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Chiral Sum Rules and Their Phenomenology

John F. Donoghue and Eugene Golowich

Department of Physics and Astronomy
University of Massachusetts
Amherst MA 01003 USA

Abstract

We present an analysis of four sum rules, each based on chiral sym-
metry and containing the difference ρV(s) − ρA(s) of isovector vector
and axialvector spectral functions. Experimental data from tau lepton
decay and electron-positron scattering identify the spectral functions
over a limited kinematic domain. We summarize the status of the ex-
isting database. However, a successful determination of the sum rules
requires additional content, in the form of theoretical input. We show
how chiral symmetry and the operator product expansion can be used
to constrain the spectral functions in the low energy and the high en-
ergy limits and proceed to perform a phenomenological test of the sum
rules.

http://arxiv.org/abs/hep-ph/9307262v1


1 Motivation

Despite a concerted effort by physicists extending over many years, an under-
standing of QCD from first principles continues to be elusive. Fortunately,
data continue to appear which provide a rather direct probe of the inner
workings of the strong interactions.

A case in point involves semileptonic tau lepton decay and hadron pro-
duction in e+e− scattering. For both of these, multihadron states such as
2π, 3π, . . . are excited from the operation of quark vector and axialvector
currents on the QCD vacuum. In this paper, we shall restrict our discussion
to the isospin currents,[1]

V µ
a = q̄

τa

2
γµq and Aµ

a = q̄
τa

2
γµγ5q , (1)

where a = 1, 2, 3 and q = (u d). Such current-induced processes provide
information about the current bilinears,

〈0|T (V µ
a (x)V ν

b (0)) |0〉 and 〈0|T (Aµ
a(x)Aν

b (0)) |0〉 . (2)

It has been long recognized that these quantities appear in certain chiral
sum rules. Since these sum rules follow rather directly from QCD and
chiral symmetry, a test of their correctness is, in effect, an experimental
check on the validity of QCD itself.

Unfortunately, there are several formidable obstacles to a successful im-
plementation of this procedure. For one, the sum rules encompass an infinite
range of energy, whereas existing data covers a very modest range, s < m2

τ

for tau decay and s ≤ 5 GeV2 in e+e− scattering. Moreover, as we shall
see there are uncertainties in existing data which future experimental work
must clear up.

We feel that such difficulties can be overcome. In this work, we shall
argue that a combination of chiral symmetry and QCD sum rule methods
constrain the low-energy and high-energy limits of the dispersion integrals
and that data can be used to fill in much of the rest. The content of the
paper is organized as follows. We begin by introducing the spectral func-
tions and their sum rules in Sect. 2, review the state of existing data in
Sect. 3 and then describe various theoretical constraints in Sect. 4. Armed
with experimental data and theoretical constraints, we present details of a
phenomenological analysis of the chiral sum rules in Sect. 5. The final part
in Sect. 6 summarizes our findings.
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2 Spectral Representations

In this section, we shall work exclusively in the chiral world of massless u, d
quarks. Here, the spin-0 axial contribution is given by the pion pole and
the two-current time-ordered products can be expressed in terms of spin-one
spectral functions ρV,A(s),[2]

〈0|T (V µ
a (x)V ν

b (0)) |0〉 =

iδab

∫ ∞

0
ds ρV(s) (−sgµν − ∂µ∂ν)

∫

d4p

(2π)4
e−ip·x

p2 − s + iǫ
(3)

and

〈0|T (Aµ
a(x)Aν

b (0)) |0〉 = −iδabF
2
π∂µ∂ν

∫

d4p

(2π)4
e−ip·x

p2 + iǫ

+iδab

∫ ∞

0
ds ρA(s)(−sgµν − ∂µ∂ν)

∫

d4p

(2π)4
e−ip·x

p2 − s + iǫ
. (4)

For completeness, we also give the corresponding relations involving non
time-ordered products,

1

2π

∫

d4x eiq·x〈0|V µ
a (x)V ν

b (0)|0〉 = iδab ρV(q2) (qµqν − q2gµν)

1

2π

∫

d4x eiq·x〈0|Aµ
a(x)Aν

b (0)|0〉 = iδab [ρA(q2) (qµqν − q2gµν) (5)

+ F 2
πδ(q2)qµqν ] .

It follows from chiral symmetry and the high energy behavior of QCD
that the vector and axialvector spectral functions contribute to certain sum
rules,[3]

∫ ∞

0
ds

ρV(s) − ρA(s)

s
= −4L̄10 = (2.73 ± 0.12) × 10−2 ,(6)

∫ ∞

0
ds (ρV(s) − ρA(s)) = F 2

π (7)

= (8.54 ± 0.06) × 10−3 GeV2 ,
∫ ∞

0
ds s (ρV(s) − ρA(s)) = 0 , (8)

∫ ∞

0
ds s ln

(

s

Λ2

)

(ρV(s) − ρA(s)) = −16π2F 2
π

3e2
(m2

π± − m2
π0) (9)

= −(6.19 ± 0.03) × 10−3 GeV4 .
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In the remainder of the paper, we shall refer to the above sum rules re-

spectively as W0, W1, W2 and W3. In the first one, W0, the quantity

L̄10 is related to the renormalized coefficient L
(r)
10 (µ) of an O(E4) operator

appearing in the effective chiral lagrangian of QCD.[4] Although the value

of L
(r)
10 (µ), which is measured in the radiative pion decay π → eνγ, refers to

a renormalization scale µ, the quantity L̄10 is itself independent of µ,

L̄10 = L
(r)
10 (µ) +

144

π2

[

ln

(

m2
π

µ2

)

+ 1

]

≃ −(6.84 ± 0.3) × 10−3 . (10)

The next two relations, W1 and W2, are respectively the first and second
Weinberg sum rules.[5],[6] The final sum rule, W3, is a formula for the π±-
π0 mass splitting in the chiral limit.[7] Although apparently containing an
arbitrary energy scale Λ, this sum rule is actually independent of Λ by virtue
of W2. For reference, we have displayed the physical values of the nonzero
entries which appear on the right hand side of the chiral sum rules. These
quantities have slightly shifted values in a chiral invariant world. This point
is discussed at the end of Sect. 3.

