
Electronic Notes in Theoretical Computer Science 20 (1999)
URL: http://www.elsevier.nl/locate/entcs/volume20.html 49 pages

Direct models of the computational
lambda-calculus

Carsten Führmann 1

Division of Informatics
University of Edinburgh

UK

Abstract

We introduce direct categorical models for the computational lambda-calculus. Di-
rect models correspond to the source level of a compiler whose target level corre-
sponds to Moggi’s monadic models. That compiler is a generalised call-by-value
CPS-transform. We get our direct models by identifying the algebraic structure
on the Kleisli category that arises from a monadic model. We show that direct
models draw our attention to previously inconspicuous, but important, classes of
programs (e.g. central, copyable, and discardable programs), and we’ll analyse these
classes exhaustively—at a general level, and for several specific computational ef-
fects. Moreover, we show that from each direct model K we can recover the monadic
model from which K arises as the Kleisli category.

1 Introduction

1.1 Direct style and monadic style

This article is about direct-style categorical semantics of call-by-value pro-
gramming languages. A programming language can be direct-style or not,
and the semantics of a direct-style language can be direct-style or not. Our
direct-style language is the language in which we write our programs. For
call-by-value, this could be C or Java, Lisp or ML. In a more idealised setting,
we could consider call-by-value PCF, or the call-by-value lambda-calculus. In
this article, we’ll work with Eugenio Moggi’s computational lambda-calculus
(and extensions thereof) to allow a clean theoretical treatment.

In contrast to call-by-name, reasoning about call-by-value programs
doesn’t allow replacing variables with arbitrary expressions, because terms
can have computational effects. For example, if the effect is ‘non-termination’

1 Supported by the EU TMR Marie Curie Research Training Grant NoERBFMBICT982906

c©1999 Published by Elsevier Science B. V.

Führmann

(which we’ll also call ‘divergence’), then the equation (λx.1) Ω ≡ 1, where Ω
is a diverging program, is obviously false for call-by-value.

There may be a compiler for our direct-style language. We’ll consider only
a certain kind of compilers. One example is Appel’s compiler for Standard ML
of New Jersey (SML/NJ) [2]. It translates ML programs into terms of a ‘CPS-
language’ (CPS stands for ‘continuation-passing style’), which is in a certain
sense simpler than ML, and good for code optimisation. Appel’s compiler is
a real-life case of a CPS-transform. If the direct-style language is the call-by-
value lambda-calculus, then CPS-language is a fragment of the λβη-calculus.
(This fragment is equivalent to Thielecke’s CPS-calculus.) There, in con-
trast to the direct-style language, we can replace variables by arbitrary terms.
The latter CPS-transform is a special case of a monadic-style transform (MS
transform) of the call-by-value lambda-calculus into Moggi’s ‘Meta-language’,
which is a fragment of the λβη-calculus plus type- and term-constructors that
describe a strong monad. (We’ll see that transform later in this introduc-
tion.) From the monadic-style transform, we obtain the CPS-transform by
instantiating the strong monad with a continuations monad.

1.2 The computational lambda-calculus

In this article, we use the computational lambda-calculus as an idealised
direct-style call-by-value language. We make a tiny change in that we use
different names for the type constructors: Instead of T , ×, and 1, we use L,
⊗, and I, respectively. (We’ll keep T , ×, and 1 for the Meta-language, how-
ever.) This avoids confusing direct style with monadic style, which would be
fatal. Figures 1–3 show the term formation rules.

The computational lambda-calculus has two kinds of judgements. First,
equations (Γ ⊢ M ≡ N : A), where (Γ ⊢ M : A) and (Γ ⊢ N : A) are derivable
sequents. Second, ‘existence’ judgements (Γ ⊢ M ↓ A) (where (Γ ⊢ M : A) is
a derivable sequent), which imply that in every judgement we can substitute
M for any variable x of type A. Existence judgements hold for terms of the
forms x, [M], (λx : A.M), ∗, 〈x, y〉, and πi(x).

The type constructor L and the two monadic term formations rules in
Figure 3 don’t occur explicitly in typical real-life call-by-value languages.
As we shall see (Proposition 3.17), in models of the computational lambda-
calculus, LX is naturally isomorphic to (I ⇀ X) such that [M] corresponds
to (λx : 1.M), where x is fresh, and µ(M) corresponds to M∗. The main
characteristic of the computational lambda-calculus is that we can’t generally
replace variables by arbitrary terms, but only by values. For a detailed de-
scription of the derivation rules for equations and value judgements, please
see [10].

2

Führmann

var x1 : A1, . . . , xn : An ⊢ xi : Ai

let
Γ ⊢ M : A Γ, x : A ⊢ N : B

Γ ⊢ let x = M in N : B

* Γ ⊢ ∗ : I

〈−,−〉
Γ ⊢ M : A Γ ⊢ N : B

Γ ⊢ 〈M, N〉 : A ⊗ B

πi

Γ ⊢ M : A1 ⊗ A2

Γ ⊢ πi(M) : Ai

constant f : A - B
Γ ⊢ M : A

Γ ⊢ f(M) : B

Fig. 1. “Basic” terms of the computational lambda-calculus

λ
Γ, x : A ⊢ M : B

Γ ⊢ λx : A.M : A ⇀ B

app
Γ ⊢ M : A ⇀ B Γ ⊢ N : A

Γ ⊢ MN : B

Fig. 2. Higher-order terms of the computational lambda-calculus

3

Führmann

[−]
Γ ⊢ M : A

Γ ⊢ [M] : LA

µ
Γ ⊢ M : LA

Γ ⊢ µ(M) : A

Fig. 3. Monadic terms of the computational lambda-calculus

1.3 Categorical semantics

1.3.1 Monadic semantics

The target of the monadic-style transform is Moggi’s Meta-language. It is a
fragment of the λβη-calculus plus extra structure, and its categorical models
are called λC-models [10]. A λC-model is a category C with finite products
plus a strong monad T and T -exponentials—that is, for all objects A and B,
an exponential (TB)A of TB by A. A strong monad is a monad together
with a strength—that is, a natural isomorphism A × TB - T (A × B)
with certain equational properties (see [11]). Figures 4 and 5 show the Meta-
language and its categorical semantics. A sequent (Γ ⊢ M : A) denotes a
morphism [[Γ]] - [[A]] in the λC-model.

The lambda-calculus part of the Meta-language (Figure 4) doesn’t need the
monad, except the functor T to describe that all the exponentials that we need
are of the form (TB)A. In Figure 5, which describes the monadic part, η is the
monad’s unit, and µ is the monad’s multiplication. The operational idea is
that a term of the form [M] stands for the delayed evaluation of M . Given [M],
the interpreter does nothing—that is, it returns [M]. Given (let x ⇐ M ′ in N),
the interpreter evaluates M ′ until it gets a term of the form [M], and then it
evaluates M , binds the result to x, and proceeds with N .

Example 1.1 For a simple λC-model, let C = Set , and let T be the obvious
monad such that, for each set A, we have TA = {⊥}∪{xay : a ∈ A}. Then the
Kleisli category CT is isomorphic to the category of sets and partial functions.

In general, the monad T can be seen as a parameter that stands for a
computational effect. In the above example, the effect is divergence, but there
are also state monads, exceptions monads, continuations monads, and so on.

1.3.2 The missing direct semantics

Like for the Meta-language, Moggi’s semantics of the computational lambda-
calculus too uses a λC-model C. Here, a sequent (Γ ⊢ M : A) denotes a
morphism [[Γ]] - T [[A]] of C. This semantics is the same as first perform-

4

Führmann

Rule Syntax Semantics

var

x1 : A1, . . . , xn : An ⊢ xi : Ai = A1 × · · · × An
πi- Ai

λ

Γ, x : A ⊢ M : B = Γ × A
f- TB

Γ ⊢ (λx : A.M) : A → TB = Γ
λf- (TB)A

ev

Γ ⊢ M : (TB)A = Γ
f- (TB)A

Γ ⊢ N : A = Γ
g- A

Γ ⊢ MN : TB = Γ
〈f,g〉- (TB)A × A

ev- TB

∗

Γ ⊢ ∗ : 1 = Γ
!- 1

〈−,−〉

Γ ⊢ M : A = Γ
f- A

Γ ⊢ N : B = Γ
g- B

Γ ⊢ 〈M, N〉 : A × B = Γ
〈f,g〉- A × B

πi

Γ ⊢ M : A1 × A2 = Γ
f- A1 × A2

Γ ⊢ πi(M) : Ai = Γ
f- A1 × A2

πi- Ai

f : A - B

Γ ⊢ M : A = Γ
g- A

Γ ⊢ f(M) : B = Γ
g- A

f- B

Fig. 4. The Meta-language and its categorical semantics: The lambda-calculus part

ing the monadic-style transform into the Meta-language and then using the
semantics of the latter. The monadic-style transform sends a type A of the
computational lambda-calculus to a type A♯ of the Meta-language (Fig. 6),
and it sends a sequent (x1 : A1, . . . , xn : An ⊢ M : A) of the computa-

tional lambda-calculus to a sequent
(

x1 : A♯
1, . . . , xn : A♯

n ⊢ M ♯ : T
(

A♯
)

)

of

5

Führmann

Rule Syntax Semantics

[−]

Γ ⊢ M : A = Γ
f- A

Γ ⊢ [M] : A = Γ
f- A

η- TA

let

Γ ⊢ M : TA = Γ
f- TA

Γ, x : A ⊢ N : TB = Γ × A
g- TB

Γ ⊢ let x ⇐ M in N : TB = Γ
〈id ,f〉- Γ × TA

t- T (Γ × A)
Tg- TTB

µ- TB

Fig. 5. The Meta-language and its categorical semantics: The monadic part

(A ⊗ B)♯ = A♯ × B♯

I♯ = 1

(A ⇀ B)♯ =
(

T
(

B♯
))(A♯)

(LA)♯ = T
(

A♯
)

Fig. 6. Monadic-style transform from the computational lambda-calculus into
Moggi’s Meta-language: Types

the Meta-language (Fig. 7). Because the monadic-style transform is a com-
piler as explained in Section 1.1, we can conclude that Moggi’s semantics of
the computational lambda-calculus essentially performs a compilation.

By a direct semantics, I mean a semantics that doesn’t compile. So, is there
a direct-style categorical semantics of the computational lambda-calculus? If
so, what kind of categories do we need? And what is the semantic counterpart
of the monadic-style transform? In other words, is there a solution for X and
the two dashed arrows in figure 8?

