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General Mole Balance
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 (4.1)
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General Mole Balance

Rj

V

Q1

cj1

Q0

cj0

Conservation of mass

d
dt

∫

V
cjdV = Q0cj0 −Q1cj1 +

∫

V
RjdV (4.2)
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General Mole Balance

d
dt

∫

V
cjdV = Q0cj0 −Q1cj1 +

∫

V
RjdV

Equation 4.2 applies to every chemical component in the system,
j = 1,2, . . . ,ns, including inerts, which do not take place in any reactions.

Assuming component j enters and leaves the volume element only by
convection with the inflow and outflow streams, i.e. neglecting diffusional flux
through the boundary of the volume element due to a concentration gradient.

The diffusional flux will be considered during the development of the material
balance for the packed-bed reactor.
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Rate expressions

To solve the reactor material balance, we require an expression for the
production rates, Rj

Rj =
∑

i

νijri

Therefore we require ri as a function of cj

This is the subject of chemical kinetics, Chapter 5

Here we use common reaction-rate expressions without derivation
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The Batch Reactor

Rj

The batch reactor is assumed well stirred

Let the entire reactor contents be the reactor volume element
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Batch Reactor

d
dt

∫

V
cjdV = Q0cj0 −Q1cj1 +

∫

V
RjdV

Because the reactor is well stirred, the integrals in Equation 4.2 are simple to
evaluate, ∫

VR

cjdV = cjVR

∫

VR

RjdV = RjVR

The inflow and outflow stream flowrates are zero, Q0 = Q1 = 0.

d
(
cjVR

)

dt
= RjVR (4.5)

7 / 153

Reactor Volume

Equation 4.5 applies whether the reactor volume is constant or changes
during the reaction.

If the reactor volume is constant (liquid-phase reactions)

dcj

dt
= Rj (4.6)

Use Equation 4.5 rather than Equation 4.6 if the reactor volume changes
significantly during the course of the reaction.
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Analytical Solutions for Simple Rate Laws

In general the material balance must be solved numerically.

If the reactor is isothermal, we have few components, the rate expressions are
simple, then analytical solutions of the material balance are possible.

We next examine derive analytical solutions for some classic cases.
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First-order, irreversible

Consider the first-order, irreversible reaction

A
k
-→ B, r = kcA

The material balance for a constant-volume reactor gives

dcA

dt
= −kcA (4.8)

Watch the sign!
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First-order, irreversible

We denote the initial concentration of A as cA0,

cA(t) = cA0, t = 0

The solution to the differential equation with this boundary condition is

cA = cA0e−kt (4.9)
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First-order, irreversible
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First-order, irreversible

The A concentration decreases exponentially from its initial value to zero with
increasing time.

The rate constant determines the shape of this exponential decrease.
Rearranging Equation 4.9 gives

ln(cA/cA0) = −kt
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First-order, irreversible
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One can get an approximate value of the rate constant from the slope of the
straight line.

This procedure is a poor way to determine a rate constant and should be
viewed only as a rough approximation (Chapter 9).
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First-order, irreversible

The B concentration is determined from the A concentration.

1 Solve the material balance for component B,

dcB

dt
= RB = kcA (4.10)

with the initial condition for B, cB(0) = cB0

2 Note that the sum of cA and cB is constant.

d(cA + cB)
dt

= RA + RB = 0

Therefore, cA + cB is a constant.
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First-order, reversible

The value is known at t = 0,

cA + cB = cA0 + cB0

So we have an expression for cB

cB = cA0 + cB0 − cA

cB = cB0 + cA0(1− e−kt) (4.11)
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First-order, reversible

Consider now the same first-order reaction, but assume it is reversible

A
k1-⇀↽-

k−1
B

The reaction rate is r = k1cA − k−1cB .

The material balances for A and B are now

dcA

dt
= −r = −k1cA + k−1cB cA(0) = cA0

dcB

dt
= r = k1cA − k−1cB cB(0) = cB0

Notice that cA + cB = cA0 + cB0 remains constante
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First-order, reversible

Eliminate cB in the material balance for A gives

dcA

dt
= −k1cA + k−1(cA0 + cB0 − cA) (4.13)

How do we want to solve this one?

Particular solution and homogeneous solution (see text)

Laplace transforms (control course)

Separation!
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First-order, reversible

dcA

dt
= acA + b

∫ cA

cA0

dcA

acA + b
=
∫ t

0
dt

1
a
ln(acA + b)

∣∣∣∣
cA

cA0

= t

cA = cA0eat − b
a
(1− eat)

Substitute a = −(k1 + k−1), b = k−1(cA0 + cB0)
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First-order, reversible

cA = cA0e−(k1+k−1)t + k−1

k1 + k−1
(cA0 + cB0)

[
1− e−(k1+k−1)t

]
(4.15)

The B concentration can be determined by switching the roles of A and B and
k1 and k−1 in Reaction 4.12, yielding

cB = cB0e−(k1+k−1)t + k1

k1 + k−1
(cA0 + cB0)

[
1− e−(k1+k−1)t

]
(4.16)
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First-order, reversible
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Figure 4.5: First-order, reversible kinetics in a batch reactor, k1 = 1, k−1 = 0.5, cA0 = 1,
cB0 = 0.
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Nonzero steady state

For the reversible reaction, the concentration of A does not go to zero.

Taking the limit t -→ ∞ in Equation 4.15 gives

cAs = k−1

k1 + k−1
(cA0 + cB0)

in which cAs is the steady-state concentration of A.
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Nonzero steady state

Defining K1 = k1/k−1 allows us to rewrite this as

cAs = 1
1+ K1

(cA0 + cB0)

Performing the same calculation for cB gives

cBs = K1

1+ K1
(cA0 + cB0)
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Second-order, irreversible

Consider the irreversible reaction

A
k
-→ B

in which the rate expression is second order, r = kc2
A.