We note in passing that the current correlators defined in Eqs. (3,4)
have been the subject of much recent attention. Several analyses have been
carried out of hadron production in tau-lepton decay in order to obtain a de-
termination of αs(mτ ), the running strong fine structure constant evaluated

at the tau mass scale.[8]

3 Data Inputs

It is possible, in principle, to analyze the chiral sum rules on the basis
of pure theory. For example, in the original derivation of W3, the pion
electromagnetic mass difference was estimated by using ρ(770) and a1(1100)

contributions to saturate the vector and axialvector spectral functions.[7].
However, a more sound procedure is to use data from tau lepton semileptonic
decays into pions and/or pion production in e+e− annihilations.

The rate for tau decay into an even or odd number of pions at invariant
squared-energy s is given by [9]

dΓ(τ → ντ
(Even

Odd

)

)

ds
=

G2
µV 2

ud

8πm3
τ

(m2
τ − s)2

[

(m2
τ + 2s)

(

ρV(s)

ρA(s)

)

+ m2
τ

(

0

ρ
(0)
A

)]

,

(11)
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and the corresponding nπ branching ratio is

Bnπ =
G2

µV 2
udm2

τ

8πΓτ→all
Inπ with Inπ =

∫ m2
τ

(nmπ)2
ds

(

1 − s

m2
τ

)2 (

1 +
2s

m2
τ

)

ρnπ(s) .

(12)

In addition to the Particle Data Group (hereafter PDG)[10], the primary

sources for tau decay data are the ARGUS [11] and CLEO [12] detectors,
via the reaction e+e− → τ+τ−, and the LEP detectors [13] via the decay
Z0 → τ+τ−. A review of tau physics up to 1988 is given by Barish and
Stroynowski.[14] Experimental aspects of tau decay continue to be presented
up to the most recent conferences.[15, 16, 17]

At first, using e+e− annihilation data to test the chiral sum rules would
appear to be problematic. Although the range of energy is (at least in
principle) unlimited, the production mechanism involves the electromagnetic
current and so is generally a mixture of the needed isospin 1 component
and an unwanted isospin 0 component. However, for final states which
consist of an even number of pions it is only the isovector electromagnetic
current which contributes. This is a consequence of the G-parity relation
Gnπ = (−)n, together with the property that any nπ final state produced by
the action of the electromagnetic current on the vacuum must have charge
conjugation C = −1. Since G = C(−)I , it follows that I = 1 for n even.
Of course, the isospin components which are measured in e+e− scattering
and tau decay are distinct, having I3 = 0 and I3 = 1 − i2 respectively. The
corresponding 2π and 4π states are related by

T−|π+π−〉 =
√

2|π0π−〉
T−|2π+2π−〉 = 2

√
2|π0π+2π−〉 (13)

T−|π+π−2π0〉 =
√

2|π−3π0〉 + 2
√

2|π+π02π−〉 .

Extraction of the nπ component of ρV(s) from e+e− data proceeds via the
relation

ρnπ
V (s) =

1

16π3α2
sσnπ

I=1(s) . (14)

For the specific case of two-pion production, the e+e− annihilation data
is often expressed in terms of the pion electromagnetic form factor F ππ(s)
evaluated at squared-energy s. In this notation, one has

ρ2π
V (s) =

1

48π2

(

1 − 4m2
π

s

)3/2

|F ππ(s)|2 . (15)
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A plot of the pion form factor in the timelike region appears in Fig. 1. Early
results on pion production in e+e− scattering is summarized in Ref. [18].
Experiments at Frascati, Orsay and Novosibirsk have continued to supply
data.[19]−[26]

As a whole, tau and e+e− data reveal that each of the multipion con-
tributions rises fairly sharply from threshold to a peak value and then falls
rather more slowly. At energies below 2 GeV, the role of meson resonances
is significant. Thus, the 2π contribution has the familiar narrow resonant
structure of ρ(770), the 3π modes are dominated by a1(1260), and the 4π
sector is influenced by ρ(1450) and ρ(1700). Although lacking a detailed dy-
namical understanding of higher multiplicity distributions, we can anticipate
their form as a consequence of general physical considerations. They will
occur sequentially in mass (due to increasingly higher mass thresholds), ex-
hibit slowly decreasing peak values (from competition with other channels
as constrained by unitarity), and become increasingly broad (since phase
space grows with particle number). As energy increases, one soon enters the
asymptotic domain and the sum over all modes becomes featureless, in a
manner similar to the total e+e− hadronic cross section.

Let us now present a critique of the current status for various individual
contributions:

Tau Lepton Properties

The most recent complilation given by PDG for the primary tau lepton
properties of mass (mτ ), lifetime (ττ ) and electron branching ratio Be ≡
Γτ→eντ ν̄e

/Γτ→all are

mPDG
τ ≃ 1.784 GeV , τPDG

τ ≃ 305 fs , BPDG
e ≃ 0.1793 . (16)

However, there have been recent downward revisions to[27]

mτ ≃ 1.777 GeV , ττ ≃ 297 fs , Be ≃ 0.1771 , (17)

and these are the values that we shall use throughout our analysis. Observe
that there is a slight inconsistency between the listed central values for mτ ,
ττ and Be in Eq. (12). As a result, the theoretical constraint

Be = 0.06125
ττ

10−13 sec
(18)
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is not exactly satisfied. Thus, the relation between nπ branching branching
ratios and spectral functions in Eq. (12) depends on which of the following
relations is assumed,

(i) Bnπ = 4.39
ττ

10−13 sec
Inπ or (ii) Bnπ = 71.31 Be Inπ . (19)

Throughout this paper, we shall for definiteness assume that Be = 0.1771
in our numerical work. This value is an average of the value in Eq. (16) and
the recent experimental determination cited in Ref. [28].