In this article, we’ll find X, and we’ll show that X is the only reasonable
solution. We’ll call the new categories direct λC-models. They are abstract
Kleisli-categories with extra structure. We get abstract Kleisli-categories by
identifying the available algebraic structure on Kleisli categories. As we shall
see, every monad induces an abstract Kleisli-category. What’s more interest-

6

Führmann

x♯ = [x]

(let x = M in N)♯ =
(

let x ⇐ M ♯ in N ♯
)

∗♯ = [∗]

〈M, N〉♯ =
(

let x ⇐ M ♯ in let y ⇐ N ♯ in [〈x, y〉]
)

(πi(M))♯ =
(

let x ⇐ M ♯ in [πi(x)]
)

(f(M))♯ =
(

let x ⇐ M ♯ in f(x)
)

[M]♯ =
[

M ♯
]

(µ(M))♯ =
(

let x ⇐ M ♯ in x
)

(λx : A.M)♯ =
[

λx : A♯.
(

M ♯
)]

(MN)♯ =
(

let f ⇐ M ♯ in let y ⇐ N ♯ in (fy)
)

Fig. 7. Monadic-style transform from the computational lambda-calculus into
Moggi’s Meta-language: Terms

Syntax Semantics

direct-style
Computational
lambda-calculus

- X

monadic-style Meta-language

MS
trans-
form

?
- λC-models

?-

Fig. 8. The missing direct models, marked by X

ing is that from every abstract Kleisli-category K, we can recover a monad
that induces K, up to isomorphism. Direct λC-models are to λC-models what
abstract Kleisli-categories are to monads. Because Moggi’s semantics of the
computational lambda-calculus in a λC-model C uses only morphisms of the

7

Führmann

form A - TB, we can translate it into a direct semantics that uses direct
λC-models. Because every λC-model induces a direct λC-model, and every di-
rect λC-model arises from a λC-model, we neither loose nor gain generality by
moving from λC-models to direct λC-models. We introduce direct λC-models
in Section 2. In Section 3, we show that the computational lambda-calculus
forms an internal theory for each direct λC-model. In Section 5, we analyse
exhaustively the mathematical relation between λC-models and direct λC-
models.

1.4 New insights from direct models

As it turns out, direct λC-models draw our attention towards previously incon-
spicuous classes of well-behaved morphisms: So-called thunkable morphisms,
central morphisms, copyable morphisms, and discardable morphisms. As we
shall see in Section 4, these classes are closed under composition (i.e.they form
categories) and more, which means that good program properties propagate
along the term structure. This seems to be important for justifying direct-style
code optimisations. We’ll also see in Section 4 that, for each computational
effect, there is the fascinating mathematical challenge to find out how these
classes are related.

Abstract Kleisli-categories are interesting from a purely mathematical
point of view too. That every monad induces an abstract Kleisli-category, and
every abstract Kleisli-category arises from a monad, follows from a stronger
result: An evident category of abstract Kleisli-categories is reflective in an
evident category of λC-models (Theorem 5.3). The analogous result holds
for direct λC-models and λC-models (Theorem 5.18). The full subcategory
of the category of monads that is equivalent under the reflection to the cate-
gory of abstract Kleisli-categories is formed by the monads that fulfil Moggi’s
equalizing requirement (Theorem 5.23).

1.5 Related work

I found direct λC-models by analysing Hayo Thielecke’s ⊗¬-categories [17,18],
which are direct models for call-by-value languages with higher-order types
and continuations. (Roughly speaking, continuations bring the power of jumps
into functional programming.) As shown in [4], ⊗¬-categories are the direct
λC-models that correspond to continuations monads.

Another approach to semantics of call-by-value languages is given by Freyd
categories (called so by John Power—see [14,13]). A Freyd category comprises
a given category C for modelling values, and a category K for modelling
arbitrary terms. The main difference between Freyd categories and abstract
Kleisli-categories is that the latter don’t have a given category of values, but
one that can be equationally defined.

One more approach is given by the partially closed focal premonoidal cat-
egories of Ralf Schweimeier and Alan Jeffrey [15]. They have three given

8

Führmann

categories: One for modelling values, one for modelling central expressions,
and one for modelling arbitrary expressions. Jeffrey and Schweimeier use a
nice graphical presentation of direct-style programs (see [8]).

All approaches build on symmetric premonoidal categories, which were
introduced by John Power and Stuart Anderson [1]. A gentle mathematical
introduction to premonoidal categories, and an explanation of their relation
to strong monads, is part of see [12]. However, I shall explain all necessary
aspects of symmetric premonoidal categories in this article.

For direct semantics for call-by-value with recursion, we have traced
monoidal categories [6,5]. They, however, rule out important premonoidal
models, and therefore exclude many computational effects other than diver-
gence, as Hasegawa pointed out in the conclusion of his thesis [6]. This limi-
tation is broken by the partially traced partially closed focal premonoidal cat-
egories of Schweimeier and Jeffrey [15].

Anna Bucalo, Alex Simpson, and myself, in our article on equational lifting
monads [3], use abstract Kleisli-categories as a vital tool to prove representa-
tion theorems for dominion

2 Direct models

In this section, we define the direct λC-models by giving structure in three
layers:

Direct λC-models

Precartesian abstract Kleisli-categories

Abstract Kleisli-categories

The hierarchy of direct models corresponds to the following hierarchy of
monadic models:

λC-models

Computational cartesian models

Monads

In Section 2.1, we define abstract Kleisli-categories, and find the direct se-
mantics for the monadic term formation rules of the computational lambda-
calculus. In Section 2.2, we add structure to get precartesian abstract Kleisli-
categories, and find the direct semantics for the basic term formation rules.
In Section 2.3, we add structure to get direct λC-models, and find the direct
semantics for the higher-order term formation rules.

9

Führmann

2.1 Abstract Kleisli-categories

Suppose that T a monad with multiplication µ and unit η on a category C,
and let CT be the Kleisli category of T . As shown in [9], there is an adjunction

C

FT -
⊥�
GT

CT

such that (1) GT FT = T , (2) the adjunction’s unit is η, (3) letting ε be the
counit, the GT εFT = µ, and (4) FT is the identity on objects. The adjunction
induces some structure on the Kleisli category: Let

L =def FT GT

ϑ =def FT η

We also have the counit ε, which is a natural isomorphism L - Id . For
each object A, we have ϑA : A - LA. However, ϑ is not generally a natural
transformation Id - L, as we shall see. Of course, L, ϑ, and ε fulfil certain
equations. This leads us to the following definition:

Definition 2.1 An abstract Kleisli-category is

• A category K

• A functor L : K - K

• A transformation 2 ϑ : Id - L

• A natural transformation ε : L
·- Id

such that ϑL is a natural transformation L
·- L2, and

Id
ϑ - L Id

ϑ - L L
ϑL - L2

L

ϑ

? ϑL - L2

Lϑ

?
Id

ε

?

id
-

L

Lε

?

id
-

Let’s pronounce ϑ ‘thunk’ and ε ‘force’, agreeing with Hayo Thielecke’s
terminology for ⊗¬-categories, which turned out to be special abstract Kleisli-
categories (see [4]).

Example 2.2 The well-known category Rel of sets and relations, which is iso-
morphic to the Kleisli category of the covariant powerset monad (see e.g. [7]).
For a set A, let LA be the powerset of A. For a relation R : A - B, and

2 By a transformation from a functor F : C - D to a functor G : C - D, I mean a
map that sends each object A of C to an arrow FA - GA

10

Führmann

sets X ⊆ A and Y ⊆ B, let (where R[X] is the image of X under R)

X(LR)Y ⇔ Y = R[X]

xϑX ⇔ X = {x}

Xε x ⇔ x ∈ X

Note that, for every abstract Kleisli-category, L forms a comonad on K
with comultiplication ϑL and counit ε.

The next definition is crucial. Its importance will emerge gradually in this
article.

Definition 2.3 A morphism f : A - B of an abstract Kleisli-category K

is called thunkable if

A
ϑ - LA

B

f

? ϑ - LB

Lf

?

The category GϑK is defined as the subcategory of K determined by all objects
and the thunkable morphisms.

Example 2.4 In Rel , the thunkable morphisms are the total functions.

Note that, if K is the abstract Kleisli-category of a monad T , then a
morphisms f of K is thunkable if and only if

f ; ηT = f ; Tη

Now suppose that K is an arbitrary abstract Kleisli-category. For each f ∈
K(A, B), let

[f] =def ϑ; Lf

Letting incl be the inclusion functor GϑK ⊂ - K, there is an adjunction

[−] : K(incl(A), B) ∼= (GϑK)(A, LB)

with unit ϑ and counit ε. Note that if K is the abstract Kleisli-category of a
monad T , then

[f] = FT f

Now suppose that C is a λC-model whose monad is T = (T, µ, η), and let K
be the arising abstract Kleisli-category. Figures 9 and 10 show that we can use
K to rewrite Moggi’s monadic semantics of the monadic term formation rules
and the existence judgement of the computational lambda-calculus. In [10],
Moggi defines (Γ ⊢ M ↓ A) to hold if the denotation f factors through η. In
the presence of the equalizing requirement, which says that ηA is an equalizer

11

Führmann

Rule Syntax Monadic semantics Direct semantics

[−]

Γ ⊢ M : A = Γ
f- TA = Γ

f- A

Γ ⊢ [M] : LA = Γ
f- TA

η- TTA = Γ
[f]- LA

µ

Γ ⊢ M : LA = Γ
f- TTA = Γ

f- LA

Γ ⊢ µ(M) : A = Γ
f- TTA

µ- TA = Γ
f- LA

ε- A

Fig. 9. Monadic semantics and direct semantics of the computational lambda-cal-
culus’ monadic term formation rules

Rule Syntax Monadic semantics Direct semantics

ex

Γ ⊢ M : A = Γ
f- TA = Γ

f- A

Γ ⊢ M ↓ A ⇔ f ; ηT = f ; Tη ⇔ f is thunkable

Fig. 10. Monadic semantics and direct semantics of the computational lambda-cal-
culus: The ‘existence’ judgement

of ηTA and TηA, f factors through η if and only if f ; ηT = f ; Tη. It turns
out that this equation is the suitable interpretation of (Γ ⊢ M ↓ A) in the
absence of the equalizing requirement. This is so because in the computational
lambda-calculus (Γ ⊢ M ↓ A) is interderivable with the equation (Γ ⊢ let x =
M in [x] ≡ [M] : LA) (see [10], bottom of p. 15), whose semantics is f ; ηT =
f ; Tη.

2.2 Precartesian abstract Kleisli-categories

A direct semantics of the computational lambda-calculus’ basic term formation
rules needs some kind of tensor for modelling product types, projections for
modelling variables, and diagonals for modelling pairing. In this section, we’re
aiming for direct models that arise as Kleisli categories of Moggi’s computa-
tional cartesian models. A computational cartesian model is a category C with
given finite products and a strong monad T . Now let t : A×TB - T (A×B)
be the strength, and let t′ : (TA) × B - T (A × B) be the symmetric dual
of t. The tensor and tensor unit are defined as in Figure 11. The diagonals,

12

Führmann

A ⊗ B =def A × B

I =def 1

C ⊗ f =def

(

C × A
C×f- C × TB

t- T (C × B)
)

f ⊗ C =def

(

A × C
f×C- B × TC

t′- T (B × C)
)

Fig. 11. The premonoidal tensor and tensor unit on the Kleisli category of a carte-
sian computational model

projections, and structural isomorphisms of K are the images under FT of the
corresponding maps of C. This leads to the definition of precartesian abstract
Kleisli-categories. I call them ‘precartesian’ because they are (symmetric) pre-
monoidal categories together with projections and diagonals that don’t quite
form finite products. Roughly speaking, symmetric premonoidal categories
are generalised symmetric monoidal categories in that the tensor doesn’t have
to be a bifunctor, but only a functor in either argument. Because not every-
body knows symmetric premonoidal categories, I’ll introduce them here (for
more, see [12]). First, a couple of auxiliary definitions:

Definition 2.5 A binoidal category is

• A category C

• For each object A, a functor A ⊗ (−) : C - C

• For each object B, a functor (−) ⊗ B : C - C

such that for all objects A and B

(A ⊗ (−))(B) = ((−) ⊗ B)(A)

For the joint value, we write A ⊗ B, or short AB.