The material balance and initial condition are

dcA

dt
= −kc2

A , cA(0) = cA0 (4.18)

Our first nonlinear differential equation.
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Second-order, irreversible

Separation works here
dcA

c2
A
= −kdt

∫ cA

cA0

dcA

c2
A
= −k

∫ t

0
dt

1
cA0
− 1

cA
= −kt

Solving for cA gives

cA =
(

1
cA0
+ kt

)−1

(4.19)

Check that this solution satisfies the differential equation and initial condition
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Second-order, irreversible
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The second-order reaction decays more slowly to zero than the first-order
reaction.
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Another second-order, irreversible

A+ B
k
-→ C r = kcAcB

The material balance for components A and B are

dcA

dt
= −r = −kcAcB

dcB

dt
= −r = −kcAcB

Subtract B’s material balance from A’s to obtain

d(cA − cB)
dt

= 0
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Another second-order, irreversible

Therefore, cA − cB is constant, and

cB = cA − cA0 + cB0 (4.23)

Substituting this expression into the material balance for A yields

dcA

dt
= −kcA(cA − cA0 + cB0)

This equation also is separable and can be integrated to give (you should
work through these steps),

cA = (cA0 − cB0)
[

1− cB0

cA0
e(cB0−cA0)kt

]−1

, cA0 ≠ cB0 (4.24)
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Another second-order, irreversible

Component B can be computed from Equation 4.23, or by switching the roles
of A and B in Reaction 4.20, giving

cB = (cB0 − cA0)
[

1− cA0

cB0
e(cA0−cB0)kt

]−1

What about component C? C’s material balance is

dcC

dt
= kcAcB

and therefore, d(cA + cC )/dt = 0. The concentration of C is given by

cC = cA0 − cA + cC0
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Another second-order, irreversible

Notice that if cA0 > cB0 (Excess A), the steady state

cAs = cA0 − cB0

cBs = 0

cCs = cB0 + cC0

For cB0 > cA0 (Excess B), the steady state is

cAs = 0

cBs = cB0 − cA0

cCs = cA0 + cC0
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nth-order, irreversible

The nth-order rate expression r = kcn
A
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nth-order, irreversible

A
k
-→ B r = kcn

A

dcA

dt
= −r = −kcn

A

This equation also is separable and can be rearranged to

dcA

cn
A
= −kdt

Performing the integration and solving for cA gives

cA =
[
c−n+1

A0 + (n − 1)kt
] 1
−n+1 , n ≠ 1
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nth-order, irreversible

We can divide both sides by cA0 to obtain

cA

cA0
= [1+ (n − 1)k0t]

1
−n+1 , n ≠ 1 (4.25)

in which
k0 = kcn−1

A0

has units of inverse time.
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nth-order, irreversible
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The larger the value of n, the more slowly the A concentration approaches
zero at large time.
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nth-order, irreversible

Exercise care for n < 1, cA reaches zero in finite time.
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Negative order, inhibition

For n < 0, the rate decreases with increasing reactant concentration; the
reactant inhibits the reaction.
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Negative order, inhibition

Inhibition reactions are not uncommon, but watch out for small
concentrations. Notice the rate becomes unbounded as cA approaches zero,
which is not physically realistic.

When using an ODE solver we may modify the right-hand sides of the material
balance

dcA

dt
=
{
−kcn

A , cA > 0
0, cA = 0

Examine the solution carefully if the concentration reaches zero.
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Two reactions in series

Consider the following two irreversible reactions,

A
k1-→ B

B
k2-→ C

Reactant A decomposes to form an intermediate B that can further react to
form a final product C.

Let the reaction rates be given by simple first-order rate expressions in the
corresponding reactants,

r1 = k1cA

r2 = k2cB
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Two reactions in series

The material balances for the three components are

dcA

dt
= RA = −r1 = −k1cA

dcB

dt
= RB = r1 − r2 = k1cA − k2cB

dcC

dt
= RC = r2 = k2cB

The material balance for component A can be solved immediately to give
cA = cA0e−k1t as before.
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Two reactions in series – B

The material balance for B becomes

dcB

dt
+ k2cB = k1cA0e−k1t

Oops, not separable, now what?

Either Laplace transform or particular solution, homogeneous equation
approach produces

cB = cB0e−k2t + cA0
k1

k2 − k1

[
e−k1t − e−k2t

]
, k1 ≠ k2 (4.30)
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Two reactions in series – C

To determine the C concentration, notice from the material balances that
d(cA + cB + cC )/dt = 0. Therefore, cC is

cC = cA0 + cB0 + cC0 − cA − cB
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Two reactions in series
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Figure 4.11: Two first-order reactions in series in a batch reactor, cA0 = 1, cB0 = cC0 = 0,
k1 = 2, k2 = 1.
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Two reactions in parallel

Consider next two parallel reactions of A to two different products, B and C,

A
k1-→ B

A
k2-→ C

Assume the rates of the two irreversible reactions are given by r1 = k1cA and
r2 = k2cA.
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Two reactions in parallel

The material balances for the components are

dcA

dt
= RA = −r1 − r2 = −k1cA − k2cA

dcB

dt
= RB = r1 = k1cA

dcC

dt
= RC = r2 = k2cA
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Two reactions in parallel

The material balance for A can be solved directly to give

cA = cA0e−(k1+k2)t (4.33)

Substituting cA(t) into B’s material balance gives

dcB

dt
= k1cA0e−(k1+k2)t

This equation is now separable and can be integrated directly to give

cB = cB0 + cA0
k1

k1 + k2

(
1− e−(k1+k2)t

)
(4.34)
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Two reactions in parallel

Finally, component C can be determined from the condition that cA + cB + cC is
constant or by switching the roles of B and C, and k1 and k2 in Equation 4.34,

cC = cC0 + cA0
k2

k1 + k2

(
1− e−(k1+k2)t

)
(4.35)
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Two reactions in parallel
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Figure 4.12: Two first-order reactions in parallel in a batch reactor, cA0 = 1, cB0 = cC0 = 0,
k1 = 1, k2 = 2.
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Two reactions in parallel

Notice that the two parallel reactions compete for the same reactant, A

The rate constants determine which product is favored

Large values of k1/k2 favor the formation of component B compared to C and
vice versa
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Conversion, Yield, Selectivity

There are several ways to define selectivity, yield and conversion, so be clear
about the definition you choose.

Point selectivity: The point (or instantaneous) selectivity is the ratio of the production rate
of one component to the production rate of another component.

Overall selectivity: The overall selectivity is the ratio of the amount of one component
produced to the amount of another component produced.

Yield: The yield of component j is the fraction of a reactant that is converted into
component j.