Two-pion Component

Data for ρ2π
V comes from the π−π0 part of one-prong τ decay[11, 29] and

from the π+π− final state in e+e− scattering.[19, 21, 26, 23] The consistency
of tau decay and e+e− annihilation results in the vicinity of the ρ(776) peak
has been verified by Gan in Ref. [30]. We display in Fig. 2 the two-pion
spectral function ρ2π

V (s) as inferred from the pion form factor data of Fig. 1.
Numerical integration of ρ2π

V yields a 2π branching ratio of B2π = 0.247.
There are also recent determinations of the h−π0 (where h is a hadron) and

π−π0 branching ratios by CLEO[12] and LEP [13],

BCLEO
h−π0 = 0.2483 ± 0.0015 ± 0.0053 ,

BLEP
h−π0 = 0.243 ± 0.008 , (20)

BCLEO
π−π0 = 0.2435 ± 0.0055 ,

where the π−π0 value is inferred by subtracting off the K∗− branching ratio
from that of h−π0. The above are in reasonable accord with the value cited
by the PDG[10], which is based on earlier data.

All in all, the two-pion part of the vector current spectral function is
well determined. As we shall now see, although much is known about the
three-pion and four-pion distributions, more experimental input would be
welcome.

Three-pion Component

We denote branching ratios for the two 3π modes in τ decay as Bπ+2π−

and Bπ−2π0 . Basic isospin considerations imply the inequalities[31]

1

2
≤ Bπ+2π−

B3π
≤ 4

5
and

1

5
≤ Bπ−2π0

B3π
≤ 1

2
. (21)
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PDG lists the three-hadron branching ratios based on a number of experi-
ments as

Bh+2h− = 0.084 ± 0.004 and Bh−2π0 = 0.103 ± 0.009 . (22)

CLEO[12] and LEP [13] have recently announced the results

BCLEO
h−2π0 = 0.0821 ± 0.0015 ± 0.0038 ± 0.0028 ,

BLEP
h−2π0 = 0.104 ± 0.008 , (23)

BLEP
h+2h− = 0.0949 ± 0.0036 ± 0.0063 .

Collectively, these imply that Bπ+2π− ≃ Bπ−2π0 and indicate a total 3π
branching ratio of 16%-19%. For definiteness, we shall assume that both
modes have equal decay rates and employ total three-pion branching ratios
in this same range. This is in accord with the findings of Davier who, in a
review of early and recent 3π branching ratio determinations, summarizes
the current situation as[17]

Bπ+2π− = Bπ−2π0 = 0.0903 ± 0.0036 , (24)

but at the same time makes the cautionary remark that ‘extreme care should
be exercized when using world average values for branching ratios’.

The equality of Γπ+2π− and Γπ−2π0 is expected of a final state which is
dominated by the A1 resonance. The isospin decomposition

|A1〉 =
1√
2
|ρ0π−〉 − 1√

2
|ρ−π0〉 (25)

shows that the π+2π− (from the first term) and the π−2π0 (from the second
term) final states will occur with equal probability.

As regards the spectral function ρ3π
A , reconstruction from experiment

would require 3π mass distributions for both π+2π− and π−2π0 modes.
None of the latter exists. However, in view of A1 dominance it suffices
to know just the π+2π− spectrum. We refer the reader to Ref. [14] for
histograms of the 3π mass distribution measured some time ago by the
DELCO, MAC and MARK II detectors. The literature also contains an
early ARGUS determination[11], corresponding to the rather small branch-
ing ratio Bπ+2π− = 0.056 ± 0.007. In this paper, we shall employ recent
ARGUS data[32] to determine ρ3π

A . From the number of counts ∆N per
energy bin ∆E, one can construct the 3π spectral function via

ρ3π
A (s) =

m2
τ

24π2V 2
ud

B3π

Be

1

(1 − s/m2
τ )

2 (1 + 2s/m2
τ )

1

2ENtot

∆N

∆E
, (26)
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where E =
√

s. Upon taking B3π = 0.17 rather than the value given in
Ref. [32] (which would imply B3π = 0.13), we obtain the spectral function
shown in Fig. 3. The large error bars near the end-point occur because one
must divide the number of counts per energy bin by a phase space factor
which vanishes at s = m2

τ . Even so, it is clear from Fig. 3 that tau decay
data is able to cover essentially all the region where ρ3π

A is nonvanishing.

Four-pion Component

In tau decay, there are two 4π modes, π−3π0 and π+π02π−. The corre-
sponding four-pion final states in e+e− scattering are 2π+2π− and π+π−2π0.
The four-pion spectral function measured in tau decay can be decomposed
as

ρ4π
V (s) = ρ+−−0

V (s) + ρ−000
V (s) , (27)

where the quantities on the right-hand side are inferred from the four-pion
mass distributions in the π−3π0 and π+π02π− modes. It is also possible to
obtain the quantities ρ+−−0

V and ρ−000
V from e+e− → 4π cross sections via

the relations

ρ−000
V (s) =

1

32π3α2
sσ2π+2π− , (28)

ρ+−−0
V (s) =

1

32π3α2
s(σ2π+2π− + 2σπ+π−2π0) . (29)

The set of π−3π0 and h− ≥ 3π0 tau decay branching ratios taken from
recent conference presentations Refs. [12], [13] and the average cited by the

PDG[10] provide a reasonably consistent picture,

BCLEO
h−3π0 = 0.0098 ± 0.0007 ± 0.0012 ± 0.0003 ,

BLEP
h−≥3π0 = 0.0153 ± 0.004 ± 0.006 , (30)

BPDG
h−≥3π0 = 0.027 ± 0.009 .

