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A Tutorial on Bernoulli Filters: Theory,
Implementation and Applications

B. Ristic♭, B.-T Vo♮, B.-N. Vo♯ and A. Farina†

Abstract—Bernoulli filters are a class of exact Bayesian filters
for non-linear/non-Gaussian recursive estimation of dynamic
systems, recently emerged from the random set theoretical
framework. The common feature of Bernoulli filters is that they
are designed for stochastic dynamic systems which randomly
switch on and off. The applications are primarily in target
tracking, where the switching process models target appearance
or disappearance from the surveillance volume. The concept,
however, is applicable to a range of dynamic phenomena, such as
epidemics, pollution, social trends, etc. Bernoulli filters in general
have no analytic solution and are implemented as particle filters
or Gaussian sum filters. This tutorial paper reviews the theory
of Bernoulli filters as well as their implementation for different
measurement models. The theory is backed up by applications
in sensor networks, bearings-only tracking, passive radar/sonar
surveillance, visual tracking, monitoring/prediction of an epi-
demic and tracking using natural language statements. More
advanced topics of smoothing, multi-target detection/tracking
and sensor control are briefly reviewed with pointers for further
reading.

Index Terms—Sequential Bayesian estimation, particle filters,
random sets, target tracking

I. I NTRODUCTION

This paper is devoted to estimation of the state of a dynamic
stochastic system (object or phenomenon) which can randomly
switch on andoff. Estimation is done sequentially using prior
knowledge and a sequence of observations or measurements.
Adopting the commonly accepted state-space approach, the
state is modelled by a state vector which contains all relevant
information required to describe the system. The stochastic
models of system switching (on/off), the state evolution with
time, and measurements are assumed known. The measure-
ments, which can be related to the state in a nonlinear fashion,
are typically noisy, imprecise (possibly fuzzy) and ambiguous,
as they may result from imperfect detection.

In the Bayesian approach to dynamic state estimation, the
goal is to update on receipt of new measurements the time-
varying posterior probability density function (PDF) of the
state, using all information available up to that time. Since
the posterior PDF embodies all available statistical informa-
tion about the system, it represents the complete solution
to the estimation problem. An optimal (with respect to any
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criterion) estimate of the state (including a measure of its
accuracy), can be obtained from this PDF. The posterior PDF
is constructed recursively, in two stages: the prediction and
update. The conceptual solution of the recursive propagation
of the posterior density forms the basis of the optimal Bayes
stochastic filter. The optimal Bayes filter is well known for
the so calledstandard problem[1], [2], where the stochastic
dynamic system is turnedon all the time and the measure-
ments are affected only by randomness due to noise (with
perfect detection). In the general nonlinear/non-Gaussian case,
there is no analytic solution for the standard Bayes filter.
The last decade and a half has witnessed great popularity
of Monte Carlo based approximate solutions. The resulting
particle filters, due to their enormous popularity, have been
reviewed in several books and tutorials [3]–[8]. The driving
forces behind this interest in particle filters have been the ever
increasing computational power of computers and a wide range
of applications, from navigation and autonomous vehicles to
bio-informatics, finance and radar.

In order to deal with a wider scope of nonlinear/non-
Gaussian stochastic filtering applications, with possibly multi-
ple on/off switching systems (objects, targets) involved, where
detection is imperfect (miss-detections and false alarms) and
where measurements or measurement models could be impre-
cise, the standard Bayes filter has traditionally been used with
various additional layers of logic, developed in a fairly ad-hoc
manner. This is evident for example in target tracking systems
[9], where: (a) the presence or absence of a target is typically
established using logic-based track formation [9, Sec.13.3]; (b)
the imperfect detection is dealt with using various methods of
data association[9, Ch.6,7]; (c) imprecise measurements (e.g.
attributes) are used in non-Bayesian estimation frameworks
(e.g. Dempster-Shafer theory) [9, Ch.9]. While the provided
techniques can be described as clever pieces of engineering
solutions, their optimality is questionable, hence emphasizing
the need to develop a unified theory which will provide the
optimal Bayes filter formulation for the aforementioned wider
scope of applications.

