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Chapter 3  
3.4-2 The Compressibility Factor Equation of State 
 
The dimensionless compressibility factor, Z, for a gaseous species is defined as the ratio 
 

 Z = 
pv
RT

 (3.4-1) 

 
If the gas behaves ideally Z = 1. The extent to which Z differs from 1 is a measure of the 
extent to which the gas is behaving nonideally. The compressibility can be determined from 
experimental data where Z is plotted versus a dimensionless reduced pressure pR and 
reduced temperature TR, defined as 
 
 pR = p/pc and TR = T/Tc 
 
In these expressions, pc and Tc denote the critical pressure and temperature, respectively. A 
generalized compressibility chart of the form Z = f(pR, TR) is shown in Figure 3.4-1 for 10 
different gases. The solid lines represent the best curves fitted to the data. 
 

 
 

Figure 3.4-1 Generalized compressibility chart for various gases10. 
 
It can be seen from Figure 3.4-1 that the value of Z tends to unity for all temperatures as 
pressure approach zero and Z also approaches unity for all pressure at very high temperature. 
If the p, v, and T data are available in table format or computer software then you should not 
use the generalized compressibility chart to evaluate p, v, and T since using Z is just another 
approximation to the real data.  
 
                                                 
10 Moran, M. J. and Shapiro H. N., Fundamentals of Engineering Thermodynamics, Wiley, 2008, pg. 112 
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Example 3.4-2 ---------------------------------------------------------------------------------- 
A closed, rigid tank filled with water vapor, initially at 20 MPa, 520oC, is cooled until its 
temperature reaches 400oC. Using the compressibility chart, determine 
(a) the specific volume of the water vapor in m3/kg at the initial state. 
(b) the pressure in MPa at the final state. 

 
Compare the results of parts (a) and (b) with values obtained from the thermodynamic table 
or software11. 
 
Solution ------------------------------------------------------------------------------------------ 

(a) The specific volume of the water vapor in m3/kg at the initial state. 
 
Look up the critical temperature Tc and critical pressure pc of water: 
 

Substance Chemical Formula M (kg/kmol) Tc (K) pc (bar)

Water H2O  18.02 647.3 220.9 0.233

 
Evaluate the reduce pressured pR and reduce temperatured TR 
 
 pR1 = 20/22.09 = 0.91, TR1 = (520 + 273.15)/647.3 = 1.23 

 

 
Figure E3.4-2 Generalized Compressibility Chart 

 
With these values for the reduced pressure and reduced temperature, the value of Z from 
Figure E3.4-2 is approximately 0.83 
 

 Z = 
pv
RT

 = 
pMv
RT

 � v1 = Z1
1

1

RT
Mp

  

 

`` v1 = 0.83
8314 N m/kmol K

18.02 kg/kmol
� �⋅ ⋅
� �
� �

6 2

793.15 K
20 10  N/m

� �
� �×� �

 = 0.0152 m3/kg 

 

                                                 
11 Moran, M. J. and Shapiro H. N., Fundamentals of Engineering Thermodynamics, Wiley, 2008, pg. 113 
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This value is in good agreement with the specific volume of 0.01551 m3/kg from CATT2 
program (Table E3.4-2). 
 

Table E3.4-2 Water properties from CATT2 program 
   Specific Internal 
 Temp Pressure Volume Energy 
State C MPa m3/kg kJ/kg 

1 520 20 0.01551 2992 
2 400 15.1 0.01551 2739 

 
(b) The pressure in MPa at the final state.  

 
Since both mass and volume remain constant, the water vapor cools at constant specific 
volume and thus at reduced specific volume 
 

 v'R = c

c

vp
RT

 = 
( )( )

( )

3 6 20.0152 m /kg 22.09 10  N/m

8314 N m
647.3 K

18.02 kg K

×

� �⋅
� �⋅� �

 = 1.12 

 
The reduced temperature at the final state is TR2 = (400 + 273.15)/647.3 = 1.04 
 

 
Figure E3.4-2 Generalized Compressibility Chart 

 
Locating the point on the compressibility chart where v'R = 1.12 and TR = 1.04, the 
corresponding value for pR2 is about 0.69. The final pressure is then 
 
 p2 = pc(pR2) = (22.09 MPa)(0.69) = 15.24 MPa 
 
This value is in good agreement with the pressure of 15.1 MPa from CATT2 program (Table 
E3.4-2). 
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3.4-3 Virial Equation of State 
 