implying Bπ−3π0 ≃ 0.01. To our knowledge, there is no published spectral

information from tau decay data for the τ → π−3π0ντ mode. However, we
can obtain ρ−000

V (s) from σ2π+2π− as in Eq. (28). The set of 2π+2π− cross
section data taken from Ref. [22] (for

√
s < 1.4 GeV) and from Refs. [20], [21]

(for
√

s > 1.4 GeV) is displayed in Fig. 4. Note that Fig. 4 clearly demon-
strates how ρ4π

V must extend beyond s = m2
τ , i.e. tau decay alone cannot

determine the 4π spectral function over its full range. The resulting ρ−000
V

obtained in this manner is shown in Fig. 5. From this, we predict the π−3π0
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mass spectrum to have the form shown in Fig. 6, where a smooth curve has
been added to help guide the eye. Integrating this mass spectrum leads to
a branching ratio Bπ−3π0 ≃ 0.009, in good agreement with the values of
Eq. (30).

Turning to the larger π+2π−π0 tau decay mode, we cite the branching
ratio values appearing in Refs. [13], [10], [16],

BLEP
h+2h−≥1π0 = 0.0489 ± 0.008 ,

BARGUS
π+2π−π0 = 0.054 ± 0.004 ± 0.005 , (31)

BPDG
h+2h−≥1π0 = 0.053 ± 0.004 ,

where the ARGUS value is preliminary. Two of these values include un-
known amounts of strange particle contributions. Allowing for such non-4π
contributions, the PDG and LEP values indicate a π+2π−π0 branching ra-
tio in the 0.040− 0.050 range. We are aware of just one published π+2π−π0

mass spectrum measurement, an ARGUS analysis (Ref. [33]) which cites the
branching ratio Bπ+2π−π0 = 0.042±0.005±0.009. This value is smaller than,
although not inconsistent with, the more recent ARGUS value of Eq. (31).
Using an appropriate binning procedure, we can construct the full 4π spec-
tral function ρ4π

V (s) over the restricted energy region s < m2
τ by combining

the π+2π−π0 tau data together with the 2π+2π− cross sections. The result
is shown in Fig. 7, together with an asymmetric Breit-Wigner fitting curve
(see Sect. 4).

Alternatively, one could use the combination of cross sections as in
Eq. (29) to determine the total 4π spectral function. In principle at least,
this procedure can provide the 4π spectral function over a larger energy in-
terval. π+π−2π0 cross section data taken from Ref. [25] (for

√
s < 1.4 GeV)

and from Ref. [20] (for
√

s > 1.4 GeV) are displayed in Fig. 8. These turn
out to imply a π+2π−π0 tau decay branching ratio somewhat smaller than
the recent determinations cited in Eq. 31. For this reason, we have chosen to
base our analytical work on the determination of ρ4π

V (s) as shown in Fig. 7.

Higher Components

The five-pion component in tau decay involves the branching ratios
Bπ−4π0 , B3π−2π+ , and B2π−π+2π0 . Isospin constraints for these modes are

0 ≤ Bπ−4π0

B5π
≤ 3

10
, 0 ≤ B3π−2π+

B5π
≤ 8

35
,

8

35
≤ B2π−π+2π0

B5π
≤ 1 .

(32)
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At present, Refs. [12], [10], [16] provide the following branching ratio deter-
minations,

BCLEO
h−4π0 = 0.0015 ± 0.0004 ± 0.0005 ± 0.0001 ,

BPDG
3h−2h+ = 0.00056 ± 0.00016 , (33)

BARGUS
2π−π+2π0 = 0.0054 ± 0.0005 ± 0.0008 .

Noting that B3π−2π+ ≤ B3h−2h+ , we find that these values are consistent
with the bounds of Eq. (32). However, the isospin bounds do not imply any
useful information for disentangling B3π−2π+ from B3h−2h+ . To our knowl-
edge, the above branching ratios are the only 5π data currently available.
To obtain useful spectral infomration for the 5π mode requires a substantial
number of events, e.g. as would be generated from a τ factory.

Some 6π spectral information is available from e+e− scattering and some
6π branching ratio information is available, but in view of the paucity of 5π
data we have not included this sector in the analysis described in this paper.

Although our statement of the chiral sum rules in Sect. 2 refers to the
limit of massless quarks, the data reviewed in this section are taken in the
real world of mu,d 6= 0. In principle, we might attempt to perform corrections
on the data set with an eye towards working in the chiral limit. For example,
it is apparent that taking mπ → 0 would induce minor shifts in resonance
masses and phase space. However, we anticipate that such effects would be
of order m2

π/Λ2 with Λ ≃ 1 GeV. Since such changes are much smaller than
the present uncertainty in the data, it seems most prudent not to try to
model the effect of finite mu,d effects. Thus, we shall use the unmodified
experimental information in our phenomenological analysis.

4 Theoretical Constraints

Although the vector and axialvector spectral functions are not theoretically
prescribed for all values of s, it is possible to place constraints on their low
and high energy limits.

We begin by taking the Fourier transform of Eq. (3),

δabΠ
V
µν(q2) = i

∫

d4x expiq·x〈0|T (V µ
a (x)V ν

b (0)) |0〉

≡ δab

(

qµqν − gµνq2
)

ΠV(q2) . (34)
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and of Eq. (4),

δabΠ
A
µν(q

2) = i

∫

d4x expiq·x〈0|T (Aµ
a(x)Aν

b (0)) |0〉

≡ δab

(

qµqν − gµνq2
)

ΠA(q2) − qµqνΠ
(0)
A (q2) . (35)

In the chiral limit, the spin-0 axial contribution Π
(0)
A (q2) is given entirely

by the pion pole. The correlators ΠV,A(q2) are the real parts of analytic
functions whose imaginary parts are the spectral functions ρV,A(s). Of in-
terest to us are the dispersion relations involving the difference of vector and
axialvector quantities,

