
Complex Analysis Qual Sheet

Robert Won

“Tricks and traps. Basically all complex analysis qualifying exams are collections of tricks and
traps.”

- Jim Agler

1 Useful facts

1. ez =
∞∑
n=0

zn

n!

2. sin z =

∞∑
n=0

(−1)n
z2n+1

(2n+ 1)!
=

1

2i
(eiz − e−iz)

3. cos z =

∞∑
n=0

(−1)n
z2n

2n!
=

1

2
(eiz + e−iz)

4. If g is a branch of f−1 on G, then for a ∈ G, g′(a) =
1

f ′(g(a))

5. |z ± a|2 = |z|2 ± 2Reaz + |a|2

6. If f has a pole of order m at z = a and g(z) = (z − a)mf(z), then

Res(f ; a) =
1

(m− 1)!
g(m−1)(a).

7. The elementary factors are defined as

Ep(z) = (1− z) exp

(
z +

z2

2
+ · · ·+ zp

p

)
.

Note that elementary factors are entire and Ep(z/a) has a simple zero at z = a.

8. The factorization of sin is given by

sinπz = πz
∞∏
n=1

(
1− z2

n2

)
.

9. If f(z) = (z − a)mg(z) where g(a) 6= 0, then

f ′(z)

f(z)
=

m

z − a
+
g′(z)

g(z)
.
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2 Tricks

1. If f(z) nonzero, try dividing by f(z). Otherwise, if the region is simply connected, try writing
f(z) = eg(z).

2. Remember that |ez| = eRez and argez = Imz. If you see a Rez anywhere, try manipulating
to get ez.

3. On a similar note, for a branch of the log, log reiθ = log |r|+ iθ.

4. Let z = eiθ.

5. To show something is analytic use Morera or find a primitive.

6. If f and g agree on a set that contains a limit point, subtract them to show they’re equal.

7. Tait: “Expand by power series.”

8. If you want to count zeros, either Argument Principle or Rouché.

9. Know these Möbius transformations:

(a) To map the right half-plane to the unit disk (or back),
1− z
1 + z

.

(b) To map from the unit disk to the unit disk, remember ϕa(z) =
z − a
1− az

. This is a bijective

map with inverse ϕ−a(z). Also, ϕa(a) = 0, ϕ′a(z) =
1− |a|2

(1− az)2
, ϕ′a(0) = 1 − |a|2, and

ϕ′a(a) =
1

1− |a|2
.

10. If f(z) is analytic, then f(z) is analytic (by Cauchy-Riemann). So if, for example, f(z) is
real on the real axis, then f(z) = f(z).

11. To prove that a function defined by an integral is analytic, try Morera and reversing the
integral. (e.g.

∫∞
ε e−ttz−1dt is analytic since

∫
T

∫∞
ε e−ttz−1dtdz =

∫∞
ε

∫
T e
−ttz−1dzdt = 0.)

12. If given a point of f (say f(0) = a) and some condition on f ′ on a simply connected set, try∫
[0,z] f

′ = f(z)− f(0).

13. To create a non-vanishing function, consider exponentiating.

3 Theorems

1. Cauchy Integral Formula: Let G be region and f : G → C be analytic. If γ1, . . . , γm
are closed rectifiable curves in G with

∑m
k=0 n(γk;w) = 0 for all w ∈ C \ G, then for a ∈

G \ (∪mk=1{γk}),

f (n)(a) ·
m∑
k=0

n(γk; a) =
n!

2πi

m∑
k=1

∫
γk

f(z)

(z − a)n+1
dz.
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2. Cauchy’s Theorem: Let G be a region and f : G→ C be analytic. If γ1, . . . , γm are closed
rectifiable curves in G with

∑m
k=0 n(γk;w) = 0 for all w ∈ C \G, then

m∑
k=1

∫
γk

f(z)dz = 0

3. Liouville’s Theorem: If f is a bounded entire function, then f is constant.

4. Maximum Modulus Theorem: Let G be a region and f : G → C be analytic. If there
exists an a ∈ G such that |f(a)| ≥ |f(z)| for all z ∈ G, then f is constant on G.

5. Morera’s Theorem: Let G be a region and f : G→ C be continuous. If
∫
T f = 0 for every

triangular path T in G, then f is analytic on G.

