explain the various criteria on which classification of parallel computers are based;
• discuss the Flynn’s classification based on instruction and data streams;
• describe the Structural classification based on different computer organisations;
• explain the Handler's classification based on three distinct levels of computer:

Processor control unit (PCU), Arithmetic logic unit (ALU), Bit-level circuit (BLC),
and

• describe the sub-tasks or instructions of a program that can be executed in parallel
based on the grain size.

 27

Elements of Parallel
Computing and
Architecture

2.2 TYPES OF CLASSIFICATION

The following classification of parallel computers have been identified:

1) Classification based on the instruction and data streams
2) Classification based on the structure of computers
3) Classification based on how the memory is accessed
4) Classification based on grain size

All these classification schemes are discussed in subsequent sections.

2.3 FLYNN’S CLASSIFICATION

This classification was first studied and proposed by Michael Flynn in 1972. Flynn did
not consider the machine architecture for classification of parallel computers; he
introduced the concept of instruction and data streams for categorizing of computers. All
the computers classified by Flynn are not parallel computers, but to grasp the concept of
parallel computers, it is necessary to understand all types of Flynn’s classification. Since,
this classification is based on instruction and data streams, first we need to understand
how the instruction cycle works.

2.3.1 Instruction Cycle
The instruction cycle consists of a sequence of steps needed for the execution of an
instruction in a program. A typical instruction in a program is composed of two parts:
Opcode and Operand. The Operand part specifies the data on which the specified
operation is to be done. (See Figure 1). The Operand part is divided into two parts:
addressing mode and the Operand. The addressing mode specifies the method of
determining the addresses of the actual data on which the operation is to be performed and
the operand part is used as an argument by the method in determining the actual address.

 Operation Operand Address
 Code Addressing mode

 Operand

0 5 6 15

Figure 1: Opcode and Operand

The control unit of the CPU of the computer fetches instructions in the program, one at a
time. The fetched Instruction is then decoded by the decoder which is a part of the control
unit and the processor executes the decoded instructions. The result of execution is
temporarily stored in Memory Buffer Register (MBR) (also called Memory Data
Register). The normal execution steps are shown in Figure 2.

 28

Classification of

Parallel Computers

Instructions?

NO YES

 Stop
Are there
More

Store the results

Execute the instructions

Fetch the operands

Calculate the operand
address

Decode the instruction

Fetch the instruction

Calculate the address of
instruction to be executed

 Start

Figure 2: Instruction execution steps

2.3.2 Instruction Stream and Data Stream
The term ‘stream’ refers to a sequence or flow of either instructions or data operated on
by the computer. In the complete cycle of instruction execution, a flow of instructions
from main memory to the CPU is established. This flow of instructions is called
instruction stream. Similarly, there is a flow of operands between processor and memory
bi-directionally. This flow of operands is called data stream. These two types of streams
are shown in Figure 3.

Data stream

Instruction
stream

Main Memory

CPU

Figure 3: Instruction and data stream

 29

Elements of Parallel
Computing and
Architecture

Thus, it can be said that the sequence of instructions executed by CPU forms the
Instruction streams and sequence of data (operands) required for execution of instructions
form the Data streams.

2.3.3 Flynn’s Classification
Flynn’s classification is based on multiplicity of instruction streams and data streams
observed by the CPU during program execution. Let Is and Ds are minimum number of
streams flowing at any point in the execution, then the computer organisation can be
categorized as follows:

1) Single Instruction and Single Data stream (SISD)

In this organisation, sequential execution of instructions is performed by one CPU
containing a single processing element (PE), i.e., ALU under one control unit as shown in
Figure 4. Therefore, SISD machines are conventional serial computers that process only
one stream of instructions and one stream of data. This type of computer organisation is
depicted in the diagram:

Is = Ds = 1
 Ds

Is

Is
Main

Memory

ALU

Control Unit

Figure 4: SISD Organisation

Examples of SISD machines include:

• CDC 6600 which is unpipelined but has multiple functional units.
• CDC 7600 which has a pipelined arithmetic unit.
• Amdhal 470/6 which has pipelined instruction processing.
• Cray-1 which supports vector processing.

