Complex Analysis Qual Sheet

Robert Won

"Tricks and traps. Basically all complex analysis qualifying exams are collections of tricks and traps."

- Jim Agler

1 Useful facts

1.
$$e^z = \sum_{n=0}^{\infty} \frac{z^n}{n!}$$

2.
$$\sin z = \sum_{n=0}^{\infty} (-1)^n \frac{z^{2n+1}}{(2n+1)!} = \frac{1}{2i} (e^{iz} - e^{-iz})$$

3.
$$\cos z = \sum_{n=0}^{\infty} (-1)^n \frac{z^{2n}}{2n!} = \frac{1}{2} (e^{iz} + e^{-iz})$$

4. If g is a branch of f^{-1} on G, then for $a \in G$, $g'(a) = \frac{1}{f'(g(a))}$

5.
$$|z \pm a|^2 = |z|^2 \pm 2 \operatorname{Re} \overline{a} z + |a|^2$$

6. If f has a pole of order m at z = a and $g(z) = (z - a)^m f(z)$, then

Res
$$(f; a) = \frac{1}{(m-1)!} g^{(m-1)}(a).$$

7. The elementary factors are defined as

$$E_p(z) = (1-z) \exp\left(z + \frac{z^2}{2} + \dots + \frac{z^p}{p}\right).$$

Note that elementary factors are entire and $E_p(z/a)$ has a simple zero at z=a.

8. The factorization of sin is given by

$$\sin \pi z = \pi z \prod_{n=1}^{\infty} \left(1 - \frac{z^2}{n^2} \right).$$

9. If $f(z) = (z - a)^m g(z)$ where $g(a) \neq 0$, then

$$\frac{f'(z)}{f(z)} = \frac{m}{z-a} + \frac{g'(z)}{g(z)}.$$

2 Tricks

- 1. If f(z) nonzero, try dividing by f(z). Otherwise, if the region is simply connected, try writing $f(z) = e^{g(z)}$.
- 2. Remember that $|e^z| = e^{\text{Re}z}$ and $\arg e^z = \text{Im}z$. If you see a Rez anywhere, try manipulating to get e^z .
- 3. On a similar note, for a branch of the log, $\log re^{i\theta} = \log |r| + i\theta$.
- 4. Let $z = e^{i\theta}$.
- 5. To show something is analytic use Morera or find a primitive.
- 6. If f and g agree on a set that contains a limit point, subtract them to show they're equal.
- 7. Tait: "Expand by power series."
- 8. If you want to count zeros, either Argument Principle or Rouché.
- 9. Know these Möbius transformations:
 - (a) To map the right half-plane to the unit disk (or back), $\frac{1-z}{1+z}$.
 - (b) To map from the unit disk to the unit disk, remember $\varphi_a(z) = \frac{z-a}{1-\overline{a}z}$. This is a bijective map with inverse $\varphi_{-a}(z)$. Also, $\varphi_a(a) = 0$, $\varphi_a'(z) = \frac{1-|a|^2}{(1-\overline{a}z)^2}$, $\varphi_a'(0) = 1-|a|^2$, and $\varphi_a'(a) = \frac{1}{1-|a|^2}$.
- 10. If f(z) is analytic, then $\overline{f(\overline{z})}$ is analytic (by Cauchy-Riemann). So if, for example, f(z) is real on the real axis, then $f(z) = \overline{f(\overline{z})}$.
- 11. To prove that a function defined by an integral is analytic, try Morera and reversing the integral. (e.g. $\int_{\epsilon}^{\infty} e^{-t}t^{z-1}dt$ is analytic since $\int_{T} \int_{\epsilon}^{\infty} e^{-t}t^{z-1}dtdz = \int_{\epsilon}^{\infty} \int_{T} e^{-t}t^{z-1}dzdt = 0.$)
- 12. If given a point of f (say f(0) = a) and some condition on f' on a simply connected set, try $\int_{[0,z]} f' = f(z) f(0)$.
- 13. To create a non-vanishing function, consider exponentiating.

3 Theorems

1. Cauchy Integral Formula: Let G be region and $f: G \to \mathbb{C}$ be analytic. If $\gamma_1, \ldots, \gamma_m$ are closed rectifiable curves in G with $\sum_{k=0}^m n(\gamma_k; w) = 0$ for all $w \in \mathbb{C} \setminus G$, then for $a \in G \setminus (\bigcup_{k=1}^m \{\gamma_k\})$,

$$f^{(n)}(a) \cdot \sum_{k=0}^{m} n(\gamma_k; a) = \frac{n!}{2\pi i} \sum_{k=1}^{m} \int_{\gamma_k} \frac{f(z)}{(z-a)^{n+1}} dz.$$

2. Cauchy's Theorem: Let G be a region and $f: G \to \mathbb{C}$ be analytic. If $\gamma_1, \ldots, \gamma_m$ are closed rectifiable curves in G with $\sum_{k=0}^m n(\gamma_k; w) = 0$ for all $w \in \mathbb{C} \setminus G$, then

$$\sum_{k=1}^{m} \int_{\gamma_k} f(z)dz = 0$$

- 3. Liouville's Theorem: If f is a bounded entire function, then f is constant.
- 4. **Maximum Modulus Theorem**: Let G be a region and $f: G \to \mathbb{C}$ be analytic. If there exists an $a \in G$ such that $|f(a)| \ge |f(z)|$ for all $z \in G$, then f is constant on G.
- 5. Morera's Theorem: Let G be a region and $f: G \to \mathbb{C}$ be continuous. If $\int_T f = 0$ for every triangular path T in G, then f is analytic on G.
- 6. Goursat's Lemma: Let G be a region and let $f: G \to \mathbb{C}$. If f is differentiable, then f is analytic on G.
- 7. Cauchy-Riemann Equations: Let f(x,y) = u(x,y) + iv(x,y) for real-valued functions u and v. Then f is analytic if and only if

$$\frac{\partial u}{\partial x} = \frac{\partial v}{\partial y}$$
 and $\frac{\partial u}{\partial y} = -\frac{\partial v}{\partial x}$

