Complex Analysis Qual Sheet

Robert Won

“Tricks and traps. Basically all complex analysis qualifying exams are collections of tricks and
traps.”
- Jim Agler

1 Useful facts
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4. If g is a branch of f~! on G, then for a € G, ¢'(a) =
= o)

5. |z £al? = |z|> £ 2Reaz + |a|?
6. If f has a pole of order m at z = a and g(z) = (z — a)"™ f(2), then
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7. The elementary factors are defined as
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Note that elementary factors are entire and E,(z/a) has a simple zero at z = a.

8. The factorization of sin is given by
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9. If f(z) = (2 —a)™g(z) where g(a) # 0, then
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2 Tricks

1.

10.

11.

12.

13.

. Remember that |e*| = e

If f(z) nonzero, try dividing by f(z). Otherwise, if the region is simply connected, try writing
f(z) = e?®.
Rez and arge* = Imz. If you see a Rez anywhere, try manipulating

to get e*.

. On a similar note, for a branch of the log, logre? = log |r| + 6.
. Let z = €%,
. To show something is analytic use Morera or find a primitive.

. If f and g agree on a set that contains a limit point, subtract them to show they’re equal.

Tait: “Expand by power series.”

. If you want to count zeros, either Argument Principle or Rouché.

Know these Mobius transformations:

(a) To map the right half-plane to the unit disk (or back), 1 n i

(b) To map from the unit disk to the unit disk, remember ¢,(z) = f:;;. This is a bijective
map with inverse p_,(z). Also, ga(a) = 0, @, (z) = &:':J;, ¢, (0) = 1 —|al?, and
i@ = o7

If f(2) is analytic, then f(Z) is analytic (by Cauchy-Riemann). So if, for example, f(z) is
real on the real axis, then f(z) = f(z).

To prove that a function defined by an integral is analytic, try Morera and reversing the
integral. (e.g. [~ e 't*~1dt is analytic since [, [ e 't* tdtdz = [7° [, e 't*  dzdt = 0.)

If given a point of f (say f(0) = a) and some condition on f’ on a simply connected set, try

Jio £ = 1(z) = £(0).

To create a non-vanishing function, consider exponentiating.

3 Theorems

1.

Cauchy Integral Formula: Let G be region and f : G — C be analytic. If vq,...,vm
are closed rectifiable curves in G with Y ;" jn(yg;w) = 0 for all w € C\ G, then for a €

G\ (Uit i),
a M e,
kzzon%’ 27?22/ (z—a)”“d ’
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10.

11.

12.

. Cauchy’s Theorem: Let G be a region and f : G — C be analytic. If vy, ..., v, are closed

rectifiable curves in G with > ~}"  n(yk; w) =0 for all w € C\ G, then

m

Z/ f(z)dz=0

k=1""k

. Liouville’s Theorem: If f is a bounded entire function, then f is constant.

. Maximum Modulus Theorem: Let G be a region and f : G — C be analytic. If there

exists an a € G such that |f(a)| > |f(2)| for all z € G, then f is constant on G.

. Morera’s Theorem: Let G be a region and f : G — C be continuous. If fT f =0 for every

triangular path T in G, then f is analytic on G.

. Goursat’s Lemma: Let G be a region and let f : G — C. If f is differentiable, then f is

analytic on G.

Cauchy-Riemann Equations: Let f(z,y) = u(x,y) + iv(x,y) for real-valued functions u
and v. Then f is analytic if and only if
ou  0Ov ou ov

%—% and iy:—%

. Constant functions: Let f: G — C be analytic. Then the following are equivalent

(i) f(2) =«
(ii) {z € G| f(#) = a} has a limit point in G;
(iii) there exists a € G such that f((a) = 0 for all n > 1.

. Conformality: Let f : G — C be analytic. Then if z € G and f'(2) # 0, f is conformal at

zZ.

Roots of an analytic function: Let f : G — C be analytic. If f(a) = 0, then there exists
a unique m > 1 and ¢ analytic such that

with g(a) # 0.

Power series: A function f is analytic on B(a; R) if and only if there exists a power series
f(z) =372 gan(z — a)™ where we compute

S L Sy
n — V(ziz

n!  2mi —a)rtl T
The series converges absolutely on B(a; R) and uniformly on B(a;r) for 0 < r < R.

