
An Optimal Parallel Algorithm for
Merging using Multiselection

Narsingh Deo Amit Jain Muralidhar Medidi

Department of Computer Science, University of Central Florida, Orlando, FL 32816

Keywords: selection, median, multiselection, merging, parallel algorithms, EREW PRAM.

1 Introduction
We consider the problem of merging two sorted arrays and on an exclusive read,
exclusive write parallel random access machine (EREW PRAM, see [8] for a definition).
Our approach consists of identifying elements in and which would have appropriate

rank in the merged array. These elements partition the arrays and into equal-size
subproblems which then can be assigned to each processor for sequential merging. Here,
we present a novel parallel algorithm for selecting the required elements, which leads to
a simple and optimal algorithm for merging in parallel. Thus, our technique differs from

those of other optimal parallel algorithms for merging where the subarrays are defined by
elements at fixed positions in and .

Formally, the problem of selection can be stated as follows. Given two ordered

multisets and of sizes and , where , the problem is to select the th
smallest element in and combined. The problem can be solved sequentially in

log time without explicitly merging and [5, 6]. Multiselection,
a generalization of selection, is the problem where given a sequence of integers 1

1 2 , all the th, 1 , smallest elements in and
combined are to be found.

Supported in part by NSF Grant CDA-9115281.
For clarity in presentation, we use log to mean max 1 log2 .

2

Parallel merging algorithms proposed in [1] and [5] employ either a sequential median
or a sequential selection algorithm. Even though these parallel algorithms are cost-optimal,

their time-complexity is log2 on an EREW PRAM. Parallel algorithms for
merging described in [2, 3, 7, 10, 11] use different techniques essentially to overcome the
difficulty of multiselection.

Without loss of generality, we assume that and are disjoint and contain no repeated

elements. First, we present a new algorithm for the selection problem and then use it to
develop a parallel algorithm for multiselection. The algorithm uses processors, of an
EREW PRAM, to perform selections in log log time. We further show that

the number of comparisons in our merging algorithm matches that of Hagerup and R b’s
algorithm [7] and is within lower-order terms of the minimum possible, even by a sequential
merging algorithm. Moreover, our merging algorithm uses fewer comparisons when the
two given arrays differ in size significantly.

2 Selection in Two Sorted Arrays

The median of 2 elements is defined to be the th smallest element, while that of

2 1 elements is defined to be the 1 th element. Finding the th smallest element
can be reduced to selecting the median of the appropriate subarrays of and as follows:
When 1 and the arrays are in nondecreasing order, the required element can
only lie in the subarrays 1 and 1 . Thus, the median of the 2 elements in these

subarrays is the th smallest element. This reduction is depicted as Case III in Figure 1. On
the other hand, when 2 , the th selection can be reduced to finding the
median of the subarrays 1 and , which is shown as Case I in Figure 1.

When 2 , we can view the problem as that of finding the th largest element,
where 1. This gives rise to Cases II and IV which are symmetric to Cases
I and III, respectively, in Figure 1. From now on, these subarrays will be referred to as
windows.

The median can be found by comparing the individual median elements of the current

3

n

I. A B A B

A BIV.III. A B

II.
j -m-1

m j

j > m

m+1

m

k
m+1

k-m-1

k

k

jj

k > m

j m k m

j ((m+n)/2)
j > ((m+n)/2)
k = m+n-j+1

jth smallest jth smallest = kth largest

active windowsSelect jth smallest, 1 j m+n

B[q] < B[q+1], 1 q < n
discarded elementsA[i] < A[i+1], 1 i < m , m

Figure 1: Reduction of selection to median finding

4

windows and suitably truncating the windows to half, until the window in has no more
than one element. The middle elements of the windows will be referred to as probes. A

formal description of this median-finding algorithm follows.

procedure select median(,)
1 , , 1
1 , , 1

1
[lowA, highA], [lowB, highB]: current windows in and
probeA, probeB : next position to be examined in and

1. while (highA lowA)
2. probeA (lowA+ highA)/2 ; sizeA (highA-lowA+1)
3. probeB (lowB + highB)/2 ; sizeB (highB-lowB+1)
4. case ([probeA] [probeB]) :
5. lowA probeA + 1; highB probeB
6. if (sizeA = sizeB) and (sizeA is odd) lowA probeA
7. ([probeA] [probeB]) :
8. highA probeA; lowB probeB
9. if (sizeA = sizeB) and (sizeA is even) lowB probeB+1
10. endcase
11. endwhile
12. merge the remaining (at most 3) elements from and return their median
endprocedure