A virial equation of state expresses the quantity 
pv
RT

 as a power series in the inverse of molar 

volume v . 
 

 
pv
RT

 = 1 + 
( )B T
v

 + 2

( )C T
v

 + 3

( )D T
v

 + … (3.4-8) 

 
In this equation, B, C, and D are called virial coefficient and are functions of temperature. We 
will show the use of a truncated virial equation with two terms. 
 

 
pv
RT

 = 1 + 
( )B T
v

 (3.4-9) 

 
In this equation, B(T) can be estimated from the following equations: 
 

 B(T) = c

c

RT
p

(B0 + ωB1) (3.4-10) 

 

 B0 = 0.083 − 1.6

0.422

RT
, B1 = 0.139 − 4.2

0.172

RT
 

 
In equation (3.4-10), ω is the Pitzer acentric factor, a parameter that reflects the geometry 
and polarity of a molecule. The acentric factor for over 1000 compounds can be obtained 
from comp4.exe program written by T.K. Nguyen. This program is available in the 
Distribution Folder for CHE302 course. 
 

 
 

Figure 3.4-2 Accentric factor for nitrogen from comp4.exe program. 
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Example 3.4-3 ---------------------------------------------------------------------------------- 
A three-liter tank contains two gram-moles of nitrogen at − 150.8oC. Estimate the tank 
pressure using the ideal gas equation of state and then using the virial equation of state 
truncated after the second term. Taking the second estimate to be correct, calculate the 
percentage error that results from the use of the ideal gas equation at the system conditions. 
Data for nitrogen: Tc = 126.2 K, pc = 33.5 atm, and ω = 0.04012. 
 
Solution ------------------------------------------------------------------------------------------ 
 
 v = 3.0 L/2 mol = 1.5 L/mol, T = − 150.8 + 273.2 = 122.4 K 
 
From the ideal gas law, 
 

 pideal = 
RT
v

= 
( )0.08206 L atm/mol K (122.4 K)

1.50 L/mol
⋅ ⋅

 = 6.696 atm 

 
From the truncated virial equation, 
 

 
pv
RT

 = 1 + 
( )B T
v

 

 
 TR = 122.4/126.2 = 0.970 
 

 B0 = 0.083 − 1.6

0.422

RT
 = 0.083 − 1.6

0.422
0.97

 =  − 0.360 

 

 B1 = 0.139 − 4.2

0.172

RT
 = B1 = 0.139 − 4.2

0.172
0.97

 =  − 0.0566   

 

 B(T) = c

c

RT
p

(B0 + ωB1)  

 

B(T) = 
( )0.08206 L atm/mol K (126.2 K)

33.5 atm
⋅ ⋅

[ − 0.36 + (0.04)( − 0.0566)] = − 0.112 L/mol 

 

 p = 
RT
v

0.112
1

1.5
� �−� �
� �

 = 
( )0.08206 L atm/mol K (122.4 K)

1.50 L/mol
⋅ ⋅

(0.9253) 

 
 p = 6.196 atm 
    
Error in using ideal gas law 
 

 ε = idealp p
p

− ×100 = 8.07 % 

                                                 
12 Felder R. M., Rousseau R. W., Elementary Principles of Chemical Processes, Wiley, 2005, pg. 202 
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3.4-4 Soave-Redlick-Kwong (SRK) Equation 
 
The Soave-Redlick-Kwong (SRK) equation belongs to a class of cubic equations of state 
because, when expanded, they yield third-degree equations for the specific volume. The SRK 
equation of state is 
 

 p = 
RT

v b−
 − 

( )
a

v v b
α

+
 (3.4-11) 

 
In this equation, the parameter a, b, and α are empirical functions of the critical temperature 
and pressure, the Pitzer acentric factor, and the system temperature. The following 
correlations can be used to estimate these parameters: 
 

 a = 0.42747
( )2

c

c

RT

p
 

 

 b = 0.08664 c

c

RT
p

 

 
 m = 0.48508 + 1.55171ω − 0.1561ω2 
 

 α = ( ) 2

1 1 Rm T� 	+ −

 �

 

 
Example 3.4-4 ---------------------------------------------------------------------------------- 
A gas cylinder with a volume of 2.50 m3 contains 1.00 kmol of carbon dioxide at T = 300 K. 
Use the SRK equation of state to estimate the gas pressure in atm. Data for carbon dioxide: 
Tc = 304.2 K, pc = 72.9 atm, and ω = 0.22513. 
 