6. Goursat’s Lemma: Let G be a region and let f : G → C. If f is differentiable, then f is
analytic on G.

7. Cauchy-Riemann Equations: Let f(x, y) = u(x, y) + iv(x, y) for real-valued functions u
and v. Then f is analytic if and only if

∂u

∂x
=
∂v

∂y
and

∂u

∂y
= −∂v

∂x

8. Constant functions: Let f : G→ C be analytic. Then the following are equivalent

(i) f(z) ≡ α;

(ii) {z ∈ G | f(z) = α} has a limit point in G;

(iii) there exists a ∈ G such that f (n)(a) = 0 for all n ≥ 1.

9. Conformality: Let f : G → C be analytic. Then if z ∈ G and f ′(z) 6= 0, f is conformal at
z.

10. Roots of an analytic function: Let f : G→ C be analytic. If f(a) = 0, then there exists
a unique m ≥ 1 and g analytic such that

f(z) = (z − a)mg(z)

with g(a) 6= 0.

11. Power series: A function f is analytic on B(a;R) if and only if there exists a power series
f(z) =

∑∞
n=0 an(z − a)n where we compute

an =
f (n)(a)

n!
=

1

2πi

∫
γ

f(z)

(z − a)n+1
dz.

The series converges absolutely on B(a;R) and uniformly on B(a; r) for 0 ≤ r < R.

12. Cauchy’s Estimate: If f analytic on B(a;R), and |f(z)| ≤M for each z ∈ B(a;R), then∣∣∣f (n)(a)
∣∣∣ ≤ n!M

Rn
.
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13. Winding Number: To compute the index of a closed curve about a point a,

n(γ; a) =
1

2πi

∫
γ

dz

z − a
∈ Z.

14. Open Mapping Theorem: Let G be a region, f a non-constant analytic function. If U is
an open subset of G, then f(U) is open.

15. Zero-Counting Theorem: Let G be a region, f : G→ C analytic with roots a1, . . . am. If
{γ} ⊆ G and ak 6∈ {γ} for all k, and γ ≈ 0 in G, then

1

2πi

∫
γ

f ′(z)

f(z)
dz =

m∑
k=1

n(γ; ak)

Corollary: If f(a) = α, then f(z)− α has a root at a. So if f(ak) = α, then

1

2πi

∫
γ

f ′(z)

f(z)− α
dz =

m∑
k=1

n(γ; ak)

Corollary 2: If σ = f ◦ γ and α 6∈ {σ} and ak are the points where f(ak) = α, then

n(σ;α) =
m∑
k=1

n(γ; ak) or

n(f ◦ γ; f(a)) =

m∑
k=1

n(γ; ak)

16. Roots of analytic functions: Suppose f is analytic on B(a;R) and let f(a) = α. If f(z)−α
has a zero of order m at z = a, then there exist ε > 0 and δ > 0 such that if 0 < |ζ − α| < δ,
the equation f(z) = ζ has exactly m simple roots in B(a, ε).

17. Existence of Logarithm: Let f(z) be analytic and f(z) 6= 0 on G, a simply connected
region. Then there is analytic function g(z) on G such that f(z) = eg(z) for all z ∈ G.

18. Existence of Primitive: Let f(z) be analytic on G, a simply connected region. Then f has
a primitive.

19. Laurent Series: Let f be analytic on R1 < |z − a| < R2, then there exists a sequence
{an}∞n=−∞ and

f(z) =

∞∑
n=−∞

an(z − a)n

with absolute convergence in the open annulus and uniform convergence on every compact
subset of the annulus. This series is called a Laurent series, and if γ is a closed curve in the
annulus, then

an =
1

2πi

∫
γ

f(z)

(z − a)n+1
dw.

(Note that this is just the same as number 11).
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20. Classification of Singularities: Suppose f analytic on B(a;R) \ {a} and f has an isolated
singularity at a. Then a is

(a) Removable singularity if there is a function g analytic on B(a;R) such that f(z) = g(z)
for all z ∈ B(a;R) \ {a}.
The singularity is removable if and only if lim

z→a
(z − a)f(z) = 0.

Also, the singularity is removable if and only if the Laurent series of f has no coefficients
an for n < 0.

(b) Pole if lim
z→a
|f(z)| =∞.