- 8. Constant functions: Let $f: G \to \mathbb{C}$ be analytic. Then the following are equivalent
 - (i) $f(z) \equiv \alpha$;
 - (ii) $\{z \in G \mid f(z) = \alpha\}$ has a limit point in G;
 - (iii) there exists $a \in G$ such that $f^{(n)}(a) = 0$ for all $n \ge 1$.
- 9. Conformality: Let $f: G \to \mathbb{C}$ be analytic. Then if $z \in G$ and $f'(z) \neq 0$, f is conformal at z.
- 10. Roots of an analytic function: Let $f: G \to \mathbb{C}$ be analytic. If f(a) = 0, then there exists a unique $m \ge 1$ and g analytic such that

$$f(z) = (z - a)^m g(z)$$

with $g(a) \neq 0$.

11. **Power series**: A function f is analytic on B(a;R) if and only if there exists a power series $f(z) = \sum_{n=0}^{\infty} a_n (z-a)^n$ where we compute

$$a_n = \frac{f^{(n)}(a)}{n!} = \frac{1}{2\pi i} \int_{\gamma} \frac{f(z)}{(z-a)^{n+1}} dz.$$

The series converges absolutely on B(a;R) and uniformly on B(a;r) for $0 \le r < R$.

12. Cauchy's Estimate: If f analytic on B(a;R), and $|f(z)| \leq M$ for each $z \in B(a;R)$, then

$$\left| f^{(n)}(a) \right| \le \frac{n!M}{R^n}.$$

13. Winding Number: To compute the index of a closed curve about a point a,

$$n(\gamma; a) = \frac{1}{2\pi i} \int_{\gamma} \frac{dz}{z - a} \in \mathbb{Z}.$$

- 14. **Open Mapping Theorem**: Let G be a region, f a non-constant analytic function. If U is an open subset of G, then f(U) is open.
- 15. **Zero-Counting Theorem**: Let G be a region, $f: G \to \mathbb{C}$ analytic with roots $a_1, \ldots a_m$. If $\{\gamma\} \subseteq G$ and $a_k \notin \{\gamma\}$ for all k, and $\gamma \approx 0$ in G, then

$$\frac{1}{2\pi i} \int_{\gamma} \frac{f'(z)}{f(z)} dz = \sum_{k=1}^{m} n(\gamma; a_k)$$

Corollary: If $f(a) = \alpha$, then $f(z) - \alpha$ has a root at a. So if $f(a_k) = \alpha$, then

$$\frac{1}{2\pi i} \int_{\gamma} \frac{f'(z)}{f(z) - \alpha} dz = \sum_{k=1}^{m} n(\gamma; a_k)$$

Corollary 2: If $\sigma = f \circ \gamma$ and $\alpha \notin \{\sigma\}$ and a_k are the points where $f(a_k) = \alpha$, then

$$n(\sigma; \alpha) = \sum_{k=1}^{m} n(\gamma; a_k)$$
 or

$$n(f \circ \gamma; f(a)) = \sum_{k=1}^{m} n(\gamma; a_k)$$

- 16. Roots of analytic functions: Suppose f is analytic on B(a; R) and let $f(a) = \alpha$. If $f(z) \alpha$ has a zero of order m at z = a, then there exist $\epsilon > 0$ and $\delta > 0$ such that if $0 < |\zeta \alpha| < \delta$, the equation $f(z) = \zeta$ has exactly m simple roots in $B(a, \epsilon)$.
- 17. **Existence of Logarithm**: Let f(z) be analytic and $f(z) \neq 0$ on G, a simply connected region. Then there is analytic function g(z) on G such that $f(z) = e^{g(z)}$ for all $z \in G$.
- 18. **Existence of Primitive**: Let f(z) be analytic on G, a simply connected region. Then f has a primitive.
- 19. Laurent Series: Let f be analytic on $R_1 < |z a| < R_2$, then there exists a sequence $\{a_n\}_{n=-\infty}^{\infty}$ and

$$f(z) = \sum_{n=-\infty}^{\infty} a_n (z-a)^n$$

with absolute convergence in the open annulus and uniform convergence on every compact subset of the annulus. This series is called a Laurent series, and if γ is a closed curve in the annulus, then

$$a_n = \frac{1}{2\pi i} \int_{\gamma} \frac{f(z)}{(z-a)^{n+1}} dw.$$

(Note that this is just the same as number 11).

- 20. Classification of Singularities: Suppose f analytic on $B(a; R) \setminus \{a\}$ and f has an isolated singularity at a. Then a is
 - (a) Removable singularity if there is a function g analytic on B(a;R) such that f(z) = g(z) for all $z \in B(a;R) \setminus \{a\}$.

The singularity is removable if and only if $\lim_{z \to a} (z - a) f(z) = 0$.

Also, the singularity is removable if and only if the Laurent series of f has no coefficients a_n for n < 0.

(b) Pole if $\lim_{z \to a} |f(z)| = \infty$.