2) Single Instruction and Multiple Data stream (SIMD)

In this organisation, multiple processing elements work under the control of a single
control unit. It has one instruction and multiple data stream. All the processing elements
of this organization receive the same instruction broadcast from the CU. Main memory
can also be divided into modules for generating multiple data streams acting as a
distributed memory as shown in Figure 5. Therefore, all the processing elements
simultaneously execute the same instruction and are said to be 'lock-stepped' together.
Each processor takes the data from its own memory and hence it has on distinct data
streams. (Some systems also provide a shared global memory for communications.) Every
processor must be allowed to complete its instruction before the next instruction is taken
for execution. Thus, the execution of instructions is synchronous. Examples of SIMD
organisation are ILLIAC-IV, PEPE, BSP, STARAN, MPP, DAP and the Connection
Machine (CM-1).

This type of computer organisation is denoted as:

 30

Classification of

Parallel Computers

 Is = 1
 Ds > 1

Is

 DSn

 DS2

 DS1

MMn

MM2

MM1

PEn

PE2

PE1

Control
Unit

Figure 5: SIMD Organisation

3) Multiple Instruction and Single Data stream (MISD)

In this organization, multiple processing elements are organised under the control of
multiple control units. Each control unit is handling one instruction stream and processed
through its corresponding processing element. But each processing element is processing
only a single data stream at a time. Therefore, for handling multiple instruction streams
and single data stream, multiple control units and multiple processing elements are
organised in this classification. All processing elements are interacting with the common
shared memory for the organisation of single data stream as shown in Figure 6. The only
known example of a computer capable of MISD operation is the C.mmp built by
Carnegie-Mellon University.
This type of computer organisation is denoted as:

Is > 1
Ds = 1

IS1

CUn

CU2

CU1

Main Memory

PEn

PE2

PE1

DS

ISn

DS

DS

IS1

IS2

ISn

IS2

DS

Figure 6: MISD Organisation

This classification is not popular in commercial machines as the concept of single data
streams executing on multiple processors is rarely applied. But for the specialized
applications, MISD organisation can be very helpful. For example, Real time computers
need to be fault tolerant where several processors execute the same data for producing the
redundant data. This is also known as N- version programming. All these redundant data

 31

Elements of Parallel
Computing and
Architecture

are compared as results which should be same; otherwise faulty unit is replaced. Thus
MISD machines can be applied to fault tolerant real time computers.

4) Multiple Instruction and Multiple Data stream (MIMD)

In this organization, multiple processing elements and multiple control units are organized
as in MISD. But the difference is that now in this organization multiple instruction
streams operate on multiple data streams . Therefore, for handling multiple instruction
streams, multiple control units and multiple processing elements are organized such that
multiple processing elements are handling multiple data streams from the Main memory
as shown in Figure 7. The processors work on their own data with their own instructions.
Tasks executed by different processors can start or finish at different times. They are not
lock-stepped, as in SIMD computers, but run asynchronously. This classification actually
recognizes the parallel computer. That means in the real sense MIMD organisation is said
to be a Parallel computer. All multiprocessor systems fall under this classification.
Examples include; C.mmp, Burroughs D825, Cray-2, S1, Cray X-MP, HEP, Pluribus,
IBM 370/168 MP, Univac 1100/80, Tandem/16, IBM 3081/3084, C.m*, BBN Butterfly,
Meiko Computing Surface (CS-1), FPS T/40000, iPSC.

This type of computer organisation is denoted as:

Is > 1
Ds > 1

Figure 7: MIMD Organisation

DSn

DS2

DS1

MMn

MM2

MM1

IS1

CUn

CU2

CU1

PEn

PE2

ISn

IS2

ISnPE1
ISIS1

2 DS DS

Of the classifications discussed above, MIMD organization is the most popular for a
parallel computer. In the real sense, parallel computers execute the instructions in MIMD
mode.

Check Your Progress 1
1) What are various criteria for classification of parallel computers?