If a is a pole, then there is a unique m ≥ 1 and an analytic function g such that

f(z) =
g(z)

(z − a)m
for all z ∈ B(a;R) \ {a} and g(a) 6= 0.

The singularity is a pole if and only if the Laurent series of f has only finitely many
coefficients an for n < 0. The partial series for these coefficients is called the singular
part of f .

(c) Essential singularity if a is not removable and not a pole.

The singularity is essential if and only if the Laurent series of f has infinitely many
coefficients an for n < 0.

21. Casorati-Weierstrass: If f has an essential singularity at a, then for all δ > 0, f({z | 0 < |z − a| < δ})
is dense in C.

22. Residues: If f has an isolated singularity at a, then the residue of f at a, Res(f ; a) = a−1.
We can calculate the residue using the formula for Laurent coefficients:

Res(f ; a) =
1

2πi

∫
γ
f(z)dz.

If a is a pole of order m, then if g(z) = (z − a)mf(z)

Res(f ; a) =
g(m−1)(a)

(m− 1)!
.

23. Residue Theorem: Let f be analytic on a region G except for singularities at a1, . . . , am.
Let γ ≈ 0 be a closed curve in G with a1, . . . , am /∈ {γ}. Then

1

2πi

∫
γ
f(z)dz =

m∑
k=1

n(γ; ak) · Res(f ; ak).

24. Argument Principle: Let f be meromorphic with roots z1, . . . , zm and poles p1, . . . , pn with
z1, . . . , zm, p1, . . . , pn /∈ {γ}. Then

1

2πi

∫
γ

f ′

f
=

m∑
k=1

n(γ; zm)−
n∑
j=1

n(γ; pn).
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25. Rouché’s Theorem: Let f, g be meromorphic on G and let γ be a closed curve in G. Then
if, for all z ∈ {γ},

|f(z) + g(z)| < |f(z)|+ |g(z)|

then Zf − Pf = Zg − Pg.

26. Jordan’s Lemma: Suppose that:

(i) f(z) is analytic at all points z in the upper half plane y ≥ 0 that are exterior to a circle
|z| = R0;

(ii) CR denotes a semicircle z = Reiθ for 0 ≤ θ ≤ 2π with R > R0;

(iii) for all points z on CR there is a positive constant MR such that |f(z)| ≤ MR, with
limR→∞MR = 0

Then for every positive constant a:

lim
R→∞

∫
CR

f(z)eiazdz = 0.

27. Fractional Residue: If z0 is a simple pole of f(z), and CR is an arc of the circle {|z−z0| = R}
of angle θ, then

lim
R→0

∫
CR

f(z)dz = θiRes(f(z), z0).

4 Theorems, part 2

1. Maximum Modulus Theorem:

(a) (First Version). If f : G → C is analytic and there exists a ∈ G with |f(a)| ≥ |f(z)| for
all z ∈ G, then f is constant.

(b) (Second Version). If G is open and bounded, and f analytic on G and continuous on G,
then

max{|f(z)| | z ∈ G} = max |f(z)| | z ∈ ∂G}.

(Or f attains its maximum on the boundary).

(c) (Third Version). If f : G → C is analytic, and there is a constant M such that
lim supz→a |f(z)| ≤M for all a ∈ ∂∞G, then |f(z)| ≤M for all z ∈ G.

(Where lim supz→a f(z) = limr→0+ sup{f(z) | z ∈ G ∩B(a; r)}.)

2. Schwarz’s Lemma: Suppose f : D→ D is analytic and f(0) = 0. Then

(i) |f ′(0)| ≤ 1,

(ii) |f(z)| ≤ z, and

(iii) if |f ′(0)| = 1 or |f(z)| = z for any z ∈ D, then f(z) = cz for some |c| = 1.

3. Generalized Schwarz’s Lemma: Suppose f : D→ D is analytic. Then
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(i) |f ′(a)| ≤ 1− |f(a)|2

1− |a|2
,

(ii) if equality, then f(z) = ϕ−a(cϕa(z)).

4. Logarithmic Convexity: Let a < b, G = {z ∈ C | a < Re z < b}, and f : G → C. If f is
continuous on G, analytic on G and bounded, then M(x) = sup

y∈R
|f(x+ iy)| is logarithmically

convex.