Cauchy’s Estimate: If f analytic on B(a; R), and |f(z)| < M for each z € B(a; R), then

@) <
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14.

15.

16.

17.

18.

19.

Winding Number: To compute the index of a closed curve about a point a,

1 dz
‘q) = — 7.
n(v;a) 2m’/vz—a <

Open Mapping Theorem: Let G be a region, f a non-constant analytic function. If U is
an open subset of G, then f(U) is open.

Zero-Counting Theorem: Let G be a region, f : G — C analytic with roots ay,...an,. If
{7} C G and ay, & {7} for all k, and v ~ 0 in G, then

1 (2) -
27”/ (2) Z” (v; ax)
v k=1
Corollary: If f(a) = «, then f(z) — « has a root at a. So if f(ax) = «, then

f'(z -
2m/f —a Z:: (v; ax)

Corollary 2: If o = foy and o € {0} and ay are the points where f(ax) = «, then

m
n(o;a) =Y n(v;ay) or
k=1

n(f o fl@) = n(yiap)

k=1

Roots of analytic functions: Suppose f is analytic on B(a; R) and let f(a) = a. If f(2)—
has a zero of order m at z = a, then there exist ¢ > 0 and § > 0 such that if 0 < |( — a| < 0,
the equation f(z) = ¢ has exactly m simple roots in B(a,€).

Existence of Logarithm: Let f(z) be analytic and f(z) # 0 on G, a simply connected
region. Then there is analytic function g(z) on G such that f(z) = o) for all z € G.

Existence of Primitive: Let f(z) be analytic on G, a simply connected region. Then f has
a primitive.

Laurent Series: Let f be analytic on Ry < |z — a| < Ra, then there exists a sequence

{an}pZi o and

f(z) = Z an(z —a)"

n=—0o0

with absolute convergence in the open annulus and uniform convergence on every compact
subset of the annulus. This series is called a Laurent series, and if 7y is a closed curve in the
annulus, then

(Note that this is just the same as number 11).



20. Classification of Singularities: Suppose f analytic on B(a; R) \ {a} and f has an isolated
singularity at a. Then a is

(a) Removable singularity if there is a function g analytic on B(a; R) such that f(z) = g(z)
for all z € B(a; R) \ {a}.
The singularity is removable if and only if h_r>n(z —a)f(z) =0.
zZ—a
Also, the singularity is removable if and only if the Laurent series of f has no coefficients
a, for n < 0.
(b) Pole if lim |f(2)| = oo
z—a
If a is a pole, then there is a unique m > 1 and an analytic function g such that

f(z) = (Zg_(za))m for all z € B(a;R) \ {a} and g(a) # 0.
The singularity is a pole if and only if the Laurent series of f has only finitely many
coefficients a,, for n < 0. The partial series for these coefficients is called the singular
part of f.

(c) Essential singularity if a is not removable and not a pole.
The singularity is essential if and only if the Laurent series of f has infinitely many
coefficients a,, for n < 0.

21. Casorati-Weierstrass: If f has an essential singularity at a, then foralld > 0, f({z |0 < |z — a| < §})
is dense in C.

22. Residues: If f has an isolated singularity at a, then the residue of f at a, Res(f;a) = a—1.
We can calculate the residue using the formula for Laurent coefficients:

Res(f;a) = ;Ti/f(z)dz.
v

If a is a pole of order m, then if g(z) = (z — a)™ f(z2)

(m—1)
ey 9" V(a)
Res(f;a) = =1
23. Residue Theorem: Let f be analytic on a region G except for singularities at aq, ..., amn.

Let v =~ 0 be a closed curve in G with aq,...,am ¢ {7}. Then

g [ 161z = 3niosan) Restfion).

24. Argument Principle: Let f be meromorphic with roots z1, ..., z, and poles p1, ..., p, with
ZlyeneyZmy D1y .- Pn & {7}. Then

m
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25.

26.

27.

Rouché’s Theorem: Let f, g be meromorphic on G and let v be a closed curve in G. Then
if, for all z € {7},

1f(2) +9(2)| <[f(2)] + |g(2)]
then Zf - Pf = Zg — Pg.