…………………………………………………………………………………………
…………………………………………………………………………………………
…………………………………………………………………………………………
…………………………………………………………………………………………

2) Define instruction and data streams.
…………………………………………………………………………………………
…………………………………………………………………………………………

 32

Classification of

Parallel Computers

…………………………………………………………………………………………
…………………………………………………………………………………………

3) State whether True or False for the following:
a) SISD computers can be characterized as Is > 1 and Ds > 1
b) SIMD computers can be characterized as Is > 1 and Ds = 1
c) MISD computers can be characterized as Is = 1 and Ds = 1
d) MIMD computers can be characterized as Is > 1 and Ds > 1

2.4 HANDLER’S CLASSIFICATION
In 1977, Wolfgang Handler proposed an elaborate notation for expressing the pipelining
and parallelism of computers. Handler's classification addresses the computer at three
distinct levels:

• Processor control unit (PCU),
• Arithmetic logic unit (ALU),
• Bit-level circuit (BLC).

The PCU corresponds to a processor or CPU, the ALU corresponds to a functional unit or
a processing element and the BLC corresponds to the logic circuit needed to perform one-
bit operations in the ALU.

Handler's classification uses the following three pairs of integers to describe a computer:

 Computer = (p * p', a * a', b * b')

 Where p = number of PCUs
 Where p'= number of PCUs that can be pipelined
 Where a = number of ALUs controlled by each PCU
 Where a'= number of ALUs that can be pipelined
 Where b = number of bits in ALU or processing element (PE) word
 Where b'= number of pipeline segments on all ALUs or in a single PE

The following rules and operators are used to show the relationship between various
elements of the computer:

• The '*' operator is used to indicate that the units are pipelined or macro-pipelined

with a stream of data running through all the units.
• The '+' operator is used to indicate that the units are not pipelined but work on

independent streams of data.
• The 'v' operator is used to indicate that the computer hardware can work in one of

several modes.
• The '~' symbol is used to indicate a range of values for any one of the parameters.
• Peripheral processors are shown before the main processor using another three pairs

of integers. If the value of the second element of any pair is 1, it may omitted for
brevity.

Handler's classification is best explained by showing how the rules and operators are used
to classify several machines.

 33

The CDC 6600 has a single main processor supported by 10 I/O processors. One control
unit coordinates one ALU with a 60-bit word length. The ALU has 10 functional units
which can be formed into a pipeline. The 10 peripheral I/O processors may work in
parallel with each other and with the CPU. Each I/O processor contains one 12-bit ALU.
The description for the 10 I/O processors is:

Elements of Parallel
Computing and
Architecture

 CDC 6600I/O = (10, 1, 12)

The description for the main processor is:

 CDC 6600main = (1, 1 * 10, 60)

The main processor and the I/O processors can be regarded as forming a macro-pipeline
so the '*' operator is used to combine the two structures:

 CDC 6600 = (I/O processors) * (central processor = (10, 1, 12) * (1, 1 * 10, 60)

Texas Instrument's Advanced Scientific Computer (ASC) has one controller coordinating
four arithmetic units. Each arithmetic unit is an eight stage pipeline with 64-bit words.
Thus we have:

 ASC = (1, 4, 64 * 8)

The Cray-1 is a 64-bit single processor computer whose ALU has twelve functional units,
eight of which can be chained together to from a pipeline. Different functional units have
from 1 to 14 segments, which can also be pipelined. Handler's description of the Cray-1
is:

 Cray-1 = (1, 12 * 8, 64 * (1 ~ 14))

Another sample system is Carnegie-Mellon University's C.mmp multiprocessor. This
system was designed to facilitate research into parallel computer architectures and
consequently can be extensively reconfigured. The system consists of 16 PDP-11
'minicomputers' (which have a 16-bit word length), interconnected by a crossbar
switching network. Normally, the C.mmp operates in MIMD mode for which the
description is (16, 1, 16). It can also operate in SIMD mode, where all the processors are
coordinated by a single master controller. The SIMD mode description is (1, 16, 16).
Finally, the system can be rearranged to operate in MISD mode. Here the processors are
arranged in a chain with a single stream of data passing through all of them. The MISD
modes description is (1 * 16, 1, 16). The 'v' operator is used to combine descriptions of
the same piece of hardware operating in differing modes. Thus, Handler's description for
the complete C.mmp is:

 C.mmp = (16, 1, 16) v (1, 16, 16) v (1 * 16, 1, 16)

The '*' and '+' operators are used to combine several separate pieces of hardware. The 'v'
operator is of a different form to the other two in that it is used to combine the different
operating modes of a single piece of hardware.

