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Abstract
Efficient path planning is one of the main prerequisites for robust navigation of autonomous robots. Especially driving in
complex environments containing both streets and unstructured regions is a challenging problem. In this paper we present
the application of the Hybrid A* algorithm to a nonholonomic mobile outdoor robot in order to plan near optimal paths in
mostly unknown and potentially intricate environments. The implemented algorithm is capable of generating paths with
a rate of at least 10 Hz to guarantee real-time behavior.

1 Introduction

Mobile robots can support humans in various ways. They
are able to act in hazardous or inaccessible environments
and can relieve humans by taking over monotonous tasks.
Current applications of mobile robots range from service
robots in the industrial environment through reconnais-
sance robots in disaster areas to robot systems for inspec-
tion and exploration tasks in the deep sea.
For executing complex tasks in an autonomous way, a mo-
bile robot requires three core capabilities: It has to use
its sensors to locate itself in the world and build a map
of its environment and it needs to plan a path for its fu-
ture motion according to its particular goal. Depending
on the mobile platform kinematics and the intended use of
the robot, this path planning has to take into account many
constraints which causes path planning to be a rather com-
plex and computationally expensive optimization problem.
It is especially challenging in unstructured outdoor envi-
ronments where no previously built map is available. In
this case the robot possesses only local knowledge of its
environment because of limited sensor coverage. Due to
this partial observability, the planned path will generally
be globally suboptimal. Furthermore, the planner may get
stuck in a local optimum in the presence of extended ob-
stacles.
Another important constraint for planning feasible paths
is given by the vehicle kinematics. In this paper we con-
sider a regular nonholonomic car-like robot. Consequently,
the steering angles are limited and thus turning on the spot
is not possible. This limitation has to be explicitly taken
into account during the path planning to guarantee that the
underlying path following controller can indeed generate
valid trajectories for the robot (cf. [2]).
In order to be employed in real-world applications, the path

has to be computed several times per second to exploit the
steadily updated information which the robot gains during
traveling towards the goal. Thus, for a robust and efficient
path planning, the algorithm has to meet real-time require-
ments, which means that in our case planning a path has to
finish within 100 ms.
The paper will be organized as follows: Section 2 will give
a short overview of the basic Hybrid A* algorithm to allow
for a detailed presentation of the extensions we have intro-
duced to it in section 3. Section 4 will show some of the
results obtained from simulations and finally section 5 will
conclude the paper.

1.1 Problem formulation
The path planning problem can be stated as follows: Given
a mapm, find the cost-optimal path from the vehicle’s cur-
rent location xs to a goal regionG subject to the constraints
given by the vehicle kinematics and the terrain. The dis-
crete grid map m consists of three layers: The first one mo
contains whether a cell is blocked by an obstacle or clear,
the second one ms contains information about the surface
quality and the third layer mh contains a height value for
each cell, resulting in a 2.5D height map.
The vehicle’s current pose (i.e., the starting pose for the
path planner) is given by the two-dimensional vector xs
and its heading θs. The height of the vehicle can safely be
ignored and is assumed to be the same as the height of the
corresponding cellmh(x̃s). Throughout this paper the tilde
denotes discrete coordinates (i.e., cell indices). They can
be obtained from continuous coordinates using the formula

x̃ =

⌊
x− om
ζ

⌋
, (1)

where om is the map origin and ζ is the cell size.



To allow for an approximate passing of waypoints, the goal
region G is defined by the set of all locations x within a
given radius r around the commanded waypoint w:

G = {x | ‖x− w‖ < r} . (2)

2 Hybrid A* algorithm
The application of the well-known regular A* algo-
rithm [3] is limited to discrete state spaces (see Figure 1a).
In the case of a simple four- or eight-connected grid it
would allow the vehicle to turn on the spot, which is not
possible in the presence of nonholonomic constraints. The
Hybrid A* algorithm is an extension to the regular A* al-
gorithm to overcome its shortcomings. It has been suc-
cessfully applied in various areas such as obstacle avoid-
ance flight maneuvers [7] or path planning for autonomous
mobile robots during the Urban Challenge [5].

(a) regular A* (b) Hybrid A*

Figure 1: Possible neighbors for a cell.