5. Phragmèn-Lindelöf : Let G be simply connected, f : G → C analytic, and suppose there
exists ϕ : G→ C analytic, bounded, and nonzero on G. Suppose further that ∂∞G = A ∪B
and

(i) for all a ∈ A, lim sup
z→a

|f(z)| ≤M

(ii) for all b ∈ B, for all η > 0, lim sup
z→b

|f(z)||ϕ(a)|η ≤M ,

then |f(z)| ≤M on G.

6. Logic of the ρ metric: For all ε > 0, there exist δ > 0 and K ⊆ G compact such that

ρK(f, g) < δ =⇒ ρ(f, g) < ε

and for all δ > 0, K compact, there exists an ε such that

ρ(f, g) < ε =⇒ ρK(f, g) < δ

7. Spaces of Continuous Functions: If Ω is complete, then C(G,Ω) is complete.

8. Normal Families: F ⊆ C(G,Ω). F is normal if all sequences have a convergent subse-
quence.

F is normal iff F is compact iff F is totally bounded (i.e. for all K, δ > 0, there exist
f1, . . . , fn ∈ F such that F ⊆

⋃n
i=1{g ∈ C(G,Ω) | ρK(f ; g) < δ}.

9. Arzela-Ascoli: F is normal iff

(i) for all z ∈ G, {f(z) | f ∈ F} has compact closure in Ω, and

(ii) for all z ∈ G, F is equicontinuous at z (for all ε > 0, there exists δ > 0 such that
|z − w| < δ ⇒ d(f(z), f(w)) < ε for all f ∈ F ).

10. The Space of Holomorphic Functions: Some useful facts:

(a) fn → f ⇐⇒ for all compact K ⊆ G, fn → f uniformly on K.

(b) {fn} in H(G), f ∈ C(G,C), then fn → f =⇒ f ∈ H(G) (If fn converges, it will converge
to an analytic function).

(c) fn → f in H(G) =⇒ f
(k)
n → f (k) (If f converges, its derivatives converge).

(d) H(G) is complete (Since H(G) is closed and C(G,C) is complete).
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11. Hurwitz’s Theorem: Let {fn} ∈ H(G), fn → f , f 6≡ 0. Let B(a; r) ⊆ G such that f 6= 0
on |z− a| = r. Then there exists an N such that n ≥ N =⇒ fn and f have the same number
of zeros in B(a; r).

Corollary: If fn → f and fn 6= 0, then either f(z) ≡ 0 or f(z) 6= 0.

12. Local Boundedness: A set F in H(G) is locally bounded iff for each compact set K ⊂ G
there is a constant M such that |f(z)| ≤ M for all f ∈ F and z ∈ K. (Also, F is locally
bounded if for each point in G, there is a disk on which F is uniformly bounded.)

13. Montel’s Theorem: F ⊆ H(G), then F is normal ⇐⇒ F is locally bounded (for all K
compact, there exists M such that f ∈ F ⇒ |f(z)| ≤M for all z ∈ K).

Corollary: F is compact iff F is closed and locally bounded.

14. Meromorphic/Holomorphic Functions: If {fn} in M(G) (or H(G)) and fn → f in
C(G,C∞), then either f ∈M(G) (or H(G)) or f ≡ ∞.

15. Riemann Mapping Theorem: G simply connected region which is not C. Let a ∈ G, then
there is a unique analytic function such that:

(a) f(a) = 0 and f ′(a) > 0;

(b) f is one-to-one;

(c) f(G) = D.

16. Infinite Products: Some propositions for convergence of infinite products:

(a) Re zn > 0. Then
∏
zn converges to a nonzero number iff

∑
log zn converges.

(b) Re zn > −1. Then
∑

log(1 + zn) converges absolutely iff
∑
zn converges absolutely.

(c) Re zn > 0. Then
∏
zn converges absolutely iff

∑
(zn − 1) converges absolutely.

17. Products Defining Analytic Functions: G a region and {fn} in H(G) such that fn 6≡ 0.
If
∑

[fn(z)− 1] converges absolutely uniformly on compact subsets of G then
∏
fn converges

in H(G) to an analytic function f(z). The zeros of f(z) correspond to the zeros of the fn’s.

18. Entire Functions with Prescribed Zeros: Let {an} be a sequence with lim |an| =∞ and
an 6= 0. If {pn} is a sequence of integers such that for all r > 0

∞∑
n=1

(
r

|an|

)pn+1

<∞,

then f(z) =
∏
Epn(z/an) converges in H(C) and f is an entire function with the correct

zeros. (Note that you can choose pn = n− 1 and it will always converge).

