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In this work we present a simple and fast computational method,
the visibility algorithm, that converts a time series into a graph. The
constructed graph inherits several properties of the series in its
structure. Thereby, periodic series convert into regular graphs, and
random series do so into random graphs. Moreover, fractal series
convert into scale-free networks, enhancing the fact that power
law degree distributions are related to fractality, something highly
discussed recently. Some remarkable examples and analytical tools
are outlined to test the method’s reliability. Many different mea-
sures, recently developed in the complex network theory, could by
means of this new approach characterize time series from a new
point of view.

Brownian motion � complex systems � fractals

In this article we present a tool in time series analysis: the
visibility graph. This algorithm maps a time series into a

network. The main idea is to study to which extent the techniques
and focus of graph theory are useful as a way to characterize time
series. As will be shown below, this network inherits several
properties of the time series, and its study reveals nontrivial
information about the series itself.

For illustrative purposes, in Fig. 1 we present a scheme of the
visibility algorithm. In the upper zone we plot the first 20 values
of a periodic series by using vertical bars (the data values are
displayed above the plot). Considering this as a landscape, we
link every bar (every point of the time series) with all those that
can be seen from the top of the considered one (gray lines),
obtaining the associated graph (shown in the lower part of the
figure). In this graph, every node corresponds, in the same order,
to series data, and two nodes are connected if visibility exists
between the corresponding data, that is to say, if there is a
straight line that connects the series data, provided that this
‘‘visibility line’’ does not intersect any intermediate data height.

More formally, we can establish the following visibility crite-
ria: two arbitrary data values (ta, ya) and (tb, yb) will have
visibility, and consequently will become two connected nodes of
the associated graph, if any other data (tc, yc) placed between
them fulfills:

yc � yb � � ya � yb�
tb � tc

tb � ta
. [1]

We can easily check that by means of the present algorithm, the
associated graph extracted from a time series is always:

1. Connected: each node sees at least its nearest neighbors (left
and right).

2. Undirected: the way the algorithm is built up, there is no
direction defined in the links.

3. Invariant under affine transformations of the series data: the
visibility criterion is invariant under rescaling of both hori-
zontal and vertical axes, and under horizontal and vertical
translations (see Fig. 2).

In a recent work (1), Zhang and Small (ZS) introduced another
mapping between time series and complex networks. Although
the philosophy is similar to this work (to encode the time series
in a graph to characterize the series by using graph theory),
fundamental differences exist between both methods, mainly in
what refers to the range of applicability (ZS only focus on
pseudoperiodic time series, associating each series cycle to a
node and defining links between nodes by temporal correlation
measures, whereas the visibility graph can be applied to every
kind of time series) and the graph connectedness (in ZS the giant
component is assured only ad hoc; meanwhile, the visibility
graph is always connected by definition).

The key question is to know whether the associated graph
inherits some structure of the time series, and consequently
whether the process that generated the time series may be
characterized by using graph theory. In a first step we will
consider periodic series. As a matter of fact, the example plotted
in Fig. 1 is nothing but a periodic series with period 4. The
associated visibility graph is regular, as long as it is constructed
by periodic repetition of a pattern. The degree distribution of
this graph is formed by a finite number of peaks related to the
series period, much in the vein of the Fourier power spectrum of
a time series. Generically speaking, all periodic time series are
mapped into regular graphs, the discrete degree distribution
being the fingerprint of the time series periods. In the case of
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Fig. 1. Example of a time series (20 data values) and the associated graph
derived from the visibility algorithm. In the graph, every node corresponds, in
the same order, to series data. The visibility rays between the data define the
links connecting nodes in the graph.
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periodic time series, its regularity seems therefore to be con-
served or inherited structurally in the graph by means of the
visibility map.

As an opposite to periodic series, in a second step we will
tackle a series R(t) of 106 data values extracted from an uniform
distribution in [0, 1]. Although one would expect in a first
moment a Poisson degree distribution in this case [as for
uncorrelated random graphs (2)], a random time series has
indeed some correlation, because it is an ordered set. In fact, let
kt be the connectivity of the node associated with the data t. If
kt is large (related to the fact that the data have a large value and
that consequently they have large visibility), one would expect
that kt�1 would be relatively small, because the time series is
random and two consecutive data values with a large value are
not likely to occur. It is indeed because of these ‘‘unlikely’’ large
values (the hubs) that the tail of the degree distribution deviates
from the Poisson distribution. Two large values in the series data
can be understood as two rare events in the random process. The
time distribution of these events is indeed exponential (3),
therefore we should expect the tail of the degree distribution in
this case to be exponential instead of Poissonian, as long as the
form of this tail is related to the hub’s distribution.