While Flynn's classification is easy to use, Handler's classification is cumbersome. The
direct use of numbers in the nomenclature of Handler’s classification’s makes it much
more abstract and hence difficult. Handler's classification is highly geared towards the
description of pipelines and chains. While it is well able to describe the parallelism in a
single processor, the variety of parallelism in multiprocessor computers is not addressed
well.

2.5 STRUCTURAL CLASSIFICATION
Flynn’s classification discusses the behavioural concept and does not take into
consideration the computer’s structure. Parallel computers can be classified based on their
structure also, which is discussed below and shown in Figure 8.

As we have seen, a parallel computer (MIMD) can be characterised as a set of multiple
processors and shared memory or memory modules communicating via an
interconnection network. When multiprocessors communicate through the global shared
memory modules then this organisation is called Shared memory computer or Tightly

 34

Classification of

Parallel Computers

coupled systems as shown in Figure 9. Similarly when every processor in a
multiprocessor system, has its own local memory and the processors communicate via
messages transmitted between their local memories, then this organisation is called
Distributed memory computer or Loosely coupled system as shown in Figure 10. Figures
9 and 10 show the simplified diagrams of both organisations.

The processors and memory in both organisations are interconnected via an
interconnection network. This interconnection network may be in different forms like
crossbar switch, multistage network, etc. which will be discussed in the next unit.

Loosely
Coupled
systems

Tightly
Coupled
systems

Structure of Parallel
Computers

Figure 8: Structural classification

Shared

Memory

Interconnection

network

Pn

P2

P1

Figure 9: Tightly coupled system

LM

LM

LM

Interconnection

network

Pn

P2

P1

Figure 10 Loosely coupled system

2.5.1 Shared Memory System / Tightly Coupled System
Shared memory multiprocessors have the following characteristics:

 35
• Every processor communicates through a shared global memory.

Elements of Parallel
Computing and
Architecture

• For high speed real time processing, these systems are preferable as their throughput
is high as compared to loosely coupled systems.

In tightly coupled system organization, multiple processors share a global main memory,
which may have many modules as shown in detailed Figure 11. The processors have also
access to I/O devices. The inter- communication between processors, memory, and other
devices are implemented through various interconnection networks, which are discussed
below.

D1

D2

Dn

I/O- Processor
Interconnection
Network

MnM2M1

Processor-Memory
Interconnection Network

Pn P2 P1

Interrupt Signal Interconnection
Network

Shared
Memory

I/O
Channels

Figure 11: Tightly coupled system organization

i) Processor-Memory Interconnection Network (PMIN)

This is a switch that connects various processors to different memory modules.
Connecting every processor to every memory module in a single stage while the
crossbar switch may become complex. Therefore, multistage network can be adopted.
There can be a conflict among processors such that they attempt to access the same
memory modules. This conflict is also resolved by PMIN.

ii) Input-Output-Processor Interconnection Network (IOPIN)

This interconnection network is used for communication between processors and I/O
channels. All processors communicate with an I/O channel to interact with an I/O
device with the prior permission of IOPIN.

iii) Interrupt Signal Interconnection Network (ISIN)

When a processor wants to send an interruption to another processor, then this
interrupt first goes to ISIN, through which it is passed to the destination processor. In
this way, synchronisation between processor is implemented by ISIN. Moreover, in
case of failure of one processor, ISIN can broadcast the message to other processors
about its failure.

Since, every reference to the memory in tightly coupled systems is via interconnection
network, there is a delay in executing the instructions. To reduce this delay, every

 36

Classification of

Parallel Computers

processor may use cache memory for the frequent references made by the processor as
shown in Figure 12.

MnM2 M1

C C

P1 Pn P2

C

Interconnection network

Figure 12: Tightly coupled systems with cache memory

The shared memory multiprocessor systems can further be divided into three modes
which are based on the manner in which shared memory is accessed. These modes are
shown in Figure 13 and are discussed below.

Cache-only
memory
architecture
model (COMA)

Non uniform
memory access
model
(NUMA)

Uniform memory
access model
(UMA)

Tightly coupled systems

Figure 13: Modes of Tightly coupled systems

2.5.1.1 Uniform Memory Access Model (UMA)

In this model, main memory is uniformly shared by all processors in multiprocessor
systems and each processor has equal access time to shared memory. This model is used
for time-sharing applications in a multi user environment.