19. The (Boss) Weierstrass Factorization Theorem: Let f be an entire function with non-
zero zeros {an} with a zero of order m at z = 0. Then there is an entire function g and a
sequence of integers {pn} such that

f(z) = zmeg(z)
∞∏
n=1

Epn

(
z

an

)
.
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20. Existence of Analytic Functions with Given Zeros: Let G be a region and {aj} a
sequence of distinct points with no limit point in G, {mj} a sequence of integers. Then there
is an analytic function f defined on G whose only zeros are the aj ’s with multiplicity mj .

21. Meromorphic Functions as a Quotient of Analytic: If f is a meromorphic function on
the open set G, then there are analytic functions g and h on G such that f = g/h.

22. Runge’s Theorem: Let K be compact and E meet each component of C∞ \ K. If f is
analytic in an open set containing K, then for any ε > 0, there is a rational function R(z)
with poles in E such that |f(z)−R(z)| < ε for all z ∈ K.

Corollary: Let G be an open subset of the plane and E a subset of C∞ \ G meeting each
component. Let R(G,E) be the set of rational functions with poles in E. If f ∈ H(G) then
there is a sequence {Rn} in R(G,E) such that f = limRn. (That is, R(G,E) is dense in
H(G)).

Corollary: If C∞ \G is connected, then polynomials are dense in G.

23. Polynomially Convex Hull: Let K be compact. The polynomially convex hull of K (K̂)
is the set of all points w such that for every polynomial p, |p(w)| ≤ max{|p(z)| | z ∈ K}.
If K is an annulus, then K̂ is the disk obtained by filling in the interior hole.

24. A Few Words on Simple Connectedness (Ha): The following are equivalent for G ⊆ C
open, connected:

(i) G is simply connected;

(ii) n(γ; a) = 0 for every closed rectifiable curve γ in G and every point a ∈ C \G;

(iii) C∞ \G is connected;

(iv) For any f ∈ H(G), there is a sequence of polynomials that converges to f in H(G);

(v) For any f ∈ H(G) and any closed rectifiable curve γ in G,
∫
γ f = 0;

(vi) Every function f ∈ H(G) has a primitive;

(vii) For any f ∈ H(G) such that f(z) 6= 0, there is a function g ∈ H(G) such that f(z) =
exp g(z);

(viii) For any f ∈ H(G) such that f(z) 6= 0, there is a function g ∈ H(G) such that f(z) =
[g(z)]2;

(ix) G is homeomorphic to D;

(x) If u : G→ R is harmonic then there exists a harmonic conjugate.

25. Mittag-Leffler’s Theorem: Let G be open, {ak} distinct points in G without a limit point
in G, and {Sk(z)} be a sequence of singular parts at the ak’s. Then there is a meromorphic
function f on G whose poles are exactly the {ak} such that the singular part of f at ak is
Sk(z).

26. Mean Value Property: If u : G → R is a harmonic function and B(a; r) is a closed disk
contained in G, then

u(a) =
1

2π

∫ 2π

0
u(a+ reiθ) dθ.
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In fact, for z ∈ B(0; r),

u(z) =
1

2π

∫ 2π

0
Re

(
reiθ + z

reiθ − z

)
u(reiθ) dθ.

27. Jensen’s Formula: Let f be analytic on B(0; r) and suppose a1, . . . , an are the zeros of f
in B(0; r) repeated according to multiplicity. If f(0) 6= 0, then

log |f(0)| = −
n∑
k=1

log

(
r

|ak|

)
+

1

2π

∫ 2π

0
log |f(reiθ)|dθ.

28. Poisson-Jensen Formula: Let f be analytic on B(0; r) and suppose a1, . . . , an are the zeros
of f in B(0; r) repeated according to multiplicity. If f(z) 6= 0, then

log |f(z)| = −
n∑
k=1

log

(
r2 − akz
r(z − ak)

)
+

1

2π

∫ 2π

0
Re

(
reiθ + z

reiθ − z

)
log |f(reiθ)|dθ.

29. Genus, Order, and Rank of Entire Functions:

• Rank : Let f be an entire function with zeros {ak} repeated according to multiplicity
such that |a1| ≤ |a2| ≤ . . .. Then f is of finite rank if there is a p ∈ Z such that

∞∑
n=1

1

|an|p+1
<∞.