If a is a pole, then there is a unique $m \geq 1$ and an analytic function g such that $f(z) = \frac{g(z)}{(z-a)^m}$ for all $z \in B(a;R) \setminus \{a\}$ and $g(a) \neq 0$.

The singularity is a pole if and only if the Laurent series of f has only finitely many coefficients a_n for n < 0. The partial series for these coefficients is called the singular part of f.

- (c) Essential singularity if a is not removable and not a pole. The singularity is essential if and only if the Laurent series of f has infinitely many coefficients a_n for n < 0.
- 21. Casorati-Weierstrass: If f has an essential singularity at a, then for all $\delta > 0$, $f(\{z \mid 0 < |z a| < \delta\})$ is dense in \mathbb{C} .
- 22. **Residues**: If f has an isolated singularity at a, then the residue of f at a, $Res(f; a) = a_{-1}$. We can calculate the residue using the formula for Laurent coefficients:

$$\operatorname{Res}(f; a) = \frac{1}{2\pi i} \int_{\gamma} f(z) dz.$$

If a is a pole of order m, then if $g(z) = (z - a)^m f(z)$

Res
$$(f; a) = \frac{g^{(m-1)}(a)}{(m-1)!}$$
.

23. **Residue Theorem**: Let f be analytic on a region G except for singularities at a_1, \ldots, a_m . Let $\gamma \approx 0$ be a closed curve in G with $a_1, \ldots, a_m \notin \{\gamma\}$. Then

$$\frac{1}{2\pi i} \int_{\gamma} f(z)dz = \sum_{k=1}^{m} n(\gamma; a_k) \cdot \operatorname{Res}(f; a_k).$$

24. **Argument Principle**: Let f be meromorphic with roots z_1, \ldots, z_m and poles p_1, \ldots, p_n with $z_1, \ldots, z_m, p_1, \ldots, p_n \notin \{\gamma\}$. Then

$$\frac{1}{2\pi i} \int_{\gamma} \frac{f'}{f} = \sum_{k=1}^{m} n(\gamma; z_m) - \sum_{j=1}^{n} n(\gamma; p_n).$$

25. **Rouché's Theorem**: Let f, g be meromorphic on G and let γ be a closed curve in G. Then if, for all $z \in {\gamma}$,

$$|f(z) + g(z)| < |f(z)| + |g(z)|$$

then $Z_f - P_f = Z_q - P_q$.

- 26. Jordan's Lemma: Suppose that:
 - (i) f(z) is analytic at all points z in the upper half plane $y \ge 0$ that are exterior to a circle $|z| = R_0$;
 - (ii) C_R denotes a semicircle $z = Re^{i\theta}$ for $0 \le \theta \le 2\pi$ with $R > R_0$;
 - (iii) for all points z on C_R there is a positive constant M_R such that $|f(z)| \leq M_R$, with $\lim_{R\to\infty} M_R = 0$

Then for every positive constant a:

$$\lim_{R \to \infty} \int_{C_R} f(z)e^{iaz}dz = 0.$$

27. **Fractional Residue**: If z_0 is a simple pole of f(z), and C_R is an arc of the circle $\{|z-z_0|=R\}$ of angle θ , then

$$\lim_{R \to 0} \int_{C_R} f(z)dz = \theta i Res(f(z), z_0).$$

4 Theorems, part 2

- 1. Maximum Modulus Theorem:
 - (a) (First Version). If $f: G \to \mathbb{C}$ is analytic and there exists $a \in G$ with $|f(a)| \ge |f(z)|$ for all $z \in G$, then f is constant.
 - (b) (Second Version). If G is open and bounded, and f analytic on G and continuous on \overline{G} , then

$$\max\{|f(z)|\mid z\in\overline{G}\}=\max|f(z)|\mid z\in\partial G\}.$$

(Or f attains its maximum on the boundary).

- (c) (Third Version). If $f: G \to \mathbb{C}$ is analytic, and there is a constant M such that $\limsup_{z\to a} |f(z)| \leq M$ for all $a \in \partial_{\infty} G$, then $|f(z)| \leq M$ for all $z \in G$. (Where $\limsup_{z\to a} f(z) = \lim_{r\to 0^+} \sup\{f(z) \mid z \in G \cap B(a;r)\}$.)
- 2. Schwarz's Lemma: Suppose $f: \mathbb{D} \to \mathbb{D}$ is analytic and f(0) = 0. Then
 - (i) $|f'(0)| \le 1$,
 - (ii) $|f(z)| \le z$, and
 - (iii) if |f'(0)| = 1 or |f(z)| = z for any $z \in \mathbb{D}$, then f(z) = cz for some |c| = 1.
- 3. Generalized Schwarz's Lemma: Suppose $f: \mathbb{D} \to \mathbb{D}$ is analytic. Then

- (i) $|f'(a)| \le \frac{1 |f(a)|^2}{1 |a|^2}$,
- (ii) if equality, then $f(z) = \varphi_{-a}(c\varphi_a(z))$.
- 4. Logarithmic Convexity: Let a < b, $G = \{z \in \mathbb{C} \mid a < \text{Re } z < b\}$, and $f : \overline{G} \to \mathbb{C}$. If f is continuous on \overline{G} , analytic on G and bounded, then $M(x) = \sup_{y \in \mathbb{R}} |f(x+iy)|$ is logarithmically convex.
- 5. **Phragmèn-Lindelöf**: Let G be simply connected, $f:G\to\mathbb{C}$ analytic, and suppose there exists $\varphi:G\to\mathbb{C}$ analytic, bounded, and nonzero on G. Suppose further that $\partial_\infty G=A\cup B$ and
 - (i) for all $a \in A$, $\limsup_{z \to a} |f(z)| \le M$
 - (ii) for all $b \in B$, for all $\eta > 0$, $\limsup_{z \to b} |f(z)| |\varphi(a)|^{\eta} \le M$,

then $|f(z)| \leq M$ on G.