ΠV(q2) − ΠA(q2) =
F 2

π

q2
+

∫ ∞

0
ds

ρV(s) − ρA(s)

s − q2 − iǫ

=
1

q2

∫ ∞

0
ds s

ρV(s) − ρA(s)

s − q2 − iǫ
. (36)

In our normalization, the behavior of the individual ΠV,A(q2) to leading
order at large q2 is

ΠV,A(q2) ∼ 1

8π2

(

1 +
αs(q

2)

π

)

ln

(

µ2

−q2

)

, (37)

where µ is the renormalization scale. In order to determine the difference

ΠV(q2) − ΠA(q2) for q2 large but finite, one must go beyond the form in
Eq. (37). From the operator product expansion of vector and axialvector
currents, we learn that the asymptotic dependence is O(q−6) and the local

operators which control this behavior are the four-quark condensates.[34],[35]

In the approximation of vacuum saturation, one finds

ΠV(q2)−ΠA(q2) =
32π

9

〈√αsq̄q〉20
q6

(

1 +
αs(q

2)

4π

[

247

12
+ ln

(

µ2

−q2

)])

. (38)

It turns out that theory also predicts the low energy or threshold behav-
ior of the vector and axialvector correlators. However, in this case it is the
machinary of chiral perturbation theory that is invoked to show[36]

ΠV(q2) − ΠA(q2) =
F 2

π

q2
+

1

48π2

[

ln

(

µ2

−q2

)

+
5

3

]

− L
(r)
10 (µ) , (39)

where L
(r)
10 (µ) is defined in Eq. (10).

11



The above statements all involve the correlators ΠV,A. Similar threshold
and asymptotic constraints can be placed on the spectral functions ρV,A(s).
Thus, as stated in Ref. [36] the threshold behavior (s → 4m2

π) of ρV(s) and
ρA(s) is

ρV(s) ∼ 1

48π2

(

1 − 4m2
π

s

)3/2

θ(s − 4m2
π) + O(p2) , (40)

ρA(s) ∼ O(p2) . (41)

Later in this section, we shall sharpen the threshold result for ρA by speci-
fying the 3π threshold contribution in more detail. The perturbative result
for the asymptotic limit s → ∞ of the individual ρV,A to leading order is

ρV,A(s) ∼ 1

8π2
(1 +

αs(s)

π
) . (42)

Finally, Eq. (38) determines the asymptotic form of ρV(s) − ρA(s) to be

ρV(s) − ρA(s) ∼ C

s3
≃ 8

9

αs〈
√

αsq̄q〉20
s3

for large s . (43)

Note that the difference of the spectral functions is of order α2
s. Our analysis

of the chiral sum rules will require a numerical value for the coefficient C of
the s−3 term. From the estimate

〈√αsq̄q〉20 ≃ (0.24 GeV)6 ≃ 1.9 × 10−4 GeV6 (44)

and taking αs ≃ 0.2, we obtain

C ≃ 3.4 × 10−5 GeV6 . (45)

The magnitude of this quantity is obviously model dependent and quite pos-
sibly will be modified by future work. However, even folding in uncertainties
of the vacuum condensates, it is clear that the coefficient of the s−3 term is
very small, and that ρV -ρA approaches zero very quickly at large s. Even if
one imagines ρV (s)-ρA(s) to exhibit increasingly damped oscillations indefi-
nitely, duality suggests that Eq. (43) captures the correct average behavior.
As we shall see, the asymptotic constraint of Eq. (43) will have significant
impact in the analysis of the chiral sum rules to come.

The results presented in this section are well known, and collectively
they represent a fairly powerful set of conditions regarding how the chiral
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correlators can behave. Actually, additional thought can reveal even more.
For example, let us employ the asymptotic behavior of Eq. (38) in the dis-
persion relation of Eq. (36). Expansion of the dispersion integral in powers
of q−2 yields the sum rule

32π

9
〈√αsq̄q〉20 = −

∫ ∞

0
ds s2 (ρV(s) − ρA(s)) . (46)

Some care must be taken to interpret this result correctly. Observe that
Eq. (46) is valid to O(αs). Since the O(s−3) tail of ρV(s)− ρA(s) is itself of
higher order in αs, one must subtract it off in this relation. Accordingly, we
write

32π

9
〈√αsq̄q〉20 = −

∫ ∞

0
ds s2 (ρV(s) − ρA(s))′ , (47)

where (ρV(s) − ρA(s))′ refers to subtraction procedure just mentioned.
Finally, let us return now to the matter of the the threshold behavior

of ρA(s). It is associated with the 3π component. Using chiral lagrangian

methods[1], we have determined that in the chiral limit the threshold be-
havior is

〈0|Aµ(0)|π+
p+

π0
p0

π−
p−

〉 =
2

3Fπ
(pµ

+ + pµ
− − 2pµ

0 ) − 3s+− − s

3Fπs
Qµ (48)

where Q ≡ p++p−+p0, s ≡ Q2 and s+− ≡ (p++p−)2. Upon rearrangement
of terms, this can be expressed as

〈0|Aµ(0)|π+
p+

π0
p0

π−
p−

〉 =
2

Fπ

[

Q · p0

Q2
Qµ − pµ

0

]

. (49)

Observe that this obeys 〈0|∂µAµ(0)|3π〉 = 0, as must be the case since it
is only the spin-one part of the axial current which contributes here. The
threshold behavior of ρ3π

A (s) can then be read off from the general form of
Eq. (5) by first squaring Eq. (49) and integrating over 3π phase space,

ρ3π
A (s) =

s

96π(4πFπ)2
+ . . . . (50)

In practice, however, the very low s behavior for the 3π state turns out to
be less important in the chiral sum rules than the higher energy effect of the
A1 resonance.
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5 Empirical Determinations of Chiral Sum Rules

Before discussing our own methodology, we wish to take note of two inter-
esting works involving aspects of chiral sum rules. In the earlier of these[37],
spectral functions based on 2π, 3π and 4π data extracted from tau decay
are used to study the sum rules W1, W2 and W3. The associated spectral
integrals are studied as a function of cutoff s0 for s0 ≤ 2.5 GeV2. However,
the 3π analysis was taken from Ref. [11] data, which as we have seen is not
in agreement with a large number of more recent branching ratio measure-
ments. In addition, the 2π spectral function was too small in the vicinity
of the ρ(770) peak by roughly a factor of 2. Interestingly, these two fea-
tures combined to make the sum rules appear reasonably in agreement with
expectations, although this result was fortuitous.