If p is the smallest integer such that this occurs, then f is of rank p. A function with
only a finite number of zeros has rank 0.

• Standard Form: Let f be an entire function of rank p with zeros {ak}. Then the canonical
product

f(z) = zmeg(z)
∞∏
n=1

Ep

(
z

an

)
is the standard form for f .

• Genus: An entire function f has finite genus if f has finite rank and g(z) is a polynomial.
If the rank is p and the degree of g is q, then the genus µ = max(p, q). If f has genus µ,
then for each α > 0, there exists an r0 such that |z| > r0 implies

|f(z)| < eα|z|
µ+1

.

• Order : An entire function f is of finite order if there exists a > 0 and r0 > 0 such that
|f(z)| < exp(|z|a) for |z| > r0. The number

λ = inf{a | |f(z)| < exp(|z|a) for |z| sufficiently large}

is called the order of f .

If f has order λ and ε > 0, then |f(z)| < exp(|z|λ+ε) for all |z| sufficiently large, and a
z can be found, with |z| as large as desired, such that |f(z)| ≥ exp(|z|λ−ε).
If f is of genus µ, then f is of finite order λ ≤ µ+ 1.
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30. Hadamard’s Factorization Theorem: If f is entire with finite order λ, then f has finite
genus ≤ λ. Combined with above, we have that f has finite order if and only if f has finite
genus. Corollary: If f is entire with finite order, then for all c ∈ C with one possible
exception, we can always solve f(z) = c.

Corollary: If f is entire with finite order λ /∈ Z, then f has an infinite number of zeros.

5 Special Functions

1. The Riemann Zeta Function

ζ(s) =
∞∑
n=1

1

ns
=

∏
p prime

1

1− p−s
and ζ(s) = ζ(1− s)

This function has a pole at s = 1, zeros at the negative even integers, and its remaining zeros
are in the critical strip {z | 0 < Re z < 1}.
Riemann’s functional equation is

ζ(z) = 2(2π)z−1Γ(1− z)ζ(1− z) sin

(
1

2
πz

)
.

2. The Gamma Function: The gamma function is the meromorphic function on C with simple
poles at z = 0,−1,−2, . . . defined by:

Γ(z) =

∫ ∞
0

e−ttz−1dt

=
e−γz

z

∞∏
n=1

(
1 +

z

n

)−1
ez/n

= lim
n→∞

n!nz

z(z + 1) · · · (z + n)
=

Γ(z + n)

z(z + 1) · · · (z + n− 1)
.

The residues at each of the poles is given by

Res(Γ,−n) =
(−1)n

n!
.

The functional equation holds for z 6= 0, 1, . . .

Γ(z + 1) = zΓ(z).

Note further that

Γ(1− z)Γ(z) =
π

sin(πz)
and Γ(z) = Γ(z) and Γ(1/2) =

√
π.
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6 Theorems, part 3

1. Schwarz Reflection Principle: Let G be a region such that G = G∗ (symmetric with
respect to real axis). If f : G+ ∪G0 → C is continuous and analytic on G+, and f(G0) ⊆ R,
then there is an analytic function g : G→ C such that f(z) = g(z) for z ∈ G+ ∪G0.

2. Analytic Continuations: Let γ : [0, 1]→ C be a curve and [f ]a be a germ at a = γ(0). An
analytic continuation of [f ]a along γ is a family (ft, Gt), t ∈ [0, 1] such that

(i) γ(t) ∈ Gt
(ii) [f0]a = [f ]a

(iii) ∀t ∈ [0, 1], ∃δ > 0 such that |s− t| < δ =⇒ γ(s) ∈ Gt and [fs]γ(s) = [ft]γ(s)

3. Uniqueness of Analytic Continuations: Let γ : [0, 1] → C be a path from a to b and
let (ft, Gt) and (gt, Bt) be two analytic continuations along γ such that [f0]a = [g0]a. Then
[f1]b = [g1]b.

4. Analytic Continuations along FEP Homotopic Curves: Let a ∈ C and [f ]a a germ
at a. If γ0 and γ1 are FEP homotopic and [f ]a admits analytic continuation along every
γs, s ∈ [0, 1], then the analytic continuations of [f ]a along γ0 and γ1 are equal.