6. Logic of the ρ metric: For all $\epsilon > 0$, there exist $\delta > 0$ and $K \subseteq G$ compact such that

$$\rho_K(f,g) < \delta \Longrightarrow \rho(f,g) < \epsilon$$

and for all $\delta > 0$, K compact, there exists an ϵ such that

$$\rho(f,g) < \epsilon \Longrightarrow \rho_K(f,g) < \delta$$

- 7. Spaces of Continuous Functions: If Ω is complete, then $C(G,\Omega)$ is complete.
- 8. Normal Families: $\mathscr{F} \subseteq C(G,\Omega)$. \mathscr{F} is normal if all sequences have a convergent subsequence.

 \mathscr{F} is normal iff $\overline{\mathscr{F}}$ is compact iff \mathscr{F} is totally bounded (i.e. for all K, $\delta > 0$, there exist $f_1, \ldots, f_n \in \mathscr{F}$ such that $\mathscr{F} \subseteq \bigcup_{i=1}^n \{g \in C(G,\Omega) \mid \rho_K(f;g) < \delta\}$.

- 9. Arzela-Ascoli: F is normal iff
 - (i) for all $z \in G$, $\{f(z) \mid f \in \mathcal{F}\}$ has compact closure in Ω , and
 - (ii) for all $z \in G$, \mathscr{F} is equicontinuous at z (for all $\epsilon > 0$, there exists $\delta > 0$ such that $|z w| < \delta \Rightarrow d(f(z), f(w)) < \epsilon$ for all $f \in \mathscr{F}$).
- 10. The Space of Holomorphic Functions: Some useful facts:
 - (a) $f_n \to f \iff$ for all compact $K \subseteq G$, $f_n \to f$ uniformly on K.
 - (b) $\{f_n\}$ in H(G), $f \in C(G, \mathbb{C})$, then $f_n \to f \Longrightarrow f \in H(G)$ (If f_n converges, it will converge to an analytic function).
 - (c) $f_n \to f$ in $H(G) \Longrightarrow f_n^{(k)} \to f^{(k)}$ (If f converges, its derivatives converge).
 - (d) H(G) is complete (Since H(G) is closed and $C(G, \mathbb{C})$ is complete).

11. **Hurwitz's Theorem**: Let $\{f_n\} \in H(G)$, $f_n \to f$, $f \not\equiv 0$. Let $\overline{B(a;r)} \subseteq G$ such that $f \neq 0$ on |z-a|=r. Then there exists an N such that $n \geq N \Longrightarrow f_n$ and f have the same number of zeros in B(a;r).

Corollary: If $f_n \to f$ and $f_n \neq 0$, then either $f(z) \equiv 0$ or $f(z) \neq 0$.

- 12. **Local Boundedness**: A set \mathscr{F} in H(G) is locally bounded iff for each compact set $K \subset G$ there is a constant M such that $|f(z)| \leq M$ for all $f \in \mathscr{F}$ and $z \in K$. (Also, \mathscr{F} is locally bounded if for each point in G, there is a disk on which \mathscr{F} is uniformly bounded.)
- 13. **Montel's Theorem**: $\mathscr{F} \subseteq H(G)$, then \mathscr{F} is normal $\iff \mathscr{F}$ is locally bounded (for all K compact, there exists M such that $f \in \mathscr{F} \Rightarrow |f(z)| \leq M$ for all $z \in K$).

Corollary: \mathscr{F} is compact iff \mathscr{F} is closed and locally bounded.

- 14. Meromorphic/Holomorphic Functions: If $\{f_n\}$ in M(G) (or H(G)) and $f_n \to f$ in $C(G, \mathbb{C}_{\infty})$, then either $f \in M(G)$ (or H(G)) or $f \equiv \infty$.
- 15. **Riemann Mapping Theorem**: G simply connected region which is not \mathbb{C} . Let $a \in G$, then there is a unique analytic function such that:
 - (a) f(a) = 0 and f'(a) > 0;
 - (b) f is one-to-one;
 - (c) $f(G) = \mathbb{D}$.
- 16. Infinite Products: Some propositions for convergence of infinite products:
 - (a) Re $z_n > 0$. Then $\prod z_n$ converges to a nonzero number iff $\sum \log z_n$ converges.
 - (b) Re $z_n > -1$. Then $\sum \log(1+z_n)$ converges absolutely iff $\sum z_n$ converges absolutely.
 - (c) Re $z_n > 0$. Then $\prod z_n$ converges absolutely iff $\sum (z_n 1)$ converges absolutely.
- 17. Products Defining Analytic Functions: G a region and $\{f_n\}$ in H(G) such that $f_n \not\equiv 0$. If $\sum [f_n(z) 1]$ converges absolutely uniformly on compact subsets of G then $\prod f_n$ converges in H(G) to an analytic function f(z). The zeros of f(z) correspond to the zeros of the f_n 's.
- 18. Entire Functions with Prescribed Zeros: Let $\{a_n\}$ be a sequence with $\lim |a_n| = \infty$ and $a_n \neq 0$. If $\{p_n\}$ is a sequence of integers such that for all r > 0

$$\sum_{n=1}^{\infty} \left(\frac{r}{|a_n|} \right)^{p_n+1} < \infty,$$

then $f(z) = \prod E_{p_n}(z/a_n)$ converges in $H(\mathbb{C})$ and f is an entire function with the correct zeros. (Note that you can choose $p_n = n - 1$ and it will always converge).