In the analysis of Ref. [38], 2π and 4π data are inferred from e+e− scatter-
ing, but the 3π data again comes from Ref. [11]. In fitting these components,
use is made of Breit-Wigner resonance forms with energy-dependent decay
widths. The particular form of energy dependence is taken from Lorentz-
invariant phase space. The 5π and higher components are parameterized to
give rise to the asymptotic behavior

ρV,A(s) ∼ 5

32π2
and ρV − ρA ∼ O(s−1) . (51)

This disagrees with the chiral and operator product expansion results of
Eq. (42) and Eq. (43) respectively. The specific form in Ref. [11] used for
the higher components is chosen to fit the sum rule W1 exactly and the sum
rule W0 is evaluated in terms of the fit.

The summary given in Sect. III of available data demonstrates that there
is hope for successfully extracting much about the spectral functions ρV,A(s)
from experiment, but that our knowledge of them will always be limited. In
view of the current database, we have decided that for the purpose of testing
the chiral sum rules, it is most prudent to take the empirical 2π, 3π and 4π
modes explicitly into account, and to treat all higher components according
to some reasonable prescription. We have followed two distinct approaches
in doing so:

1. Numerical: We ensure that the empirical databases for ρV,A(s) evolve
smoothly in the variable s to the correct asymptotic limits by gener-
ating smooth curves separately for ρV and ρA which pass through the
experimental data sets at low energy and which satisfy the asymptotic
limits, while reproducing the four chiral sum rules.

14



2. Analytical: This actually encompasses a class of fits to the differ-
ence of spectral functions ρV − ρA in which all contributions higher
than the four-pion sector are lumped into a single theoretical term.
A convenient method for constructing the spectral functions this way
is to start with a delta function form, then introduce finite-widths
via Breit-Wigner representations, and finally modify these to a more
realistic asymmetric form.

Let us consider each possibility in turn.

Numerical Representation

Surely the simplest method for generating acceptable global versions of
ρV,A is to numerically smoothly join the low energy empirical data with
asymptotic theoretical information. A reasonable region for matching the
two occurs at about s ≃ 4−5 GeV2. As we have already seen, the constraint
of Eq. (42) reveals that the spectral functions approach a nonzero constant
at infinite energy, with an additive correction factor proportional to αs(s).
In general, we expect the large s behavior

ρV,A(s) = ρV,A
0 +

ρV,A
1

s
+

ρV,A
2

s2
+ . . . , (52)

We can obtain a determination of the dominant power correction in the large
s limit as follows. Using an operator product expansion, Braaten, Narison
and Pich have displayed the structure of the correlators ΠV,A for Euclidean

momenta −Q2 in Appendix A of their paper[8],

ΠV,A(−Q2) = aV,A
0 (Q) +

aV,A
1 (Q)

Q2
+

aV,A
2 (Q)

Q4
+ . . . , (53)

where s = −Q2 and each of the aV,A
n (Q) is expandable in powers of αs(Q).

We require the imaginary part of this expression, analytically continued to
timelike momenta. Since the O(Q−2) contribution to ΠV,A turns out to be

proportional to quark mass, the coefficient ρV,A
1 (s) vanishes in the chiral

limit. Thus, the first nonvanishing subleading contribution is the O(Q−4)
component, from which we extract the result

ρV,A
2 (s) ∼ 11

192π2
α2

s〈
αs

π
G2〉0 for large s . (54)
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Let us estimate the magnitude of this quantity at s = 5 GeV2. The
strong fine structure constant is determined in terms of an assumed value
for the QCD scale parameter,

ΛQCD = 150 MeV ⇒ αs(5 GeV2) ≃ 0.26 (55)

and the gluon condensate from phenomenological applications of QCD sum
rules,

〈αs

π
G2〉0 = (0.02 ± 0.01) GeV4 . (56)

Altogether, these values imply that the O(s−2) component to ρV,A has a
tiny coefficient,

ρV,A
2 ≃ 0.9 × 10−5 GeV4 . (57)

As a result, even at the modest energy s ≃ 5 GeV2 the O(s−2) term has a
negligible effect. Of course, this common addition to ρV and ρA will cancel
when the difference is taken and hence will not contribute to the chiral sum
rules. In addition, the difference of the spectral functions was chosen to
be compatible with the asymptotic constraint given in the previous section.
Again the magnitude of this contribution is so small that it is essentially
irrelevant at modest energies. Thus while we have made an effort to generate
spectral functions with the right high energy behavior, the precise value of
the high energy terms is not important since their numerical size is quite
small.