Unlike the regular A*, the Hybrid A* algorithm is capable
of taking into account the continuous nature of the search
space representing the real world. This is achieved by us-
ing a set of precomputed motion primitives to determine
reachable states and, thus, to construct the search tree on-
line. The continuous position which a motion primitive
arrives at is stored alongside the discrete position in the
corresponding cell.

2.1 Search space representation
The continuous state of a vehicle moving in a plane is given
by (x, θ) with x being the vehicle position and θ being its
heading. This results in a three-dimensional search space,
which has to be discretized in order to be searchable by
the Hybrid A* algorithm. The translational discretization
is already given by the map representation.
Except the start heading θs, which is rounded to its near-
est discrete value θ̃s, the heading of the vehicle does not
need to be rounded during the planning procedure as there
exists only a limited set of admissible motion primitives
all ending up in a heading which fits into the discretization
scheme. Thus, θ̃ = θ follows. Although knowledge of
the discrete position x̃ would be sufficient for the graph
search, the continuous position x for reaching a cell is
stored for each cell as well. It can then be used as the

root for the node expansion (i.e., neighborhood search).
This hybrid approach guarantees that a found path is by
all means traversable. If only the cell centers had been
considered, this could not be ensured.
In addition, similar to the regular A*, a cost function com-
putes how expensive driving from the current position to
an adjacent position would be. This cost is added to the so
far accumulated costs and this sum is denoted as g. Fur-
thermore, each node contains some book keeping data for
the A* algorithm: a back pointer np to its parent for the
final path reconstruction and the priority queue key f (con-
taining the sum of real costs g and the estimated costs h to
the goal). Thus, each node n of the search graph is com-
pletely defined by

n = (x̃, θ̃, x, g, f, np) . (3)

2.2 Motion primitive construction

The smallest entities of the path are the motion primitives.
They are defined by arcs (see Figure 1b) which have to
satisfy the following three conditions:

• The driven distance must suffice to leave the current
cell (i.e., chord length l >

√
2 · ζ).

• The curvature is limited by the maximum steering
angle αmax.

• The heading change δ has to be a multiple of the dis-
cretization step size of the heading dimension of the
search space.

Using the single-track model, the steering angle α can be
computed as a function of the chord length l and the head-
ing change δ by

α(l, δ) = atan

(
2b

l
sin

δ

2

)
, (4)

with b being the wheelbase. The set of valid motion prim-
itives µ(θ, δ) is given by all heading changes δ, for which
α(l, δ) ≤ αmax holds true.

2.3 The Hybrid A* algorithm in detail

The Hybrid A* algorithm shares its major concepts with
the regular version of the A* algorithm. It also utilizes
two sets which keep track of the states during the search.
The open set O contains the neighboring nodes of nodes
already expanded during the search, the closed set C con-
tains all nodes which have been conclusively processed.
The following listing gives a short overview of the general
algorithmic scheme being the basis for the extensions we
introduced to the Hybrid A*.



Algorithm 1 Standard version of Hybrid A*

1: procedure PLANPATH(m, µ, xs, θs, G)
2: ns ← (x̃s, θ̃s, xs, 0, h(xs, G), -)
3: O ← {ns}
4: C ← ∅
5: while O 6= ∅ do
6: n← node with minimum f value in O
7: O ← O \ {n}
8: C ← C ∪ {n}
9: if nx ∈ G then

10: return reconstructed path starting at n
11: else
12: UPDATENEIGHBORS(m,µ,O,C, n)
13: end if
14: end while
15: return no path found
16: end procedure

17: procedure UPDATENEIGHBORS(m,µ,O,C, n)
18: for all δ do
19: n′ ← succeeding state of n using µ(nθ, δ)
20: if n′ /∈ C then
21: if mo(n′x̃) = obstacle then
22: C ← C ∪ {n′}
23: else if ∃n ∈ O : nx̃ = n′x̃ then
24: compute new costs g′

25: if g′ < g value of existing node in O then
26: replace existing node in O with n′

27: end if
28: else
29: O ← O ∪ {n′}
30: end if
31: end if
32: end for
33: end procedure

3 Extensions to the Hybrid A*
In order to be useful for real-world applications, there are
several challenges that cannot be accomplished by solely
applying the Hybrid A* search. In this section we will de-
scribe three limitations and their respective overcoming of
the standard Hybrid A* algorithm that we were facing in
the context of our intended application scenario.