Jordan’s Lemma: Suppose that:

(i) f(2) is analytic at all points z in the upper half plane y > 0 that are exterior to a circle
|2 = Ro;
(ii) Cg denotes a semicircle z = Re® for 0 < 6 < 27 with R > Ry;
(iii) for all points z on Cpg there is a positive constant Mp such that |f(z)| < Mg, with
limp oo Mp =0

Then for every positive constant a:

lim (2)e'"*dz = 0.
R—o0 Cr

Fractional Residue: If z is a simple pole of f(z), and C is an arc of the circle {|z—z¢| = R}
of angle 6, then

Jgino . (z)dz = OiRes(f(z), z0).

4 Theorems, part 2

1.

Maximum Modulus Theorem:

(a) (First Version). If f : G — C is analytic and there exists a € G with |f(a)| > |f(2)| for
all z € G, then f is constant.

(b) (Second Version). If G is open and bounded, and f analytic on G and continuous on G,
then B
max{|f(z)| | z € G} = max|f(2)| | z € 0G}.

(Or f attains its maximum on the boundary).

(¢) (Third Version). If f : G — C is analytic, and there is a constant M such that
limsup,_,, |f(2)] < M for all a € 05G, then |f(z)| < M for all z € G.

(Where limsup,_,, f(2) = lim,_,g+ sup{f(z) | z € GN B(a;7)}.)

. Schwarz’s Lemma: Suppose f : D — D is analytic and f(0) = 0. Then

(i) 11 O) <1,
(i) |f(2)| < z, and
(iii) if |f(0)| =1 or |f(2)| = z for any z € D, then f(z) = cz for some |c| = 1.

. Generalized Schwarz’s Lemma: Suppose f : D — D is analytic. Then



10.

N 1—|f(a)?
(i) [f(a)| < 1—7|a\27

(ii) if equality, then f(z) = p_4(cpq(2)).

. Logarithmic Convexity: Let a <b, G ={2 € C|a<Rez<b},and f: G — C. If f is

continuous on G, analytic on G and bounded, then M (x) = sup |f(x + iy)| is logarithmically
yER

convex.

. Phragmeén-Lindel6f: Let G be simply connected, f : G — C analytic, and suppose there

exists ¢ : G — C analytic, bounded, and nonzero on GG. Suppose further that 0,,G = AU B
and

(i) for all a € A, limsup |f(z)| < M
zZ—a

(ii) for all b € B, for all n > 0, limsup |f(2)||p@)|" < M,
z—b

then |f(z)] < M on G.

. Logic of the p metric: For all € > 0, there exist 6 > 0 and K C G compact such that

pr(f,9) <0 = p(f,g) <e

and for all 6 > 0, K compact, there exists an € such that
p(f,9) <e= pk(f,g9) <6

Spaces of Continuous Functions: If 2 is complete, then C(G, Q) is complete.

. Normal Families: .# C C(G,). .# is normal if all sequences have a convergent subse-

quence.

Z is normal iff .Z is compact iff .# is totally bounded (i.e. for all K, § > 0, there exist
fisooo, fn € F such that # C |, {g € C(G,Q) | pr(f;9) <d}.

. Arzela-Ascoli: % is normal iff

(i) for all z € G, {f(2) | f € F} has compact closure in 2, and
(ii) for all z € G, .# is equicontinuous at z (for all € > 0, there exists § > 0 such that
|z —w| <6 =d(f(z), f(w)) <eforall fe.F).

The Space of Holomorphic Functions: Some useful facts:

(a) fn — f <= for all compact K C G, f, — f uniformly on K.

(b) {fn}in H(G), f € C(G,C), then f, — f = f € H(G) (If f, converges, it will converge
to an analytic function).

(¢) fn— fin HG) = f,gk) — f) (If f converges, its derivatives converge).

(d) H(G) is complete (Since H(G) is closed and C(G, C) is complete).



11.

12.

13.

14.

15.

16.

17.

18.

19.

Hurwitz’s Theorem: Let {f,} € H(G), f, — f, f Z0. Let B(a;r) C G such that f # 0
on |z —a| = r. Then there exists an N such that n > N = f,, and f have the same number
of zeros in B(a;r).

Corollary: If f, — f and f, # 0, then either f(z) =0 or f(z) # 0.

