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In the present work the problem of the attenuation of longitudinal sound oscil-
lations in a conducting medium are considered. The proposed approach is based on
the dynamic interaction of electron gas with the lattice vibrations. This interaction
is manifested in the modification of kinetic equation for electrons. The process is
accompanied by generation of an electric field.
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Introduction

The question of the impact of the electrons on the sound attenuation

in the metal are considered for the first time in the work [1]. Approach

to the problem in this work was based on the assumption of the influ-

ence of Fermi–surface metal deformation under the action of sound waves

on the sound attenuation. Thus the need arose in introducing additional

”fictitious” forces. These ”fictitious” forces is due to the so-called defor-

mational potential λ [2]. The precise form of this deformation potential as

unknown. Therefore, many calculations of the sound wave attenuation are

based on the assumption, that the deformation potential is given, but its

exact form is unknown [2].

The process of deformation Fermi-surface is due to the interaction of

the electron gas with the lattice. Therefore, it inevitably depends on the

characteristics of this interaction. This process may not strictly speaking

be considered in static approximation as suggested in [1], [2]. Dynamic

and kinetic processes must be considered in the analysis of the formation

of a Fermi-surface at the propagation of sound waves in the metal. In the



present work will be considered the approach to the problem, based on the

dynamic (kinetic) interaction of the electron gas with the lattice vibrations.

We will consider the propagation of longitudinal sound in isotropic con-

ductor. The aim of this work is consideration of the question how the

conduction electrons and generated electric field effect the process of at-

tenuation of the sound wave. The proposed approach is valid both for

metals and for other the conducting media, for example semiconductors.

Some aspects of the problem of attenuation of sound waves in the metal

has been considered in the works [5]–[10].

1. Statement of the problem and basic equations

Longitudinal sound wave creates a velocity field in the conductor

u = u(r, t) = u0e
i(kr−ωt), ω = slk. (1.1)

Here sl — the speed of longitudinal sound waves, k – the wave vector,

k – the wave number.

We assume that the main role in the scattering of electrons plays the

interaction with the lattice. Electron–electron collisions at not too low

temperatures do not play a significant role in the kinetics of the electrons

(at least in metals). We will therefore neglect them. The kinetic equation

with regard of the electron–electron collisions have been discussed in several

works, for example in [11]–[13].

Without taking into account the electron–electron collisions kinetic equa-

tion for electron distribution function f with the collision integral in τ–

approximation has the following form [2], [3]

∂f

∂t
+ v

∂f

∂r
+ eE

∂f

∂p
= ν(feq − f). (1.2)

In this equation E — the electric field, v — the electron velocity,

ν = 1/τ — the frequency of electron scattering, τ — the average time

between two consecutive cases of scattering of the electron. We assume,

that the value of ν (and τ) does not depend on the electron energy and

the direction his movements. The function feq – locally equilibrium distri-

bution of electrons

feq =
[
1 + exp

E − µ

kBT

]−1
. (1.3)
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Here E — the energy of the electrons, µ — chemical potential. We

assume that in the absence of a sound wave electron distribution can be

considered spherically–symmetric. In this case for electron energy E0 we

have

E0 =
mv2

2
.

Here m — the effective mass of the electron.

The sound wave breaks isotropy locally equilibrium distribution of elec-

trons. This distribution must now be an equilibrium in the coordinate

system, at rest relative to the lattice. Because the local velocity of the

lattice is u in this case will be

E =
m(v − u)2

2
. (1.4)

We assume that the velocity u is much less than the thermal electrons

velocity (or Fermi velocity for the case of degenerate Fermi–gas). Then the

value of (1.4) can be linearized

E ' mv2

2
−mvu = E0 −mvu.

Linearization of the chemical potential µ(r) and can be represented in

the form

µ(r) = µ0 + δµ(r).

Here µ0 — chemical potential in the unperturbed case.

Through appropriate linearization of the equilibrium locally functions

feq we get

feq = f0 − ∂f0

∂E (mvu + δµ), f0 =
[
1 + exp

E0 − µ0

kBT

]−1
. (1.5)

Similarly, in the linear case, the term with the electric field in equation

(1.2) takes the following form

eE
∂f

∂p
' eEv

∂f0

∂E (1.6)

The linearized distribution function has the form [2]
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f = f0 − ∂f0

∂E ψ. (1.7)

Taking into account relations (1.5), (1.6) and (1.7) the kinetic equation

(1.2) can be written for the function ψ as follows [2]

iωψ − ivkψ + evE = −ν
(
mvu + δµ− ψ

)
. (1.8)

Thus the deviation of the chemical potential from the equilibrium can

be written in the following integral

δµ = −
∫

∂f0

∂E ψ
2d3p

(2π~)3 .

Equation (1.8) can be rewritten in the form

−iωψ + ivkψ + νψ − νδµ = v(eE + νmu). (1.9)

The last term in the right-hand side of equation (1.9) corresponds to

consideration of the drag effect of electrons by movement of atoms of the

lattice at the scattering of electrons by lattice vibrations or defects. It is

analogous to the ”fictitious” force, introduced in [1] (see also [2]). Note

that in this approach this term occurs naturally and does not require any

additional assumptions.