Solution ------------------------------------------------------------------------------------------ 
  
 TR = 300/304.2 = 0.9862 
 
 cRT  = (0.08206 L⋅atm/mol⋅K)(304.2 K) = 24.96 L⋅atm/mol 
 

 a = 0.42747
( )2

c

c

RT

p
 =  0.42747

( )224.96 L atm/mol
72.9 atm

⋅
 = 3.6539 L2⋅atm/mol2 

 

 b = 0.08664 c

c

RT
p

 = 0.08664
24.96 L atm/mol

72.9 atm
⋅

 = 0.0297 L/mol 

 
 m = 0.48508 + 1.55171ω − 0.1561ω2 = 0.8263 
 

                                                 
13 Felder R. M., Rousseau R. W., Elementary Principles of Chemical Processes, Wiley, 2005, pg. 203 
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 α = ( ) 2

1 1 Rm T� 	+ −

 �

 = ( ) 2

1 0.8263 1 0.9862� 	+ −

 �

 = 1.0115 

 

 p = 
RT

v b−
 − 

( )
a

v v b
α

+
 

 

 p =
( )0.08206 L atm/mol K (300 K)

(2.50 0.0297) L/mol
⋅ ⋅
−

 − 
( )

( )
2 21.0115 (3.654 L atm/mol )

2.50 L/mol (2.50 0.0297) L/mol
⋅

+
 

 
 p = 9.38 atm 
 
Example 3.4-5 ---------------------------------------------------------------------------------- 
A stream of propane at temperature T = 423 K and pressure p(atm) flows at a rate of 100.0 
kmol/hr. Use the SRK equation of state to estimate the volumetric flow rate flowV�  of the 
stream for p = 0.7 atm, 7 atm, and 70 atm. In each case, calculate the percentage differences 
between the predictions of the SRK equation and the ideal gas equation of state. Data for 
propane: Tc = 369.9 K, pc = 42.0 atm, and ω = 0.15214. 
 
Solution ------------------------------------------------------------------------------------------ 
 

We first calculate a, b, and α from the following expressions: 
 

 a = 0.42747
( )2

c

c

RT

p
, b = 0.08664 c

c

RT
p

 

 

 m = 0.48508 + 1.55171ω − 0.1561ω2, α = ( ) 2

1 1 Rm T� 	+ −

 �

 

 
The SRK equation is written in the form 

 

 f( v ) = p − 
RT

v b−
 + 

( )
a

v v b
α

+
 = 0 

 

v is then calculated using Newton’s method: v  = v  − 
( )
'( )

f v
f v

 = v  − d v , where 

 

 f’( v ) = 
( )2

RT

v b−
 − 

( ) 2

(2 )a v b

v v b

α +
+� 	
 �

 

 

The initial value for v  is obtained from ideal gas law: v ideal = 
RT
p

. The iteration process 

stops when v /d v  is less than 0.0001. The percentage difference between v SRK and v ideal is  
                                                 
14 Felder R. M., Rousseau R. W., Elementary Principles of Chemical Processes, Wiley, 2005, pg. 204 
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 idealv v
v

− ×100% 

 
Once v  is known for a given p, the volumetric flow rate corresponding to a molar flow rate 
of 100.0 kmol/hr is obtained as 
 

 flowV� (m3/hr) =  v (L/mol)
310  mol

kmol

3

3

1 m
10  L

(100 kmol/hr) = 100 v (L/mol) 

 
The calculations are performed using the following Matlab program: 
 