19. The (Boss) Weierstrass Factorization Theorem: Let f be an entire function with non-zero zeros $\{a_n\}$ with a zero of order m at z=0. Then there is an entire function g and a sequence of integers $\{p_n\}$ such that

$$f(z) = z^m e^{g(z)} \prod_{n=1}^{\infty} E_{p_n} \left(\frac{z}{a_n}\right).$$

- 20. Existence of Analytic Functions with Given Zeros: Let G be a region and $\{a_j\}$ a sequence of distinct points with no limit point in G, $\{m_j\}$ a sequence of integers. Then there is an analytic function f defined on G whose only zeros are the a_j 's with multiplicity m_j .
- 21. Meromorphic Functions as a Quotient of Analytic: If f is a meromorphic function on the open set G, then there are analytic functions g and h on G such that f = g/h.
- 22. Runge's Theorem: Let K be compact and E meet each component of $\mathbb{C}_{\infty} \setminus K$. If f is analytic in an open set containing K, then for any $\epsilon > 0$, there is a rational function R(z) with poles in E such that $|f(z) R(z)| < \epsilon$ for all $z \in K$.

Corollary: Let G be an open subset of the plane and E a subset of $\mathbb{C}_{\infty} \setminus G$ meeting each component. Let R(G, E) be the set of rational functions with poles in E. If $f \in H(G)$ then there is a sequence $\{R_n\}$ in R(G, E) such that $f = \lim_{n \to \infty} R_n$. (That is, R(G, E) is dense in H(G)).

Corollary: If $\mathbb{C}_{\infty} \setminus G$ is connected, then polynomials are dense in G.

- 23. **Polynomially Convex Hull**: Let K be compact. The polynomially convex hull of K (\hat{K}) is the set of all points w such that for every polynomial p, $|p(w)| \leq \max\{|p(z)| \mid z \in K\}$. If K is an annulus, then \hat{K} is the disk obtained by filling in the interior hole.
- 24. A Few Words on Simple Connectedness (Ha): The following are equivalent for $G \subseteq \mathbb{C}$ open, connected:
 - (i) G is simply connected;
 - (ii) $n(\gamma; a) = 0$ for every closed rectifiable curve γ in G and every point $a \in \mathbb{C} \setminus G$;
 - (iii) $\mathbb{C}_{\infty} \setminus G$ is connected;
 - (iv) For any $f \in H(G)$, there is a sequence of polynomials that converges to f in H(G);
 - (v) For any $f \in H(G)$ and any closed rectifiable curve γ in G, $\int_{\gamma} f = 0$;
 - (vi) Every function $f \in H(G)$ has a primitive;
 - (vii) For any $f \in H(G)$ such that $f(z) \neq 0$, there is a function $g \in H(G)$ such that $f(z) = \exp g(z)$;
 - (viii) For any $f \in H(G)$ such that $f(z) \neq 0$, there is a function $g \in H(G)$ such that $f(z) = [q(z)]^2$;
 - (ix) G is homeomorphic to \mathbb{D} ;
 - (x) If $u: G \to \mathbb{R}$ is harmonic then there exists a harmonic conjugate.
- 25. Mittag-Leffler's Theorem: Let G be open, $\{a_k\}$ distinct points in G without a limit point in G, and $\{S_k(z)\}$ be a sequence of singular parts at the a_k 's. Then there is a meromorphic function f on G whose poles are exactly the $\{a_k\}$ such that the singular part of f at a_k is $S_k(z)$.
- 26. **Mean Value Property**: If $u: G \to \mathbb{R}$ is a harmonic function and $\overline{B(a;r)}$ is a closed disk contained in G, then

$$u(a) = \frac{1}{2\pi} \int_0^{2\pi} u(a + re^{i\theta}) d\theta.$$

In fact, for $z \in B(0; r)$,

$$u(z) = \frac{1}{2\pi} \int_0^{2\pi} \operatorname{Re}\left(\frac{re^{i\theta} + z}{re^{i\theta} - z}\right) u(re^{i\theta}) d\theta.$$

27. **Jensen's Formula**: Let f be analytic on $\overline{B(0;r)}$ and suppose a_1,\ldots,a_n are the zeros of f in B(0;r) repeated according to multiplicity. If $f(0) \neq 0$, then

$$\log|f(0)| = -\sum_{k=1}^{n} \log\left(\frac{r}{|a_k|}\right) + \frac{1}{2\pi} \int_0^{2\pi} \log|f(re^{i\theta})| d\theta.$$

28. **Poisson-Jensen Formula**: Let f be analytic on $\overline{B(0;r)}$ and suppose a_1, \ldots, a_n are the zeros of f in B(0;r) repeated according to multiplicity. If $f(z) \neq 0$, then

$$\log|f(z)| = -\sum_{k=1}^{n} \log\left(\frac{r^2 - \overline{a_k}z}{r(z - a_k)}\right) + \frac{1}{2\pi} \int_0^{2\pi} \operatorname{Re}\left(\frac{re^{i\theta} + z}{re^{i\theta} - z}\right) \log|f(re^{i\theta})| d\theta.$$

- 29. Genus, Order, and Rank of Entire Functions:
 - Rank: Let f be an entire function with zeros $\{a_k\}$ repeated according to multiplicity such that $|a_1| \le |a_2| \le \dots$ Then f is of finite rank if there is a $p \in \mathbb{Z}$ such that

$$\sum_{n=1}^{\infty} \frac{1}{|a_n|^{p+1}} < \infty.$$

If p is the smallest integer such that this occurs, then f is of rank p. A function with only a finite number of zeros has rank 0.