Let us summarize our procedure at this point. We have generated nu-
merical representations for ρV and ρA which fit all available data on mul-
tipion production, and which are compatible with the theoretical behavior
expected at high energy, and which when integrated yield the correct exper-
imental values for the four chiral sum rules. Although highly constrained at
low and high energies, the spectral functions have a modest uncertainty in
the s = 2− 4GeV 2 range, and this was exploited in order to precisely dupli-
cate the expected values of the sum rules W0,W1,W2,W3. Of course, both
this numerical procedure and the analytic one to follow are subject to the
choice of input values. Given the uncertainties in especially the 3π and 4π
branching ratios, we have explored a variety of possibilities. Corresponding
to the input set

B2π = 0.240 , B3π = 0.165 , B4π = 0.048 , (58)

curves for ρV, ρA and ρV-ρA are displayed respectively in Figs. 9-11.
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Analytical Representations

(a) Delta Function

In the delta function description, the spectral functions are

ρV(s) − ρA(s) =
4
∑

k=1

(−)k+1F 2
k δ(s − m2

k) . (59)

This representation of the spectral functions, although crude, provides a
nice pedagogical example with which to organize one’s thoughts. We begin
by noting that there are 2 parameters per contribution, a mass m and a
coupling F . In this approach, the four sum rules reduce to

W0 =
4
∑

k=1

(−)k+1 F 2
k

m2
k

, (60)

W1 =
4
∑

k=1

(−)k+1F 2
k = F 2

π , (61)

W2 =
4
∑

k=1

(−)k+1m2
k F 2

k = 0 , (62)

W3 =
4
∑

k=1

(−)k+1m2
k F 2

k lnm2
k , (63)

and the tau decay branching ratios become

Bk = 71.62 Be F 2
k

(

1 − m2
k

m2
τ

)2 (

1 +
2m2

k

m2
τ

)

(k = 1, 2, 3) . (64)

We can specify the mass parameters m1,2,3 from the observed nπ (n = 2, 3, 4)
distributions and the coupling strengths F1,2,3 from the observed branching
ratios (cf. Eq. (12)). Even in the extreme narrow width approximation of
the delta function representation, this step turns out to be a surprisingly
accurate one, e.g. finite width effects modify the branching ratio relations
by only a few percent.

This leaves the problem of determining the coupling F4 and mass m4.
It seems reasonable to require that the sum rules W1 and W2 be obeyed
exactly (cf. Eq. (61) and Eq. (62)). Thus we determine F4 from Eq. (61)
and m4 from Eq. (62). Doing so leaves the remaining sum rules W0 and
W3 as predictions.
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(b) Breit-Wigner

In the finite width Breit-Wigner (BW hereafter) extension of Eq. (59),
the spectral functions are represented by

ρV(s) − ρA(s) =
4
∑

k=1

(−)k+1

π

F 2
k mkΓk

(s − m2
k)

2 + (mkΓk)2
. (65)

Each contribution still has mass and coupling parameters mk and Fk, but
now in addition a width Γk. In the most general Breit-Wigner resonance
form, decay widths are taken to be energy-dependent, e.g. the 2π widths
have the O(p3) threshold behavior to reflect the P -wave nature of the 2π
system. However, in order to maintain a simplicity of description and the
ability to represent each nπ component in analytic form, we shall employ
energy-independent widths throughout.

An advantage of the delta-function approach was the ability to express
all the sum rules and the tau branching ratios in elementary form. This
is still true in the BW approximation for the sum rules W0, W1, W2 and
the tau branching ratios. For example, working with a generic Breit-Wigner
spectral function,

ρBW(s) =
F 2m2r

(s − m2)2 + (m2πr)2
. (66)

where r ≡ Γ/(πm) is an expansion parameter for finite-width effects, we can
evaluate integrals such as

I
(0)
BW ≡

∫ Λ

s0

ds ρBW(s)

= F 2
[

1 − 1

π
arctan

πr

(Λ/m2) − 1
− 1

π
arctan

πr

1 − (s0/m2)

]

,(67)

and

I
(1)
BW ≡

∫ Λ

s0

ds sρBW(s)

= m2I
(0)
BW + F 2r

[

ln
Λ

m
+ 0.5 ln

(

(

1 − m2/Λ
)2

+ m4π2r2/Λ2

(1 − s0/m2)2 + π2r2

)]

.(68)

By passing to the limit r = 0 of zero decay width, we regain the results of
the delta function model.
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Analogous to the procedure used in the delta function model, parameters
for the first 3 BW poles are obtained by fitting to experimental data. In
passing, we note that since a given spectral contribution has the asymptotic
behavior O(s−2), the individual BW spectral integrals for W2 and W3 are
divergent. The numerator of the fourth pole is fixed by demanding that the
O(s−2) asymptotic term in ρV-ρA vanish. This implies

4
∑

k=1

(−)k+1F 2
k mkΓk = 0 . (69)

By virtue of this relation, the asymptotic behavior of the vector and axi-
alvector spectral functions becomes

ρV(s) − ρA(s) =
CBW

s3
+ O(s4) (70)

where

CBW =
2

π

4
∑

k=1

(−)k+1F 2
k m3

kΓk . (71)

The constant CBW may be considered either as a quantity to be fixed by
Eq. (43) or as a prediction of the analysis.

We find it hard to see how any analytical study of the sum rules could
succeed without incorporating the above features or something similar. In
our approach, all the chiral sum rules are convergent even though individual
pole contributions may diverge. Moreover, the condition given by Eq. (69)
ensures that our description has the smoothness in energy expected from
duality.

(c) Asymmetric Breit-Wigner

Although having the virtue of simplicity, the representation of Eq. (65)
is deficient in several important respects. A Breit-Wigner form is symmet-
ric about its resonant energy whereas the nπ contributions to ρV,A exhibit
asymmetric bumps. Besides, the BW contributions extend to energies lying
below thresholds which characterize the various nπ components.

An improved treatment can be realized in a variety of ways. One simple
parameterization which treats the various components uniformly, yields a
reasonable fit to data and allows us to maintain analytic control is

ρV(s) − ρA(s) =
4
∑

k=1

(−)k+1 Pk(s)F
2
k mkΓk

(s − m2
k)

2 + (mkΓk)2
. (72)
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The functions Pk(s) are polynomials

Pk(s) =

(

1 − s2
k

s2

)nk

, (73)

each containing two parameters, a threshold energy sk and an integer-valued
exponent nk = 1, 2, . . .. Although the choice nk = 1 is the simplest one, it
yields an nπ spectral function which rises linearly just above threshold. This
does not appear to provide an adequate fit to the data, and thus we have
used nk = 2 (k = 1 . . . 4). A fit of this type to the 3π spectral function
appears in Fig. 12.