Conversion: Conversion is normally defined to be the fraction of a component that has
been converted to products by the reaction network. Conversion has
several definitions and conventions. It is best to state the definition in the
context of the problem being solved.
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The Continuous-Stirred-Tank Reactor (CSTR)

Q

cj

Qf

cjf Rj

Writing the material balance for this reactor gives

d
(
cjVR

)

dt
= Qf cjf −Qcj + RjVR, j = 1, . . . ,ns (4.36)
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CSTR – Constant Density

If the reactor volume is constant and the volumetric flowrates of the inflow
and outflow streams are the same, Equation 4.36 reduces to

dcj

dt
= 1
τ
(cjf − cj)+ Rj (4.37)

The parameter
τ = VR/Qf

is called the mean residence time of the CSTR.

We refer to this balance as the constant-density case. It is often a good
approximation for liquid-phase reactions.
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CSTR – Steady State

The steady state of the CSTR is described by setting the time derivative in
Equation 4.36 to zero,

0 = Qf cjf −Qcj + RjVR (4.38)

Conversion of reactant j is defined for a steady-state CSTR as follows

xj =
Qf cjf −Qcj

Qf cjf
(steady state) (4.39)

One can divide Equation 4.38 through by VR to obtain for the constant-density
case

cj = cjf + Rjτ (steady state, constant density) (4.40)
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Transient behavior of the CSTR

Consider a first-order, liquid-phase reaction in an isothermal CSTR

A
k
-→ 2B r = kcA

the feed concentration of A is cAf = 2 mol/L, the residence time of the reactor
is τ = 100 min, and the rate constant is k = 0.1 min−1.

1 Find the steady-state concentration of A in the effluent for the given feed.
2 Plot the concentration of A versus time for constant feed concentration

cAf = 2 mol/L if the reactor is initially filled with an inert so cA0 = 0 mol/L.
3 Plot the concentration of A versus time for constant feed concentration cAf = 2

mol/L if the reactor is initially filled with feed so cA0 = 2 mol/L.

53 / 153

Transient CSTR Solution. Part 1

Liquid phase: assume the fluid density is constant.

cA = cAf + RAτ

Substituting the production rate RA = −kcA and solving for cA gives the
steady-state concentration

cAs = cAf

1+ kτ
Substituting in the numerical values gives

cAs = 2 mol/L

1+ (0.1 min−1)(100 min)
= 0.182 mol/L
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Parts 2 and 3

dcA

dt
= 1
τ
(
cAf − cA

)− kcA (4.41)

cA(0) = cA0

This equation is also separable. The analytical solution is

cA(t) = cA0e−(1/τ+k)t + cAf

1+ kτ

[
1− e−(1/τ+k)t

]
(4.42)
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Parts 2 and 3
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Both solutions converge to the same steady-state even though the starting
conditions are quite different.
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Phenol production in a CSTR

Consider the reaction of cumene hydroperoxide (CHP) to phenol and acetone

(C6H5)C(CH3)2OOH -→ (C6H5)OH+ (CH3)2CO

CHP -→ phenol+ acetone

The reaction is pseudo-first-order

r = kcCHP

Find the reactor volume to achieve 85% conversion of CHP at steady state.
The flowrate into the reactor is Qf = 26.9 m3/hr and k = 4.12 hr−1.
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Phenol production

Liquids at 85◦C, so assume constant density and Q = Qf .

cA = cAf + RAτ

RA = −kcA, and solving for the CHP concentration gives

cA = cAf

1+ kτ
(4.43)
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Phenol production

The conversion of CHP (for Q = Qf ) is

xA = cAf − cA

cAf
= 1− cA

cAf

xA = kτ
1+ kτ

Solving this equation for τ gives

τ = 1
k

xA

1− xA
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Phenol production

Substituting the relation τ = VR/Qf and solving for VR gives

VR = Qf xA

k(1− xA)

Substituting in the known values gives the required CSTR volume

VR = (26.9 m3/hr)(0.85)
(4.12 hr−1)(0.15)

= 37 m3
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The Semi-Batch Reactor

The semi-batch reactor is a cross between the batch reactor and CSTR.

The semi-batch reactor is initially charged with reactant, like the batch reactor,
but allows a feed addition policy while the reaction takes place, like the CSTR.

Normally there is no outflow stream.
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The Semi-Batch Reactor

We set Q = 0 in the CSTR material balance to obtain

d
(
cjVR

)

dt
= Qf cjf + RjVR, j = 1, . . . ,ns (4.44)

One may choose to operate a semi-batch reactor to control the reaction rate
or heat release during reaction by slowly adding one of the reactants in the
feed stream.

Compared to the batch reactor, the semi-batch reactor provides more
complete use of the reactor volume in reactions such as polymerizations that
convert from lower density to higher density during the course of the reaction.
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Volume Change Upon Reaction

d
(
cjVR

)

dt
= Qf cjf −Qcj + RjVR (4.45)

Equation 4.45 covers both the batch, CSTR and semi-batch reactors,
depending on how we specify Qf and Q.

If we multiply Equation 4.45 by the molecular weight of species j and sum
over all species we obtain,

d(
∑

j cjMjVR)
dt

= Qf

∑

j

cjf Mj −Q
∑

j

cjMj +
∑

j

RjMjVR (4.46)

The term
∑

j cjMj is simply the mass density of the reactor contents, which we
denote ρ

ρ =
ns∑

j=1

cjMj (4.47)
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Volume Change Upon Reaction

The term
∑

j cjf Mj is the mass density of the feedstream, ρf .

We know that conservation of mass in chemical reactions implies
∑

j RjMj = 0
(see Chapter 2). Substitution into Equation 4.46 leads to

d(ρVR)
dt

= Qf ρf −Qρ (4.48)

Equation 4.48 is clearly a total mass balance, in which the total mass in the
reactor changes in time due to the inflow and outflow of mass.

Notice that chemical reactions play no role in the total mass balance.
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Equation of state for the mixture

If we have a single-phase system at equilibrium, the intensive variables cj , T ,
P , completely specify all intensive variables of the system.

In this chapter we consider T and P to be known, fixed quantities. Therefore,
the density of the reaction mixture, which is an intensive variable, is known if
the cj are known.

This relationship is one form of the equation of state for the mixture

ρ = f̃ (T ,P , c1, c2, . . . , cns )

Substituting the definition of density, we can express the equation of state as

f (c1, c2, . . . , cns ) = 0
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Equation of state for the mixture

For example, we could express the equation of state in terms of the partial
molar volumes as ∑

j

cjV j = 1

in which V j is the partial molar volume of component j in the mixture.