3.1 Planning via several waypoints

In a more complex mission scenario it is not practical to
restrict the path planning to a search for a path to only
one given goal region. Instead, the operator often wants
the autonomous robot to pass a list of waypoints one after
another. This raises the following problem: It cannot be
determined a priori with which heading a given waypoint
has to be arrived at in order to guarantee the reachability of
the next waypoint starting at this heading.

Therefore, when planning a path via several waypoints, it
is not feasible to just plan between pairs of waypoints and
concatenate the paths as the vehicle’s heading on arriving
at a waypoint’s goal region may lead to a dead-end if the
vehicle is in an adverse pose in front of an obstacle. Fig. 2
shows this situation: The planner finds the shortest path to
the goal regionG1 of the first waypoint arriving in the state
(x1, θ1) but then fails to find a path to G2 because of the
limited turning radius of the vehicle (dashed line).

Figure 2: Planning using only the next waypoint.

This limitation can be overcome by planning not only to
the next waypoint but to the next two waypoints. The path
starting at (xs, θs) and going to G2 has to fulfill the addi-
tional constraint of passing through G1. Fig. 3 shows an
exemplary path consisting of two segments, the first one
ranging from (xs, θs) to (x1, θ1) (solid line) and the sec-
ond one from (x1, θ1) to (x2, θ2) (dashed line).

Figure 3: Planning using the next two waypoints.

In order to incorporate this constraint directly into the core
of the planning algorithm, we modified algorithm 1 to ex-
plicitly take into account the passing of G1. For this pur-
pose, each node n gets an additional flag s which stores
whether this node was added to the open set O during the
planning of the first segment from (xs, θs) to G1 (s = 1)
or during the planning of the second segment from G1 to
G2 (s = 2). So any node is now completely defined by

n = (x̃, θ̃, x, g, f, np, s) . (5)

The planning procedure starts with a node, which is asso-
ciated with the first segment (s = 1). When an expanded
node reaches the first goal region G1, the new successors
are generated with their flag s set to 2. Only if a node with
s = 2 gets expanded in the final goal region G2, a path



is considered to be found. The following listing shows the
extended versions of the Hybrid A*.

Algorithm 2 Extended version of Hybrid A*

1: procedure PLANPATH(m, µ, xs, θs, G1, G2)
2: ns ← (x̃s, θ̃s, xs, 0, h(xs, G1, G2), -, 1)
3: O ← {ns}
4: C ← ∅
5: while O 6= ∅ do
6: n← node with minimum f value in O
7: O ← O \ {n}
8: C ← C ∪ {n}
9: if ns = 1 then

10: if nx ∈ G1 then
11: UPDATENEIGHBORS(m,µ,O,C, n, 2)
12: else
13: UPDATENEIGHBORS(m,µ,O,C, n, 1)
14: end if
15: else if ns = 2 then
16: if nx ∈ G2 then
17: return reconstructed path starting at n
18: else
19: UPDATENEIGHBORS(m,µ,O,C, n, 2)
20: end if
21: end if
22: end while
23: return no path found
24: end procedure

25: procedure UPDATENEIGHBORS(m,µ,O,C, n, s)
26: for all δ do
27: n′ ← succeeding state of n using µ(nθ, δ)
28: n′s ← s
29: if n′ /∈ C then
30: if mo(n′x̃) = obstacle then
31: C ← C ∪ {n′}
32: else if ∃n ∈ O : nx̃ = n′x̃ ∧ ns = n′s then
33: compute new costs g′

34: if g′ < g value of existing node in O then
35: replace existing node in O with n′

36: end if
37: else
38: O ← O ∪ {n′}
39: end if
40: end if
41: end for
42: end procedure

Using our approach, there is no particular event of switch-
ing all over from planning of the first segment to planning
of the second segment. Instead, the open set simultane-
ously contains nodes of both segments once the first goal
region has been reached. So during each node expansion
the planning may continue with a node from either seg-
ment – whichever seems more promising according to the
previously computed priority queue key f .