Local Boundedness: A set .# in H(G) is locally bounded iff for each compact set K C G
there is a constant M such that |f(z)] < M for all f € .# and z € K. (Also, .# is locally
bounded if for each point in G, there is a disk on which % is uniformly bounded.)

Montel’s Theorem: .7 C H(G), then .Z is normal <= .Z is locally bounded (for all K
compact, there exists M such that f € .% = |f(z)| < M for all z € K).

Corollary: % is compact iff % is closed and locally bounded.

Meromorphic/Holomorphic Functions: If {f,} in M(G) (or H(G)) and f, — f in
C(G,Cx), then either f € M(G) (or H(G)) or f = oc.

Riemann Mapping Theorem: G simply connected region which is not C. Let a € G, then
there is a unique analytic function such that:

(a) f(a) =0 and f'(a) > 0:
(b) f is one-to-one;

(c) f(G) =D.

Infinite Products: Some propositions for convergence of infinite products:

(a) Re z, > 0. Then [] 2z, converges to a nonzero number iff ) log 2, converges.

(b) Re z, > —1. Then > log(1 + z,) converges absolutely iff » z, converges absolutely.

(c) Re z, > 0. Then [] z, converges absolutely iff > (2, — 1) converges absolutely.
Products Defining Analytic Functions: G a region and {f,} in H(G) such that f,, # 0.

If > [fn(2) — 1] converges absolutely uniformly on compact subsets of G then [] f,, converges
in H(G) to an analytic function f(z). The zeros of f(z) correspond to the zeros of the f,’s.

Entire Functions with Prescribed Zeros: Let {a,} be a sequence with lim |a, | = co and
an # 0. If {p,} is a sequence of integers such that for all » > 0

> < r )pn+1
S(5) <
n=1 ‘an‘

then f(z) = [[ Ep,(2/an) converges in H(C) and f is an entire function with the correct
zeros. (Note that you can choose p, =n — 1 and it will always converge).

The (Boss) Weierstrass Factorization Theorem: Let f be an entire function with non-
zero zeros {a,} with a zero of order m at z = 0. Then there is an entire function g and a
sequence of integers {p,} such that

z:zme(z)oo =
f() ’ HEn(an>‘

n=1



20.

21.

22.

23.

24.

25.

26.

Existence of Analytic Functions with Given Zeros: Let G be a region and {a;} a
sequence of distinct points with no limit point in G, {m;} a sequence of integers. Then there
is an analytic function f defined on G' whose only zeros are the a;’s with multiplicity m;.

Meromorphic Functions as a Quotient of Analytic: If f is a meromorphic function on
the open set G, then there are analytic functions g and h on G such that f = g/h.

Runge’s Theorem: Let K be compact and F meet each component of Co, \ K. If f is
analytic in an open set containing K, then for any € > 0, there is a rational function R(z)
with poles in F such that |f(z) — R(z)| < e for all z € K.

Corollary: Let G be an open subset of the plane and E a subset of Co \ G meeting each
component. Let R(G, E) be the set of rational functions with poles in E. If f € H(G) then
there is a sequence {R,} in R(G, E) such that f = lim R,,. (That is, R(G, E) is dense in
H(G)).
Corollary: If Cy \ G is connected, then polynomials are dense in G.
Polynomially Convex Hull: Let K be compact. The polynomially convex hull of K (K )
is the set of all points w such that for every polynomial p, |p(w)| < max{|p(z)| | z € K}.
If K is an annulus, then K is the disk obtained by filling in the interior hole.
A Few Words on Simple Connectedness (Ha): The following are equivalent for G C C
open, connected:

(i) G is simply connected;

(ii) n(y;a) = 0 for every closed rectifiable curve v in G and every point a € C\ G;

(iii) Coo \ G is connected;

(iv) For any f € H(G), there is a sequence of polynomials that converges to f in H(G);

(v) For any f € H(G) and any closed rectifiable curve v in G, f7 f=0;

(vi) Every function f € H(G) has a primitive;
(vii) For any f € H(G) such that f(z) # 0, there is a function g € H(G) such that f(z) =

exp g(2);

(viii) For any f € H(G) such that f(z) # 0, there is a function g € H(G) such that f(z) =

l9(=)]%;
(ix) G is homeomorphic to D
(x) If u: G — R is harmonic then there exists a harmonic conjugate.
Mittag-Leffler’s Theorem: Let G be open, {ax} distinct points in G without a limit point

in G, and {Sk(2)} be a sequence of singular parts at the a’s. Then there is a meromorphic
function f on G whose poles are exactly the {ar} such that the singular part of f at ay is

Mean Value Property: If v : G — R is a harmonic function and B(a;r) is a closed disk
contained in G, then

2T
u(a) = /0 u(a 4 ret?) do.