Introduction of the polynomials Pk(s) will clearly lead to integrals in-
volving inverse moments of Breit-Wigner forms,

I
(−n)
BW =

∫ ∞

s0

ds
ρBW(s)

sn
. (74)

Although it is straightforward to evaluate such integrals analytically, the re-
sulting expressions can be quite cumbersome. In practice, it is more efficient
to employ the recursion relation

I
(−n)
BW =

1

m4(1 + π2r2)

(

2m2I
(−n+1)
BW − I

(−n+2)
BW +

s−n+1
0

n − 1

)

. (75)

Upon applying relations of this type, we have carried out the calculational
program described earlier in this section. As stated earlier, because of the
uncertainty in the experimental 3π and 4π contributions, we have performed
the analysis for several different sets of tau lepton branching ratios. Typical
results are shown in Table 1, where we display both input values (parameters
for the 2π, 3π and 4π asymmetric BW poles and the associated branching
ratios) and results (parameters for the 4th pole, the coefficient C and the

values for W0 and W3).[39] We have purposely exhibited two solutions (#1
and #2) to show that it is possible to fit the sum rules yet not obtain an
acceptable value of C. The graph of ρV-ρA corresponding to solution #3 of
Table 1 is displayed in Fig. 13. The overall appearance of this curve clearly
mimics the one in Fig. 11 which is based on the numerical approach. We
view the fact that the different methods generate rather similar spectral
functions as an indication that there is not great freedom in ρV − ρA once
the theoretical and experimental constraints are imposed.
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6 Concluding Remarks

What we have done in this paper is to suggest a procedure for compar-
ing four well-known sum rules of chiral symmetry with data from the real
world of experiment. In addition, we have phenomenologically constructed
the vector and axialvector spectral functions to the extent possible by using
the full collection of available tau decay and e+e− cross section data. To
be specific, the data which constrains the spectral functions includes the
e+e− → π+π−, 2π+2π− and π+π−2π0 cross sections, the τ → 2π, 3π and
4π branching ratios, and the energy spectra for π−π0, 2π−π+ and 2π−π+π0

final states in τ decay. Theoretical constraints include chiral symmetry at
low energy, isospin relations for handling the data and the operator product
expansion of QCD at high energy. It is clear to us that this activity will be
repeated by ourselves or by others in the future. That is, we (perhaps opti-
mistically) anticipate the emergence of improved data which will provide a
yet more reliable foundation upon which to base the phenomenology. How-
ever, we feel that our results are the the best determination of the spectral
functions that can be made at this time.

As regards the data, we urge that efforts be made to improve the deter-
minations of the 3π and 4π contributions to the spectral functions. The 3π
component can only be inferred from the tau decay hadronic distribution. In
this paper, we were fortunate to have access to the recent ARGUS determi-
nation of ρ3π

A . Cross checks are always welcome, so we urge that data from
tau production at both LEP and CESR be analyzed to extract the spec-
tral function ρ3π

A . In addition, the need for an improved 4π determination
in e+e− cross section data is especially acute for the π+π−2π0 final state.
Additional information on the 4π tau decay modes (π+π02π− or π−3π0)
would also be welcome.

In the latter part of our paper, we addressed the question of whether
experimental data is consistent with the chiral sum rules. On the basis
of our study, we conclude that existing data is indeed consistent with the
chiral sum rules. It is important to not misinterpret this remark. Of course,
since physical data will always be less than perfect, it is not possible to claim
‘proof’ of validity for the set of sum rules. It is evident to us that to insist on
such proof would be foolhardy. However, given the number of constraints
on the spectral functions, it is far from trivial that all of the chiral sum
rules can be satisfied. Agreement at the level we obtained is an affirmation
of the subtle and complex theoretical intuition (involving chiral symmetry,
dispersion relations, the operator product expansion and the asymptotic
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behavior of QCD) that leads to the sum rules.
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Trial #1 #2 #3

Two-pion Inputs

M1 0.763 0.763 0.763
f1 0.157 0.157 0.157
Γ1 0.123 0.123 0.123
s1 4m2

π 4m2
π 4m2

π

B2π 0.243 0.243 0.243

Three-pion Inputs

M2 1.117 1.117 1.117
f2 0.244 0.234 0.250
Γ2 0.470 0.470 0.470
s2 0.500 0.510 0.550

B3π 0.185 0.168 0.176

Four-pion Inputs

M3 1.500 1.500 1.490
f3 0.192 0.188 0.215
Γ3 0.564 0.700 0.765
s3 0.700 0.710 0.690

B4π 0.048 0.041 0.053

Output Values

M4 2.288 2.055 1.869
f4 0.068 0.083 0.116
Γ4 0.221 0.750 0.873

Bn>4π 0.0001 0.0015 0.0046
W0 0.0261 0.0266 0.0268
W3 -0.0062 -0.0062 -0.0062
C 0.013 0.003 3.8 × 10−5

Table I: Asymmetric Breit-Wigner Representation.
The energy unit is GeV.
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Figure Captions

Fig. 1 Timelike pion form factor

Fig. 2 2π vector spectral function

Fig. 3 3π axialvector spectral function

Fig. 4 Cross section for e+e− → 2π+2π−

Fig. 5 ρ−000
V inferred from e+e− scattering

Fig. 6 Predicted 4π mass spectrum in τ → π−3π0ντ

Fig. 7 ρ4π
V from tau decay and e+e− scattering

Fig. 8 Cross section for e+e− → π+π−2π0

Fig. 9 Numerical fit to ρV

Fig. 10 Numerical fit to ρA

Fig. 11 Numerical fit to ρV − ρA

Fig. 12 Fit of asymmetric Breit-Wigner solution to 3π spectral function

Fig. 13 Fit of asymmetric Breit-Wigner solution #3 to ρV − ρA
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