
MATLAB Basics

CRT: Basic MATLAB

MATLAB Basics

© C.R. Thomas 2006

What is MATLAB?

MATLAB is a powerful tool for

mathematical computations

It has extensive capabilities for

CRT: Basic MATLAB

It has extensive capabilities for

generating graphs

It is used routinely by many engineers

for solving modelling problems

MATLAB can be used interactively

or programs can be written for later

execution

Error checking is very good – syntax

errors are identified as code is written

CRT: Basic MATLAB

Complete solutions to problems can

be written very quickly

errors are identified as code is written

and there are very good diagnostic

messages for program logic errors

Starting MATLAB

MATLAB 7.0.lnk

In the clusters,

you should find a

shortcut on your

CRT: Basic MATLAB

MATLAB 7.0.lnkshortcut on your

desktop

When MATLAB opens, you are

presented with the MATLAB

Desktop

CRT: Basic MATLAB

The Desktop should contain

several embedded windows

of which the most important is the

Command Window

CRT: Basic MATLAB

Command Window

This is where you can type

commands i.e. instructions to the

computer

titlebar is blue

meaning the

window is

CRT: Basic MATLAB

embedded

window

window is

active

so now you can

type commands

type your command at the

CRT: Basic MATLAB

type your command at the

>> sign

NB: normally extra spaces are ignored

press Enter

CRT: Basic MATLAB

and back comes the answer

There are lots of built in commands e.g.

If you don’t give your answer a

CRT: Basic MATLAB

If you don’t give your answer a

name, it is called ans

MATLAB assigns a new answer to ans

with each calculation

If you want to keep your answer for

later, give it a name

CRT: Basic MATLAB

This is called assignment

The Workspace window tells

you what you have stored at

CRT: Basic MATLAB

you what you have stored at

present

Once it has a name

CRT: Basic MATLAB

Once it has a name

you can use it again

and again

CRT: Basic MATLAB

- in the Command History

window

This is a history of what

you have done

There is lots of on-line help available

CRT: Basic MATLAB

including video tutorials and demos

You can also get help on a particular

command

CRT: Basic MATLAB

Simple arithmetic

- just like a calculator!

+ add

– subtract

CRT: Basic MATLAB

– subtract

* multiply

/ divide

^ exponentiate (power)

Use brackets as necessary

>> 3^2 – (1 + 3)/2 + 5*2

Pressing Enter gives

>> 3^2 – (1 + 3)/2 + 5*2

CRT: Basic MATLAB

ans =

17

Making and fixing errors

If you make a syntax error in typing

your command

MATLAB will print an error message

CRT: Basic MATLAB

>> 2a

??? 2a

|

Error: Missing MATLAB operator.

>> 2*a would be correct

Semicolon

In MATLAB, one use of a semicolon (;)

is to suppress output to the screen

(Command Window) e.g.

>> x = 3

x =

CRT: Basic MATLAB

x =

output to screen

3

but

>> x = 3; gives no output to the screen

This use of the semicolon is

common when writing programs,

or if one is generating a large

Note the result will still be stored in

the Workspace for later use

CRT: Basic MATLAB

or if one is generating a large

variable at the command line

(see later)

Digression:

scalars, vectors, arrays and

matrices

A scalar quantity is one that is

defined by a single number

CRT: Basic MATLAB

defined by a single number

– its size or magnitude

(with appropriate units)

Example: a speed of 100 km h-1

A vector has magnitude and direction

Example:

a velocity of 100 km h-1 due South

CRT: Basic MATLAB

If you think about direction in

coordinates, you will realise that a

vector can also be considered an

ordered list of numbers e.g.

the direction is 1 unit along the x

CRT: Basic MATLAB

the direction is 1 unit along the x

axis, 2 units along the y axis, and 2

unit along the z axis

2

1

2
y

z

r

CRT: Basic MATLAB

1

As long as we know what our base

directions are (x, y and z)

x

we could describe the vector r

as r = [1, 2, 2]

Arrays

An array is a collection of objects

(elements), of identical type, in a

rectangular arrangement

CRT: Basic MATLAB

An array of ?

Matrices

A matrix is an array of numbers e.g.

