27.

28.

29.

In fact, for z € B(0;r),

1 [ ret + 2 i
u(z) = 27T/0 Re (rew — z) u(re?) de.

Jensen’s Formula: Let f be analytic on B(0;r) and suppose aq,...,a, are the zeros of f
in B(0;r) repeated according to multiplicity. If f(0) # 0, then

lo If(O)I——Enjlo <r>—|—1/2ﬂlo | f(re?)|do
& a — & |a| 27 Jo & '

Poisson-Jensen Formula: Let f be analytic on B(0;r) and suppose ay, ..., a, are the zeros
of f in B(0;r) repeated according to multiplicity. If f(z) # 0, then

- r? — apz 1 [ re + z 0
1 = — 1 _ — R - 1 \d6.
Og‘f(Z)’ ; 0g (r(z—a@) +27T/0‘ e<7,619_z> Og‘f(re )’

Genus, Order, and Rank of Entire Functions:

e Rank: Let f be an entire function with zeros {aj} repeated according to multiplicity
such that |ai| < |az| <.... Then f is of finite rank if there is a p € Z such that

=1
ZW@O-
n=1

If p is the smallest integer such that this occurs, then f is of rank p. A function with
only a finite number of zeros has rank 0.

e Standard Form: Let f be an entire function of rank p with zeros {ax}. Then the canonical
product

f(2) = e [ B, ()
n=1 n

is the standard form for f.

e Genus: An entire function f has finite genus if f has finite rank and g(z) is a polynomial.
If the rank is p and the degree of g is ¢, then the genus p = max(p, q). If f has genus p,
then for each o > 0, there exists an ro such that |z| > ro implies

If(2)] < el

e Order: An entire function f is of finite order if there exists a > 0 and rg > 0 such that
|f(2)] < exp(]z|*) for |z| > 9. The number
A =inf{a | |f(2)| < exp(|z]?) for |z| sufficiently large}

is called the order of f.

If f has order A and € > 0, then |f(2)| < exp(|z|**€) for all |z| sufficiently large, and a
z can be found, with || as large as desired, such that |f(z)| > exp(|z|*~¢).

If f is of genus u, then f is of finite order A < u + 1.

10



30. Hadamard’s Factorization Theorem: If f is entire with finite order A, then f has finite
genus < \. Combined with above, we have that f has finite order if and only if f has finite
genus. Corollary: If f is entire with finite order, then for all ¢ € C with one possible
exception, we can always solve f(z) = c.

Corollary: If f is entire with finite order A ¢ Z, then f has an infinite number of zeros.

5 Special Functions

1. The Riemann Zeta Function

(=3 0= I] 7= and ¢ =C0-9

n=1 p prime

This function has a pole at s = 1, zeros at the negative even integers, and its remaining zeros
are in the critical strip {z | 0 < Re z < 1}.

Riemann’s functional equation is
z—1 : 1
C(z) =2(2m)* T (1 —2)¢(1 —2)sin 57z

2. The Gamma Function: The gamma function is the meromorphic function on C with simple
poles at z = 0,—1,—2,... defined by:

F(z):/ e 't Ldt
0

— oo _
_ e V? H(l_’_i) 1ez/n
z n

n=1

lim nln® _ I'(z+n)
n—oo z(z4+1)---(z4+n) z2(z+1)--(z4n—-1)

The residues at each of the poles is given by

(-1

n!

Res(T', —n) =
The functional equation holds for z # 0,1, ...
[(z+1) =2I'(2).
Note further that

I(1— 2)0(z) = sz;z) and T(z) =D(z) and D(1/2) = /7.

11



6 Theorems, part 3

1.

Schwarz Reflection Principle: Let G be a region such that G = G* (symmetric with
respect to real axis). If f: G4 UGy — C is continuous and analytic on G4, and f(Gp) C R,
then there is an analytic function g : G — C such that f(z) = g(z) for z € G4 U Gp.