2.5.1.2 Non-Uniform Memory Access Model (NUMA)

In shared memory multiprocessor systems, local memories can be connected with every
processor. The collection of all local memories form the global memory being shared. In
this way, global memory is distributed to all the processors. In this case, the access to a
local memory is uniform for its corresponding processor as it is attached to the local
memory. But if one reference is to the local memory of some other remote processor, then

 37

Elements of Parallel
Computing and
Architecture

the access is not uniform. It depends on the location of the memory. Thus, all memory
words are not accessed uniformly.

2.5.1.3 Cache-Only Memory Access Model (COMA)

As we have discussed earlier, shared memory multiprocessor systems may use cache
memories with every processor for reducing the execution time of an instruction. Thus in
NUMA model, if we use cache memories instead of local memories, then it becomes
COMA model. The collection of cache memories form a global memory space. The
remote cache access is also non-uniform in this model.

2.5.2 Loosely Coupled Systems
These systems do not share the global memory because shared memory concept gives rise
to the problem of memory conflicts, which in turn slows down the execution of
instructions. Therefore, to alleviate this problem, each processor in loosely coupled
systems is having a large local memory (LM), which is not shared by any other processor.
Thus, such systems have multiple processors with their own local memory and a set of
I/O devices. This set of processor, memory and I/O devices makes a computer system.
Therefore, these systems are also called multi-computer systems. These computer systems
are connected together via message passing interconnection network through which
processes communicate by passing messages to one another. Since every computer system
or node in multicomputer systems has a separate memory, they are called distributed
multicomputer systems. These are also called loosely coupled systems, meaning that
nodes have little coupling between them as shown in Figure 14.

Message
passing

Interconnection
network

Pn

P2

P1

Node

LM

Node

LM

Node

LM

LM: local memory
P1, Pn: processing elements

Figure 14: Loosely coupled system organisation

Since local memories are accessible to the attached processor only, no processor can
access remote memory. Therefore, these systems are also known as no-remote memory
access (NORMA) systems. Message passing interconnection network provides connection
to every node and inter-node communication with message depends on the type of
interconnection network. For example, interconnection network for a non-hierarchical
system can be shared bus.

Check Your Progress 2
1) What are the various rules and operators used in Handler’s classification for various

machine types?
…………………………………………………………………………………………..
………………………………………………………………………………………….
.…………………………………………………………………………………………
..……………………………………………………………………………………….

 38

Classification of

Parallel Computers

2) What is the base for structural classification of parallel computers?
…………………………………………………………………………………………..
…………………………………………………………………………………………..
…………………………………………………………………………………………..
…………………………………………………………………………………………..

3) Define loosely coupled systems and tightly coupled systems.
………………………………………………………………………………………….
.…………………………………………………………………………………………
..………………………………………………………………………………………..
…..……………………………………………………………………………………..

4) Differentiate between UMA, NUMA and COMA.
…………………………………………………………………………………………..
…………………………………………………………………………………………..
…………………………………………………………………………………………..
…………………………………………………………………………………………..

2.6 CLASSIFICATION BASED ON GRAIN SIZE
This classification is based on recognizing the parallelism in a program to be executed on
a multiprocessor system. The idea is to identify the sub-tasks or instructions in a program
that can be executed in parallel. For example, there are 3 statements in a program and
statements S1 and S2 can be exchanged. That means, these are not sequential as shown in
Figure 15. Then S1 and S2 can be executed in parallel.

 Program Flow

S

SS

S3

S1

S2

S3

S2

S1

Figure 15: Parallel execution for S1 and S2

But it is not sufficient to check for the parallelism between statements or processes in a
program. The decision of parallelism also depends on the following factors:

• Number and types of processors available, i.e., architectural features of host
computer

• Memory organisation
• Dependency of data, control and resources

2.6.1 Parallelism Conditions
As discussed above, parallel computing requires that the segments to be executed in
parallel must be independent of each other. So, before executing parallelism, all the
conditions of parallelism between the segments must be analyzed. In this section, we
discuss three types of dependency conditions between the segments
(shown in Figure 16).