5. Monodromy Theorem: Let G be a region, a ∈ G, [f ]a a germ at a. If G is simply
connected and admits unrestricted continuation of [f ]a. then there exists F ∈ H(G) such
that [F ]a = [f ]a.

6. Neighborhood Systems: Let X be a set and for all x ∈ X, Nx a collection of subsets of
X such that

(i) for each U ∈ Nx, x ∈ U ;

(ii) if U, V ∈ Nx, ∃W ∈ Nx such that W ⊆ U ∩ V ;

(iii) if U ∈ Nx and V ∈ Ny then for z ∈ U ∩ V ∃W ∈ Nz such that W ⊆ U ∩ V .

Then {Nx | x ∈ X} is a neighborhood system on X.

7. Sheaf of Germs: For an open set G in C let

S (G) = {(z, [f ]z) | z ∈ G, f is analytic at z},

and define a map ρ : S (G) → C by ρ(z, [f ]z) = z. Then (S (G), ρ) is the sheaf of germs of
analytic functions on G.

We put a topology on the sheaf of germs by defining a neighborhood system. For D ⊆ G,
and f ∈ H(D), define

N(f,D) = {(z, [f ]z) | z ∈ D}.

For each point (a, [f ]a) ∈ S (G), let

N(a,[f ]a) = {N(g,B) | a ∈ B and [g]a = [f ]a}.

This is a neighborhood system on S (G) and the induced topology is Hausdorff.
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8. Components of the Sheaf of Germs:

• There is a path in S (G) from (a, [f ]a) to (b, [g]b) iff there is a path γ in G from a to b
such that [g]b is the analytic continuation of [f ]a along γ.

• Let C ⊆ S (G) and (a, [f ]a) ∈ C . Then C is a component of S (G) iff

C = {(b, [g]b) | [g]b is the continuation of [f ]a along some curve in G}.

9. Riemann Surfaces: Fix a function element (f,D). The complete analytic function F
associated with (f,D) is the collection

F = {[g]z | [g]z is an analytic continuation of [f ]a for any a ∈ D}.

Then R = {(z, [g]z) | [g]z ∈ F} is a component of S (C), and (R, ρ) is the Riemann Surface
of F .

10. Complex Manifolds: Let X be a topological space.

• A coordinate chart is a pair (U,ϕ) such that U ⊆ X is open and ϕ : U → V ⊆ C is a
homeomorphism.

• A complex manifold is a pair (X,Φ) where X is connected, Hausdorff and Φ is a collection
of coordinate patches on X such that

(i) each point of X is contained in at least one member of Φ and

(ii) if (Ua, ϕa), (Ub, ϕb) ∈ Φ with Ua ∩ Ub 6= ∅, then ϕa ◦ ϕ−1b is analytic.

11. Analytic Functions: Let (X,Φ) and (Ω,Ψ) be analytic manifolds, f : X → Ω continuous,
a ∈ X, and (a) = α. Then f is analytic at a if for any patch (Λ, ψ) ∈ Ψ which contains α,
there is a patch (U,ϕ) ∈ Φ which contains a such that

(i) f(U) ⊆ Λ;

(ii) ψ ◦ f ◦ ϕ−1 is analytic on ϕ(U) ⊆ C.

12. Some Results on Analytic Functions:

• Let F be a complete analytic function with Riemann surface (R, ρ). If F : R → C is
defined by F (z, [f ]z) = f(z) then F is an analytic function.

• Compositions of analytic function are analytic

• (Limit Points) If f and g are analytic functions X → Ω and if {x ∈ X : f(x) = g(x)}
has a limit point in X, then f = g.

• (Maximum Modulus) If f : X → C is analytic and there is a point a ∈ X and a
neighborhood U of a such that |f(a)| ≥ |f(x)| for all x ∈ U , then f is constant.

• (Liouville) If (X,Φ) is a compact analytic manifold, then there is no non-constant ana-
lytic function from X into C.

• (Open Mapping) Let f : X → Ω be a non-constant analytic function. If U is an open
subset of X, then f(U) is open in Ω.
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13. Mean Value Property: If u : G→ R is a harmonic function and B(a; r) ⊂ G then

u(a) =
1

2π

∫ 2π

0
u(a+ reiθ) dθ.