−

−

110

011

001

CRT: Basic MATLAB

… although not all arrays of numbers

are matrices

 − 110

MATLAB stands for MATrix LABoratory

A vector can be thought of as a matrix

with only one row or one column















−

0

1

1
()001−

CRT: Basic MATLAB

 0

()1−

and a scalar as a matrix with only

one “ element ”

Assignment Statements

x = 4 (x is a scalar)

Note that “ = ” in MATLAB is an

assignment operator

CRT: Basic MATLAB

See A VERY, VERY, Brief Guide to MATLAB

for a summary of MATLAB syntax

It is therefore perfectly OK to write
>> x = x + 1

x = x + 1 would be incorrect in normal

algebra but here means:

the (new) value of x becomes the

(previous) value of x plus 1

CRT: Basic MATLAB

(previous) value of x plus 1

or, more simply:

x becomes x plus 1

y = [2, 3] y is a row vector

i.e a matrix with only 1 row

More Assignment Statements

Creating a matrix:

CRT: Basic MATLAB

A = [-1, 0, 0; 1, 1, 0; 0, -1, 1]

A is a 3x3 matrix

















−

−

=

110

011

001

A

A = [-1, 0, 0; 1, 1, 0; 0, -1, 1]

Looking at the syntax more closely:

a “,” is a divider,

separating

the “;” here

separates rows i.e.

CRT: Basic MATLAB

separating

elements on a

row

starts a new row

You can also use a space as an element

divider e.g. A = [-1 0 0; 1 1 0; 0 -1 1]

which gives the same A as above

(NB: a second use of “;”)

















=

5

6

2

2

3

1

C

This is a rectangular matrix

with 3 rows and 2 columns

Its size is 3x2

size(C) is a MATLAB function that

In MATLAB: C = [1 3; 3 6; 2 5]

CRT: Basic MATLAB

size(C) is a MATLAB function that

outputs the number of rows in nr and

the number of columns in nc – can be

very useful in handling matrices

Use it like >> [nr nc] = size(C)

A = [1, 2, 3; 4, 5, 6; 7, 8, 9]

b = A(3, 2) sets b to the element that is

in the third row, second column of A

You can also use this to assign values

This is 8 in this case

CRT: Basic MATLAB

You can also use this to assign values

to elements e.g. A(3, 2) = 0 giving

A = [1, 2, 3; 4, 5, 6; 7, 0, 9]

The difference is that in the second case

A(3, 2) is on the left hand side of “ = ”

Digression:

Matrix addition and subtraction

Matrix addition and subtraction behave

as as you might expect, as does

multiplication by a scalar

CRT: Basic MATLAB









=









++

++
=+









=








=

81

65

1701

3332
BAthen

10

33
B

71

32
A

Matrix multiplication









=








=

10

33
B

71

32
A

This is NOT how it is done:

does not work as you might expect

CRT: Basic MATLAB










××

××
≠







=





=

1701

3332
BAthen

10
B

71
A

*

Do not try to do this!

Matrix multiplication is row ×××× column

Each element of a row is multiplied by

the corresponding element in a

column, and the results are added to

give one element of the new matrix

CRT: Basic MATLAB

give one element of the new matrix

This is located where the row and

column intersect

Hard to describe, easy to do

() () () ()

() () () ()









×+××+×

×+××+×
=









=








=

17310731

13320332
BAthen

10

33
B

71

32
A

*

CRT: Basic MATLAB

?BAthen

10

01

43

B and
421

231
A if Similarly,

=

















=







=

*

NB: we can only multiply matrices if

the number of columns of the first

matrix equals the number of rows of









=

85

66
BA*

CRT: Basic MATLAB

matrix equals the number of rows of

the second

For example, we cannot evaluate









=








=

01

43
B and

421

231
A if BA*

If A is a n ×××× m matrix, and B is a p ×××× q

matrix, A * B only exists if m = p

If m = p, then the resulting matrix has

dimensions n ×××× q

n ×××× m, m ×××× q n ×××× q

CRT: Basic MATLAB









=

















=







=

85

66
B*A then

10

01

43

B and
421

231
A

Remember from earlier:

2 ×××× 3 3 ×××× 2 2 ×××× 2

A*B in MATLAB is matrix multiplication

B = [1 0 1; 0 1 0; 1 1 0]

A = [1, 2, 3; 4, 5, 6; 7, 8, 9]

In this case

CRT: Basic MATLAB

Note that in general A*B ≠≠≠≠ B*A, and

A*B = 0 does not imply either A or B is

necessarily 0

In this case

A*B = [4, 5, 1; 10, 11, 4; 16, 17, 7]