In order to guarantee the proper order of node expansions,
the f value must be computed using a heuristic h that
ranges over both segments. In the standard version of the
Hybrid A* (i.e., when planning only to the next waypoint)
a simple heuristic reflecting the Euclidean distance

h(x,w1, r1) = max(0, ‖x− w1‖ − r1) (6)

would be sufficient. However, in the extended version of
the Hybrid A* the heuristic becomes slightly more sophis-
ticated. Two cases have to be distinguished:

• Case 1: The path leading to the currently considered
position x has not yet reached G1 (i.e., s = 1):

h(x,w1, r1, w2, r2) = max(0,

‖x− w1‖+ ‖w1 − w2‖ − 2r1 − r2) (7)

• Case 2: The path leading to the currently considered
position x has already passed G1 (i.e., s = 2):

h(x,w2, r2) = max(0, ‖x− w2‖ − r2) (8)

Although this heuristic is admissible (subtracting the way-
point radii r1 resp. r2 ensures that it never overestimates
the real costs), it is generally not consistent due to the in-
crease in costs when changing from the first to the sec-
ond segment. This results in expanding more nodes than
theoretically needed depending on the size of the way-
point radius r1 and the waypoints’ relative positions. How-
ever, in a practical implementation this can be neglected as
computing the exact shortest path from x to G2 touching
G1 would be very expensive. Furthermore, the proposed
heuristic does not take into account the heading of the ve-
hicle, which would further reduce the number of expanded
cells. Although this could be implemented (e.g. by using
Dubins curves [4]) this would result in an unmanageable
computational complexity.
The extension of our approach to more than two waypoints
is straightforward but in practice there is generally no need
for this as planning over two waypoints is sufficient to cope
with situations like the one depicted in Fig. 2 and 3. This
is due to the fact that planning is performed in an itera-
tive manner: As soon as the vehicle reaches w1 the planner
continues to plan to w3 via w2 etc.

3.2 Incorporation of terrain characteristics
The costs g for traveling to a cell incorporate several ef-
ficiency measures like driven distance, needed energy for
climbing hills, needed steering energy and surface quality.
As one motion primitive may span multiple cells of the dis-
crete map, it will not suffice to consider only the transition
from the start cell of the motion primitive to its end cell. In-
stead, all intermediate cells have to be taken into account
as well. This is achieved by rasterizing each motion prim-
itive off-line in advance using techniques borrowed from
computer graphics like Bresenham’s algorithm [1]. This
results in a list of cells for each motion primitive, which
can be used for further cost computations. Pivtoraiko et al.



share this idea in the context of their state lattice planner
and call the list of swept over cells a swath [6].
We use this swath to compute two portions of the costs g.
The first one incorporates the terrain with respect to its sur-
face quality ms. This includes, for example, information
about whether the current motion primitive leads through
off-road regions or lies on a street. This surface assessment
is tightly coupled with the costs due to the driven distance

gdist(x, x
′) = lµ · (1 + coff-road) , (9)

where lµ is the arc length of the motion primitive µ used to
drive from x to x′. The penalty coff-road for driving off-road
can be defined in different ways. However two approaches
turned out to be reasonable choices.
The first one computes an off-road ratio η which is defined
by

η =
number of off-road cells in swath

total number of cells in swath
. (10)

Using this off-road ratio, the penalty coff-road is given by

coff-road = η · λoff-road , (11)

where λoff-road is a fixed non-negative penalty factor.
The second approach penalizes driving partly off-road in-
dependently of the amount of off-road cells in a swath:

coff-road =

{
λoff-road if at least one off-road cell in swath
0 otherwise

(12)
Again, λoff-road is a fixed non-negative penalty factor.
The second portion of the costs g which we compute using
the swath, is an estimate of the roughness/slope of the ter-
rain, which we denote gslope. For this purpose, the height
of each cell in the swath is looked up in the height mapmh.
After that, the sum Σslope of the absolute height differences
of all adjacent cells in the swath can be computed. Finally,
the costs due to slopes is computed by

gslope = λslope · Σslope , (13)

where again λslope is the parametrizable weight of this cost
portion.