 39

rallel

 Elements of Pa
Computing and
Architecture

Dependency
conditions

Resource
Dependency

Data
Dependency

Control
Dependency

Figure 16: Dependency relations among the segments for parallelism

Data Dependency: It refers to the situation in which two or more instructions share same
data. The instructions in a program can be arranged based on the relationship of data
dependency; this means how two instructions or segments are data dependent on each
other. The following types of data dependencies are recognised:

i) Flow Dependence : If instruction I2 follows I1 and output of I1 becomes input of
I2, then I2 is said to be flow dependent on I1.

ii) Antidependence : When instruction I2 follows I1 such that output of I2 overlaps
with the input of I1 on the same data.

iii) Output dependence : When output of the two instructions I1 and I2 overlap on
the same data, the instructions are said to be output dependent.

iv) I/O dependence : When read and write operations by two instructions are
invoked on the same file, it is a situation of I/O dependence.

Consider the following program instructions:
I1: a = b
I2: c = a + d
I3: a = c

In this program segment instructions I1 and I2 are Flow dependent because variable a is
generated by I1 as output and used by I2 as input. Instructions I2 and I3 are Antidependent
because variable a is generated by I3 but used by I2 and in sequence I2 comes first. I3 is
flow dependent on I2 because of variable c. Instructions I3 and I1 are Output dependent
because variable a is generated by both instructions.

Control Dependence: Instructions or segments in a program may contain control
structures. Therefore, dependency among the statements can be in control structures also.
But the order of execution in control structures is not known before the run time. Thus,
control structures dependency among the instructions must be analyzed carefully. For
example, the successive iterations in the following control structure are dependent on one
another.

For (i= 1; I<= n ; i++)
{
 if (x[i - 1] == 0)
 x[i] =0
 else
 x[i] = 1;
}

Resource Dependence : The parallelism between the instructions may also be affected
due to the shared resources. If two instructions are using the same shared resource then it
is a resource dependency condition. For example, floating point units or registers are
shared, and this is known as ALU dependency. When memory is being shared, then it is
called Storage dependency.

 40

Classification of

Parallel Computers

2.6.2 Bernstein Conditions for Detection of Parallelism
For execution of instructions or block of instructions in parallel, it should be ensured that
the instructions are independent of each other. These instructions can be data dependent /
control dependent / resource dependent on each other. Here we consider only data
dependency among the statements for taking decisions of parallel execution. A.J.
Bernstein has elaborated the work of data dependency and derived some conditions based
on which we can decide the parallelism of instructions or processes.

Bernstein conditions are based on the following two sets of variables:

i) The Read set or input set RI that consists of memory locations read by the statement
of instruction I1.

ii) The Write set or output set WI that consists of memory locations written into by
instruction I1.

The sets RI and WI are not disjoint as the same locations are used for reading and writing
by SI.

The following are Bernstein Parallelism conditions which are used to determine whether
statements are parallel or not:

1) Locations in R1 from which S1 reads and the locations W2 onto which S2 writes
must be mutually exclusive. That means S1 does not read from any memory
location onto which S2 writes. It can be denoted as:

 R1∩W2=φ

2) Similarly, locations in R2 from which S2 reads and the locations W1 onto which S1
writes must be mutually exclusive. That means S2 does not read from any memory
location onto which S1 writes. It can be denoted as: R2∩W1=φ

3) The memory locations W1 and W2 onto which S1 and S2 write, should not be read by
S1 and S2. That means R1 and R2 should be independent of W1 and W2. It can be
denoted as : W1∩W2=φ

To show the operation of Bernstein’s conditions, consider the following instructions of
sequential program:

I1 : x = (a + b) / (a * b)
I2 : y = (b + c) * d
I3 : z = x2 + (a * e)

Now, the read set and write set of I1, I2 and I3 are as follows:
R1 = {a,b} W1 = {x}
R2 = {b,c,d} W2 = {y}
R3 = {x,a,e} W3 = {z}

Now let us find out whether I1 and I2 are parallel or not

 R1∩W2=φ
 R2∩W1=φ
 W1∩W2=φ
That means I1 and I2 are independent of each other.
Similarly for I1 || I3,

R1∩W3=φ
R3∩W1≠φ
W1∩W3=φ

Hence I1 and I3 are not independent of each other.
For I2 || I3,
 R2∩W3=φ

 41
 R3∩W2=φ

Elements of Parallel
Computing and
Architecture

 W3∩W2=φ
Hence, I2 and I3 are independent of each other.
Thus, I1 and I2, I2 and I3 are parallelizable but I1 and I3 are not.