• Standard Form: Let f be an entire function of rank p with zeros $\{a_k\}$. Then the canonical product

$$f(z) = z^m e^{g(z)} \prod_{n=1}^{\infty} E_p\left(\frac{z}{a_n}\right)$$

is the standard form for f.

• Genus: An entire function f has finite genus if f has finite rank and g(z) is a polynomial. If the rank is p and the degree of g is q, then the genus $\mu = \max(p, q)$. If f has genus μ , then for each $\alpha > 0$, there exists an r_0 such that $|z| > r_0$ implies

$$|f(z)| < e^{\alpha|z|^{\mu+1}}.$$

• Order: An entire function f is of finite order if there exists a > 0 and $r_0 > 0$ such that $|f(z)| < \exp(|z|^a)$ for $|z| > r_0$. The number

$$\lambda = \inf\{a \mid |f(z)| < \exp(|z|^a) \text{ for } |z| \text{ sufficiently large}\}$$

is called the order of f.

If f has order λ and $\epsilon > 0$, then $|f(z)| < \exp(|z|^{\lambda + \epsilon})$ for all |z| sufficiently large, and a z can be found, with |z| as large as desired, such that $|f(z)| \ge \exp(|z|^{\lambda - \epsilon})$.

If f is of genus μ , then f is of finite order $\lambda \leq \mu + 1$.

30. Hadamard's Factorization Theorem: If f is entire with finite order λ , then f has finite genus $\leq \lambda$. Combined with above, we have that f has finite order if and only if f has finite genus. Corollary: If f is entire with finite order, then for all $c \in \mathbb{C}$ with one possible exception, we can always solve f(z) = c.

Corollary: If f is entire with finite order $\lambda \notin \mathbb{Z}$, then f has an infinite number of zeros.

5 Special Functions

1. The Riemann Zeta Function

$$\zeta(s) = \sum_{n=1}^{\infty} \frac{1}{n^s} = \prod_{p \text{ prime}} \frac{1}{1 - p^{-s}}$$
 and $\zeta(s) = \zeta(1 - s)$

This function has a pole at s = 1, zeros at the negative even integers, and its remaining zeros are in the critical strip $\{z \mid 0 < \text{Re } z < 1\}$.

Riemann's functional equation is

$$\zeta(z) = 2(2\pi)^{z-1}\Gamma(1-z)\zeta(1-z)\sin\left(\frac{1}{2}\pi z\right).$$

2. **The Gamma Function**: The gamma function is the meromorphic function on \mathbb{C} with simple poles at $z = 0, -1, -2, \ldots$ defined by:

$$\begin{split} \Gamma(z) &= \int_0^\infty e^{-t} t^{z-1} dt \\ &= \frac{e^{-\gamma z}}{z} \prod_{n=1}^\infty \left(1 + \frac{z}{n} \right)^{-1} e^{z/n} \\ &= \lim_{n \to \infty} \frac{n! n^z}{z(z+1) \cdots (z+n)} = \frac{\Gamma(z+n)}{z(z+1) \cdots (z+n-1)}. \end{split}$$

The residues at each of the poles is given by

$$\operatorname{Res}(\Gamma, -n) = \frac{(-1)^n}{n!}.$$

The functional equation holds for $z \neq 0, 1, \dots$

$$\Gamma(z+1) = z\Gamma(z).$$

Note further that

$$\Gamma(1-z)\Gamma(z) = \frac{\pi}{\sin(\pi z)}$$
 and $\overline{\Gamma(z)} = \Gamma(\overline{z})$ and $\Gamma(1/2) = \sqrt{\pi}$.

6 Theorems, part 3

- 1. Schwarz Reflection Principle: Let G be a region such that $G = G^*$ (symmetric with respect to real axis). If $f: G_+ \cup G_0 \to \mathbb{C}$ is continuous and analytic on G_+ , and $f(G_0) \subseteq \mathbb{R}$, then there is an analytic function $g: G \to \mathbb{C}$ such that f(z) = g(z) for $z \in G_+ \cup G_0$.
- 2. Analytic Continuations: Let $\gamma : [0,1] \to \mathbb{C}$ be a curve and $[f]_a$ be a germ at $a = \gamma(0)$. An analytic continuation of $[f]_a$ along γ is a family $(f_t, G_t), t \in [0,1]$ such that
 - (i) $\gamma(t) \in G_t$
 - (ii) $[f_0]_a = [f]_a$
 - (iii) $\forall t \in [0,1], \exists \delta > 0$ such that $|s-t| < \delta \Longrightarrow \gamma(s) \in G_t$ and $[f_s]_{\gamma(s)} = [f_t]_{\gamma(s)}$
- 3. Uniqueness of Analytic Continuations: Let $\gamma:[0,1]\to\mathbb{C}$ be a path from a to b and let (f_t,G_t) and (g_t,B_t) be two analytic continuations along γ such that $[f_0]_a=[g_0]_a$. Then $[f_1]_b=[g_1]_b$.
- 4. Analytic Continuations along FEP Homotopic Curves: Let $a \in \mathbb{C}$ and $[f]_a$ a germ at a. If γ_0 and γ_1 are FEP homotopic and $[f]_a$ admits analytic continuation along every $\gamma_s, s \in [0, 1]$, then the analytic continuations of $[f]_a$ along γ_0 and γ_1 are equal.
- 5. Monodromy Theorem: Let G be a region, $a \in G$, $[f]_a$ a germ at a. If G is simply connected and admits unrestricted continuation of $[f]_a$. then there exists $F \in H(G)$ such that $[F]_a = [f]_a$.
- 6. Neighborhood Systems: Let X be a set and for all $x \in X$, \mathcal{N}_x a collection of subsets of X such that
 - (i) for each $U \in \mathcal{N}_x$, $x \in U$;
 - (ii) if $U, V \in \mathcal{N}_x$, $\exists W \in \mathcal{N}_x$ such that $W \subseteq U \cap V$;
 - (iii) if $U \in \mathscr{N}_x$ and $V \in \mathscr{N}_y$ then for $z \in U \cap V \exists W \in \mathscr{N}_z$ such that $W \subseteq U \cap V$.