In the left side of Fig. 3 we depict the first 250 values of R(t).
In the right side we plot the degree distribution P(k) of its
visibility graph. The tail of this distribution fits an exponential
distribution quite well, as expected. Note, at this point, that time
series extracted randomly from other distributions than uniform
have also been addressed. In every case the algorithm captures
the random nature of the series, and the particular shape of the
degree distribution of the visibility graph is related to the
particular random process.

Hitherto, ordered (periodic) series convert into regular
graphs, and random series convert into exponential random
graphs; order and disorder structure in the time series seem to
be inherited in the topology of the visibility graph. Thus, the
question arises: What kind of visibility graph is obtained from a
fractal time series? This question is in itself interesting at the

present time. Recently, the relationship between self-similar and
scale-free networks (4–8) has been intensively discussed (9–12).
Although complex networks (5) usually exhibit the small-world
property (13) and consequently cannot be size-invariant, it has
been recently shown (9) that by applying fitted box-covering
methods and renormalization procedures, some real networks
actually exhibit self-similarity. So, whereas self-similarity seems
to imply scale freeness, the opposite is not true in general.

To explore these issues in more detail, the following two
fractal series will be considered: the well known Brownian
motion B(t) and the Conway series (14). Whereas the Brownian
motion represents a well known case of self-affinity [indeed, the
following relation holds: B(t) � a1/2B(t/a)], the Conway series
a(n) � n/2 is the recursively generated fractal series from:

a�1� � a�2� � 1

a�n� � a�a�n � 1�� � a�n � a�n � 1��; n � 2. [2]

In Fig. 4 we have plotted the behavior of these series, the degree
distribution P(k) of their respective visibility graphs and their

Fig. 2. The visibility graph of a time series remains invariant under several
transformation of the time series. (a) Original time series with visibility links.
(b) Translation of the data. (c) Vertical rescaling. (d) Horizontal rescaling. (e)
Addition of a linear trend to the data. As can be seen in the bottom diagram,
in all these cases the visibility graph remains invariant.

Fig. 3. Random series. (Left) First 250 values of R(t), where R is a random
series of 106 data values extracted from U[0,1]. (Right) Degree distribution
P(k) of the visibility graph associated with R(t) (plotted in semilog). Although
the beginning of the curve approaches the result of a Poisson process, the tail
is clearly exponential. This behavior is due to data with large values (rare
events), which are the hubs.

Fig. 4. Fractal series. (Upper from left to right) First 4,000 data values from
a Brownian series of 106 data values. (Center) The degree distribution of the
visibility graph associated with the Brownian motion. This one is a power law
P (k) � k�� with � � 2.00 � 0.01. (Right) Plot of the mean path length of this
network as a function of the network size N. The best fitting provides a
logarithmic scaling L(N) � 1.21 � 0.51 log(N). This network shows small-world
effect in addition to being scale-free. (Lower from left to right) First 105 data
values from a Conway series of 4 � 106 data values. (Center) The degree
distribution of the visibility graph associated with the Conway series. This one
is a power law P (k) � k�� with � � 1.2 � 0.1. The mean path length as a
function of the size N is depicted in Right. The best fitting provides a power law
scaling L(N) � 0.76N0.38. Then, this network is scale-invariant.
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mean path length L(N) as a function of the series length. First,
both series have visibility graphs with degree distributions that
correspond to power laws of the shape P(k) � k��, where we get
different exponents in each case: this result enhances the fact
that, in the context of the visibility algorithm, power law degree
distributions [that is, scale-free networks (6–9)] arise naturally
from fractal series. Moreover, this relation seems to be robust as
long as the preceding examples show different kinds of fractality:
whereas B(t) stands for a stochastic self-affine fractal, the
Conway series is a deterministic series recursively generated.
However, whereas the Brownian visibility graph seems to evi-
dence the small-world effect (Fig. 4 Upper Right) as L(N) �
log(N), the Conway series shows in turn a self-similar relation
(Fig. 4 Lower Right) of the shape L(N) � N�. This fact can be
explained in terms of the so-called hub repulsion phenomenon
(11): visibility graphs associated with stochastic fractals such as
the Brownian motion or generic noise series do not evidence
repulsion between hubs (in these series it is straightforward that
the data with highest values would stand for the hubs, and these
data would have visibility between each other), and consequently
will not be fractal networks according to Song et al. (11).
However, the Conway series actually evidence hub repulsion:
this series is concave-shaped and, consequently, the highest data
values will not in any case stand for the hubs; the latter ones
would be located most likely in the monotonic regions of the
series, which are indeed hidden from each other (effective
repulsion) across the series local maxima. The Conway visibility
graph is thus fractal.