When the procedure select median is invoked, there are two possibilities: (i) the size
of the window in is one less than that of the window in (ii) or the sizes of the windows
are equal. Furthermore, considering whether the size of the window in is odd or even, the
reader can verify (examining Steps 4 through 9) that an equal number of elements are being

discarded from above and below the median. Hence, the scope of the search is narrowed to
at most three elements (1 in and at most 2 in) in the two arrays; the median can then
be determined easily in Step 12, which will be denoted as the postprocessing phase. The
total time required for selecting the th smallest element is log min . With this

approach, different selections, 1 , in and can be performed in log
time. Note that the information-theoretic lower bound for the problem of multiselection is

which turns out to be log when and log when .

5

A parallel algorithm for different selections based on the above sequential algorithm is
presented next.

3 Parallel Multiselection

Let the selection positions be 1 2 , where 1 1 2

. Our parallel algorithm employs processors with the th processor assigned to
finding the th element, 1 . The distinctness and the ordered nature of the s

are not significant restrictions on the general problem. If there are duplicate s or if the
selection positions are unsorted, both can be remedied in log time using processors
[4]. (On a CREW PRAM the problem admits a trivial solution, as each processor can carry
out the selection independently. On an EREW PRAM, however, the problem becomes

interesting because the read conflicts have to be avoided.)
In the following, we will outline how multiselections can be viewed as multiple

searches in a search tree. Hence, we can exploit the well-known technique of chaining

introduced by Paul, Vishkin and Wagener [9]. For details on EREW PRAM implementation

of chaining, the reader is referred to [9] or [8, Exercise 2.28].
Let us first consider only those s that fall in the range 1 2 ,

that is, those for which Case I, in Figure 1, holds. All of these selections initially share the
same probe in array . Let 1 2 be a sequence

of s that share the same probe in . Following the terminology of Paul, Vishkin and
Wagener [9], we refer to such a sequence of selections as a chain. Note that these selections
will have different probes in array . Let the common probe in array be for this chain,

and the corresponding probes in array be 1 . The processor associated
with th selection will be active for the chain. This processor compares with and ,
and based on these comparisons the following actions take place:

: The chain stays intact.

6

: The chain is split into two subchains.
: The chain stays intact.

Note that at most two comparisons are required to determine if the chain stays intact
or has to be split. When the chain stays intact, the window in array remains common for
the whole chain. Processor computes the size of the new common window in array .
The new windows in the array can be different for the selections in the chain, but they

all shrink by the same amount, and hence the size of the new window in B and the offset
from the initial window in B are the same for all the selections. The two comparisons made
by the active processor determine the windows for all the selections in the chain (when the

chain stays intact). The chain becomes inactive when it is within 3 elements to compute
the required median for all the selections in the chain. The chain does not participate in the
algorithm any more, except for the postprocessing phase.

When a chain splits, processor remains in charge of the chain 2 1

and activates processor 2 to handle the chain 2 . It also passes the
position and value of the current probe in array , the offsets for the array , and the
parameter . During the same stage, both these processors again check to find whether
their respective chains remain intact. If the chains remain intact they move on to a new

probe position. Thus, only those chains that do not remain intact stay at their current probe
positions to be processed in the next stage. It can be shown that at most two chains remain
at a probe position after any stage. Moreover, there can be at most two new chains arriving
at a probe position from the previous stages. The argument is the same as the one used in

the proof of Claim 1 in Paul, Vishkin and Wagener [9]. All of this processing within a stage
can be performed in 1 time on an EREW PRAM, as at most four processors may have
to read a probe. When a chain splits into two, their windows in will overlap only at the

probe that splits them. Any possible read conflicts at this common element can happen only
during the postprocessing phase (which can be handled as described in the next paragraph).
Hence, all of the processing can be performed without any read conflicts.