A.*B in MATLAB is multiplication

element by element

















=

087

040

301

B*.A

CRT: Basic MATLAB





 087

Similarly A.^2 means square each

element of A, but A^2 equals A*A

A = A' transposes A

Transpose means swap rows and columns











=

907

654

321

A











=′

963

052

741

A

CRT: Basic MATLAB





 907 



 963

If y = [2, 3], then y' = [2; 3]

If A = [1 2 3; 4 5 6; 7 0 9] then

A' = [1 4 7; 2 5 0; 3 6 9]

A = inv(A) gives the inverse of the matrix

inv(A)*A = I

where I is the “identity matrix”

The identity matrix behaves like the

number 1 in arithmetic but might look

CRT: Basic MATLAB

number 1 in arithmetic but might look

like

















=

100

010

001

I

The size is

variable and

here would be

the same as A

To find the inverse A has to be

“square” i.e. the same number of rows

as columns

Also its determinant must not equal zero

Say A*x = b , then

CRT: Basic MATLAB

This could be used to solve systems of

linear equations (for x here), but it is

usually more efficient for a computer to

do Gaussian elimination

Say A*x = b , then

inv(A)*A*x = I*x = x = inv(A)*b

A\b is matrix division in MATLAB

Say A x = b

Then in MATLAB: x = A\b

,

used for solving sets of linear

equations by Gaussian elimination

CRT: Basic MATLAB

Then in MATLAB: x = A\b

e.g. >> A = [1 1;1 4]

>> b = [1; 2.5]

>> A\b gives [0.500

0.500]

Colon Operator

If a colon is used to separate two

integers, it generates all the integers

between them e.g.

>> c = 1:8

creates a vector c =

CRT: Basic MATLAB

creates a vector c =

The step size can be defined e.g.

>> b = 0:2:8

creates a vector b = [0 2 4 6 8]

>> d = 2:- 0.2:1

creates a vector d containing numbers

dropping in steps of 0.2 from 2 to 1

inclusive

The step size can be negative for a

countdown e.g.

CRT: Basic MATLAB

inclusive

d = ?

Concatenation

Concatenation means creating larger

matrices from smaller ones - not

addition e.g. if

A = [1 1;1 4] and B = [1 2; 3 0]

CRT: Basic MATLAB

A = [1 1;1 4] and B = [1 2; 3 0]

Then C = [A B] gives C = [1 1 1 2; 1 4 3 0]









=

0341

2111
C

A B

On the other hand, with the same

A = [1 1;1 4] and B = [1 2; 3 0]

C = [A; B] gives C = [1 1; 1 4; 1 2; 3 0]

 11

CRT: Basic MATLAB





















=

03

21

41

11

C

A

B

row

separator

Special constants and values

are often available in MATLAB

e.g. pi represents ππππ
Inf infinity

NaN not a number

CRT: Basic MATLAB

NaN not a number

Strings

MATLAB can handle strings i.e. bits of text

It does this by treating text as a matrix of

characters

Use single quotes to show you are dealing

with text e.g.

CRT: Basic MATLAB

with text e.g.

>> message = 'Hello world'

You can use concatenation to built more

complex text e.g.

>> big_message = [message; 'from Fred']

You can display your text on the screen

using the function disp

CRT: Basic MATLAB

using the function disp

>> disp(big_message)

There are many ways to control screen

output e.g. fprintf

MATLAB Functions

As in Excel, MATLAB provides

lots of built-in functions for you

to use

e.g. sqrt, exp, log, sin, cosh ….

CRT: Basic MATLAB

>> y=[1 2 3 4 5];

>> z=sqrt(y)

z =

1.0000 1.4142 1.7321 2.0000 2.2361

This is “vectorisation” is one reason

for the power of MATLAB

Plots

plot(x,y) produces a graph of y against x,

where x and y are vectors

plot takes in data sets and outputs a plot

or “figure”

CRT: Basic MATLAB

or “figure”

e.g. >> x = -pi:0.1:pi;

>> y = sin(x);

>> plot(x,y)

CRT: Basic MATLAB

There are many ways to improve the

look of your plots!