3.3 Heuristic for waypoints outside the local
map

As our planning concept is based on only local knowledge
of the environment, the path planner must be able to cope
with waypoints that lie outside the local map. In this case,
the planner can only plan to the border of the map but it
does not know a priori to which point on that border it
should plan to. To guide the planning in a proper direc-
tion, the standard heuristic function (6) is not sufficient.
Instead, a more complex heuristic has to be used as the
chosen heuristic has a significant impact on where the lo-
cal map border will be reached first. If the heuristic un-
derestimated the real costs outside the map by too far, the

planned path would try to leave the map on the most eco-
nomical way, which could make the vehicle stay on streets
– even if they do not lead to the waypoint.
As our planner possesses no knowledge of the environment
outside the local map, the heuristic assumes that there are
– in contrary to the inside – no streets outside the map.
Thus, the distance v from the map border crossing B to
the waypoint will get more weight during the cost estima-
tion than the distance u inside the map which is assumed
to be drivable on a street in the best case (see Fig. 4).

map

Figure 4: Heuristic for waypoint outside local map.

This poses the following optimization problem, which
is numerically solved for each node using the Newton-
Raphson mehod:

h(x,w1) = min
B

(u+ λoff-road · v) (14)

subject to the following constraints:

u = ‖x−B‖ , (15)
v = ‖w1 −B‖ , (16)
B on map border. (17)

Note that the solution of this optimization problem is inde-
pendent of the waypoint radius r1. It is merely an offset to
the heuristic, which can safely be omitted, as the planning
stops at the map border and, thus, the waypoint outside the
map is not reached by the planner during the current itera-
tion.

3.4 Wall following
Because the path planner possesses only partial knowledge
about the environment, as it only has a local map, it is pos-
sible that the planner gets stuck if an obstacle is U-shaped
or has very large dimensions lateral to the direction to the
next waypoint. While performing free planning, a large
obstacle causes the vehicle to travel along the obstacle for
some time, as the heuristics allows for a certain detour. If
the obstacle is too large and the detour becomes too long,
the vehicle will turn around and travel along the obstacle
in the reverse direction. If the obstacle is also large in this
direction, the vehicle will turn around again, leading to an
infinite loop. Thus approximately reaching a pose in which
the vehicle has been before is used to detect this particular
situation.
Afterward, the obstacle is explored by wall following. This
is performed using the Hybrid A* algorithm as well: Au-
tomatically generated waypoints are placed along a virtual
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Figure 5: Planned path in an urban environment (left), real costs minθ g (center), predicted costs minθ f (right).

street surrounding the detected obstacle. So the robot fol-
lows this street around the obstacle until the behavioral
planner decides to cease wall following in order to reach
a goal on the other side.
The availability of this wall following capability is very
important to our planning concept as the coverage of the
local map may be quite limited compared to the size of
existing obstacles like walls, fences, etc.

4 Results
The planner algorithms have been evaluated both on sim-
ulated as well as real-world data. Due to its efficient
implementation in C++ it is capable of generating paths
with a rate higher than 10 Hz on a Notebook equipped
with a moderately fast Intel Core 2 Duo P8400 CPU with
2.26 GHz, which totally fulfills the real-time requirement.
Fig. 5 shows a planning result. In the left figure one
can see the generated path through an urban environment.
Thanks to the incorporation of the off-road penalty into the
path costs the vehicle stays on the road instead of cutting
through off-road regions. Furthermore, due to the higher
costs associated with off-road areas, the Hybrid A* algo-
rithm explores primarily the road network, which can be
seen from Figure 5 (center) that shows the real costs g and
the predicted costs f (right).
Especially from the right figure, it can be seen clearly that
the cell expansion during the search for a path to G2 is
guided through the goal region G1 of the first waypoint.

5 Conclusions
In this paper we presented the application of Hybrid A* to
path planning for autonomous mobile robots in unstruc-
tured outdoor environments. It respects kinematic con-
straints of the vehicle and takes surface conditions into ac-
count. Thanks to the extensions we made to the original
algorithm, it is capable of explicitly planning via one way-

point to a second waypoint. Thus, the generated paths are
guaranteed to be drivable by the vehicle. The use of thor-
oughly chosen cost functions and heuristics allow for the
incorporation of various constraints like driving preferably
on-road. Finally, we pointed out how planning to a way-
point lying outside the local map can be performed using
an appropriate heuristic function and taking into account
obstacles exceeding the map dimensions.
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