Because a fractal series is characterized by its Hurst exponent,
we may argue that the visibility graph can actually distinguish
different types of fractality, something that will be explored in
detail in further work. Note at this point that some other fractal
series have been also studied [Q series (15), Stern series (16), and
Thue–Morse series (17), etc.] with similar results. Moreover,
observe that if the series under study increases its length, the
resulting visibility graph can be interpreted in terms of a model
of network growth and may eventually shed light into the fractal
network formation problem.

To cast light into the relation between fractal series and power
law distributions, in Fig. 5 Left, we present a deterministic fractal
series generated by iteration of a simple pattern of three points.
The series starts (step 0) with three points (A, B, and C) of
coordinates (0, 1), (1, 1/3), and (2, 1/3), respectively. In step p,
we introduce 2p � 1 new points with height 3�p�1 and distanced
3�p. The series form a self-similar set: applying an isotropic zoom
of horizontal scale 3p and vertical scale 3p to the pattern of order
p, we recover the original pattern.

Note that this time series is not data uniformly spaced as in the
previous examples. However, its usefulness is set on the fact that
it is simple enough to handle it analytically, that is, to find the
degree distribution of its visibility graph. The main idea is to find
a recurrence behavior in the way that a given node increases its
connectivity when the fractal step (that is, the fractal size) is
increased (18). Then we calculate how many nodes (self-similar
to it) appear in each step, and from both relations we come to
a degree distribution for these kinds of nodes.

First, from a quick visual exploration of Fig. 5 Left one comes
to the conclusion that nodes A and B have typically the same
degree. However, the degree of node C can be decomposed in
two terms: the left degree (due to visibility of nodes at the left
of C) and the right degree. The degree of A and B is the same
as the right degree of C (statistically speaking, A and B increase
their connectivity as the fractal size increases much in the way
as the right part of C). Thereby, the degree of C provides the
whole information of the system. We will quote Kr(C, n) the right
degree of node C in a n-step fractal (respectively, Kl(C, n) stands
for the left degree).
Applying the visibility criterion, one can geometrically find that

Kr�C, n� � �
m�1

n 1
m �

d�m

��d��2m�d, [3]

where � is the Moëbius function. Note that this summation
agrees with the number of irreducible polynomials of degree at
most n over the Galois field GF(2) (19), something which
deserves an in-depth investigation. This expression can be ap-
proximated by

Kr�C, n� � 24n�5. [4]

However, there is a recurrence in the left degree that reads

Kl�C, n� � 2Kl�C, n � 1� � 1, [5]

whose leading term is

Kl�C, n� � 2n. [6]

The node C will thus have a degree K(C) � Kr(C, n) � Kl(C, n).
In Fig. 5 Right we plot the values of Kr (circles) and Kl (squares) as
a function of the fractal size (the number of iterations n). Numerical
values are plotted as the outer circles and squares, whereas the inner
circles and squares come from plotting Eqs. 3 and 5. Note that both
formulas reproduce the numerical data. The straight lines corre-
spond to the approximation Eqs. 4 and 6. Now, in a generic step p,
2p nodes that are self-similar to C appear (by construction). Those
nodes will have a degree K(C, n � p) � 2

4�5(n � p) � 2n � p that,
for large values of n � p, can be approximated to K(C, n � p) �
2n � p. Defining f(K) as the degree distribution, we get that f(K(C,
n � p)) � 2p, and with the change of variable u � 2n � p, it is easy
to come into:

f�u� � u�1, [7]

that is, the degree distribution related to the C nodes is a power
law. Although this simple example does not provide a general
explanation of why fractality is traduced into power law distri-
butions, it may stand as a generic way of dealing with determin-
istic fractal series generated by iteration.