At each stage a chain is either split into two halves or its window size is halved. Hence

after at most log log stages each selection process must be within three elements

7

of the required position. At this point, each processor has a window of size at most 1 in
and 2 in . If the windows of different selections have any elements in common, the

values can be broadcasted in log time, such that each processor can then carry out the
required postprocessing in 1 time. However, we may need to sort the indices of the
elements in the final windows in order to schedule the processors for broadcasting. But this
requires only integer sorting as we have integers in the range 1 which can surely be

done in log time [4]. Thus, the total amount of data copied is only .
Of the remaining selections, those s falling in Case II can be handled in exactly the

same way as the ones in Case I. The chaining concept can be used only if 1 comparisons

can determine the processing for the whole chain. In Cases III and IV, different selections
have windows of different sizes in both the arrays. Hence, chaining cannot be directly
used as in Cases I and II. However, we can reduce Case III (IV) to I (II). To accomplish
this reduction, imagine array to be padded with elements of value in locations

1 to 0 and with elements of value in locations 1 to . Let this array be
denoted as (which need not be explicitly constructed). Selecting the th smallest element,
1 , in 1 and 1 is equivalent to selecting the th element,

1 2 , in the arrays 1 and 1 2 . Thus, selections in

Case III (IV) in the arrays and become selections in Case I (II) in the arrays and .
Any selection in the interval dominates the time-complexity. In such a case,

we note that all of the selections in different cases can be handled by one chain with the
appropriate reductions. Hence we have the following result.

Theorem 3.1 Given selection positions 1 , all of the selections can be made

in log log time using processors on the EREW PRAM.

4 Parallel Merging

Now, consider the problem of merging two sorted sequences and of length and
, respectively. Hagerup and R b[7] have presented an optimal algorithm which runs in

log time using log processors on an EREW PRAM. The

8

algorithm recursively calls itself once and then uses Batcher’s bitonic merging. Also in
order to avoid read conflicts, parts of the sequences are copied by some processors.

Akl and Santoro [1], and Deo and Sarkar [5] have used selection as a building block
in parallel merging algorithms. Even though these algorithms are cost-optimal, their time
complexity is log2 on the EREW PRAM. By solving the parallel multise-
lection problem, we obtain a simpler cost-optimal merging algorithm of time-complexity

log with log processors on the EREW PRAM. The algorithm
can be expressed as follows:

1. Find the log , 1 2 1 where log),
ranked element using multiselection. Let the output be two arrays 1 and

1 , where 0 implies that is the log th element

and 0 implies that is the log th element.

2. Let 0 0 0,
for 1 1 do

if 0 then log

else log

3. for 1 do
merge 1 1 with 1 1 .

Steps 1 and 3 both take log time using log processors.
Step 2 takes 1 time using log processors. Thus the entire algorithm

takes log time using log processors, which is optimal. The total
amount of data copied in Step 1 is log , since log ,
and compares favorably with data copying required by Hagerup and R b’s [7]

merging algorithm. If fewer processors, say , are available, the proposed parallel merging
algorithm can be adapted to perform 1 multiselections, which will require

log log -time.
Let us now count the number of comparisons required. Step 2 does not require any

comparisons and Step 3 requires less than comparisons. The estimation of the

9

number of comparisons in Step 1 is somewhat more involved. First we need to prove the
following lemma.

Lemma 4.1 Suppose we have a chain of size , 2. The worst-case number of compar-

isons required to completely process the chain is greater if the chain splits at the current

probe than if it stays intact.

Proof: We can envisage the multiselection algorithm as a specialized search in a binary tree
with height log . Let be the total number of comparisons needed, in the worst
case, to process a chain of size , which is at a probe corresponding to a node at height in

the search tree. We proceed by induction on the height of the node. The base case, when
the chain is at a node of height 1, can be easily verified. Suppose the lemma holds for all
nodes at height 1. Consider a chain of size at a node of height . If the chain stays

intact and moves down to a node of height 1 then

1 2 1

since at most two comparisons are required to process a chain at a node. If the chain splits,

one chain of size 2 stays at height (in the worst-case) and the other chain of size 2
moves down to height 1. The worst-case number of comparisons is, then,

2 2 1 4 2

By the hypothesis and Eq. (2)

1 2 1 2 2 4 3

Thus, when the chain stays intact, we can combine Eq.s (1) and (3) to obtain

2 1 2 2 6

Again, by hypothesis 2 1 2 2 2 and we require at least one
comparison for a chain to move down a level. Hence 2 2 1 1

and the lemma holds.
To determine the number of comparisons required in the multiselection algorithm, we

consider two cases. In the first case, when , we have the following.