. Analytic Continuations: Let v : [0,1] — C be a curve and [f], be a germ at a = y(0). An

analytic continuation of [f], along v is a family (f;, Gy),t € [0, 1] such that

(i) 7(t) € Gy
(i) [fola = [f]a
(iii) Vt € [0,1], 36 > 0 such that |s — t| < § = v(s) € Gy and [fs]y(5) = [ftly(s)

. Uniqueness of Analytic Continuations: Let v : [0,1] — C be a path from a to b and

let (ft, Gt) and (g¢, Bt) be two analytic continuations along 7 such that [fo]a = [go]a- Then
[f1)o = [g1]b-

. Analytic Continuations along FEP Homotopic Curves: Let a € C and [f], a germ

at a. If 9 and v, are FEP homotopic and [f], admits analytic continuation along every
s, € [0,1], then the analytic continuations of [f], along 7o and 7, are equal.

. Monodromy Theorem: Let G be a region, a € G, [f], a germ at a. If G is simply

connected and admits unrestricted continuation of [f],. then there exists F' € H(G) such
that [Fl, = [f]a-

. Neighborhood Systems: Let X be a set and for all z € X, .4, a collection of subsets of

X such that

(i) for each U € Mg, z € U;
(ii) if U,V € Ay, AW € A, such that W C U NV,
(iii) if U € Az and V € A} then for z € UNV IW € A, such that W CUNV.

Then {4, | z € X} is a neighborhood system on X.
Sheaf of Germs: For an open set G in C let
L (G) ={(2,[f]2) | z € G, f is analytic at z},

and define a map p : .(G) — C by p(z,[f]z) = z. Then (Z(G), p) is the sheaf of germs of
analytic functions on G.

We put a topology on the sheaf of germs by defining a neighborhood system. For D C G,
and f € H(D), define

N(f, D) =A{(z[fl-) | z € D}.
For each point (a,[f].) € L (G), let
Maifl) = {N(9: B) | a € B and [g]a = [fla}.

This is a neighborhood system on .(G) and the induced topology is Hausdorff.

12
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11.

12.

. Components of the Sheaf of Germs:

e There is a path in . (G) from (a, [f]a) to (b, [g]p) iff there is a path v in G from a to b
such that [g], is the analytic continuation of [f], along ~.

o Let ¥ C (@) and (a,[f]s) € €. Then € is a component of . (G) iff

¢ = {(b,[9]p) | [9]p is the continuation of [f], along some curve in G}.

. Riemann Surfaces: Fix a function element (f, D). The complete analytic function .#

associated with (f, D) is the collection
F ={[g]: | [9]- is an analytic continuation of [f], for any a € D}.

Then Z = {(z,[9]:) | [9] € F} is a component of .(C), and (%, p) is the Riemann Surface
of Z#.

Complex Manifolds: Let X be a topological space.
e A coordinate chart is a pair (U, ¢) such that U C X isopen and ¢ : U - V C Cis a

homeomorphism.

e A complex manifold is a pair (X, ®) where X is connected, Hausdorff and @ is a collection
of coordinate patches on X such that

(i) each point of X is contained in at least one member of ® and
(ii) if (Ug, ©a), (Up, op) € ® with U, N Uy, # (0, then ¢, o 90;1 is analytic.

Analytic Functions: Let (X, ®) and (Q, ) be analytic manifolds, f : X — € continuous,
a € X, and (a) = . Then f is analytic at a if for any patch (A,1) € ¥ which contains «,
there is a patch (U, ¢) € ® which contains a such that

(i) f(U) S A
(ii) 9 o f o ™! is analytic on o(U) C C.
Some Results on Analytic Functions:
e Let .7 be a complete analytic function with Riemann surface (#,p). If % : #Z — C is
defined by .#(z,[f].) = f(z) then .# is an analytic function.

e Compositions of analytic function are analytic

e (Limit Points) If f and g are analytic functions X —  and if {z € X : f(z) = g(x)}
has a limit point in X, then f = g.

e (Maximum Modulus) If f : X — C is analytic and there is a point « € X and a
neighborhood U of a such that |f(a)| > |f(z)| for all x € U, then f is constant.

e (Liouville) If (X, ®) is a compact analytic manifold, then there is no non-constant ana-
lytic function from X into C.

e (Open Mapping) Let f : X — Q be a non-constant analytic function. If U is an open
subset of X, then f(U) is open in .
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13. Mean Value Property: If v : G — R is a harmonic function and B(a;r) C G then

1
o7

27
u(a) /0 u(a + re’) df.