Definition 2.6 A morphism f : A - A′ of a binoidal category K is called
central if for each g : B - B′

AB
fB- A′B

AB′

Ag

? fB′
- A′B′

A′g

?

BA
Bf- BA′

B′A

gA

? B′f- B′A′

gA′

?

The centre ZK of K is defined as the subcategory determined by all objects
and the central morphisms.

Definition 2.7 A symmetric premonoidal category is

• A binoidal category C

13

Führmann

• An object I of C

• Four natural isomorphisms A(BC) ∼= (AB)C, IA ∼= A, AI ∼= A, and
AB ∼= BA, with central components that fulfil the coherence conditions
known from symmetric monoidal categories.

The symmetric monoidal categories are the symmetric premonoidal cate-
gories that have only central morphisms. As you can easily check, the natural
associativity implies that A ⊗ (−) and (−) ⊗ A preserve central morphisms.
Therefore

Proposition 2.8 The centre of a symmetric premonoidal category is a sym-
metric monoidal category.

Now for the definition of a precartesian abstract Kleisli-category. It is
true, but not obvious, that every computational cartesian model induces a
precartesian abstract Kleisli-category by the definitions in Figure 11. We’ll
show this later in this section.

Definition 2.9 A precartesian abstract Kleisli-category K is

• An abstract Kleisli-category K

• A symmetric premonoidal structure on K

• Finite products on GϑK that agree with the symmetric premonoidal struc-
ture

such that GϑK is a subcategory of the centre.

Example 2.10 We continue our example Rel . As we’ve seen in Example 2.2,
Rel forms an abstract Kleisli-category whose thunkable morphisms are the
total functions. The tensor on objects is the cartesian product of sets. On
morphisms, the tensor is given by

(x, y)(R ⊗ S)(x′, y′) ⇔ xRx′ ∧ ySy′

As is well-known and obvious, the tensor forms a symmetric monoidal struc-
ture that agrees with the finite products on the subcategory of total functions.
This example is a bit weak in that all morphisms are central, but we use it
anyway in this section because it is short and elegant.

Now suppose that C is a computational cartesian model, and let K be the
arising precartesian abstract Kleisli-category. Figure 12 shows how to use K
to rewrite Moggi’s monadic semantics of the computational lambda-calculus’
basic term formation rules.

In the rest of this section, we’ll show that every computational cartesian
model induces a precartesian abstract Kleisli-category by the definitions in
Figure 11. First we’ll prove a proposition that helps checking whether a struc-
ture is a precartesian abstract Kleisli-category. Before stating the proposi-
tion, we define two important classes of morphisms: Discardable morphisms

14

Führmann

and copyable morphisms. For an object A of a precartesian abstract Kleisli-
category K, let !A : A - I be the unique element of (GϑK)(A, I), and let
δA : A - AA be the obvious diagonal.

Definition 2.11 Suppose that K is a precartesian abstract Kleisli-category.
A morphism f ∈ K(A, B) is called discardable if

A
! - I

B

f

? ! - I

id

?

The category G!K is defined as the subcategory of K whose objects are those
of K, and whose morphisms are the discardable morphisms of K.

Example 2.12 In Rel , a morphism R : A - B is discardable if it relates
every x ∈ A with at least one element of B. So G!Rel is the same as the
category Rel tot in [7].

Next we define the notion of copyable morphism. In a precartesian abstract
Kleisli-category, consider the two equations

A
δ - AA A

δ - AA

AB

Af

?
BA

fA

?

B

f

? δ - BB

fB

?
B

f

? δ - BB

Bf

?

Both have the same solutions f , because appending the twist map, which is
absorbed by δ, transforms either equation into the other. But beware the con-
clusion that the two upper right paths are equal—they differ for continuations
(proving this is outside the scope of this article).

Definition 2.13 A morphism f : A - B of a precartesian abstract Kleisli-
category K is called copyable if the two above equations hold. GδK is defined
as the class of copyable morphisms of K.

In contrast to the discardable morphisms, the copyable ones don’t always
form a subcategory, as we’ll see for global state (Example 4.7).

Example 2.14 In Rel , the copyable morphisms are the partial functions. So
GδRel is the same as the category Rel sval in [7].

15

Führmann

Proposition 2.15 Suppose that K is an abstract Kleisli-category together
with a binoidal tensor ⊗, an object I, and transformations δA : A - A⊗A,
πi : A1 ⊗ A2

- Ai, and !A : A - I. Then K determines a precartesian
abstract Kleisli-category if and only if

(i) All morphisms of the form [f] are central, copyable, and discardable.

(ii) All components of δ, πi, and !, as well as all morphisms of the form
A ⊗ [f] and [f] ⊗ A, are thunkable.

(iii) Letting 〈f, g〉 =def δ; id ⊗ g; f ⊗ id, the transformations

π1 : A ⊗ I - A

π2 : I ⊗ A - A

〈π2, π1〉 : A ⊗ B - B ⊗ A

〈π1; π1, 〈π1; π2, π2〉〉 : (A ⊗ B) ⊗ C - A ⊗ (B ⊗ C)

are natural in each argument.

(iv) We have

AB
δ- (AB)(AB)

AB

π1 ⊗ π2

?

id
-

A
δ- A ⊗ A

A

πi

?

id
-

A1 ⊗ A2

π1 - A1

A1 ⊗ I

id⊗!

?
π 1

-
A1 ⊗ A2

π2 - A2

I ⊗ A2

! ⊗ id

?
π 2

-

Proof. As for the ‘only if’, all conditions hold because all morphisms of the
form [f] are thunkable and by definition the category of thunkable morphisms
is a subcategory of the centre and has finite products.

Now for the ‘if’. Because morphisms of the form A ⊗ [f] and [f] ⊗ A

are thunkable, the thunkable morphisms are closed under ⊗. To see this, let
f ∈ (GϑK)(A, B). Then (recall that ϑ = [id])

A ⊗ f ; ϑ = A ⊗ f ; ϑ; L(A ⊗ ϑ); L(A ⊗ ε)

= A ⊗ f ; A ⊗ ϑ; ϑ; L(A ⊗ ε)

= A ⊗ [f]; ϑ; L(A ⊗ ε)

= ϑ; L(A ⊗ [f]); L(A ⊗ ε)

= ϑ; L(A ⊗ f)

16

Führmann

Because all morphisms of the form [f] are central, so are all thunkable mor-
phisms. To see this, let f ∈ (GϑK)(A, B). Then for every g ∈ K(A′, B′) we
have

A ⊗ g; f ⊗ B′ = A ⊗ g; [f] ⊗ B′; ε ⊗ B′

= [f] ⊗ A′; LB ⊗ g; ε ⊗ B′

= f ⊗ A′; ϑ ⊗ A′; LB ⊗ g; ε⊗ B′

= f ⊗ A′; B ⊗ g; ϑ ⊗ B′; ε ⊗ B′

= f ⊗ A′; B ⊗ g

Because all morphisms of the form [f] are copyable, so are all thunkable mor-
phisms. To see this, let f ∈ (GϑK)(A, B). Then

f ; δ = f ; δ; ϑ ⊗ ϑ; id ⊗ ε; ε ⊗ id

= f ; ϑ; δ; id ⊗ ε; ε ⊗ id

= [f]; δ; id ⊗ ε; ε ⊗ id

= δ; [f] ⊗ [f]; id ⊗ ε; ε ⊗ id

= δ; [f] ⊗ f ; ε ⊗ id

= δ; id ⊗ f ; f ⊗ id

Because all morphisms of the form [f] are discardable, so are all thunkable
morphisms. To see this, let f ∈ (GϑK)(A, B). Then

f ; ! = f ; ϑ; ! = [f]; ! =!

Now we can summarise that the thunkable morphisms determine a sub bi-
noidal category of the centre that has only morphisms which are copyable and
discardable, and contains δ, πi, and !. Therefore the remaining conditions
are enough to imply that ⊗, I, δ, πi, and ! determine finite products on the
category of thunkable morphisms. Every category with finite products deter-
mines a symmetric monoidal category (see [9], p. 159). Because the symmetric
monoidal tensor of GϑK agrees with the binoidal product on K, the symmet-
ric monoidal structure on GϑK extends to a symmetric premonoidal structure
on K. 2

Now we turn to prove a result which is slightly stronger than saying that
the Kleisli category of a cartesian computational model forms a precartesian
abstract Kleisli-category. This is a good time to recall two definitions from [12]
and [14], respectively:

Definition 2.16 Suppose that C and D are symmetric premonoidal cate-
gories. Then a functor from C to D is strict symmetric premonoidal if it
sends central morphisms to such and strictly preserves the tensor, the tensor
unit, and the structural isomorphisms.

17

Führmann

Definition 2.17 A Freyd category consists of a category C with finite prod-
ucts, a symmetric premonoidal category K with the same objects as C, and
an identity-on-objects strict symmetric premonoidal functor F : C - K.

Proposition 2.18 Suppose that C is a computational cartesian model. Then
the functor FT : C - CT together with the tensor and tensor unit defined
in Figure 11 determines a Freyd category.

Proof. In this proof, let’s write semicolon for the composition of CT , and
colon for the composition of C. The structural premonoidal isomorphisms of
CT have to be the images of the evident corresponding maps of C. First we
prove that, if CT forms a symmetric premonoidal category, then FT is strict
symmetric premonoidal. The equation FT (A × f) = A ⊗ FT f follows directly
from the equation id × η : t = η in the definition of a computational cartesian
model. Therefore, FT strictly preserves the tensor. To see that all morphisms
in the image of FT are central, suppose that f is a morphism of C, and g is a
morphism of CT . Then

(FT f) ⊗ id ; id ⊗ g = FT (f × id); id ⊗ g = f × id : id ⊗ g = f × g : t

id ⊗ g; (FTf) ⊗ id = id ⊗ g; FT (f × id) = id ⊗ g : GT FT (f × id)

= id × g : t : T (f × id) = id × g : f × id : t

By definition, premonoidal structural isomorphisms are preserved by FT .

Next we check that CT forms a symmetric premonoidal category. That
A⊗(−) preserves the composition of K follows from a routine calculation that
uses the naturality of t and the equation in the definition of a computational
cartesian model that involves t and µ. That A ⊗ (−) preserves the identity
of K corresponds to the equation id × η : t = η. By a symmetric argument,
(−) ⊗ A too is a functor, so we have a binoidal category. The premonoidal
structural isomorphisms are central because they are in the image of FT , and
their coherence follows from sending through FT the coherence diagrams of the
corresponding isos of C. So it remains to prove that the structural premonoidal
isos of CT are natural in each of their arguments. The naturality of the evident
iso I ⊗ A - A follows from the naturality of the corresponding map π2 of

C and the equation
(

1 × TA
t- T (1 × A)

Tπ2- TA
)

= π2 in the definition

of a computational cartesian model. The naturality of the symmetry map
follows from the naturality of the corresponding map of C. The naturality of
the associativity map follows from the naturality of the corresponding map of
C, and the equation in the definition of a computational cartesian model that
involves the strength and the associativity map of C. 2

Proposition 2.19 Suppose that F : C - K is a Freyd category, and F
has a right adjoint G with unit η and counit ε. Then K together with the
L =def GF , ϑ =def Fη, and ε forms a precartesian abstract Kleisli-category,
where δ, πi, and ! are the images under F of the corresponding maps of C.
Moreover, every morphism in the image of F is thunkable.