Digression:

Computer representation of

numbers
Decimal: 123.45 means 1 ×××× 102

+ 2 ×××× 101

+ 3 ×××× 100

CRT: Basic MATLAB

+ 3 ×××× 100

+ 4 ×××× 10-1

+ 5 ×××× 10-2

Using scientific notation, this is written

as 1.2345 ×××× 102

Computers use an adaptation of

scientific notation called

“floating point” representation

For example, in MATLAB:

123.45 becomes

1.2345e+002 e+002 means 102

CRT: Basic MATLAB

1.2345e+002 e+002 means 102

Computers represent numbers as a

string of bits e.g. 53 binary digits

Only some (decimal) numbers can be

represented exactly in a computer

Of course, internally computers work in

binary i.e. powers of 2, not 10

CRT: Basic MATLAB

In common "double precision"

representation, consecutive numbers

differ by about 1 part in 1016

The true mathematical result of a

calculation might not be one of these

represented exactly in a computer

This can result in numerical errors e.g.

CRT: Basic MATLAB

Most of the time, such errors in

numerical calculations in MATLAB will

be unimportant

Matlab Script Files

Although a lot can be done from the

command line, it is often useful to

write a MATLAB program or “script”

A script is stored in a text file, with the

CRT: Basic MATLAB

A script is stored in a text file, with the

extension .m - hence “m-files”

When you invoke a script by typing its

name in the command line, it simply

executes the commands in the file

Example: simplified version of magicrank.m from

the “Getting Started“ tutorial

% investigate the rank of magic squares

for n = 3:32

r(n) = rank(magic(n));

magic(n) makes a magic square of size n

Loops

through

values of

CRT: Basic MATLAB

r(n) = rank(magic(n));

end

bar(r)

comment ignored by the program

values of

n from 3

to 32

making

magic

squares

and storing the

rank in a vector r

bar chart of ranks

>> magicrank at command line

CRT: Basic MATLAB

For simple problems, the command line

is fast and efficient

For larger problems, or if you wish to

change variable values, or have loops

or branches, or modify the commands,

CRT: Basic MATLAB

or branches, or modify the commands,

use script files

Note that you can store your script

files and reuse them in other work

Useful functions for script files:

Prompts user for inputinput

Turning echo on displays the

script commands as they are

executed - good for “debugging”

echo

Displays results without

identifying variable names

disp(ans)

CRT: Basic MATLAB

Pause until user presses mouse

button or keyboard key

waitforbuttonpress

Pause for n secondspause(n)

Pause until user presses any

keyboard key

pause

Prompts user for inputinput

If you ever need to stop execution of a

command or script file, press Ctrl-C

i.e. the Control and C keys

simultaneously e.g.

for p = 1:1000

CRT: Basic MATLAB

for p = 1:1000

for q = 1:1000

A(p,q) = p*q

end

end

“for” loops are

discussed later

A = zeros(1000,1000);

for p = 1:1000

for q = 1:1000

A better approach might be

puts room aside in

memory for your

matrix, by making a

matrix of 0’s – handy

trick to speed things

up

CRT: Basic MATLAB

for q = 1:1000

A(p,q) = p*q;

end

end

up

; to suppress

output

Polynomials in MATLAB

In MATLAB, polynomials are

represented by a row vector of the

coefficients

CRT: Basic MATLAB

e.g. a polynomial f = 3x3 – x2 – 1 is

specified by the coefficient vector

a = [3 –1 0 –1]

Polynomial Functions

See the VERY, VERY Brief Guide to

MATLAB for the polynomial functions

polyval(a, x) : to evaluate a polynomial

CRT: Basic MATLAB

polyval(a, x) : to evaluate a polynomial

with coefficient matrix a at x

f = 3x3 – x2 – 1

>> a = [3 –1 0 –1]

>> polyval(a, 1)

ans =

CRT: Basic MATLAB

ans =

1

Polynomial Functions

roots(a) : to find the roots of a

polynomial

poly(r) : to find the coefficient matrix

CRT: Basic MATLAB

poly(r) : to find the coefficient matrix

from the roots

f = 3x3 – x2 – 1

>> a = [3 –1 0 –1]

>> r = roots(a)

r =

CRT: Basic MATLAB

r =

0.8241

-0.2454 + 0.5867i

-0.2454 - 0.5867i

f = 3x3 – x2 – 1

>> r =

0.8241

-0.2454 + 0.5867i

-0.2454 - 0.5867i

CRT: Basic MATLAB

-0.2454 - 0.5867i

>> poly(r)

ans =

1.0000 -0.3333 -0.0000 -0.3333

p = polyfit(x, y, n)

vector of x values

order of fitted

polynomial

Polynomials and Regression

CRT: Basic MATLAB

vector of x values

vector of corresponding y values

coefficients of polynomial that

fits data best on least square

basis

Flow Control

If you want to loop e.g. do something

lots of times, with a different value of a

variable each time

or if you want your program to make

CRT: Basic MATLAB

or if you want your program to make

decisions while it is running, you need

“flow control”