The partial molar volumes are functions of T , P and cj .
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Equation of state for the mixture — Ideal mixture

If we assume an ideal mixture, this reduces to
∑

j

cjV ◦j = 1, ideal mixture

in which V ◦j is the specific volume of pure component j, which is a function of
only T and P .

We assume that a thermodynamic equation of state is valid even when the
reactor is not at equilibrium.
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Constant density

Because the reaction mixture density, ρ, is independent of composition, it
does not vary with time either and we can set it to the feed value,

ρ = ρf

The total mass balance then reduces to

dVR

dt
= Qf −Q (4.51)

which is sometimes referred to as a “volume balance.”

This terminology should be avoided.
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Constant density

dVR

dt
= Qf −Q

Batch reactor. For the batch reactor, Q = Qf = 0. We can therefore conclude
from Equation 4.51 that a batch reactor with constant density has constant
volume.

CSTR (dynamic and steady state). If the outflow of the CSTR is regulated so
that the CSTR has constant volume, then we can conclude from Equation 4.51
that Q = Qf .

Semi-batch reactor. In the semi-batch reactor, the reactor is filled during
operation so Qf is specified and positive for some time and Q = 0. The
solution to Equation 4.51 then determines the change in volume of the
reactor during the filling operation.
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Nonconstant density

Unknowns.

In the general case, consider the following variables to fully
determine the state of the reactor: T ,P ,nj ,VR.
We also require the value of Q to specify the right-hand sides
of the material balances.
The set of unknowns is nj ,VR,Q.
We therefore have ns + 2 unknowns.

Equations.

We have the ns equations from the component mole balances.
The equation of state provides one additional equation.
The final equation is provided by a statement of reactor
operation.
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Nonconstant density – reactor operation

1 Constant-volume reactor. The constant-volume reactor can be achieved by
allowing overflow of the reactor to determine flowrate out of the reactor. In
this situation, VR is specified as the additional equation.

2 Constant-mass reactor. The constant-mass reactor can be achieved if a
differential pressure measurement is used to control the flowrate out of the
reactor and the reactor has constant cross-sectional area. In this situation
ρVR is specified as the additional equation.

3 Flowrate out of the reactor is specified. This type of operation may be
achieved if the flowrate out of the reactor is controlled by a flow controller. In
this case Q(t) is specified. A semi-batch reactor is operated in this way with
Q = 0 until the reactor is filled with the reactants.
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Nonconstant density – reactor operation

See the text for the derivation.

dVR

dt
= Qf

∑
j fjcjf∑
j fjcj

−Q +
∑

i ∆firiVR∑
j fjcj

(4.53)

in which fj is

fj = ∂f
∂cj

and ∆fi is

∆fi =
∑

j

νijfj =
∑

j

νij
∂f
∂cj

which is a change in a derivative property upon reaction.
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Nonconstant density – idea mixture

For the ideal mixture we have f (cj) =
∑

j cjV ◦j − 1 = 0.

fj = V ◦j

the pure component specific volumes

The ∆fi are given by
∆fi = ∆V ◦i

the change in specific volume upon reaction i.

So the reactor volume can be calculated from

dVR

dt
= Qf −Q +

∑

i

∆V ◦i riVR
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Nonconstant density

Unknowns (ns + 2): VR ,Q,nj , j = 1, . . . ,ns

Component balances:
dnj
dt = Qf cjf −Qcj + Rj VR , j = 1, . . . ,ns

Defined quantities: nj = cj VR ρ =∑j cj Mj ∆V◦i =
∑

j νij V◦j

(i) constant density: ρ = ρ0 (ii) ideal mixture:
∑

j cj V◦j = 1

1. vol VR = VR0 Q = Qf VR = VR0 Q = Qf +
∑

i ∆V◦i ri VR

2. mass VR = VR0 Q = Qf
dVR
dt = Qf (1− ρf /ρ)+

∑
i ∆V◦i ri VR Q = Qf ρf /ρ

3. Q
dVR
dt = Qf −Q Q specified

dVR
dt = Qf −Q +∑i ∆V◦i ri VR Q specified

Table 4.1: Reactor balances for constant-density and ideal-mixture assumptions.
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Nonconstant density

Unknowns (ns + 2): VR ,Q,nj , j = 1, . . . ,ns

Component balances:
dnj
dt = Qf cjf −Qcj + Rj VR , j = 1, . . . ,ns

Defined quantities: nj = cj VR ρ =∑j cj Mj ∆fi =
∑

j νij
∂f
∂cj

Equation of state: f (c1 , c2 , . . . , cns ) = 0

DAEs ODEs

1. vol VR = VR0 f (cj ) = 0 VR = VR0 Q = Qf

∑
j fj cjf∑
j fj cj

+
∑

i ∆fi ri VR∑
j fj cj

2. mass ρVR = ρ0VR0 f (cj ) = 0
dVR
dt = Qf

∑
j fj cjf∑
j fj cj

−Q +
∑

i ∆fi ri VR∑
j fj cj

Q = Qf ρf /ρ

3. Q Q specified f (cj ) = 0
dVR
dt = Qf

∑
j fj cjf∑
j fj cj

−Q +
∑

i ∆fi ri VR∑
j fj cj

Q specified

Table 4.2: Reactor balances for general equation of state.
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Semi-batch polymerization

Consider a solution polymerization reaction, which can be modeled as a
first-order, irreversible reaction

M
k
-→ P r = kcM

A 20 m3 semi-batch reactor is initially charged with solvent and initiator to
half its total volume.

A pure monomer feed is slowly added at flowrate Qf 0 = 1 m3/min to fill the
reactor in semi-batch operation to control the heat release.
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Semi-batch polymerization

Consider two cases for the subsequent reactor operation.
1 The monomer feed is shut off and the reaction goes to completion.
2 The monomer feed is adjusted to keep the reactor filled while the reaction goes to

completion.

Calculate the total polymer mass production, and the percentage increase in
polymer production achieved in the second operation.
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The physical properties

You may assume an ideal mixture

The densities of monomer and polymer are

ρM = 800 kg/m3 ρP = 1100 kg/m3

The monomer molecular weight is MM = 100 kg/kmol

The rate constant is k = 0.1 min−1.
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Semi-batch polymerization

While the reactor is filling, the monomer mole balance is

d(cMVR)
dt

= Qf 0cMf − kcMVR

in which cMf = ρM/MM is given, and Qf = Qf 0 is constant during the filling
operation.