Sequential Bayesian estimation in conjunction withrandom
set theory provides exactly that: an elegant mathematical
framework in which one can formulate the optimal Bayes filter
for multiple on/off switching systems, with possibly imperfect
detection and imprecise measurements or measurement mod-
els [10]. While the mathematics is somewhat involved, the
results are rewarding, as it will hopefully be demonstrated
in this tutorial. Since the implementation of the random set
formulation of the optimal Bayes filter for multiple dynamic
systems is computationally very demanding (see [10]–[14]),
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four classes of its simplifications or principled approximations
have emerged recently: the Bernoulli filter (also known as
JoTT or joint target detection and tracking filter) [10], [15]–
[18], the probability hypothesis density (PHD) filter [19]–[22],
the cardinalised PHD filter [23], [24] and the multi-Bernoulli
filter [10], [25].

This tutorial paper covers the Bernoulli filter, its implemen-
tations and applications. The Bernoulli filter is the optimal
Bayes filter for asingledynamic system which can randomly
switch on or off. The applications so far have focused on
target tracking, where the interpretation of binary switching
is that targets can appear or disappear from the surveillance
volume. The concept of binary switching between appearance
and disappearance, however, is universal and applies to a
number of different dynamic phenomena, such as epidemics,
pollution, social trends etc. The key idea in dealing with
random on/off switching in the Bayesian filtering framework
is the introduction of theexistencebinary random variable.
This concept can be traced back to [26], [27], where it was
used to derive Kalman-type filters for linear/Gaussian on/off
dynamic systems. The main difference between the Bernoulli
random finite set formulation and the traditional approach of
[26], [27] is that the underlying state is treated as a set (which
can be empty or singleton) instead of a vector augmented with
the binary existence variable. Bernoulli filters in a general
nonlinear/non-Gaussian case have no analytic solution and
are therefore implemented approximately, typically as particle
filters or Gaussian sum filters.

The main feature of this tutorial is that it considers different
measurement models, all of which are important in signal
processing. The first model is devoted to measurements as raw
intensity signals, such as acoustic or electromagnetic energy, a
chemical pollution level, images, and similar. This is important
in signal networks, radar/sonar or video surveillance. The
jargon typically used to describe object detection and tracking
with this type of measurements istrack-before-detect[28],
[29]. The second model is where the measurements are the
output of a detector. In this case, one needs to deal with
inevitable miss-detections and false alarms. The assumption
is that the object of interest is a point and consequently
at most one detection (among many) at a particular time
is due to the object; the rest are false detections. Naturally
which detections are false is unknown. A version of this
model is when the object of interest is large with respect
to the sensor resolution (non-point or extended object) and
consequently can give rise to a number of detections. Again
which detections are due to the object and which are false is
unknown. Finally, in some situations the measurement function
may not be precisely known, or the measurement itself could
be imprecise and fuzzy. These type of measurements, referred
to as non-standardmeasurements, can be incorporated into
the Bayesin estimation framework within the random set
theoretical framework. The paper derives the mathematical
formulation of each respective Bernoulli filter and for each
measurement model.

The tutorial is organised as follows. Sec. II introduces the
preliminaries: the recursive equations of the standard optimal
Bayes filter and the mathematics of random finite sets. This