2.6.3 Parallelism based on Grain size
Grain size: Grain size or Granularity is a measure which determines how much
computation is involved in a process. Grain size is determined by counting the number of
instructions in a program segment. The following types of grain sizes have been identified
(shown in Figure 17):

Medium
Grain

Coarse
Grain

Fine Grain

Types of Grain sizes

Figure 17: Types of Grain sizes

1) Fine Grain: This type contains approximately less than 20 instructions.
2) Medium Grain: This type contains approximately less than 500 instructions.
3) Coarse Grain: This type contains approximately greater than or equal to one

thousand instructions.

Based on these grain sizes, parallelism can be classified at various levels in a program.
These parallelism levels form a hierarchy according to which, lower the level, the finer is
the granularity of the process. The degree of parallelism decreases with increase in level.
Every level according to a grain size demands communication and scheduling overhead.
Following are the parallelism levels (shown in Figure 18):

Level 4

Loop Level
Level 2

Level 3

Level 1

Program Level

Procedure or SubProgram
Level

Instruction Level

Parallelism Levels
Degree of

Parallelism

Figure 18: Parallelism Levels

 42

Classification of

Parallel Computers

1) Instruction level: This is the lowest level and the degree of parallelism is highest at
this level. The fine grain size is used at instruction or statement level as only few
instructions form the grain size here. The fine grain size may vary according to the
type of the program. For example, for scientific applications, the instruction level
grain size may be higher. As the higher degree of parallelism can be achieved at this
level, the overhead for a programmer will be more.

2) Loop Level : This is another level of parallelism where iterative loop instructions can
be parallelized. Fine grain size is used at this level also. Simple loops in a program are
easy to parallelize whereas the recursive loops are difficult. This type of parallelism
can be achieved through the compilers.

3) Procedure or SubProgram Level: This level consists of procedures, subroutines or

subprograms. Medium grain size is used at this level containing some thousands of
instructions in a procedure. Multiprogramming is implemented at this level.
Parallelism at this level has been exploited by programmers but not through
compilers. Parallelism through compilers has not been achieved at the medium and
coarse grain size.

4) Program Level: It is the last level consisting of independent programs for

parallelism. Coarse grain size is used at this level containing tens of thousands of
instructions. Time sharing is achieved at this level of parallelism. Parallelism at this
level has been exploited through the operating system.

The relation between grain sizes and parallelism levels has been shown in Table 1.
 Table 1: Relation between grain sizes and parallelism

Grain Size Parallelism Level
Fine Grain Instruction or Loop Level
Medium Grain Procedure or SubProgram Level
Coarse Grain Program Level

Coarse grain parallelism is traditionally implemented in tightly coupled or shared memory
multiprocessors like the Cray Y-MP. Loosely coupled systems are used to execute
medium grain program segments. Fine grain parallelism has been observed in SIMD
organization of computers.

Check Your Progress 3

1) Determine the dependency relations among the following instructions:

I1: a = b+c;
I2: b = a+d;
I3: e = a/ f;
…………………………………………………………………………………………
…………………………………………………………………………………………
…………………………………………………………………………………………
……………………………………………………………………

2) Use Bernstein’s conditions for determining the maximum parallelism between the

instructions in the following segment:
S1: X = Y + Z
S2: Z = U + V
S3: R = S + V
S4: Z = X + R
S5: Q = M + Z

 43

Elements of Parallel
Computing and
Architecture

…………………………………………………………………………………………
…………………………………………………………………………………………
…………………………………………………………………………………………
………………………………………………………………………………

3) Discuss instruction level parallelism.
…………………………………………………………………………………………
…………………………………………………………………………………………
…………………………………………………………………………………………
………………………………………………………………………………

2.7 SUMMARY

In section 2.3, we discussed Flynn’s Classification of computers. This classification
scheme was suggested by Michael Flynn in 1972 and is based on the concepts of data
stream and instruction stream. Next, we discuss Handler’s classification scheme in section
2.4. This classification scheme, suggested by Wolfgang Handler in 1977, addresses the
computers at the following three distinct levels:
• Processor Control Unit (PCU)
• Arithmetic Logic Unit (ALU)
• Bit-Level Circuit (BLC)
In section 2.5, in context of structural classification of computers, a number of new
concepts are introduced and discussed. The concepts discussed include: Tightly Coupled
(or shared memory) systems, loosely coupled (or distributed memory) systems. In the
case of distributed memory systems, different types of Processor Interconnection
Networks (PIN) are discussed. Another classification scheme based on the concept of
grain size is discussed in section 2.6.