We denote the total number of moles of monomer by M = cMVR, and can write
the monomer balance as

dM
dt
= Qf 0cMf − kM (4.54)

M(0) = 0
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Semi-batch polymerization

For an ideal mixture, the volume is given by

dVR

dt
= Qf 0 +∆VkM (4.55)

VR(0) = 10 m3

in which ∆V = (1/ρP − 1/ρM)MM
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The polymer mass production

To compute the polymer mass, we note from the stoichiometry that the mass
production rate of polymer R̃P is

R̃P = −RMMM

The mass balance for total polymer P̃ is given by

dP̃
dt
= R̃pVR = kcMMMVR = (kMM)M (4.56)
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Semi-batch polymerization

The text solves this problem analytically. Instead, let’s solve it numerically.

Let t1 be the time that the reactor fills.

We need an ODE solver that is smart enough to stop when the reactor fills,
because we do not know this time t1. The ODE solver needs to find it for us.

dasrt is an ODE solver with the added capability to find the time at which
some event of interest occurs.
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Finding the time for filling the reactor

The ODE solver finds the time at which VR = 20 m3

t1 = 11.2 min

Note the reactor would have filled in 10 min if the density were constant.

The extra time reflects the available volume created by converting some of
the monomer to polymer during filling.

After t1 we consider the two operations.
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Operation 1.

In the first operation, Qf = 0 after t1.

Notice the reactor volume decreases after t1 because ∆V is negative.
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Semi-batch polymerization
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Figure 4.15: Semi-batch reactor volume for primary monomer addition (operation 1) and
primary plus secondary monomer additions (operation 2).
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Figure 4.16: Semi-batch reactor feed flowrate for primary monomer addition (operation 1)
and primary plus secondary monomer additions (operation 2).
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Figure 4.17: Semi-batch reactor monomer content for primary monomer addition (operation
1) and primary plus secondary monomer additions (operation 2).

0

2000

4000

6000

8000

10000

12000

0 10 20 30 40 50

p
o

ly
m

er
(k

g
)

2

1

time (min)

Figure 4.18: Semi-batch reactor polymer content for primary monomer addition (operation
1) and primary plus secondary monomer additions (operation 2).
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Operation 2.

Because the reactor volume is constant, we can solve Equation 4.55 for the
feed flowrate during the secondary monomer addition

Qf = −∆VkM

Operation 2 is also shown in the figures.

Notice the final polymer production is larger in operation 2 because of the
extra monomer addition.
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Polymer production rate

We can perform an independent, simple calculation of the total polymer in
operation 2. Useful for debugging the computation.

In operation 2, 10 m3 of polymer are produced because in an ideal mixture,
the volumes are additive. Therefore

P̃2 = (VR − VR0)ρP = 10 m3 × 1100 kg/m3 = 11000 kg

in good agreement with the long-time solution for operation 2.

The increase in production rate is

P̃2 − P̃1

P̃1
× 100% = 22.5%

By using the volume of the reactor more efficiently, the total polymer
production increases 22.5%.
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The Plug-Flow Reactor (PFR)

Plug flow in a tube is an ideal-flow assumption in which the fluid is well mixed
in the radial and angular directions.

The fluid velocity is assumed to be a function of only the axial position in the
tube.

Plug flow is often used to approximate fluid flow in tubes at high Reynolds
number. The turbulent flow mixes the fluid in the radial and angular
directions.

Also in turbulent flow, the velocity profile is expected to be reasonably flat in
the radial direction except near the tube wall.
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Thin Disk Volume Element

Given the plug-flow assumption, it is natural to take a thin disk for the reactor
volume element

Q

cj

Q(z +∆z)

cj(z +∆z)

Q(z)

cj(z)

Qf

cjf

z

Rj∆V

z +∆z

︷ ︸︸ ︷
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Thin Disk Volume Element

Expressing the material balance for the volume element

∂
(
cj∆V

)

∂t
= cjQ

∣∣
z − cjQ

∣∣
z+∆z + Rj∆V

Dividing the above equation by ∆V and taking the limit as ∆V goes to zero
yields,

∂cj

∂t︸ ︷︷ ︸
accumulation

= − ∂
(
cjQ

)

∂V︸ ︷︷ ︸
convection

+ Rj︸︷︷︸
reaction

(4.64)
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Length or volume as independent variable

If the tube has constant cross section, Ac , then velocity, v , is related to
volumetric flowrate by v = Q/Ac , and axial length is related to tube volume by
z = V/Ac ,

Equation 4.64 can be rearranged to the familiar form [1, p.584]

∂cj

∂t
= −∂

(
cjv

)

∂z
+ Rj (4.65)
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Steady-State Operation

Setting the time derivative in Equation 4.64 to zero gives,

d(cjQ)
dV

= Rj (4.66)

The product cjQ = Nj is the total molar flow of component j. One also can
express the PFR mole balance in terms of the molar flow,

dNj

dV
= Rj (4.67)
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Volumetric Flowrate for Gas-Phase Reactions

To use Equation 4.67 for designing a gas-phase reactor, one has to be able to
relate the volumetric flowrate, Q, to the molar flows, Nj , j = 1,2, . . . ,ns.

The important piece of information tying these quantities together is, again,
the equation of state for the reaction mixture, f (T ,P , cj) = 0.

Because the molar flow and concentration are simply related,

Nj = cjQ (4.68)

the equation of state is also a relation between temperature, pressure, molar
flows, and volumetric flowrate.
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Ideal Gas Equation of State

The ideal-gas equation of state, c = P/RT , can be stated in terms of molar
concentrations, cj , as

∑

j

cj = P
RT

In terms of molar flows, the equation of state is
∑

j Nj

Q
= P

RT

One can solve the previous equation for the volumetric flowrate,

Q = RT
P

∑

j

Nj (4.69)
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Ideal Gas Equation of State

To evaluate the concentrations for use with the reaction rate expressions, one
simply rearranges Equation 4.68 to obtain

cj =
Nj

Q
= P

RT
Nj∑
j Nj

(4.70)
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Volumetric Flowrate for Liquid-Phase Reactions

Consider the equation of state for a liquid-phase system to be arranged in the
form

ρ = f (T ,P , cj)

The mass density is related to the volumetric flowrate and total mass flow,
M =∑j NjMj , via

M = ρQ (4.71)

Multiplying Equation 4.67 by Mj and summing on j produces

dM
dV

= 0, M(0) = Mf

in which Mf is the feed mass flowrate.