% Example 3.4-5 
Tc=369.9; % K 
pc=42.0; % atm 
w=0.152; % acentric factor 
Rg=0.08206; % L*atm/(mol*K) 
T=423; % K 
p=input('p(atm) = '); 
Tr=T/Tc; 
a=0.42747*(Rg*Tc)^2/pc; 
b=0.08664*(Rg*Tc)/pc; 
m = 0.48508 + 1.55171*w - 0.1561*w^2; 
alfa=(1+m*(1-Tr^0.5))^2; 
videal=Rg*T/p;v=videal; 
for i=1:20; 
    f=p-Rg*T/(v-b)+alfa*a/(v*(v+b)); 
    df=Rg*T/(v-b)^2-alfa*a*(2*v+b)/(v*(v+b))^2; 
    dv=f/df; 
    v=v-dv; 
    if abs(dv/v)<1e-4, break, end 
end   
Di=(videal-v)/v*100; 
Flowrate=100*v; 
fprintf('videal = %6.2f, v(L/mol) = %6.2f, Percentage Difference = 
%6.3f\n',videal,v,Di) 
fprintf('Flow rate (m3/hr) = %6.1f\n', Flowrate) 
 
>> ex3d4d5 
p(atm) = .7 
videal = 49.588, v(L/mol) = 49.406, Percentage Difference =   0.37 
Flow rate (m3/hr) = 4940.6 
 
>> ex3d4d5 
p(atm) = 7 
videal =  4.959, v(L/mol) =  4.775, Percentage Difference =   3.86 
Flow rate (m3/hr) =  477.5 
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>> ex3d4d5 
p(atm) = 70 
videal =  0.496, v(L/mol) =  0.289, Percentage Difference =  71.57 
Flow rate (m3/hr) =   28.9 
 
 
The SRK equation of state (and every other equation of state) is itself an approximation. At 
423 K and 70 atm, the actual value for v is 0.2579 L/mol. The percentage error in the SRK 
estimate ( v  = 0.289 L/mol) is 12%, and that in the ideal gas estimate ( v  = 0.50 L/mol) is 
92%. 
 
__________ Review: The Newton-Raphson Method ________________________ 
 
The Newton-Raphson method and its modification is probably the most widely used of all 
root-finding methods. Starting with an initial guess x1 at the root, the next guess x2 is the 
intersection of the tangent from the point [x1, f(x1)] to the x-axis. The next guess x3 is the 
intersection of the tangent from the point [x2, f(x2)] to the x-axis as shown in Figure 5.3-3. 
The process can be repeated until the desired tolerance is attained. 
 

x1

f(x)
f(x )1 B

x2x3

 
Figure R-1 Graphical depiction of the Newton-Raphson method. 

 
The Newton-Raphson method can be derived from the definition of a slope 
 

 f’(x1) = 
21

1 0)(
xx

xf
−

−
 � x2 = x1 − 

)('
)(

1

1

xf
xf

 

 
In general, from the point [xn, f(xn)], the next guess is calculated as 
 

 xn+1 = xn − 
)('
)(

n

n

xf
xf
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The derivative or slope f(xn) can be approximated numerically as 
 

 f’(xn) = 
x

xfxxf nn

∆
−∆+ )()(

 

 
Example  
 
Solve f(x) = x3 + 4x2 − 10 using the the Newton-Raphson method for a root in the interval [1, 
2]. 
 
Solution 

From the formula  xn+1 = xn − 
)('
)(

n

n

xf
xf

 

 
 f(xn) = 3

nx  + 4 2
nx − 10 � f’(xn) = 3 2

nx  + 8xn 
 

 xn+1 = xn − 
nn

nn

xx
xx

83
104

2

23

+
−+

 

 
Using the initial guess, xn  = 1.5, xn+1 is estimated as 
 

 xn+1 = 1.5 − 
5.185.13
105.145.1

2

23

×+×
−×+

 = 1.3733 

 
The next estimate is 
 

 xn+1 = 1.3733 − 
3 2

2

1.3733 4 1.3733 10
3 1.3733 8 1.3733

+ × −
× + ×

 = 1.3653 

 
The next estimate is 
 

 xn+1 = 1.3653 − 
3 2

2

1.3653 4 1.3653 10
3 1.3653 8 1.3653

+ × −
× + ×

 = 1.3652 

 
This value is close to the guessed value of 1.3653, therefore we can accept it as the solution 
 
 
 x = 1.3652 
 
 
 
 