2.8 SOLUTIONS / ANSWERS

Check Your Progress 1
1) The following criteria have been identified for classifying parallel computers:

• Classification based on instruction and data streams
• Classification based on the structure of computers
• Classification based on how the memory is accessed
• Classification based on grain size

2) The flow of instructions from the main memory to the CPU is called instruction
stream and a flow of operands between processor and memory bi-directionally is
known as data stream.

3) a) F
b) F
c) F
d) T

Check Your Progress 2
1) The following rules and operators are used to show the relationship between various

elements of the computer:
• The '*' operator is used to indicate that the units are pipelined or macro-pipelined

with a stream of data running through all the units.

 44

 45

Classification of
Parallel Computers

• The '+' operator is used to indicate that the units are not pipelined but work on
independent streams of data.

• The 'v' operator is used to indicate that the computer hardware can work in one of
several modes.

• The '~' symbol is used to indicate a range of values for any one of the parameters.
• Peripheral processors are shown before the main processor using another three

pairs of integers. If the value of the second element of any pair is 1, it may be
omitted for brevity.

1) The base for structural classification is multiple processors with memory being
globally shared between processors or all the processors have their local copy of the
memory.

1) When multiprocessors communicate through the global shared memory modules then
this organization
is called shared memory computer or tightly coupled systems . When every processor
in a multiprocessor system, has its own local memory and the processors
communicate via messages transmitted between their local memories, then this
organization is called distributed memory computer or loosely coupled system.

1) In UMA, each processor has equal access time to shared memory. In NUMA, local
memories are connected with every processor and one reference to a local memory of
the remote processor is not uniform. In COMA, all local memories of NUMA are
replaced with cache memories.

Check Your Progress 3
1) Instructions I1 and I2 are both flow dependent and antidependent both. Instruction I2

and I3 are output dependent and instructions I1 and I3 are independent.

2) R1 = {Y,Z} W1 = {X}
 R2 = {U,V} W2 = {Z}
 R3 = {S,V} W3 = {R}
 R4 = {X,R} W4 = {Z}
 R5 = {M,Z} W5= {Q}

Thus, S1, S3 and S5 and S2 & S4 are parallelizable.

3) This is the lowest level and the degree of parallelism is highest at this level. The fine
grain size is used at instruction or statement level as only few instructions form the
grain size here. The fine grain size may vary according to the type of the program.
For example, for scientific applications, the instruction level grain size may be
higher. The loops As the higher degree of parallelism can be achieved at this level,
the overhead for a programmer will be more.

	UNIT 2 CLASSIFICATION OF PARALLEL
	
	
	
	
	
	Structure Page Nos.

	Figure 1: Opcode and Operand
	
	
	
	
	Figure 2: Instruction execution steps

	Figure 3: Instruction and data stream
	
	
	
	
	
	Figure 4: SISD Organisation
	Figure 5: SIMD Organisation
	Figure 6: MISD Organisation
	Figure 7: MIMD Organisation

	Check Your Progress 1

	Figure 8: Structural classification
	Figure 9: Tightly coupled system
	Figure 10 Loosely coupled system
	
	
	
	
	
	Figure 11: Tightly coupled system organization
	Figure 12: Tightly coupled systems with cache memory

	Figure 13: Modes of Tightly coupled systems
	Figure 14: Loosely coupled system organisation
	
	
	
	Check Your Progress 2

	Figure 15: Parallel execution for S1 and S2
	Figure 16: Dependency relations among the segments for parallelism
	
	Figure 17: Types of Grain sizes
	Figure 18: Parallelism Levels
	Grain Size
	Parallelism Level
	Check Your Progress 3
	Check Your Progress 1
	Check Your Progress 2
	Check Your Progress 3