The total mass flow in a PFR is constant.
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Volumetric Flowrate for Liquid-Phase Reactions

We can solve for the volumetric flowrate by rearranging Equation 4.71

Q = Mf

ρ
(4.72)

If the liquid density is considered constant, ρ = ρf , then

Q = Qf , constant density (4.73)

and the volumetric flowrate is constant and equal to the feed value.

Equation 4.73 is used often for liquid-phase reactions.
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Volumetric Flowrate for Liquid-Phase Reactions

If we denote the time spent in the tube by τ = V/Q, if Q is constant, we can
rewrite Equation 4.66 as

dcj

dτ
= Rj , constant flowrate (4.74)

which is identical to the constant-volume batch reactor.

For the constant-flowrate case, the steady-state profile in a PFR starting from
a given feed condition is also the transient profile in a batch reactor starting
from the equivalent initial condition.
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Single Reaction Systems – Changing flowrate in a PFR

A pure vapor stream of A is decomposed in a PFR to form B and C

A
k
-→ B+ C

Determine the length of 2.5 cm inner-diameter tube required to achieve 35%
conversion of A. The reactor temperature is 518◦C and the pressure is
2.0 atm. Assume the pressure drop is negligible.

The reaction rate is first order in A, k = 0.05 sec−1 at the reactor temperature,
and the feed flowrate is 35 L/min.
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Changing flowrate in a PFR

The mole balance for component A gives

dNA

dV
= RA

The production rate of A is RA = −r = −kcA.

Substituting the production rate into the above equation gives,

dNA

dV
= −kNA/Q (4.75)

The volumetric flowrate is not constant, so we use Equation 4.69, which
assumes an ideal-gas equation of state,

Q = RT
P
(NA +NB +NC) (4.76)
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Changing flowrate in a PFR

The ideal-gas assumption is reasonable at this reactor temperature and
pressure.

One can relate the molar flows of B and C to A using the reaction
stoichiometry. The mole balances for B and C are

dNB

dV
= RB = r

dNC

dV
= RC = r

Adding the mole balance for A to those of B and C gives

d (NA +NB)
dV

= 0
d (NA +NC)

dV
= 0

The stoichiometry does not allow the molar flow NA +NB or NA +NC to change
with position in the tube.
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Changing flowrate in a PFR

Because NA +NB and NB +NC are known at the tube entrance, one can relate
NB and NC to NA,

NA +NB = NAf +NBf

NA +NC = NAf +NCf

Rearranging the previous equations gives,

NB = NAf +NBf −NA

NC = NAf +NCf −NA

Substituting the relations for NB and NC into Equation 4.76 gives

Q = RT
P

(
2NAf +NBf +NCf −NA

)
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Changing flowrate in a PFR

Because the feed stream is pure A, NBf = NCf = 0, yielding

Q = RT
P

(
2NAf −NA

)

Substituting this expression in Equation 4.75 gives the final mole balance,

dNA

dV
= −k

P
RT

NA

2NAf −NA

The above differential equation can be separated and integrated,

∫ NA

NAf

2NAf −NA

NA
dNA =

∫ V

0
− kP

RT
dV
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Changing flowrate in a PFR

Performing the integration gives,

2NAf ln
(
NA/NAf

)+ (NAf −NA
) = − kP

RT
V

The conversion of component j for a plug-flow reactor operating at steady
state is defined as

xj =
Njf −Nj

Njf

Because we are interested in the V corresponding to 35% conversion of A, we
substitute NA = (1− xA)NAf into the previous equation and solve for V,

V = −RT
kP

NAf [2 ln(1− xA)+ xA]
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Changing flowrate in a PFR

Because Qf = NAf RT /P is given in the problem statement and the tube length
is desired, it is convenient to rearrange the previous equation to obtain

z = − Qf

kAc
[2 ln(1− xA)+ xA]

Substituting in the known values gives

z = −
(

35× 103 cm3/min
0.05 sec−1 60 sec/min

)(
4

π(2.5 cm)2

)
[2 ln(1− .35)+ .35]

z = 1216 cm = 12.2 m
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Multiple-Reaction Systems

The modeler has some freedom in setting up the material balances for a
plug-flow reactor with several reactions.

The most straightforward method is to write the material balance relation for
every component,

dNj

dV
= Rj , j = 1,2, . . . ,ns

Rj =
nr∑

i=1

νijri , j = 1,2, . . . ,ns

The reaction rates are expressed in terms of the species concentrations.

The cj are calculated from the molar flows with Equation 4.68

Q is calculated from Equation 4.69, if an ideal-gas mixture is assumed.
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Benzene pyrolysis in a PFR I

Hougen and Watson [3] analyzed the rate data for the pyrolysis of benzene by
the following two reactions.

Diphenyl is produced by the dehydrogenation of benzene,

2C6H6

k1-⇀↽-
k−1

C12H10 +H2

2B -⇀↽- D+H
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Benzene pyrolysis in a PFR

Triphenyl is formed by the secondary reaction,

C6H6 + C12H10

k2-⇀↽-
k−2

C18H14 +H2

B+D -⇀↽- T+H

The reactions are assumed to be elementary so that the rate expressions are

r1 = k1

(
c2

B −
cDcH

K1

)
r2 = k2

(
cBcD − cT cH

K2

)
(4.79)
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Benzene pyrolysis in a PFR

Calculate the tube volume required to reach 50% total conversion of the
benzene for a 60 kmol/hr feed stream of pure benzene.

The reactor operates at 1033K and 1.0 atm.

Plot the mole fractions of the four components versus reactor volume.
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Benzene pyrolysis in a PFR

The rate and equilibrium constants at T = 1033K and P = 1.0 atm are given
in Hougen and Watson,

k1 = 7× 105 L/mol · hr

k2 = 4× 105 L/mol · hr

K1 = 0.31

K2 = 0.48
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Benzene pyrolysis in a PFR

The mole balances for the four components follow from the stoichiometry,

dNB

dV
= −2r1 − r2

dND

dV
= r1 − r2

dNH

dV
= r1 + r2

dNT

dV
= r2

The initial condition for the ODEs are NB(0) = NBf and
ND(0) = NH(0) = NT (0) = 0.
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Benzene pyrolysis in a PFR

The total molar flux does not change with reactor volume.