14. Maximum Principles:

15.

16.

17.

18.

I. Suppose u : G — R has the MVP. If there is a point a € G such that u(a) > u(z) for all
z in G, then u is constant. (Analogously, there is a Minimum Principle).

II. Let u,v : G = R be bounded and continuous functions with the MVP. If for each point
a € 05 G,

limsup u(z) < liminf v(z)
z—a z—a

then u(z) < v(z) for all zin G or u = v.

Corollary: If a continuous function satisfying the MVP is 0 on the boundary, then it
is identically 0.

III. If ¢ : G — R is a subharmonic function and there is a point a € G with ¢(a) > ¢(z) for
all z in G, then ¢ is constant.

IV. If p,% : G — R are bounded functions such that ¢ is subharmonic and % is superhar-

monic and for each point a € 0,G,

lim sup p(2) < liminf ¢ (z)
z—a z—=a

then ¢(z) < 9(z) for all z in G or ¢ = v is harmonic.

The Poisson Kernel: For 0 <r < 1,—00 < 6 < 0o, the Poisson kernel is the following:

o

; 1+ re? 1—r?
P.(0) = [n| m@ZR ' _ ‘
»(0) Z e ¢ 1 — ret 1—2rcosf + r2

n=—oo

Dirichlet Problem in the Disk: If f : 0D — R is a continuous function, then there is a
continuous harmonic function v : D — R such that u(z) = f(z) for all z € 9D. Moreover, u
is unique and defined by

1 ™

u(re?) = By P(0 —t)f(e™) dt.

Harmonicity vs. MVP: If u : G — R is a continuous function which has the MVP, then u
is harmonic.

Harnack’s Inequality: If v : B(a; R) — R is continuous, harmonic in B(a; R), and v > 0
then for 0 <r < R and all 6

R—r 0y R+r
< ) <
R_i_ru(a)_u(a—i-re ) < -

u(a).
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19.

20.

21.

22.

23.

24.

Harnack’s Theorem: Let G be a region. The metric space Har(G) is complete. If {uy} is
a sequence in Har(G) such that uy < ug < ... then either u,(z) — oo uniformly on compact
subsets of G or {uy} converges in Har(G) to a harmonic function.

Subharmonic Functions: Let ¢ : G — R be continuous. Then ¢ is subharmonic iff for
every (G1 C G and every harmonic u; on G, ¢ — u; satisfies the Maximum Principle on G

Corollary: ¢ is subharmonic iff for every bounded region G such that G; C G and for every
continuous function u; : G; — R that is harmonic on G and satisfies p(2) < u1(z) on 9Gy,
o(2) <uy(z) for z € Gy.

Maxima of Subharmonic Functions: If ¢; and ¢2 are subharmonic functions on G then
©(z) = max{p1(2)p2(2)} is a subharmonic function.

Bumping Let ¢ : G — R be subharmonic and B(a;r) C G. Define ¢/(z) = ¢(z) if z €
G\ B(a;r) and ¢/(2) be the solution to the Dirichlet problem for z € B(a;r). Then ¢’ is
subharmonic.

The Perron Function: Let f : 0.cG — R be continuous. Then u(z) = sup{p(z) | ¢ €
Z(f,G)} defines a harmonic function on G.
(2(f,G) ={¢: G — R | ¢ subharmonic, limsup,_,, ¢(2) < f(a) Va € 0,.G})
General Dirichlet Problem: A region G is a Dirichlet Region iff there is a barrier for G
at each point of J,G.
(A barrier for G at a is a family {¢,} such that 1, is superharmonic on G(a;r) with 0 <
Pr(2) <1, lim ¢, (2) =0, and lim 9, (z) =1 forw € GN{w | |w —a| =7}.)

z—a zZ—rw
Corollary: Let G be a region such that no component of C, \ G reduces to a point, then G
is a Dirichlet region.

Corollary: A simply connected region is a Dirichlet region.
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