18

Führmann

Proof. All morphisms in the image of F are thunkable, because the equation
Fg; ϑ = ϑ; LFg is the image under F of the naturality square for η. No we use
Proposition 2.15. By Proposition 2.18, ⊗ is in particular a binoidal tensor.
For Condition (i) of Proposition 2.15, note that [f] = F (f ♯), where ♯ is the
adjunction iso K(FA, B) ∼= C(A, GB). Therefore, [f] is central. Because
F preserves ⊗, δ, and !, all morphisms in the image of F are copyable and
discardable, and therefore so is [f]. For Condition (ii), note that A⊗[f] = A⊗
F (f ♯) = F (A× f ♯). Condition (iv) obviously holds, and Condition (iii) holds
because the maps that must be natural are the given structural premonoidal
isos of K. 2

The proposition that we were aiming for follows directly from Proposi-
tions 2.18 and 2.19:

Proposition 2.20 Suppose that C is a computational cartesian model. Then
the Kleisli category CT together with the tensor and tensor unit defined in
Figure 11 forms a precartesian abstract Kleisli-category.

2.3 Direct λC-models

In this section, finally, we shall define the direct models that arise as Kleisli
categories of Moggi’s λC-models. Suppose that C is a λC-model, and let K
be the arising precartesian abstract Kleisli-category. We define higher-order
structure on K as in Figure 13. This leads us to the definition of direct
λC-models.

Definition 2.21 A direct λC-model is a precartesian abstract Kleisli-category
K together with, for each object A, a functor A ⇀ (−) : K - GϑK and an
adjunction

Λ : K(incl(B) ⊗ A, C) ∼= (GϑK)(B, A ⇀ C)

Before we prove that the definitions in Figure 13 result in a direct λC-
model, let’s consider an example, and complete the direct semantics.

Example 2.22 We continue our example Rel . For sets A and B, let A ⇀ B
be the set of relations R ∈ A × B, and let

(R, x)apply y ⇔def xRy

x(ΛR)S ⇔def S = {(y, z) : (x, y)Rz}

Now suppose that C is a λC-model, and let K be the arising direct λC-
model. Figure 14 shows how to use K to rewrite Moggi’s monadic semantics
of the computational lambda-calculus’ higher-order term formation rules.

In the rest of this section, we prove that the definitions in Figure 13 result
in a direct λC-model. Like in the preceding section, we proceed in two steps.
Now is a good time to recall a definition from [14].

19

Führmann

Definition 2.23 A Freyd category F : C - K is closed if for every objects
A, the functor (F−) ⊗ A has a right adjoint.

Proposition 2.24 If C is a λC-model, then the Freyd category FT :
C - CT is closed.

Proof. In this proof, let’s write semicolon for the composition of CT , and
colon for the composition of C. For each morphism f ∈ CT (C ⊗ A, B) we
need a unique solution g ∈ C(C, A ⇀ B) for the equation

(A ⇀ B) ⊗ A
apply- B

C ⊗ A

(FT g) ⊗ A

6

f

-

The required g is λf , where λ the Curry map C(A×B, TC) ∼= C(A, (TC)B),
because (FT g) ⊗ A; apply = FT (g × A); apply = g × A : ev . 2

Proposition 2.25 If F : C - K is a closed Freyd-category, then K forms
a direct λC-model.

Proof. In this proof, let’s write semicolon for the composition of CT , and
colon for the composition of C. Let A ⇀ − be the right adjoint of (F−)⊗A,
and apply the counit. For each morphism f ∈ C(C ⊗A, B) we need a unique
thunkable morphism h : C - (A ⇀ B) such that

(A ⇀ B) ⊗ A
apply- B

C ⊗ A

h ⊗ A

6

f

-

Let λ be the adjunction isomorphism K((FA)⊗B) ∼= C(A, B ⇀ C). Because
Fλf is a solution for h, it remains to prove that every such solution is equal
to Fλf . To see this, recall that saying h is thunkable is saying that h : ηT =
h : Tη, let ♯ be the adjunction iso K(FA, B) ∼= C(A, GB), and consider

Fλf = Fλ(h ⊗ A; apply) = Fλ([h] ⊗ A; ε ⊗ A; apply)

= Fλ(F (h♯) ⊗ A; ε ⊗ A; apply) = F (h♯ : λ(ε ⊗ A; apply))

= F (h♯); Fλ(ε⊗ A; apply) = [h]; Fλ(ε ⊗ A; apply)

= h; ϑ; Fλ(ε ⊗ A; apply) = h; Fη; Fλ(ε⊗ A; apply)

= h; F (η : λ(ε ⊗ A; apply)) = h; F (λ(Fη ⊗ A; ε ⊗ A; apply))

= h; F (λ(ϑ ⊗ A; ε ⊗ A; apply)) = h; F (λapply) = h; F id = h

2

20

Führmann

The proposition that we were aiming for follows directly from Proposi-
tions 2.24 and 2.25:

Proposition 2.26 Suppose that C is a λC-model. Then the precartesian ab-
stract Kleisli-category CT together with the definitions in Figure 13 forms a
direct λC-model.

3 Direct λC-models and the computational lambda-

calculus

In this section, we translate direct-style categorical expressions like A ⊗ LB
and f ; [g] into types and sequents, respectively, of the computational lambda-
calculus. As we’ll see, this translation is in a certain sense the inverse of the
direct semantics. We’ll use the inverse translation to prove soundness and
completeness.

Definition 3.1 [Direct-style signature] For a collection B of base types, the
direct-style types over B are defined inductively by

A = LA |A ⊗ A | I |A ⇀ A | B

A direct-style constant over B is defined as a formal arrow f : A - B where
A and B are direct-style types over B. A direct-style signature is defined as a
pair Σ = (B,K) where B is a collection of base types, and K is a collection of
direct-style constants over B.

Next we define the domain of our inverse translation:

Definition 3.2 The direct-style categorical expressions over a direct-style sig-
nature Σ = (B,K) are defined inductively by

f =idA | f ; f |A ⊗ f | f ⊗ A | δA | πA,A
1 | πA,A

2 | !A
| [f] | εA |Λf | applyA,A | K

where A ranges over the direct-style types over B, and we obey the obvious
type constrains for semicolon and Λ.

Now for the range of the inverse translation:

Definition 3.3 The computational lambda-sequents over a direct-style signa-
ture Σ = (B,K) are defined as the sequents generated over the base types
from B by the rules in Figures 1–3.

The direct semantics implicitly defines a syntactic translation from of com-
putational lambda-sequents into direct-style categorical expressions. Let’s
write c for this syntactic version of the direct semantics. Now we turn to
defining the inverse translation, which we call c′. For each direct-style signa-
ture Σ, c′ takes direct-style categorical expressions over Σ to computational

21

Führmann

lambda-sequents over Σ. First some auxiliary definitions: For a direct-style
type A over a collection of base types B, the factorisation of A is defined
as the sequence A1, . . . , An of direct-style types over B such that none of the
Ai is a product type or the unit type, and A is the product of the Ai up to
associativity of the product and neutrality of the unit type. For example, the
direct-style type

((B0 ⇀ B1) ⊗ LB2) ⊗ ((LB1 ⊗ (B2 ⇀ B1)) ⊗ I)

has the factorisation

B0 ⇀ B1, LB2, LB1, B2 ⇀ B1

The translation c′ takes a direct-style categorical expression f : A - B

to a computational lambda-sequent (x1 : A1, . . . , xn : An ⊢ M : B), where
A1, . . . , An is the factorisation of A. We use the following two abbrevia-
tions for direct-style lambda terms: First, suppose that (Γ ⊢ M : A) and
(y1 : A1, . . . , yn : An ⊢ N : B) are computational lambda-sequents such that
A1, . . . , An is the factorisation of A. Then let

(let y1, . . . , yn = M in N) =def(let z = M in let y1 = p1(z) in . . .

let yn = pn(z) in N)

where z is a fresh variable of type A, and pi(z) is the obvious repeated applica-
tion of π1 and π2 to z. Second, suppose that (Γ, y1 : A1, . . . , yn : An ⊢ M : B)
is a computational lambda-sequent, and the direct-style type A has the fac-
torisation A1, . . . , An. Then let

λ(y1, . . . , yn) : A.M =def (λz : A.let y1, . . . , yn = z in M)

where z is fresh. The translation c′ proceeds by recursion over direct-style
categorical expressions, as in figures 15–18.

The next two lemmas state that the translations c and c′ are essentially
inverse.

Lemma 3.4 In every direct λC-model, for every direct-style combinator term
m, letting i be the evident structural iso, we have

c(c′(m)) = i; m

Proof. By induction over m. 2

Lemma 3.5 Suppose that Σ is a direct-style signature, and that (Γ ⊢ M : A)
is a computational lambda-sequent over Σ such that, letting (x1 : A1, . . . , xn :
An) =def Γ, none of the Ai is a product type or the unit type. Suppose that M ′

is defined by
(Γ ⊢ M ′ : A) =def c′(c(Γ ⊢ M : A))

22

Führmann

Then in the computational lambda-calculus over Σ we have

Γ ⊢ M ′ ≡ M : A

Proof. By induction over (Γ ⊢ M : A). 2

We could remove the restriction on the Ai in Lemma 3.5 by reorganising
environments with respect to the tensor, but that doesn’t seem to be worth
the formal effort.

Definition 3.6 A direct interpretation of a direct-style signature Σ = (B,K)
is a direct λC-model K together with, for each base type A ∈ B, an object
[[A]] ∈ Ob(K), and for each constant (f : A - B) ∈ K, a morphism
[[f]] ∈ K([[A]], [[B]]).

Every direct λC-model K gives an obvious direct-style signature ΣK , whose
base types are the objects and whose constants are the morphisms. Trivially,
K forms a direct interpretation of ΣK . If we know K, then by ‘computational
lambda-sequents’ we mean the ones over ΣK .

Definition 3.7 A computational lambda-theory over a direct-style signature
Σ is defined as a collection T of judgements (Γ ⊢ M ≡ N : A) and (Γ ⊢ M ↓ A)
where (Γ ⊢ M : A) and (Γ ⊢ N : A) are computational lambda-sequents
over Σ, such that T is closed under the deduction rules of the computational
lambda-calculus.

Definition 3.8 A direct model of a computational lambda-theory T over a
direct-style signature Σ is a direct-style interpretation of Σ that validates all
judgements of T .

Proposition 3.9 (Semantics of substitution) In every direct λC-model
K, for all computational lambda-sequents

∆ ⊢ N : A

Γ, x : A, Γ′ ⊢ M : B

such that (∆ ⊢ N ↓ A), we have

[[Γ, ∆, Γ′ ⊢ M [x := N] : B]] =
(

Γ∆Γ′ Γ[[∆⊢N :A]]Γ′

- ΓAΓ′ [[Γ,x:A,Γ′⊢M :B]]- B
)

Proof. By induction over the sequent (Γ, x : A, Γ′ ⊢ M : B). The case M = x
needs on obvious Lemma about the semantics of weakening, which is easy to
prove. 2

Like the two preceding lemmas, the next two propositions are somehow
opposites of each other. Proposition 3.10 explains how to get a computational
lambda-theory from a direct interpretation, and Proposition 3.12 goes in the
opposite direction.