10

Lemma 4.2 In the worst case, the total number of comparisons required by the parallel

multiselection algorithm for selections is 1 log , if .

Proof: The size of the initial chain is . Lemma 4.1 implies that the chain must split at every

opportunity for the worst-case number of comparisons. Thus, at height the maximum size
of a chain is 2 0 log . Recall that at most two chains can remain at any node
after any stage. The maximum number of chains possible is (with each containing only
one element); which, in the worst case, could be spread over the first log levels. From

a node at height , the maximum number of comparisons a search for an element can take
is log (for this chain at this node). Hence the number of comparisons after the
chains have split is bounded by

0
2 2 log log

which is log . We also need to count the number of comparisons required for the
initial chain to split up into chains, and fill up log levels. Since the size of a chain at
a node of height is at most 2 , the maximum number of splits possible is log .

Also, recall that a chain requires four comparisons for each split in the worst-case. Thus,
the number of comparisons is bounded by:

4
0

2 2 log log

since there can be at most 2 2 chains at level . Thus the number of comparisons for
splitting is .

In particular, Lemma 4.2 implies that, when , the total number of com-
parisons for the merging algorithm is log log log . This matches the

number of comparisons in the parallel algorithm of Hagerup and R b [7]. When one of the
list is smaller than the other, however, our algorithm uses fewer comparisons. Consider the
second case, when .

Lemma 4.3 If , the parallel multiselection algorithm performs selections in

log comparisons.

11

Proof: Using Lemma 4.1 and arguments similar to the ones in the proof of previous lemma,
we know that the maximum size of a chain is 2 at height . This chain can split at most

log times. Hence the number of comparisons needed for splitting is bounded by

4
log

0
2 2 log

which is log . After the chains have split, there may be at most chains
remaining. The number of comparisons required is then bounded by

log

0
2 2 log

Hence, if log , or log approximately, then our merging
algorithm requires only

log
log

comparisons, which is better than that of Hagerup and R b’s parallel algorithm [7]. Note
that in the preceding analysis, we need not consider the integer sorting used in the post-
processing phase of the multiselection algorithm as it does not involve any key comparisons.

The sequential complexity of our multiselection algorithm matches the information-
theoretic lower bound for the multiselection problem.The number of operations performed
by our parallel multiselection algorithm also matches the lower bound if we have an optimal
integer sorting algorithm for the EREW PRAM.

References

[1] S. G. Akl and N. Santoro. Optimal parallel merging and sorting without memory
conflicts. IEEE Transactions on Computers, C-36(11):1367–1369, November 1987.

[2] R. J. Anderson, E. W. Mayr, and M. K. Warmuth. Parallel approximation algorithms
for bin packing. Information and Computation, 82:262–277, September 1989.

12

[3] G. Bilardi and A. Nicolau. Adaptive bitonic sorting: An optimal parallel algorithm for
shared memory machines. SIAM Journal on Computing, 18(2):216–228, April 1989.

[4] R. J. Cole. Parallel merge sort. SIAM Journal on Computing, 17(4):770–785, August
1988.

[5] N. Deo and D. Sarkar. Parallel algorithms for merging and sorting. Information
Sciences, 51:121–131, 1990. Preliminary version in Proc. Third Intl. Conf. Super-
computing, May 1988, pages 513–521.

[6] G. N. Frederickson and D. B. Johnson. The complexity of selection and ranking in
and matrices with sorted columns. Journal of Computer and System Sciences,

24:197–208, 1982.

[7] T. Hagerup and C. R ub. Optimal merging and sorting on the EREW PRAM. Infor-
mation Processing Letters, 33:181–185, December 1989.

[8] J. J aJ a. An Introduction to Parallel Algorithms. Addison-Wesley, Reading, MA, 1992.

[9] W. Paul, U. Vishkin, and H. Wagener. Parallel dictionaries on 2-3 trees. In Pro-
ceedings of ICALP, 154, pages 597–609, July 1983. Also R.A.I.R.O. Informatique
Theorique/Theoretical Informatics, 17:397–404, 1983.

[10] Y. Shiloach and U. Vishkin. Finding the maximum, merging, and sorting in a parallel
computation model. Journal of Algorithms, 2:88–102, 1981.

[11] P. J. Varman, B. R. Iyer, B. J. Haderle, and S. M. Dunn. Parallel merging: Algorithm
and implementation results. Parallel Computing, 15:165–177, 1990.