MATLAB has five “constructs” for

flow control

• if

• switch

• for

CRT: Basic MATLAB

• for

• while

• break

if

if <logical condition>

<statements for first case>

elseif <logical condition>

<statements for second case >

else

CRT: Basic MATLAB

else

<otherwise>

end

if

if mark >= 69.5

firstclass

elseif mark >= 40

pass

else

CRT: Basic MATLAB

else

fail

end

If if finds a condition is satisfied, it

executes the statement(s) that follow

immediately, and then goes to end

switch

switch <variable or expression>

case <some value(s)>

<statements for first case(s)>

case <some value(s)>

<statements for second case(s)>

Notes only:

CRT: Basic MATLAB

<statements for second case(s)>

case <some value(s)>

<statements for third case(s)>

otherwise

<statements for other case(s)>

end

switch

switch lower(input('What day is it? ', 's'))

case {‘saturday', ‘sunday'}

disp('Weekend - hurrah!')

case {‘monday',‘friday'}

disp('More weekend - cool')

case {‘tuesday', ‘wednesday', …

Notes only:

NB “ …” is

means

continue the

line below

CRT: Basic MATLAB

case {‘tuesday', ‘wednesday', …

'thursday'}

disp('Rest day - wicked')

otherwise

disp('Not a day')

end

switch works down the cases

When it finds a true condition, it

executes the statement(s) that

Notes only:

CRT: Basic MATLAB

executes the statement(s) that

follow immediately, then goes to

end

for

for n = 3:32

r(n) = rank(magic(n));

end

Executes the statements the stated

CRT: Basic MATLAB

Executes the statements the stated

number of times

Note: you can have steps other than 1

e.g. n = 2:2:100 - even numbers up to 100

n = 10:-1:0 - countdown

while

Repeats statements until some

logical condition is met

n = 1;

while n <= 500

disp(n)

CRT: Basic MATLAB

disp(n)

n = n^2+ 1;

end

Note the use of indenting in loops –

helps make the code much easier to read

break

Useful if you need to exit early from a loop

n = 1;

while n <= 5000

disp(n)

CRT: Basic MATLAB

disp(n)

n = n^2+ 1;

if n == 26 break

end % if

end

MATLAB Functions

Functions are m-files that can accept

input “arguments” and return “output

arguments”

CRT: Basic MATLAB

The function m-file “blanks.m” is a

simple example

function b = blanks(n)

%BLANKS String of blanks.

% BLANKS(n) is a string of n blanks.

% Use with DISP, eg. DISP(['xxx' BLANKS(20) 'yyy']).

% DISP(BLANKS(n)') moves the cursor down n lines.

>>type blanks

gives the contents of the file blanks.m

CRT: Basic MATLAB

%

% See also CLC, HOME, FORMAT.

% Copyright 1984-2002 The MathWorks, Inc.

% $Revision: 5.10 $ $Date: 2002/04/15 03:53:35 $

space = ' ';

b = space(ones(1,n));

function b = blanks(n)

The first line starts with the word function
It gives the function name, and the order of

the “arguments”

Here there is only one input: n

CRT: Basic MATLAB

Here there is only one input: n

This is the number of blanks required

There is one output b, a string of n blanks

function b = blanks(n)

%BLANKS String of blanks.

% BLANKS(n) is a string of n blanks.

% Use with DISP, eg. DISP(['xxx' BLANKS(20) 'yyy']).

% DISP(BLANKS(n)') moves the cursor down n lines.

%

% See also CLC, HOME, FORMAT.

The comment lines that follow are the help

CRT: Basic MATLAB

The comment lines that follow are the help

text you see when you type

>> help blanks

If you write your own, this will work for

your functions too!

space = ' ';

b = space(ones(1,n));

The rest of the code is what the function

does

Note that one line, often the last, gives a

CRT: Basic MATLAB

Note that one line, often the last, gives a

value for the output, here b

You can “call” the function from the

command line or from another m-file

>> myblanks = blanks(6)

myblanks =

>> xxblanks = ['x' blanks(6) 'x']

CRT: Basic MATLAB

>> xxblanks = ['x' blanks(6) 'x']

xxblanks =

x x

Note the concatenation here

>> myblanks = blanks(6)

function b = blanks(n)

%BLANKS String of blanks.

% BLANKS(n) is a string of n blanks.

% Use with DISP, eg. DISP(['xxx' BLANKS(20) 'yyy']).