23

Führmann

Proposition 3.10 (Soundness) Suppose that K is a direct interpretation
of a direct-style signature Σ. Then the judgements (Γ ⊢ M ≡ N : A) and
(Γ ⊢ M ↓ A) over Σ that hold in K form a computational lambda-theory.

Proof. By checking that K validates each deduction rule of the computational
lambda-calculus. That the true judgements are closed under substitution of
variables by terms which ‘exist’ follows from Proposition 3.9. 2

Definition 3.11 Suppose that T is a computational lambda-theory over a
direct-style signature Σ. The binary relation ≈T on the direct-style categorical
expressions over Σ is defined as follows: Let m ≈T n if and only if, letting
(Γ ⊢ M : A) = c′(m) and (Γ ⊢ N : A) = c′(n), we have (Γ ⊢ M ≡ N : A) in
T .

Proposition 3.12 (Term model) Suppose that T is a computational
lambda-theory over a direct-style signature Σ. Then ≈T is a congruence, and
the congruence classes form a direct model of T .

Proof. The relation ≈ is a congruence because ≡ is a congruence (That ≡
is a congruence is stated explicitly by deduction rules of the computational
lambda-calculus). So we have a graph whose nodes are the direct-style types
over Σ, and whose arrows are ≈-classes of direct-style categorical expressions
over Σ, and on this graph we have well-defined operators like composition
of arrows, Λ, and so on. We check that we have a direct-style λC-model by
working our way up through the structural layers: Category, abstract Kleisli-
category, precartesian abstract Kleisli-category, direct λC-model. Because of
Proposition 2.15, all we need to check is some equations. Each such equation
e is checked by deriving in the computational lambda-calculus the equation
which is the image of e under c′. The details are left as an exercise. Let’s
call our direct λC-model KT . Now it remains to prove that KT is a direct
model of T . To see this, suppose that (Γ ⊢ M ≡ N : A) ∈ T , and let
m =def c(Γ ⊢ M : A) and n =def c(Γ ⊢ N : A). We need to prove that
m ≈T n. So let (Γ ⊢ M ′ : A) =def c′(m) and (Γ ⊢ N ′ : A) =def c′(n). We need
(Γ ⊢ M ′ ≡ N ′ : A) ∈ T . This is so because, by Lemma 3.5, we have (Γ ⊢
M ≡ M ′ : A) and (Γ ⊢ N ≡ N ′ : A) in T , and ≡ is transitive. Now suppose
that (Γ ⊢ M ↓ A) ∈ T , and let m =def c(Γ ⊢ M : A). We must prove that
m is thunkable—that is m; [id] ≈T [m]. By definition of c′, letting (Γ ⊢ M ′ :
A) =def c′(m), we must prove that (Γ ⊢ (let x = M ′ in [x]) ≡ [M ′] : LA) ∈ T .
Because (Γ ⊢ M ↓ A) ∈ T , we have(Γ ⊢ (let x = M in [x]) ≡ [M] : LA) ∈ T .
The rest follows because by Lemma 3.5, we have (Γ ⊢ M ≡ M ′ : A). 2

Definition 3.13 For every computational lambda-theory T , let KT be the
direct model induced by ≈T .

Proposition 3.14 (Completeness) Suppose that T is a computational
lambda-theory over a direct-style signature Σ, and that (Γ ⊢ M : A) and
(Γ ⊢ N : A) are computational lambda-sequents over Σ. If for every direct

24

Führmann

model K of T we have

K[[Γ ⊢ M : A]] = K[[Γ ⊢ N : A]]

then

(Γ ⊢ M ≡ N : A) ∈ T

If for every direct model K of T the morphism K[[Γ ⊢ M : A]] is thunkable,
then (Γ ⊢ M ↓ A) ∈ T .

Proof. First let’s prove the claim for the equation judgements. By hypothesis,
we have KT [[Γ ⊢ M : A]] = KT [[Γ ⊢ N : A]]. By definition of KT , letting
m =def c(Γ ⊢ M : A) and n =def c(Γ ⊢ N : A), we have m ≈T n. By definition
of ≈T , letting (Γ ⊢ M ′ : A) =def c′(m) and (Γ ⊢ N ′ : A) =def c′(n), we have
(Γ ⊢ M ′ ≡ N ′ : A) ∈ T . By Lemma 3.5, we have (Γ ⊢ M ≡ M ′ : A) and
(Γ ⊢ N ≡ N ′ : A) in T . Transitivity of ≡ implies (Γ ⊢ M ≡ N : A) ∈ T .
Proving the claim for the existence judgements is similar. 2

Definition 3.15 Suppose that K and K ′ are direct interpretations of a direct-
style signature Σ. Then a morphism of direct interpretations of Σ from K to
K ′ is a morphism of direct λC-models from K to K ′ that strictly preserves all
base types and constants of Σ.

Proposition 3.16 (Initiality) Suppose T that is a computational lambda-
theory over a direct-style signature Σ. Then KT is an initial object in the
category of direct models of T and morphisms of direct interpretations of Σ.

Proof. Suppose that K is a direct model of T , and that H : KT
- K is a

morphism of direct interpretations of Σ. Then for each direct-style categorical
expression m over Σ, because KT [[m]] = [m]≈T

, we must have H([m]≈T
) =

K[[m]]. So it remains to prove that H is well defined. To see this, let m ≈T n.
By definition of ≈T , letting (Γ ⊢ M : A) =def c′(m) and (Γ ⊢ N : A) =def c′(n),
we have (Γ ⊢ M ≡ N : A) ∈ T . Soundness implies K[[Γ ⊢ M : A]] = K[[Γ ⊢
N : A]], and therefore c(c′(m)) = c(c′(n)) holds in K. By Lemma 3.4, in K

we have c(c′(m)) = i; m and c(c′(n)) = i; n. By transitivity and cancelling i,
we have m = n in K. 2

Proposition 3.17 Suppose that K is a direct λC-model. Then there is a
natural isomorphism

LA ∼= (I ⇀ A)

that, for each (Γ ⊢ M : A), mediates by appending between (Γ ⊢ [M] : LA)
and (Γ ⊢ λx : I.M : I ⇀ A), where x is fresh, and by prefixing between
(y : I ⇀ A ⊢ y∗ : A) and (y′ : LA ⊢ µ(y′) : A).

Proof. The iso and its inverse are given by (y : LA ⊢ λx : I.µ(y) : I ⇀ A),
where x is fresh, and (y′ : I ⇀ A ⊢ [y′∗] : LA). The required properties can
be checked easily with the computational lambda-calculus. 2

25

Führmann

4 Varieties of morphisms

In this section, we’ll examine some ‘varieties of morphisms’ of direct λC-
models: thunkable morphisms, central morphisms, copyable morphisms, and
discardable morphisms. To see what I mean by ‘variety’, let K be a direct
λC-model, and let A and A′ be objects of K. Then by variety of morphisms of
K(A, A′), I mean a collection of elements of K(A, A′) that solve a collection
of equations that use only the signature of direct λC-models. For example,
the central morphisms f : A - A′ form a variety of K(A, A′), because they
are the solutions of the following collection of equations:

{fB; A′g = Ag; fB′ : B, B′ ∈ Ob(K), g ∈ K(B, B′)}

By a variety of morphisms of K, I mean a union over all objects A and A′ of
varieties of K(A, A′) that depend uniformly on A and A′. As we shall see, it is
interesting to examine and relate these varieties—in general, and for specific
computational effects.

4.1 The varieties in terms of the computational lambda-calculus

First, let’s recap our knowledge about thunkable morphisms. By the direct
semantics rule for existence predicates, in every direct λC-model, (Γ ⊢ M : A)
is thunkable if and only if (Γ ⊢ M ↓ A). By the deduction rules of the
computational lambda-calculus, (Γ ⊢ M ↓ A) implies that in all judgements
we can substitute M for any free variable of type A. Moreover, (Γ ⊢ M ↓ A)
is interderivable with (Γ ⊢ (let x = M in [x]) ≡ [M] : LA). Therefore, (Γ ⊢
M : A) is thunkable if and only if in all judgements we can substitute M for
any free variable of type A. Now let’s look at the remaining three varieties.

Proposition 4.1 In a direct λC-model K, for every computational lambda-
sequent (Γ ⊢ M : A), the following are equivalent:

(i) The denotation of (Γ ⊢ M : A) is central.

(ii) For all sequents (∆ ⊢ N : B) and (E, x : A, y : B ⊢ O : C) where E
contains all variables of Γ and ∆, we have

E ⊢ (let x = M in let y = N in O) ≡ (let y = N in let x = M in O) : C

(iii) For fresh variables x : A, y : B, and z : LB, we have

Γ, z : LB ⊢(let x = M in let y = µ(z) in (x, y))

≡(let y = µ(z) in let x = M in (x, y)) : A ⊗ B

26

Führmann

Proof. Obviously, we have (ii) ⇒ (iii). Now consider Condition (ii), and let

(f : Γ - A) =def K[[(Γ ⊢ M : A)]]

(g : ∆ - B) =def K[[(∆ ⊢ N : B)]]

(h : EAB - C) =def K[[E, x : A, y : B ⊢ O : C]]

Let d ∈ K(E, EΓ∆) be the obvious morphism given by the finite products on
GϑK. Then the two morphisms

K[[E ⊢ (let x = M in let y = N in O) : C]]

K[[E ⊢ (let y = N in let x = M in O) : C]]

are equal to, respectively,

E
d- EΓ∆

Ef∆- EA∆
EAg- EAB

h- C

E
d- EΓ∆

EΓg- EΓB
EfB- EAB

h- C

Obviously, the two agree if f is central, which proves (i) ⇒ (ii). It remains
to prove (iii) ⇒ (i). In the case of Condition (iii), we get g = εB and
h = π2 : EAB - AB. So Condition (iii) implies

Γ ⊗ LB
f ⊗ LB- A ⊗ LB

Γ ⊗ B

Γ ⊗ ε

? f ⊗ B- A ⊗ B

A ⊗ ε

?

So by Proposition 5.8, f is central. 2

Proposition 4.2 In a direct λC-model, the denotation a sequent (Γ ⊢ M : A)
is discardable if and only if for a fresh variable x : A, we have

Γ ⊢ (let x = M in ∗) ≡ ∗ : I

Proof. Let f be the denotation of (Γ ⊢ M : A). By definition of the direct
semantics, the right side of the equation denotes !Γ. The left side denotes
(δ; Γf ; !), and we have δ; Γf ; ! = δ; Γf ; π2; ! = δ; π2; f ; ! = f ; !. 2

Proposition 4.3 In a direct λC-model, the denotation a sequent (Γ ⊢ M : A)
is copyable if and only if for a fresh variable x : A, we have

Γ ⊢ (let x = M in 〈x, x〉) ≡ 〈M, M〉 : A ⊗ A

Proof. Let f be the denotation of (Γ ⊢ M : A). By definition of the direct
semantics, the right side of the equation denotes δ; fΓ; Af . The left side
denotes δ; Γf ; π2; δ, and we have δ; Γf ; π2; δ = δ; π2; f ; δ = f ; δ. 2

27

Führmann

4.2 Closure properties

In this section, we determine for each of the four kinds of variety the op-
erations under which it is closed in all models. For example, we’ll see that
the discardable morphisms are closed under identities, composition, ⊗, δ, πi,
and !, and that all morphisms of the form [−] and λf are discardable. Such
closure properties may help direct-style code optimisation. For example, the
closure properties of discardable morphisms imply that discardable terms of
the computational lambda-calculus are closed under all term formation rules
except µ and app. So we can infer by induction over terms that a term M is
discardable, and replace (let x = M in ∗) with ∗.