Then $\{\mathcal{N}_x \mid x \in X\}$ is a neighborhood system on X.

7. Sheaf of Germs: For an open set G in \mathbb{C} let

$$\mathscr{S}(G) = \{(z, [f]_z) \mid z \in G, f \text{ is analytic at } z\},\$$

and define a map $\rho: \mathscr{S}(G) \to \mathbb{C}$ by $\rho(z, [f]_z) = z$. Then $(\mathscr{S}(G), \rho)$ is the sheaf of germs of analytic functions on G.

We put a topology on the sheaf of germs by defining a neighborhood system. For $D \subseteq G$, and $f \in H(D)$, define

$$N(f, D) = \{ (z, [f]_z) \mid z \in D \}.$$

For each point $(a, [f]_a) \in \mathscr{S}(G)$, let

$$\mathscr{N}_{(a,[f]_a)} = \{N(g,B) \mid a \in B \text{ and } [g]_a = [f]_a\}.$$

This is a neighborhood system on $\mathcal{S}(G)$ and the induced topology is Hausdorff.

- 8. Components of the Sheaf of Germs:
 - There is a path in $\mathscr{S}(G)$ from $(a, [f]_a)$ to $(b, [g]_b)$ iff there is a path γ in G from a to b such that $[g]_b$ is the analytic continuation of $[f]_a$ along γ .
 - Let $\mathscr{C} \subseteq \mathscr{S}(G)$ and $(a,[f]_a) \in \mathscr{C}$. Then \mathscr{C} is a component of $\mathscr{S}(G)$ iff
 - $\mathscr{C} = \{(b, [g]_b) \mid [g]_b \text{ is the continuation of } [f]_a \text{ along some curve in } G\}.$
- 9. **Riemann Surfaces**: Fix a function element (f, D). The complete analytic function \mathscr{F} associated with (f, D) is the collection

$$\mathscr{F} = \{[g]_z \mid [g]_z \text{ is an analytic continuation of } [f]_a \text{ for any } a \in D\}.$$

Then $\mathscr{R} = \{(z, [g]_z) \mid [g]_z \in \mathscr{F}\}$ is a component of $\mathscr{S}(\mathbb{C})$, and (\mathscr{R}, ρ) is the Riemann Surface of \mathscr{F} .

- 10. Complex Manifolds: Let X be a topological space.
 - A coordinate chart is a pair (U, φ) such that $U \subseteq X$ is open and $\varphi : U \to V \subseteq \mathbb{C}$ is a homeomorphism.
 - A complex manifold is a pair (X, Φ) where X is connected, Hausdorff and Φ is a collection of coordinate patches on X such that
 - (i) each point of X is contained in at least one member of Φ and
 - (ii) if $(U_a, \varphi_a), (U_b, \varphi_b) \in \Phi$ with $U_a \cap U_b \neq \emptyset$, then $\varphi_a \circ \varphi_b^{-1}$ is analytic.
- 11. **Analytic Functions**: Let (X, Φ) and (Ω, Ψ) be analytic manifolds, $f: X \to \Omega$ continuous, $a \in X$, and $(a) = \alpha$. Then f is analytic at a if for any patch $(\Lambda, \psi) \in \Psi$ which contains α , there is a patch $(U, \varphi) \in \Phi$ which contains a such that
 - (i) $f(U) \subseteq \Lambda$;
 - (ii) $\psi \circ f \circ \varphi^{-1}$ is analytic on $\varphi(U) \subseteq \mathbb{C}$.
- 12. Some Results on Analytic Functions:
 - Let \mathscr{F} be a complete analytic function with Riemann surface (\mathscr{R}, ρ) . If $\mathscr{F} : \mathscr{R} \to \mathbb{C}$ is defined by $\mathscr{F}(z, [f]_z) = f(z)$ then \mathscr{F} is an analytic function.
 - Compositions of analytic function are analytic
 - (Limit Points) If f and g are analytic functions $X \to \Omega$ and if $\{x \in X : f(x) = g(x)\}$ has a limit point in X, then f = g.
 - (Maximum Modulus) If $f: X \to \mathbb{C}$ is analytic and there is a point $a \in X$ and a neighborhood U of a such that $|f(a)| \ge |f(x)|$ for all $x \in U$, then f is constant.
 - (Liouville) If (X, Φ) is a compact analytic manifold, then there is no non-constant analytic function from X into \mathbb{C} .
 - (Open Mapping) Let $f: X \to \Omega$ be a non-constant analytic function. If U is an open subset of X, then f(U) is open in Ω .