Equation (1.9) coincides with the kinetic equation describing the re-

sponse of the electron on external transverse electric field E, if, instead the

field E to consider the value of E + νmu/e, that is, to replace

E → E +
νmu

e
.

Since u ∼ exp(ikr − iωt), then the functions ψ, E have the same de-

pendence on the coordinates and time, i.e.

ψ ∼ exp(ikr− iωt), E ∼ exp(ikr− iωt). (1.10)

Then the electron current density je taking into account (1.10) is deter-

mined by the following relation [14]

je = σl

(
E +

νm

e
u
)
. (1.11)
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Here σl = σl(k, ω) — longitudinal electrical conductivity of the electron

plasma.

The electric field is related with the charge density ρe of electrons and

the lattice charge density (−eN) by ratio

∇E = 4π(ρe − eN).

Differentiating this ratio with time we obtaine

∂N

∂t
= −N∇u,

∂ρe

∂t
= −N∇je.

Or taking into account (1.1), (1.10)

−iω∇E = −4π∇(je − eNu).

Therefore

iωE = 4π(je − eNu).

Using for current density ratio (1.11), after some transformations get

E(4πσl − iω) = −4πσlνm

e
u. (1.12)

The longitudinal conductivity σl is related to longitudinal dielectric per-

mittivity εl [14]

εl(q, ω, ν) = 1 +
4πi

ω
σl(q, ω, ν). (1.13)

Using the ratio (1.13) from equations (1.12) we obtain

E = −4πiσlνm

ωeεl
u. (1.14)

From the obtained expressions (1.2) and (1.14) we find the density of

electron current

je =
νm

e

(
1− 4πiσl

ωεl

)
u. (1.15)
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2. Attenuation coefficient of sound wave

The energy flux density carried by longitudinal acoustic wave is equal

to [2]

I =
ρ0u

2
0sl

2
. (2.1)

Here ρ0 – the density of the substance.

The attenuation coefficient Γ is defined by the following expression

Γ =
Q

I
. (2.2)

Here Q — the energy dissipation density of the sound wave. Dissipation

is due to the anharmonicity of the lattice vibrations Ql and interaction of

sound waves with the electronic component and generated by the wave

electric field Qe.

Then the value of Q can be written in the form

Q = Ql + Qe. (2.3)

We are interested in the value Qe that is the dissipation, related with

the interaction of sound wave with solid-state plasma.

The value Qe is calculated as [4]

Qe = −1

2
Re (Fu∗). (2.4)

The value F in the relation (2.4) is a force acting on the lattice. It

consists of two parts. The first (−eNE) part corresponds to the force

acting on a charge from the lattice due to the presence of the electric field

E. The presence of the minus sign is due to the electroneutrality of the

material. So lattice charge density is opposite to charge density of electrons

and equal to (−eN). The second term Fe describes the force acting on

the lattice from solid-state electron plasma in the process of scattering of

electrons on the lattice.

Thus

F = −eNE + Fe.

Accordingly, for values Qe we obtain the following expression
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Qe =
1

2
Re ((Fe − eNE)u∗). (2.5)

The value Fe can be calculated as follows

Fe = −
∫

νm(u− v)f
2d3p

(2π~)3 . (2.6)

Evaluation of the integral in (2.6) gives the following result

Fe = −νmNu +
νmj

e
. (2.7)

Let us denote the average speed of the electrons through v.

j = eNv.

Then formula (2.7) can be rewritten in the form

Fe = νmN(v − u).

Thus the force is proportional to the difference between the average

velocity of the electrons in solid-state plasma and displacement velocity of

atoms in the sound wave.

Substituting (2.7) into (2.4) and using (1.11) we obtain the following

expression for Qe

Qe = −1

2
Re ((−eN +

νmσl

e
)E− (νmN − σlν

2m2

e2 )u)u∗.

The electric field E is given by (1.4). Note that uu∗ = u2
0. As a result,

after some transformations we get

Qe =
ν2m2u2

0

2e2 Re
[
σ0 − σl +

4πi

ωεl
(σ0 − σl)

2
]
. (2.8)

Here σ0 = Ne2/(mν) — static conductivity of an electron solid-state

plasma.

Consider the case of small wave numbers. That is, suppose k → 0.

Then, according to (1.1) ω → 0. Thus σl → σ0. From the obtained

expression for Qe (2.7), we obtain that in this case, Qe → 0.

In accordance with the expressions (2.2) and (2.3) the sound wave at-

tenuation coefficient Γ can be split into two parts
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Γ = Γl + Γe, Γl =
Ql

I
, Γe =

Qe

I
(2.9)

We will be interested in the value Γe. Taking into account expressions

(2.1), (2.8) and (2.9) for the value we obtain the following result

Γe =
ν2m2u2

0

ρ0sle2 Re
[
σ0 − σl +

4πi

ωεl
(σ0 − σl)

2
]
. (2.10)

Note that the attenuation coefficient of (2.10) tends to zero in the long-

wave limit, i.e. when k → 0.

3. Conclusion

In this work the influence of electron solid-state plasma on the attenua-

tion of longitudinal sound wave is considered. The approach is equally true

for case of degenerate (metal) and for the case of nondegenerate solid-state

plasma. The approach is based on the dynamics of the interaction of the

electron components with the lattice. This interaction displays itself in the

scattering of electrons on vibrations and defects of the lattice.
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