First, let’s recap the closure properties of thunkable morphism. As we know
from Section 2.3, the thunkable morphisms form a computational cartesian
model. In particular, they are closed under all operations of direct λC-models
except (the nullary operations) ε and apply . Moreover, all morphisms of the
form Λf and [f] are thunkable.

Proposition 4.4 The centre of a direct λC-model is closed under composi-
tion, identities, ⊗, δ, πi, and !, and all morphisms of the forms Λf and [f]
are central. In particular, the centre is a symmetric monoidal category.

Proof. Morphisms of the forms id , δ, πi, !, Λf , and [f] are thunkable and
therefore central. Closure under composition is obvious. The closure under ⊗
follows from the naturality of the associativity iso. 2

However, the centre doesn’t generally have finite products. To see this,
recall Rel , our leading example in Section 2.

Proposition 4.5 The discardable morphisms of a direct λC-model are closed
under composition, identities, ⊗, δ, πi, !, and all morphisms of the forms
Λf and [f] are discardable. In particular, the discardable morphisms form a
symmetric premonoidal category.

Proof. The proof is analogous to that of Proposition 4.4, except for the ten-
sor. To see the closure under the tensor, let f be a discardable morphism, and
let A be an object. Then Af ; ! = Af ; π2; ! = π2; f ; ! = !. 2

The discardable morphisms don’t generally form a symmetric monoidal
category—continuations form a counterexample, which is outside the scope of
this article.

Proposition 4.6 The copyable morphisms of a direct λC-model are closed
under identities, ⊗, δ, πi, !, and all morphisms of the forms Λf and [f] are
copyable. But the copyable morphisms are not generally closed under compo-
sition.

Proof. The proof of the closure properties is analogous to that of Proposi-
tion 4.4, except for the tensor. The closure under the tensor follows easily
from the equation δAB = δAδB; i where i is the obvious structural iso. As

28

Führmann

shown in Example 4.7, the copyable morphisms of direct λC-models for global
state aren’t generally closed under composition. 2

Example 4.7 [Global state] Suppose that C is a cartesian-closed category,
and that S is some object of C. Using the internal language of C (i.e.the
λβη-calculus), we define a direct λC-model like in Figure 19 (Note that an
element f of K(A, B) is a pair 〈fv, fs〉 that consists of a ‘value component’
fv ∈ C(A × S, B) and a ‘state component’ fs ∈ C(A × S, S)). The direct
λC-model K is isomorphic to the one that arises from the well-known monad
TX = (X ×S)S , which is also called the ‘side-effects’ monad. Formal element
chasing shows that a morphism f ∈ K(A, B) is copyable if and only if

f(a, s) = f(a, fs(a, s))

For A = B = I this means that f is an idempotent. And idempotents aren’t
generally closed under composition, as you can easily check for C = Set .

Proposition 4.8 The morphisms of a direct λC-model which central and
copyable are closed under composition, identities, ⊗, δ, πi, and !. In par-
ticular, they form a symmetric monoidal category.

Proof. We have all closure properties that hold for both central morphisms
and copyable morphisms. It remains to show that the composition of two
central, copyable morphisms is copyable, which is obvious. 2

Proposition 4.9 The morphisms of a direct λC-model which are central,
copyable, and discardable are closed under composition, identities, ⊗, δ, πi, !.
Moreover, they form a category with finite products.

Proof. An easy exercise. 2

Problem 4.10 Do the morphisms which are copyable and discardable form a
category? (If so, it would have finite products.)

We can think of the thunkable morphisms as effect free. By contrast, the
components of ε have maximal effect, as the next proposition shows.

Proposition 4.11 • If each component of ε is thunkable, then every mor-
phism is thunkable.

• If each component of ε is central, then every morphism is central.

• If each component of ε is discardable, then every morphism is discardable.

• If each component of ε is copyable, then every morphism is copyable.

Proof. First, note that every morphism f is equal to [f]; ε and that [f] is
thunkable and therefore central, discardable, and copyable. The claims for
thunkable, central, and discardable morphisms follow from closure under com-
position. For the claim about copyable morphisms, suppose that ε is copyable,

29

Führmann

and let f be any morphism. Then

f ; δ = [f]; ε; δ = [f]; δ; id ⊗ ε; ε ⊗ id

= δ; id ⊗ [f]; [f] ⊗ id ; id ⊗ ε; ε ⊗ id

= δ; id ⊗ [f]; id ⊗ ε; [f] ⊗ id ; ε ⊗ id

= δ; id ⊗ f ; f ⊗ id

2

For some direct λC-models, the components of ε are in none of the four
varieties:

Example 4.12 We continue Example 4.7. Let f ∈ K(A, B) = C(A× S, B ×
S), and consider the following two equations

fv(a, s) = fv(a, s′) (1)

fs(a, s) = s (2)

Equation 1 means that the value of f doesn’t depend on the store, and Equa-
tion 2 means that f doesn’t write to the store. As follows from a routine
calculation, f is thunkable if and only if both equations hold, and f is dis-
cardable if and only if Equation 2 holds. A slightly trickier argument shows
that f is central if and only if f is thunkable. Note that discardable im-
plies copyable. Obviously, the components of ε aren’t generally copyable, and
therefore they aren’t generally in any of the other three varieties.

4.3 Relating the varieties

Figures 20 displays the four varieties (five, if we count the variety of all mor-
phisms) for an arbitrary direct λC-model. In this section, we give enough
examples to prove that all areas in the figure are inhabited in some model.
Too see this, have Figures 21–26 handy. The areas (ZK − G!K) − GδK and
(ZK∩G!K)−GδK are obviously inhabited in Rel . The area (ZK∩GδK)−G!K

too is inhabited in Rel , and for typical models of partiality. The area
(GδK −G!K)−ZK is inhabited for global state in the sense of Example 4.7,
continuations and exceptions. The area (G!K − GδK) − ZK is inhabited
for continuations—proving this is outside the scope of this article. The area
(GδK ∩ G!K) − ZK is inhabited for global state.

The only remaining area is (ZK ∩G!K ∩GδK)−GϑK. To see that it can
be inhabited, consider the following example:

Example 4.13 Let C be a category with finite products. Let K be the
category defined by

ObK =def ObC

K(A, B) =def C(A, B) × C(A, B)

30

Führmann

with a component-wise definition of composition and identities. Let A⊗B =def

A × B and I =def 1, and define tensor, diagonal, and projections component-
wise. Let

LA =def A × A

L(f, g) =def (f × g, f × g)

ϑ =def (δ, δ)

ε =def (π1, π2)

A ⇀ B =def (B × B)A (or BA × BA)

K forms a direct λC-model, which arises from an obvious λC-model with
TX = X ×X. The tensor, tensor unit, diagonals, and projections form finite
products on K. In particular, every morphism of K is discardable, copyable,
and central. But the thunkable morphisms are those of the form (f, f).

5 Relating monadic models and direct models

As we’ve seen in Section 2, every monad induces an abstract Kleisli-category,
and every λC-model induces even a direct λC-model, in which we can express
the semantics of the computational lambda-calculus. In Section 3 we gave a
direct-style proof of soundness and completeness. However, there is another
way to get these results: The computational lambda-calculus is known to be
sound and complete for λC-models (see [10]). So it must be complete for
direct λC-models too, because if a judgement holds in all direct λC-models,
then in particular it holds in those that arise from λC-models, and therefore
it is derivable. For soundness of direct λC-models, it is enough to prove that
each one such arises from a λC-model, because for each direct λC-model K,
all derivable judgements hold in its generating λC-model, and therefore in K.
In this section, we prove an even stronger result, which is also interesting as
pure category theory.

5.1 Reflection and soundness

In this section, we define a suitable category of monads, and a suitable category
of abstract Kleisli-categories, and prove that the second is reflective in the first.
Then we’ll build on this reflection to prove that precartesian abstract Kleisli-
categories are reflective in computational cartesian models, and that direct
λC-models are reflective in λC-models. Because the counit of a reflection is
an isomorphism, we’ll know that every direct λC-model is isomorphic to one
that arises from a λC-model, and therefore we’ll have soundness.

5.1.1 Abstract Kleisli-categories and monads

Definition 5.1 AbsKl is defined as the obvious category whose objects are
abstract Kleisli-categories, and whose morphisms are functors that strictly

31

Führmann

preserve L, ϑ, and ε.

Definition 5.2 The category Mnd is defined as follows: An object is a pair
C = (C, T), where C is a category, and T is a monad on C. A morphism is a
functor that strictly preserves the monad data.

If a C and D are categories, then let’s write C . D if C is reflective in
D. (Because an adjunction is a reflection if and only if the right adjoint is full
and faithful, . is transitive. Because an adjunction is a reflection if and only
if the counit is an iso, every equivalence of categories forms a reflection.)

Theorem 5.3 The construction of the abstract Kleisli-category forms a func-
tor Mnd - AbsKl which is the left adjoint of a reflection

AbsKl . Mnd

To prove the theorem, we define an intermediate category KlAdj of ‘Kleisli
adjunctions’ such that AbsKl . KlAdj ≃ Mnd , and use transitivity.

Definition 5.4 A Kleisli adjunction is an adjunction F ⊣ G : K - C

such that C and K have the same objects, and F is the identity on objects.
The category KlAdj is defined as follows. Objects are Kleisli adjunctions. A
morphism from (F ⊣ G : K - C) to (F ′ ⊣ G′ : K ′ - C ′) is a pair of
functors h : C - C ′ and H : K - K ′ such that h strictly preserves the
unit, H strictly preserves the counit, and

C
h - C ′ C

h - C ′

K

F

? H - K ′

F

?