13. Mean Value Property: If $u: G \to \mathbb{R}$ is a harmonic function and $\overline{B(a;r)} \subset G$ then

$$u(a) = \frac{1}{2\pi} \int_0^{2\pi} u(a + re^{i\theta}) d\theta.$$

14. Maximum Principles:

- I. Suppose $u: G \to \mathbb{R}$ has the MVP. If there is a point $a \in G$ such that $u(a) \geq u(z)$ for all z in G, then u is constant. (Analogously, there is a Minimum Principle).
- II. Let $u, v : G \to \mathbb{R}$ be bounded and continuous functions with the MVP. If for each point $a \in \partial_{\infty} G$,

$$\limsup_{z \to a} u(z) \le \liminf_{z \to a} v(z)$$

then u(z) < v(z) for all z in G or u = v.

Corollary: If a continuous function satisfying the MVP is 0 on the boundary, then it is identically 0.

- III. If $\varphi: G \to \mathbb{R}$ is a subharmonic function and there is a point $a \in G$ with $\varphi(a) \geq \varphi(z)$ for all z in G, then φ is constant.
- IV. If $\varphi, \psi : G \to \mathbb{R}$ are bounded functions such that φ is subharmonic and ψ is superharmonic and for each point $a \in \partial_{\infty} G$,

$$\limsup_{z \to a} \varphi(z) \le \liminf_{z \to a} \psi(z)$$

then $\varphi(z) < \psi(z)$ for all z in G or $\varphi = \psi$ is harmonic.

15. The Poisson Kernel: For $0 \le r < 1, -\infty < \theta < \infty$, the Poisson kernel is the following:

$$P_r(\theta) = \sum_{n=-\infty}^{\infty} r^{|n|} e^{in\theta} = \operatorname{Re}\left(\frac{1+re^{i\theta}}{1-re^{i\theta}}\right) = \frac{1-r^2}{1-2r\cos\theta+r^2}.$$

16. Dirichlet Problem in the Disk: If $f: \partial \mathbb{D} \to \mathbb{R}$ is a continuous function, then there is a continuous harmonic function $u: \overline{\mathbb{D}} \to \mathbb{R}$ such that u(z) = f(z) for all $z \in \partial \mathbb{D}$. Moreover, u is unique and defined by

$$u(re^{i\theta}) = \frac{1}{2\pi} \int_{-\pi}^{\pi} P_r(\theta - t) f(e^{it}) dt.$$

- 17. **Harmonicity vs. MVP**: If $u: G \to \mathbb{R}$ is a continuous function which has the MVP, then u is harmonic.
- 18. **Harnack's Inequality**: If $u : \overline{B(a;R)} \to \mathbb{R}$ is continuous, harmonic in B(a;R), and $u \ge 0$ then for $0 \le r < R$ and all θ

$$\frac{R-r}{R+r}u(a) \le u(a+re^{i\theta}) \le \frac{R+r}{R-r}u(a).$$

- 19. **Harnack's Theorem**: Let G be a region. The metric space $\operatorname{Har}(G)$ is complete. If $\{u_n\}$ is a sequence in $\operatorname{Har}(G)$ such that $u_1 \leq u_2 \leq \ldots$ then either $u_n(z) \to \infty$ uniformly on compact subsets of G or $\{u_n\}$ converges in $\operatorname{Har}(G)$ to a harmonic function.
- 20. **Subharmonic Functions**: Let $\varphi: G \to \mathbb{R}$ be continuous. Then φ is subharmonic iff for every $G_1 \subseteq G$ and every harmonic u_1 on G_1 , φu_1 satisfies the Maximum Principle on G_1 **Corollary**: φ is subharmonic iff for every bounded region G_1 such that $\overline{G_1} \subset G$ and for every continuous function $u_1: \overline{G_1} \to \mathbb{R}$ that is harmonic on G_1 and satisfies $\varphi(z) \leq u_1(z)$ on ∂G_1 , $\varphi(z) \leq u_1(z)$ for $z \in G_1$.
- 21. Maxima of Subharmonic Functions: If φ_1 and φ_2 are subharmonic functions on G then $\varphi(z) = \max\{\varphi_1(z)\varphi_2(z)\}\$ is a subharmonic function.
- 22. **Bumping** Let $\varphi: G \to \mathbb{R}$ be subharmonic and $\overline{B(a;r)} \subset G$. Define $\varphi'(z) = \varphi(z)$ if $z \in G \setminus B(a;r)$ and $\varphi'(z)$ be the solution to the Dirichlet problem for $z \in B(a;r)$. Then φ' is subharmonic.
- 23. The Perron Function: Let $f: \partial_{\infty}G \to \mathbb{R}$ be continuous. Then $u(z) = \sup\{\varphi(z) \mid \varphi \in \mathscr{P}(f,G)\}$ defines a harmonic function on G. $(\mathscr{P}(f,G) = \{\varphi : G \to \mathbb{R} \mid \varphi \text{ subharmonic, } \lim\sup_{z\to a}\varphi(z) \leq f(a) \ \forall a \in \partial_{\infty}G\})$
- 24. **General Dirichlet Problem**: A region G is a Dirichlet Region iff there is a barrier for G at each point of $\partial_{\infty}G$.

(A barrier for G at a is a family $\{\psi_r\}$ such that ψ_r is superharmonic on G(a;r) with $0 \le \psi_r(z) \le 1$, $\lim_{z \to a} \psi_r(z) = 0$, and $\lim_{z \to w} \psi_r(z) = 1$ for $w \in G \cap \{w \mid |w - a| = r\}$.)

Corollary: Let G be a region such that no component of $\mathbb{C}_{\infty} \setminus G$ reduces to a point, then G is a Dirichlet region.

Corollary: A simply connected region is a Dirichlet region.