Q = RT
P

NBf (4.80)

The rate expressions are substituted into the four ODEs and they are solved
numerically.

The total conversion of benzene, xB = (NBf −NB)/NBf , is plotted versus
reactor volume in Figure 4.20.

A reactor volume of 404 L is required to reach 50% conversion. The
composition of the reactor versus reactor volume is plotted in Figure 4.21.
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Figure 4.20: Benzene conversion versus reactor volume.
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Figure 4.21: Component mole fractions versus reactor volume.
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Ethane pyrolysis in the presence of NO

See the text for another worked PFR example.
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Some PFR-CSTR Comparisons

We have two continuous reactors in this chapter: the CSTR and the PFR.

Let’s compare their steady-state efficiencies in converting reactants to
products.

For simplicity, consider a constant-density, liquid

A
k
-→ B r = kcn

A

For this situation, the steady-state PFR material balance is given by
Equation 4.74

dcA

dτ
= −r(cA)
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Some PFR-CSTR Comparisons

We rearrange and solve for the time required to change from the feed
condition cAf to some exit concentration cA

τ =
∫ cA

cAf

1
r(c′A)

dc′A

The area under the curve 1/r(c′A) is the total time required to achieve the
desired concentration change.

1
r(c′A)

cAfcA
c′A

PFR

CSTR
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Some PFR-CSTR Comparisons

To achieve this same concentration change in the CSTR, we start with
Equation 4.40, and solve for τ giving

τ = cAf − cA

r(cA)

This result also can be interpreted as an area. Notice that this area is the
height, 1/r(cA), times the width, cAf − cA, of the rectangle.

1
r(c′A)

cAfcA
c′A

PFR

CSTR
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Some PFR-CSTR Comparisons

If 1/r(cA) is a decreasing function of cA, or, equivalently, r(cA) is an
increasing function of cA, to achieve the same conversion, the PFR time (or
volume, VR = Qf τ) is less than the CSTR time (volume).

The PFR reaction rate varies with length. The rate is high at the entrance to
the tube where the concentration of A is equal to the feed value, and
decreases with length as the concentration drops. At the exit of the PFR, the
rate is the lowest of any location in the tube.

Now considering that the entire volume of the CSTR is reacting at this lowest
rate of the PFR, it is intuitively obvious that more volume is required for the
CSTR to achieve the same conversion as the PFR.
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Some PFR-CSTR Comparisons

If the reaction order is positive (the usual case), the PFR is more efficient. If
the reaction order is negative, the CSTR is more efficient.

1
r(c′A)

cAfcA
c′A

CSTR

PFR
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The PFR versus CSTR with separation

The PFR achieves higher conversion than an equivalent volume CSTR for the
irreversible reaction with first-order kinetics

A -→ B r = kcA

Consider the case in which we add separation.

Find a single CSTR and separator combination that achieves the same
conversion as the PFR.

121 / 153

The PFR versus CSTR with separation

The issue is to increase the CSTR achievable conversion using separation.

Education in chemical engineering principles leads one immediately to
consider recycle of the unreacted A as a means to increase this conversion.
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The PFR versus CSTR with separation

NA0 NA1 NA2 NA

NA0 NA

αNA2αNA2

pure B

VR

VR

In the text, we show how to find the recycle flowrate so this system achieves
the PFR conversion.
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CSTR Equivalence Principle.

This example was motivated by a recent result of Feinberg and Ellison called
the CSTR Equivalence Principle of Reactor-Separator Systems [2].

This surprising principle states:

For a given reaction network with ni linearly independent reactions, any
steady state that is achievable by any reactor-separator design with total
reactor volume V is achievable by a design with not more than ni+1 CSTRs,
also of total reactor volume V . Moreover the concentrations, temperatures
and pressures in the CSTRs are arbitrarily close to those occurring in the
reactors of the original design.
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Stochastic Simulation of Chemical Reactions

We wish to introduce next a topic of increasing importance to chemical
engineers, stochastic (random) simulation.

In stochastic models we simulate quite directly the random nature of the
molecules.

We will see that the deterministic rate laws and material balances presented in
the previous sections can be captured in the stochastic approach by allowing
the numbers of molecules in the simulation to become large.

The stochastic modeling approach is appropriate if the random nature of the
system is one of the important features to be captured in the model.

These situations are becoming increasingly important to chemical engineers
as we explore reactions at smaller and smaller length scales.
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Stochastic Simulation of Chemical Reactions

For example, if we are modeling the chemical transformation by reaction of
only a few hundreds or thousands of molecules at an interface, we may want
to examine explicitly the random fluctuations taking place.

In biological problems, we often consider the interactions of only several
hundred or several thousand protein molecules and cells.

In sterilization problems, we may wish to model the transient behavior until
every last organism is eliminated.
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Stochastic Simulation of Chemical Reactions

Assume we have only a hundred molecules moving randomly in the gas phase

A
k1-→ B

B
k2-→ C

in a constant-volume batch reactor.

The probability of reaction is assumed proportional to the

r1 = k1xA r2 = k2xB

in which xj is the number of component j molecules in the reactor volume.

Note xj is an integer, unlike the deterministic model’s cj , which is real.
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Stochastic Simulation of Chemical Reactions

The basic idea of the Gillespie algorithm is to: (i) choose randomly the time at
which the next reaction occurs, and (ii) choose randomly which reactions occurs at
that time.

1 Initialize. Set integer counter n to zero. Set the initial species numbers,
xj(0), j = 1, . . .ns. Determine stoichiometric matrix ν and reaction probability
laws (rate expressions)

ri = kih(xj)

for all reactions.

2 Compute reaction probabilities, ri = kih(xj). Compute total reaction
probability rtot =

∑
i ri .
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Stochastic Simulation of Chemical Reactions

1 Select two random numbers, p1,p2, from a uniform distribution on the
interval (0,1). Let the time interval until the next reaction be

t̃ = − ln(p1)/rtot (4.85)
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Stochastic Simulation of Chemical Reactions

1 Determine reaction m to take place in this time interval. The idea here is to
partition the interval (0,1) by the relative sizes of each reaction probability
and then “throw a dart” at the interval to pick the reaction that occurs. In this
manner, all reactions are possible, but the reaction is selected in accord with
its probability.

p2

r1
r1+r2

r2
r1+r20 1
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Stochastic Simulation of Chemical Reactions

1 Update the simulation time t(n + 1) = t(n)+ t̃. Update the species numbers
for the single occurrence of the mth reaction via

xj(n + 1) = xj(n)+ νmj , j = 1, . . .ns

Let n = n + 1. Return to Step 2.
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Stochastic Simulation of Chemical Reactions

If rtot is the total probability for reaction, e−rtot t̃ is the probability that a
reaction has not occurred during time interval t̃.