′

K

G

6

H - K ′

G

6
′

Lemma 5.5 The construction of the Kleisli category forms an equivalence

Mnd ≃ KlAdj

Proof. We define functors

Mnd
MakeKlAdj-�
MakeMnd

KlAdj

and prove that they form an equivalence. The object part of MakeKlAdj is
the well-known adjunction like in [9]:

MakeKlAdj (C, T) =def



C

FT -
⊥�
GT

CT





32

Führmann

For h ∈ Mnd(C, D) let

MakeKlAdj (h) =def (h, h)

That is, the component between the Kleisli categories acts just like h. Now
for MakeMnd . For a Kleisli adjunction F ⊣ G : K - C of KlAdj with unit
η and counit ε, let

MakeMnd(F ⊣ G) =def (C, (GF, GεF, η))

The morphism part of MakeMnd is obvious. We have MakeMnd ◦
MakeKlAdj = IdMnd . So it remains to find a natural iso MakeKlAdj ◦
MakeMnd ∼= IdKlAdj . Suppose that F ⊣ G : K - C is a Kleisli adjunction.
We have the unique comparison functor ! : CT

- K (like in [9], page 144,
theorem 2, where ! is called L). Let

EF⊣G =def (IdC , ! : CT
- K) : MakeKlAdj ◦ MakeMnd ∼= IdKlAdj

EF⊣G is a morphism of Kleisli adjunctions from FT ⊣ GT to F ⊣ G. Because
F is the identity on objects, ! is an isomorphism (proving this is left as an
exercise). Checking the naturality of E too is left as an exercise. 2

Lemma 5.6 There is a reflection

AbsKl . KlAdj

Proof. We shall define a reflection

AbsKl

MakeKlAdj-
⊤�

MakeAbsKl

KlAdj

For MakeKlAdj , let K be an abstract Kleisli-category. With unit ϑ and counit
ε we have a Kleisli adjunction

MakeKlAdj (K) =def



GϑK
⊂ -
⊥�
L

K





Now for the morphism part of MakeKlAdj . Suppose that H : K - K ′

is a morphism of abstract Kleisli-categories. Because H strictly preserves
L and ϑ, H preserves thunkable morphisms. So H has a restriction H :
GϑK - GϑK

′. Let

MakeKlAdj (H) =def (H : GϑK - GϑK
′, H : K - K ′)

33

Führmann

Now for MakeAbsKl . For a Kleisli adjunction F ⊣ G : K - C with unit η
and counit ε, let

MakeAbsKl(F ⊣ G) =def (K, L, ϑ, ε)

where

L =def FG

ϑ =def Fη

For the morphism part of MakeAbsKl , let

MakeAbsKl(h, H) =def H

We have MakeAbsKl ◦ MakeKlAdj = IdAbsKl . Therefore we define the counit
MakeAbsKl ◦ MakeKlAdj - IdAbsKl of the reflection as the identity on
IdAbsKl . For the unit, which we’ll call U , suppose that F ⊣ G : K - C is a
Kleisli adjunction. If f is a morphism of C, then the square expressing that
Ff is thunkable is the image of the square f ; η = η; GFf under F . So F has
a corestriction to GϑK. Let

UF⊣G =def (F : C - GϑK, IdK)

Checking the naturality of U is left as an exercise. 2

5.1.2 Precartesian abstract Kleisli-categories and cartesian computational
models

In this section, we extend Theorem 5.3 to state that a suitable category of
precartesian abstract Kleisli-categories is reflective in a suitable category of
computational cartesian models.

Definition 5.7 PrecAbsKl is defined as the obvious category formed by the
precartesian abstract Kleisli-categories and the functors that strictly preserve
all operators (which are: L, ϑ, ε, ⊗, I, δ, πi, and !).

Morphisms of PrecAbsKl would be strict symmetric premonoidal functors
if they sent each central map to a central map. It isn’t obvious that the images
of central maps are central: For suppose that F : K - K ′ is a morphism
of precartesian abstract Kleisli-categories, and f is a central morphism of K.
That f is central means that f commutes in the sense of Definition 2.6 with all
morphisms g of K. Therefore, Ff commutes with all morphisms of the form
Fg. But K ′ may have morphisms that are not in the image of F . Fortunately,
we have

Proposition 5.8 Suppose that K is a precartesian abstract Kleisli-category.

34

Führmann

A morphism f ∈ K(A, A′) is central if for all B ∈ Ob(K)

A ⊗ LB
f ⊗ LB- A′ ⊗ LB

A ⊗ B

A ⊗ εB

? f ⊗ B- A′ ⊗ B

A′ ⊗ εB

?

Proof. Let g ∈ K(B, B′). We have g = [g]; ε. Because [g] is thunkable and
therefore central, f commutes with [g]. Because f commutes with ε too, f

commutes with g. 2

Because morphisms of precartesian abstract Kleisli-categories preserve ε,
we have

Corollary 5.9 Morphisms of precartesian abstract Kleisli-categories preserve
central morphisms.

Definition 5.10 Ccm is defined as the obvious category formed by cartesian
computational models and the morphisms of Mnd that strictly preserve the
finite products and the strength.

Theorem 5.11 The construction of the precartesian abstract Kleisli-category
forms a functor Ccm - PrecAbsKl which is the left-adjoint of a reflection

PrecAbsKl . Ccm

To prove this, we define an intermediate category IFreyd , whose objects
are Kleisli adjunctions with extra structure, such that PrecAbsKl . IFreyd ≃
Ccm, and then we use transitivity. First we define the objects of IFreyd .

Definition 5.12 A I-closed Freyd-category is a Freyd category F : C - K

together with a right adjoint of F .

I call them I-closed Freyd-categories because they are between Freyd cate-
gories and closed Freyd-categories: In a closed Freyd-category, for each object
A, the functor F (−) ⊗ A has a right adjoint. In an I-closed Freyd-category,
this needs to be so only for A = I.

Definition 5.13 The category IFreyd is defined as follows. The objects are
the I-closed Freyd-categories. A morphism from (F ⊣ G : K - C) to
(F ′ ⊣ G′ : K ′ - C ′) is a morphism (h, H) of KlAdj such that h strictly
preserves finite products, and H is strict symmetric premonoidal.

Lemma 5.14 The construction of the Kleisli category forms an equivalence

Ccm ≃ IFreyd

35

Führmann

Proof. We extend the equivalence which is formed by MakeKlAdj and
MakeMnd to an equivalence which is formed by functors

Ccm
MakeIFreyd-�
MakeCcm

IFreyd

The object part of MakeIFreyd follows directly from Proposition 2.18, and
checking the morphism part is straightforward. For MakeCcm, suppose that
F ⊣ G : K - C is an I-closed Freyd-category with iso ♯ : K(FA, B) ∼=
C(A, GB) and counit ε. The required strength is

t =def (A ⊗ ε)♯

Checking t is left as an exercise, as well as checking the morphism part of
MakeCcm. To see that the two extended functors are inverse up to natural iso,
it is enough to check that MakeCcm ◦ MakeIFreyd = IdCcm (i.e. MakeCcm ◦
MakeIFreyd doesn’t change the finite products and the strength), and that
each component of E is a morphism of I-closed Freyd categories (i.e. the unique
comparison functor that is part of every component of E is strict symmetric
premonoidal). These two to checks are left as an exercise. 2

Lemma 5.15 There is a reflection

PrecAbsKl . IFreyd

Proof. We extend the reflection MakeAbsKl ⊣ MakeKlAdj to a reflection

PrecAbsKl

MakeIFreyd -
⊤�

MakePrecAbsKl

IFreyd

The object part of MakeIFreyd is obvious, and Corollary 5.9 implies that
MakeIFreyd sends morphisms of PrecAbsKl to morphisms of IFreyd . The ob-
ject part of MakePrecAbsKl follows directly from Proposition 2.19. Checking
the morphism part is left as an exercise. Because MakePrecAbsKl◦MakeIFreyd
doesn’t change the finite products, it is equal to IdPrecAbsKl . Because each
component of the unit U of the reflection AbsKl . KlAdj preserves the finite
products, U determines a unit for the required reflection. 2

5.1.3 Direct λC-models

In this section, we extend Theorem 5.11 to state that a suitable category of
direct λC-models is reflective in a suitable category of λC-models.

Definition 5.16 DλC is defined as the obvious category formed by direct
λC-models and the morphisms of precartesian abstract Kleisli-categories that
strictly preserve the higher-order structure.

36

Führmann

Definition 5.17 λC is defined as the obvious category formed by λC-models
and the morphisms of computational cartesian models that strictly preserve
the T -exponentials.

Theorem 5.18 The construction of the direct λC-model forms a functor
λC

- DλC which is the left adjoint of a reflection

DλC . λC

To prove this, we define an intermediate category ClFreyd , whose objects
are closed Freyd-categories, such that DλC . ClFreyd ≃ Ccm, and then we
use transitivity.

Definition 5.19 ClFreyd is defined as the obvious category formed by closed
Freyd categories and morphisms of I-closed Freyd-categories that strictly pre-
serve the higher-order structure.

Theorem 5.20 The construction of the Kleisli category forms an equivalence

λC ≃ ClFreyd

Proof. We extend the equivalence which is formed by MakeIFreyd and
MakeCcm to an equivalence which is formed by functors

λC

MakeClFreyd-�
MakeλC

ClFreyd

The object part of MakeClFreyd follows directly from Proposition 2.24, and
checking the morphism part is straightforward.

For MakeλC , suppose that F ⊣ G : K - C is a closed Freyd category
with adjunction iso ♯ : K(FA, B) ∼= C(A, GB). We define the T -exponentials
on C by

(TB)A =def A ⇀ B

ev =def apply♯

Because MakeλC ◦ MakeClFreyd doesn’t change the T -exponentials, it is the
identity on λC . It remains to prove that the components of the natural iso
E : MakeClFreyd ◦ MakeλC

∼= Id IFreyd preserve the higher-order structure.
This is left as an easy exercise. 2

Theorem 5.21 There is a reflection

DλC . ClFreyd

37

Führmann

Proof. We extend the reflection MakePrecAbsKl ⊣ MakeIFreyd to a reflection

DλC

MakeClFreyd-
⊤�

MakeDλC

ClFreyd

MakeClFreyd is obvious, and MakeDλC follows directly from Proposition 2.25.
Obviously we have MakeDλC ◦ MakeClFreyd = IdDλC

. Because the unit
U of the reflection PrecAbsKl . IFreyd strictly preserves the higher-order
structure, U determines a unit for the required reflection. 2

5.2 The equalizing requirement

Because of the reflection AbsKl . Mnd , abstract Kleisli-categories correspond
to the full subcategory of Mnd that is determined by the objects (C, T) for
which the reflection’s unit is an iso. In this section, we identify that subcate-
gory.

Definition 5.22 A monad T with unit η fulfils the equalizing requirement if,
for each object A, ηA is an equalizer of ηTA and TηA. The category Mnd eq is
defined as the full subcategory of Mnd determined by the objects (C, T) such
that T fulfils the equalizing requirement.

Theorem 5.23 There is an equivalence of categories

Mnd eq ≃ AbsKl

We prove this theorem, we use an subcategory KlAdj eq of KlAdj such that
Mnd eq ≃ KlAdj eq ≃ AbsKl .

Definition 5.24 KlAdj eq is the full subcategory of KlAdj determined by the
objects F ⊣ G such that, if η stands for the unit, then for each object A, ηA

is an equalizer of ηGFA and GFηA.

The next lemma follows directly from Lemma 5.5.

Lemma 5.25 There is an equivalence of categories

Mnd eq ≃ KlAdj eq

Lemma 5.26 Suppose that F ⊣ G : K - C is a Kleisli adjunction with
defining isomorphism ♯ : K(FA, B) ∼= C(A, GB). Then an element f of
K(A, B) is thunkable if and only if

A
f ♯

- GFB

GFB

f ♯

? GFη- GFGFB

η

?

38

Führmann

Proof. Applying the inverse of ♯ to either path of the diagram yields

A
Fη- FGA

B

f

?

Fη
- FGB

FGf

?

Because L = FG and ϑ = Fη, the square states that f is thunkable. 2

Lemma 5.27 An object F ⊣ G : K - C of KlAdj is in KlAdj eq if and
only if F is faithful and every thunkable morphism of K is in the image of F .

Proof. Suppose that F ⊣ G : K - C is a Kleisli adjunction. For the
‘only if’, let F ⊣ G be an object of KlAdj eq . Suppose that f is a thunkable
morphism of K. By Lemma 5.26, we have f ♯; ηGFB = f ♯; GFηB. Because
ηB is an equalizer of ηGFB and GFηB, there is a unique g : A - B such
that g; ηB = f ♯. The inverse ♭ of ♯ sends the equation g; ηB = f ♯ to Fg = f .
So every thunkable morphism is the image under F of exactly one morphism.
Because all morphisms in the image of F are thunkable, F is faithful.