Once the visibility method has been presented, some remarks
can be stated: note that typically two series that only differ by an
affine transformation will have the same visibility graph; in this
sense the algorithm absorbs the affine transformation. Further-
more, it is straightforward to see that some information regard-
ing the time series is inevitably lost in the mapping from the fact

Fig. 5. Simple deterministic fractal. (Left) Fractal series obtained by iteration
of the original pattern (points A, B, and C) with p � 10 steps. (Right) Values of
Kr (circles) and Kl (squares) as a function of the fractal size, related to Eqs. 3 and
5. Note that the plot is log-linear; the relation is thus exponential. The straight
lines correspond to the approximations deduced in Eqs. 4 and 6.
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that the network structure is completely determined in the
(binary) adjacency matrix. For instance, two periodic series with
the same period as T1 � {. . . , 3, 1, 3, 1, . . .} and T2 � {. . . , 3,
2, 3, 2, . . .} would have the same visibility graph, albeit being
quantitatively different. Although the spirit of the visibility
graph is to focus on time series structural properties (periodicity,
fractality, etc.), the method can be trivially generalized by using
weighted networks (where the adjacency matrix is not binary and
the weights determine the slope of the visibility line between two
data values), if we eventually need to quantitatively distinguish
time series like T1 and T2, for instance.

Although in this article we have only tackled undirected
graphs, note that one could also extract a directed graph (related
to the temporal axis direction) in such a way that for a given node
one should distinguish two different connectivities: an ingoing
degree kin, related to how many nodes see a given node i, and an
outgoing degree kout, that is the number nodes that node i sees.
In that situation, if the direct visibility graph extracted from a
given time series is not invariant under time reversion [that is, if
P(kin) 	 P(kout)], one could assert that the process that generated
the series is not conservative. In a first approximation we have
studied the undirected version and the directed one will be
eventually addressed in further work.

There are some direct applications of the method that can be
put forward. The relation between the exponent of the degree
distributions and the Hurst exponent of the series will be
addressed in further work. In particular, it turns out that the
method presented here constitutes a reliable tool to estimate
Hurst exponents, as far as a functional relation between the
Hurst exponent of a fractal series and the degree distribution of

its visibility graph holds (J.C.N., B.L., L.L., and F.B., unpub-
lished work). Note that the estimation of Hurst exponents is an
issue of major importance in data analysis that is yet to be
completely solved (see, for instance, ref. 20). Fractional Brown-
ian motions, a concept of great interest in a large variety of fields
ranging from electronic devices to biology, will also be consid-
ered in relation with the preceding point.

Moreover, the ability of the algorithm to detect not only the
difference between random and chaotic series but also the spatial
location of inverse bifurcations in chaotic dynamical systems is
another fundamental issue that will also be at the core of further
investigations (unpublished work). Finally, the visibility graph
characterizes nontrivial time series and, in that sense, the method
may be relevant in specific problems of different garments, such
as human behavior time series recently put forward (21).

In summary, a algorithm that converts time series into graphs
is presented. The structure of the time series is conserved in the
graph topology: periodic series convert into regular graphs,
random series into random graphs, and fractal series into
scale-free graphs. Such characterization goes beyond the pre-
ceding points, since different graph topologies arise from ap-
parently similar fractal series. In fact, the method captures the
hub repulsion phenomenon associated with fractal networks
(11) and thus distinguishes scale-free visibility graphs evidencing
the small-world effect from those showing scale invariance. With
the visibility algorithm, a natural bridge between complex net-
works theory and time series analysis has now been built.
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21. Vázquez A, Gama Oliveira J, Deszö Z, Goh K, Kondor I, Barabási AL (2006) Phys Rev E

73:036127.

Lacasa et al. PNAS � April 1, 2008 � vol. 105 � no. 13 � 4975

A
PP

LI
ED

M
A

TH
EM

A
TI

CS