14. Maximum Principles:

I. Suppose u : G→ R has the MVP. If there is a point a ∈ G such that u(a) ≥ u(z) for all
z in G, then u is constant. (Analogously, there is a Minimum Principle).

II. Let u, v : G→ R be bounded and continuous functions with the MVP. If for each point
a ∈ ∂∞G,

lim sup
z→a

u(z) ≤ lim inf
z→a

v(z)

then u(z) < v(z) for all z in G or u = v.

Corollary: If a continuous function satisfying the MVP is 0 on the boundary, then it
is identically 0.

III. If ϕ : G→ R is a subharmonic function and there is a point a ∈ G with ϕ(a) ≥ ϕ(z) for
all z in G, then ϕ is constant.

IV. If ϕ,ψ : G → R are bounded functions such that ϕ is subharmonic and ψ is superhar-
monic and for each point a ∈ ∂∞G,

lim sup
z→a

ϕ(z) ≤ lim inf
z→a

ψ(z)

then ϕ(z) < ψ(z) for all z in G or ϕ = ψ is harmonic.

15. The Poisson Kernel: For 0 ≤ r < 1,−∞ < θ <∞, the Poisson kernel is the following:

Pr(θ) =

∞∑
n=−∞

r|n|einθ = Re

(
1 + reiθ

1− reiθ

)
=

1− r2

1− 2r cos θ + r2
.

16. Dirichlet Problem in the Disk: If f : ∂D → R is a continuous function, then there is a
continuous harmonic function u : D → R such that u(z) = f(z) for all z ∈ ∂D. Moreover, u
is unique and defined by

u(reiθ) =
1

2π

∫ π

−π
Pr(θ − t)f(eit) dt.

17. Harmonicity vs. MVP: If u : G→ R is a continuous function which has the MVP, then u
is harmonic.

18. Harnack’s Inequality: If u : B(a;R) → R is continuous, harmonic in B(a;R), and u ≥ 0
then for 0 ≤ r < R and all θ

R− r
R+ r

u(a) ≤ u(a+ reiθ) ≤ R+ r

R− r
u(a).
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19. Harnack’s Theorem: Let G be a region. The metric space Har(G) is complete. If {un} is
a sequence in Har(G) such that u1 ≤ u2 ≤ . . . then either un(z)→∞ uniformly on compact
subsets of G or {un} converges in Har(G) to a harmonic function.

20. Subharmonic Functions: Let ϕ : G → R be continuous. Then ϕ is subharmonic iff for
every G1 ⊆ G and every harmonic u1 on G1, ϕ− u1 satisfies the Maximum Principle on G1

Corollary: ϕ is subharmonic iff for every bounded region G1 such that G1 ⊂ G and for every
continuous function u1 : G1 → R that is harmonic on G1 and satisfies ϕ(z) ≤ u1(z) on ∂G1,
ϕ(z) ≤ u1(z) for z ∈ G1.

21. Maxima of Subharmonic Functions: If ϕ1 and ϕ2 are subharmonic functions on G then
ϕ(z) = max{ϕ1(z)ϕ2(z)} is a subharmonic function.

22. Bumping Let ϕ : G → R be subharmonic and B(a; r) ⊂ G. Define ϕ′(z) = ϕ(z) if z ∈
G \ B(a; r) and ϕ′(z) be the solution to the Dirichlet problem for z ∈ B(a; r). Then ϕ′ is
subharmonic.

23. The Perron Function: Let f : ∂∞G → R be continuous. Then u(z) = sup{ϕ(z) | ϕ ∈
P(f,G)} defines a harmonic function on G.

(P(f,G) = {ϕ : G→ R | ϕ subharmonic, lim supz→a ϕ(z) ≤ f(a) ∀a ∈ ∂∞G})

24. General Dirichlet Problem: A region G is a Dirichlet Region iff there is a barrier for G
at each point of ∂∞G.

(A barrier for G at a is a family {ψr} such that ψr is superharmonic on G(a; r) with 0 ≤
ψr(z) ≤ 1, lim

z→a
ψr(z) = 0, and lim

z→w
ψr(z) = 1 for w ∈ G ∩ {w | |w − a| = r}.)

Corollary: Let G be a region such that no component of C∞ \G reduces to a point, then G
is a Dirichlet region.

Corollary: A simply connected region is a Dirichlet region.
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