Now for the ‘if’. Because η is natural, we have

ηB; ηGFB = ηB; GFηB

for all objects B. Let g ∈ C(A, GFB) such that

g; ηGFB = g; GFηB

We need a unique f ∈ C(A, B) such that f ; η = g. The adjunction iso ♭ sends
the equation f ; η = g to Ff = g♭. By Lemma 5.26, g♭ is thunkable. So there
is exactly one solution f . 2

Lemma 5.28 The functor MakeAbsKl forms an equivalence

KlAdj eq ≃ AbsKl

Proof. Suppose that K is an abstract Kleisli-category. By Lemma 5.27,
MakeKlAdj (K) is an object of KlAdj eq . It remains to prove that the re-
flection unit U restricts to an iso IdKlAdj eq

∼= MakeKlAdj ◦ MakeAbsKl . Let
F ⊣ G : K - C be an object of KlAdj eq . Then UF⊣G is an iso, because by
Lemma 5.27, F : C - GϑK is an iso. 2

Let Ccmeq , λC eq , and ClFreydeq be the full subcategories of Ccm, λC ,
and ClFreyd , respectively, that are determined by the objects that fulfil the
equalizing requirement. Then Lemmas 5.28 and 5.25 imply

39

Führmann

Corollary 5.29 There are equivalences of categories

Ccmeq ≃ IFreydeq ≃ PrecAbsKl

λC eq ≃ ClFreyd eq ≃ DλC

Acknowledgement

I am indebted to Hayo Thielecke, whose ⊗¬-categories were the main inspira-
tion for my analysis of direct models. Thanks a lot to John Power for explain-
ing to me premonoidal categories and more, and commenting on my work.
Thanks to Peter Selinger for many discussions. Thanks to Stuart Anderson
for commenting on several versions of this article. Thanks to Peter O’Hearn
for constructive comments. And a historical remark: Recently, Alex Simpson
made me aware of his 1993 LFCS Lab-Lunch talk [16]. There he sketched
what I call direct models. He had already found the essence of my reflection
theorem for monads (Theorem 5.3). But there was no way to transfer this to
strong monads, because premonoidal categories had not yet emerged. Finally,
I’d like to thank Paul Taylor for his prooftree and diagram macros.

References

[1] S.O. Anderson and A.J. Power. A representable approach to finite
nondeterminism. Theoretical Computer Science, 177:3–25, 1997.

[2] Andrew W. Appel. Compiling with Continuations. Cambridge University Press,
1992.

[3] Anna Bucalo, Carsten Führmann, and Alex Simpson. Equational lifting
monads.
Available from http://www.dcs.ed.ac.uk/home/car/research.htm, June 1999.
Submitted.

[4] Carsten Führmann. Relating two models of continuations.
Available from http://www.dcs.ed.ac.uk/home/car/research.htm, November
1998.

[5] M. Hasegawa. Recursion from cyclic sharing: traced monoidal categories and
models of cyclic lambda calculi. In Proc. 6th International Conference on
Category Theory and Computer Science (CTCS’95), volume 1210 of LNCS,
Nancy, April 1997. Springer Verlag.

[6] Masahito Hasegawa. Models of Sharing Graphs (A Categorical Semantics of
Let and Letrec). Distinguished Dissertation Series. Springer-Verlag, 1999.

[7] Bart Jacobs. Semantics of weakening and contraction. Annals of Pure and
Applied Logic, 69(1):73–106, 1994.

40

Führmann

[8] Alan Jeffrey. Premonoidal categories and a graphical view of programs.
Available from http://klee.cs.depaul.edu/premon/, 1998.

[9] Saunders Mac Lane. Categories for the Working Mathematician. Graduate
Texts in Mathematics. Springer-Verlag, 1971.

[10] E. Moggi. Computational lambda-calculus and monads. Technical Report ECS-
LFCS-88-66, Edinburgh Univ., Dept. of Comp. Sci., 1988.

[11] E. Moggi. Notions of computation and monads. Information and Computation,
93(1), 1991.

[12] John Power and Edmund Robinson. Premonoidal categories and notions of
computation. Mathematical Structures in Computer Science, 7(5):453–468,
October 1997.

[13] John Power and Hayo Thielecke. Environments, continuation semantics and
indexed categories. In Proceedings TACS’97, volume 1281 of LNCS, pages 391–
414. Springer Verlag, 1997.

[14] John Power and Hayo Thielecke. Environments in Freyd categories and κ-
categories. ICALP’99, to appear, 1999.

[15] Ralf Schweimeier and Alan Jeffrey. A categorical and graphical treatment
of closure conversion. In Electronic Notes in Theoretical Computer Science.
Proceedings MFPS XV, volume 20, New Orleans, 1999.

[16] Alex Simpson. Towards algebraic semantics of programming languages. Notes
for a talk at the LFCS Lab Lunch, March 1993.

[17] Hayo Thielecke. Categorical Structure of Continuation Passing Style. PhD
thesis, University of Edinburgh, 1997.

[18] Hayo Thielecke. Continuation semantics and self-adjointness. In Proceedings
MFPS XIII, Electronic Notes in Theoretical Computer Science. Elsevier, 1997.

41

Führmann

Rule Syntax Semantics

var

x1 : A1, . . . , xn : An ⊢ xi : Ai = A1 · · ·An
πi- Ai

let

Γ ⊢ M : A = Γ
f- A

Γ, x : A ⊢ N : B = ΓA
g- B

Γ ⊢ let x = M in N : B = Γ
δ- ΓΓ

Γf- ΓA
g- B

∗ Γ ⊢ ∗ : I = Γ
!- I

〈−,−〉

Γ ⊢ M : A = Γ
f- A

Γ ⊢ N : B = Γ
g- B

Γ ⊢ 〈M,N〉 : A ⊗ B = Γ
δ- ΓΓ

fΓ- AΓ
Ag- AB

πi

Γ ⊢ M : A1 ⊗ A2 = Γ
f- A1A2

Γ ⊢ πi(M) : Ai = Γ
f- A1A2

πi- Ai

f : A - B

Γ ⊢ M : A = Γ
g- A

Γ ⊢ f(M) : B = Γ
g- A

f- B

Fig. 12. Direct semantics of the computational lambda-calculus: Basic structure

42

Führmann

A ⇀ B =def (TB)A

(apply ∈ K((A ⇀ B) ⊗ A, B)) =def

(

ev ∈ C
(

(TB)A × A, TB
))

Λ(f ∈ K(A ⊗ B, C)) =def FT (λ(f ∈ C(A × B, TC))

Fig. 13. The higher-order structure on the precartesian abstract Kleisli-category of
a λC -model

Rule Syntax Semantics

λ Γ, x : A ⊢ M : B = Γ × A
f- B

Γ ⊢ λx : A.M : A ⇀ B = Γ
Λf- (A ⇀ B)

app Γ ⊢ M : A ⇀ B = Γ
f- (A ⇀ B)

Γ ⊢ N : A = Γ
g- A

Γ ⊢ MN : B = Γ
〈f,g〉- (A ⇀ B)A

apply- B

Fig. 14. Direct semantics of the computational lambda-calculus: Higher-order struc-
ture

43

Führmann

c′(f : A - B) = x1 : A1 . . . , xn : An ⊢ f(x̄) : A

if f is a constant

c′(f : A - B) = Γ ⊢ M : B

c′(g : B - C) = y1 : B1, . . . , yn : Bn ⊢ N : C

c′(f ; g : A - C) = Γ ⊢ let y1, . . . , yn = M in N : C

c′(id : A - A) = x1 : A1 . . . , xn : An ⊢ x̄ : A

Fig. 15. Translating direct-style categorical expressions into the computational
lambda-calculus: Rules for composition and identity

44

Führmann

c′(f : A - B) = Γ ⊢ M : B

c′(C ⊗ f : C ⊗ A - C ⊗ B) = y1 : C1, . . . , yn : Cn,Γ ⊢ 〈ȳ,M〉 : C ⊗ B

c′(f : A - B) = Γ ⊢ M : B

c′(f ⊗ C : A ⊗ C - B ⊗ C) = Γ, y1 : C1, . . . , yn : Cn ⊢ 〈M, ȳ〉 : B ⊗ C

c′(δ : A - A ⊗ A) = x1 : A1 . . . , xn : An ⊢ 〈x̄, x̄〉 : A ⊗ A

c′(π1 : A ⊗ B - A) = x1 : A1 . . . , xn : An, y1 : B1, . . . , yn : Bm ⊢ x̄ : A

c′(π2 : A ⊗ B - A) = x1 : A1 . . . , xn : An, y1 : B1, . . . , yn : Bm ⊢ ȳ : B

c′(! : A - I) = x1 : A1 . . . , xn : An ⊢ ∗ : I

Fig. 16. Translating direct-style categorical expressions into the computational
lambda-calculus: Rules for tensor and finite products

c′(f : A - B) = Γ ⊢ M : B

c′([f] : A - LB) = Γ ⊢ [M] : LB

c′(ε : LA - A) = x : LA ⊢ µ(x) : A

Fig. 17. Translating direct-style categorical expressions into the computational
lambda-calculus: Rules for [−] and ε

45

Führmann

c′(f : A ⊗ B - C) = Γ, y1 : B1, . . . , yn : Bm ⊢ M : C

c′(Λf : A - (B ⇀ C)) = Γ ⊢ λ(y1, . . . , yn) : B.M : B ⇀ C

c′(apply : (A ⇀ B) ⊗ A - B) = f : A ⇀ B, x : A ⊢ fx : B

Fig. 18. Translating direct-style categorical expressions into the computational
lambda-calculus: Rules for higher-order structure

Ob(K) =def Ob(C)

K(A, B) =def C(A × S, B × S)

A ⊗ B =def A × B

(C ⊗ f)((c, a), s) =def ((c, fv(a, s)), fs(a, s))

(f ⊗ C)((a, c), s) =def ((fv(a, s), c), fs(a, s))

δ(a, s) =def ((a, a), s)

!(a, s) =def (∗, s)

πi((a1, a2), s) =def (ai, s)

LA =def (AS)S

[f](a, s) =def (λs′.f(a, s′), s)

ε(f, s) =def fs

A ⇀ B =def (BS)AS

(Λf)(a, s) =def (λ(b, s′).f((a, b), s′), s)

apply((f, a), s) =def f(a, s)

Fig. 19. Building the direct λC-model for global state from a cartesian-closed cate-
gory

46

Führmann

copyablediscardable

central

all

thunkable

Fig. 20. Varieties of an arbitrary λC-model

all = central

thunkable (total functions)

copyable (partial functions)discardable (∀x∃y : xRy)

Fig. 21. Varieties of Rel

thunkable = discardable all = central = copyable

Fig. 22. Varieties of models of partiality

47

Führmann

all

discardable copyable

thunkable = central

Fig. 23. Varieties for global state

all

discardable copyable

thunkable = central

Fig. 24. Varieties of ⊗¬-categories (continuations)

all = copyablethunkable = discardable = central

Fig. 25. Varieties for exceptions (TX = X + E)

48

Führmann

all = central = discardable = copyablethunkable

Fig. 26. Varieties for TX = X × X

49