% DISP(BLANKS(n)') moves the cursor down n lines.

%

CRT: Basic MATLAB

%

% See also CLC, HOME, FORMAT.

% Copyright 1984-2002 The MathWorks, Inc.

% $Revision: 5.10 $ $Date: 2002/04/15 03:53:35 $

space = ' ';

b = space(ones(1,n));

Note that everything inside a function

is hidden from the outside

If we call blanks from the command

line, the value of b and n are not

defined (known) outside the function

CRT: Basic MATLAB

defined (known) outside the function

>> blanks(6)

ans =

>> b

??? Undefined function or variable 'b'.

This means we don’t have to worry

about the function altering the values of

variables we have defined

>> b=6;

>> blanks(6)

ans =

CRT: Basic MATLAB

ans =

>> b

b =

6

not 6 blanks!

If we want to share a variable between

the inside of a function and outside, we

might declare the variable as “global”

However, it is better practice to pass all

variables in and out as arguments

CRT: Basic MATLAB

variables in and out as arguments

User-defined functions

MATLAB has lots of functions to play

with, but you may want to write your

own – as a function m-file.

CRT: Basic MATLAB

For example, you may want a function

which changes £ into $

function dollars = convert(pounds)

%CONVERT changes a given amount of

%pounds sterling into US dollars, using a global value

%for the exchange rate. It rounds down to a whole

%number of dollars.

global exchange_rate

dollars = floor(exchange_rate*pounds);

CRT: Basic MATLAB

dollars = floor(exchange_rate*pounds);

This is stored on the path as an m-file

called convert.m

It can then be called from the command

line or another m-file

>> global exchange_rate

>> exchange_rate = 1.5;

>> pounds = 200;

>> mydollars = convert(pounds)

mydollars =

For example

CRT: Basic MATLAB

mydollars =

300

An advantage of such files is that you

can re-use them

Simple Numerical Analysis in

MATLAB

“Function functions” are functions

that have other functions as inputs

CRT: Basic MATLAB

that have other functions as inputs

Examples are finding minima, finding

roots, quadrature, and solving ODEs

numerically

MATLAB’s favourite function is humps;

a curve generated by the equation

() ()
6

04.09.0

1

01.03.0

1
22

−
+−

+
+−

=
xx

y

CRT: Basic MATLAB

strong maxima near x = 0.3

and x = 0.9

CRT: Basic MATLAB

note: humps does not intercept x-axis in this range

function y = newhumps(x)

%NEWHUMPS A modified simple version of MATLAB’s humps.

% Y = HUMPS(X) is a function with strong maxima near x = .3

% and x = .9.

% Y =NEWHUMPS(X) subtracts 15 from HUMPS to ensure

% some roots in the range 0 <= x <= 1.

MATLAB’s favourite function is humps

Here is a modified version: newhumps

CRT: Basic MATLAB

% some roots in the range 0 <= x <= 1.

y = (1 ./ ((x-.3).^2 + .01) + 1 ./ ((x-.9).^2 + .04) - 6) -15;

If we try
>> x = 0:0.002:1;

>> y = newhumps(x);

>> plot(x,y)
we get ...

now there

are some

roots!

CRT: Basic MATLAB

roots!

fminbnd(‘newhumps', 0.5, 0.7) will

find the minimum in the function

newhumps between x = 0.5 and x = 0.7

fzero('newhumps', 0.5) will try to find a

CRT: Basic MATLAB

fzero('newhumps', 0.5) will try to find a

root near x = 0.5

feval('newhumps', 0.5) will compute the

value of newhumps at x = 0.5

fminbnd

CRT: Basic MATLAB

0.637

fminbnd

fzero

CRT: Basic MATLAB

0.5362

fzero

feval

CRT: Basic MATLAB

4

quad(‘newhumps', 0.2, 0.4) will

numerically integrate newhumps

between x = 0.2 and x = 0.4

quad uses a version of Simpson’s Rule

CRT: Basic MATLAB

quad uses a version of Simpson’s Rule

All these work as well on other functions

fzero(@sin, 0.9*pi)

will try to find a root of sin x near x = 0.9π

@ is a function “handle”

CRT: Basic MATLAB

Returns

ans =

3.14159265358979 ~ π as expect

@ is a function “handle”

- can use instead of quotes

Key point

MATLAB is a powerful

programming tool for Engineers,

which is worth learning and using

CRT: Basic MATLAB

which is worth learning and using