We will derive this fact in Chapter 8 when we develop the residence-time
distribution for a CSTR.

The next figure shows the results of this algorithm when starting with
xA = 100 molecules.
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Stochastic Simulation of Chemical Reactions
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Stochastic Simulation of Chemical Reactions

Notice the random aspect of the simulation gives a rough appearance to the
number of molecules versus time, which is quite unlike any of the
deterministic simulations.

Because the number of molecules is an integer, the simulation is actually
discontinuous with jumps between simulation times.

But in spite of the roughness, we already can make out the classic behavior of
the series reaction: loss of starting material A, appearance and then
disappearance of the intermediate species B, and slow increase in final
product C.
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Stochastic Simulation of Chemical Reactions

Next we explore the effect of increasing the initial number of A molecules on
a single simulation. The results for 1000 and 4000 initial A molecules are
shown in the next figures.
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Stochastic Simulation of Chemical Reactions
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Stochastic Simulation of Chemical Reactions
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Stochastic Simulation of Chemical Reactions

We see the random fluctuations become less pronounced. Notice that even
with only 4000 starting molecules, the results compare very favorably with
the deterministic simulation shown previously.

Another striking feature of the stochastic approach is the trivial level of
programming effort required to make the simulations.

The biggest numerical challenge is producing the pseudorandom numbers
and many well-developed algorithms are available for that task.

The computational time required for performing the stochastic simulation
may, however, be large.
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Hepatitis B virus modeling
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Hepatitis B virus modeling

nucleotides
cccDNA−−−−−−→ rcDNA

nucleotides+ rcDNA −−−−−−→ cccDNA

amino acids
cccDNA−−−−−−→ envelope

cccDNA −−−−−−→ degraded

envelope −−−−−−→ secreted or degraded

rcDNA+ envelope −−−−−−→ secreted virus
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Hepatitis B virus modeling

The reaction rates and production rates for Reactions 4.86–4.91 are given by



r1

r2

r3

r4

r5

r6



=




k1xA

k2xB

k3xA

k4xA

k5xC

k6xBxC







RA

RB

RC


 =




r2 − r4

r1 − r2 − r6

r3 − r5 − r6


 (4.94)

in which A is cccDNA, B is rcDNA, and C is envelope.
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Hepatitis B virus modeling

Assume the systems starts with a single cccDNA molecule and no rcDNA and
no envelope protein, and the following rate constants

[
xA xB xC

]T =
[

1 0 0
]T

(4.92)

kT =
[

1 0.025 1000 0.25 2 7.5× 10−6
]

(4.93)
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Average stochastic is not deterministic. I
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Hepatitis B virus modeling
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Figure 4.35: Species cccDNA versus time for hepatitis B virus model; two representative
stochastic trajectories.
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Hepatitis B virus modeling

The simulation of the deterministic model and an average of 500 stochastic
simulations are not the same.

Figure 4.35 shows two representative stochastic simulations for only the
cccDNA species.

Notice the first stochastic simulation does fluctuate around the deterministic
simulation as expected.

The second stochastic simulation, however, shows complete extinction of the
virus. That is another possible steady state for the stochastic model.
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Average stochastic is not deterministic.

In fact, it occurs for 125 of the 500 simulations. So the average stochastic
simulation consists of 75% trajectories that fluctuate about the deterministic
trajectory and 25% trajectories that go to zero.
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Summary

We have introduced four main reactor types in this chapter.

the batch reactor

the continuous-stirred-tank reactor (CSTR)

the semi-batch reactor

the plug-flow reactor (PFR).
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Summary

BATCH
d(cj VR)

dt
= Rj VR (4.95)

constant volume
dcj
dt

= Rj (4.96)

CSTR
d(cj VR)

dt
= Qf cjf −Qcj + Rj VR (4.97)

constant density
dcj
dt

=
1
τ
(cjf − cj )+ Rj (4.98)

steady state cj = cjf + Rjτ (4.99)

SEMI-BATCH
d(cj VR)

dt
= Qf cjf + Rj VR (4.100)

PFR
∂cj
∂t

= −
∂(cj Q)

∂V
+ Rj (4.101)

steady state
d(cj Q)

dV
= Rj (4.102)

constant flowrate
dcj
dτ

= Rj , τ = V/Qf (4.103)
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Summary

We also have introduced some of the basic reaction-rate expressions.

first order, irreversible

first order, reversible

second order, irreversible

nth order, irreversible

two first-order reactions in series

two first-order reactions in parallel

two second-order, reversible reactions
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Summary

We developed the equations required to compute the volume of the reactor if
there is a significant volume change upon reaction. We require an equation of
state for this purpose.

Several of these simple mass balances with basic rate expressions were
solved analytically.

In the case of multiple reactions with nonlinear rate expressions (i.e., not
first-order reaction rates), the balances must be solved numerically.

A high-quality ordinary differential equation (ODE) solver is indispensable for
solving these problems.
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Summary

We showed that the PFR achieves higher conversion than the CSTR of the
same volume if the reaction rate is an increasing function of a component
composition (n > 0 for an nth-order rate expression).

Conversely, the CSTR achieves higher conversion than the same-volume PFR if
the rate is a decreasing function of a component composition (n < 0).

Finally, we introduced stochastic simulation to model chemical reactions
occurring with small numbers of molecules.

151 / 153

Summary

The stochastic model uses basic probability to compute reaction rate. A given
reaction’s probability of occurrence is assumed proportional to the number of
possible combinations of reactants for the given stoichiometry.

Two pseudorandom numbers are chosen to determine: (i) the time of the next
reaction and (ii) the reaction that occurs at that time.

The smooth behavior of the macroscopic ODE models is recovered by the
random simulations in the limit of large numbers of reacting molecules.

With small numbers of molecules, however, the average of the stochastic
simulation does not have to be equal to the deterministic simulation. We
demonstrated this fact with the simple, nonlinear hepatitis B virus model.
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