level of mathematics will be adequate to follow all derivations
in the paper. Sec. III describes the stochastic model for binary
on/off switching dynamic systems, followed by the predic-
tion equations of the Bernoulli filter. Secs. IV through VII
present the update equations of the Bernoulli filter for different
measurement models. The model of intensity measurements is
considered in Sec. IV. Secs. V and VI present the detector-
output measurement model for a point target and an extended
target, respectively. Measurement models for imprecise mea-
surements, measurement functions and uncertain implication
rules are described in Sec. VII. Two approximate implemen-
tations of the Bernoulli filter are presented in Sec.VIII, the
Bernoulli particle filter and the Bernoulli Gaussian sum filter.
Applications, involving different measurement models, are
presented in Sec. IX. They include: sensor networks, bearings-
only tracking, visual tracking, monitoring/prediction of an
epidemic and tracking using natural language statements. More
advanced topics for further research, including multi-sensor
distributed Bernoulli filters, smoothing, model parameter es-
timation, multi-target detection/tracking and sensor control,
are briefly reviewed in Sec. X. The tutorial is summarised
in Sec.XI.

II. N OTATION AND PRELIMINARIES

A. Standard stochastic Bayes filter

The roots of stochastic filtering theory can be traced back to
the early 1960s. Kalman and Bucy [30], [31] formulated the
linear filtering theory, while Stratonovich [32] and Kushner
[33] pioneered the development of the probabilistic approach
to nonlinear filtering.

The discrete-time formulation of the stochastic filtering
problem in the Bayesian framework is as follows [1]. Suppose
the state vectorxk ∈ X provides the complete specification of
the state of a dynamic system (object, phenomenon) at timetk.
HereX ⊆ R

nx is the state space, whilek is the discrete-time
index corresponding totk. The stochastic dynamic system is
described by two equations:

xk =fk−1(xk−1) + vk−1, (1)

zk =hk(xk) + wk, (2)

referred to as thedynamics equationand themeasurement
equation, respectively. The functionfk−1 : R

nx → R
nx

is a nonlinear transition function defining the evolution of
the state vector as a first-order Markov process. The random
processvk ∈ R

nx is independent identically distributed (IID)
according to the PDFpv; vk is referred to asprocess noise,
and its role is to model random disturbances in state evolution.
The dimension of the state vector and process noise isnx ∈ N.
The function hk : R

nx → R
nz defines the relationship

between the statexk and the measurementzk ∈ Z, where
Z ⊆ R

nz is the measurement space. The random process
wk ∈ R

nz , independent ofvk, is also IID with PDFpw,
and referred to asmeasurement noise; nz is the dimensions of
the measurement vector.

In the formulation specified by (1)-(2), functionsfk andhk,
as well as PDFspv andpw are known. Equations (1) and (2)
effectively define two probability functions, thetransitional
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densityπk|k−1(xk|xk−1) = pv (xk − fk−1(xk−1)) and the
likelihood functiongk(zk|xk) = pw (zk − hk(xk)). The goal
of stochastic Bayesian filtering is to estimate recursively the
posterior PDF of the state, denotedp(xk|z1:k), wherez1:k ≡
z1, z2, · · · , zk.

Assuming the initial density of the state,p(x0) is known,
the solution is usually presented as a two step procedure.
Let p(xk−1|z1:k−1) denote the posterior PDF atk − 1. The
first step predicts the density of the state to timek (when
measurementzk is available) via the Chapman - Kolmogorov
equation [1]:

p(xk|z1:k−1)=

∫
πk|k−1(xk|xk−1)p(xk−1|z1:k−1)dxk−1.

(3)
The second step applies the Bayes rule toupdatethe predicted
PDF using measurementzk:

p(xk|z1:k) =
gk(zk|xk) p(xk|z1:k−1)∫
gk(zk|xk)p(xk|z1:k−1)dxk

. (4)

Knowing the posteriorp(xk|z1:k), one can compute point
estimates of the state, e.g. the expected a posterior (EAP)
estimate or the maximum a posterior (MAP) estimate.

B. Random finite sets

A random finite set (RFS) is a random variable that takes
values as unordered finite sets. The cardinality of a RFSX

is random and modelled by a discrete distributionρ(n) =
P{|X| = n}, where1 n ∈ N0. A RFS X is completely
specified by its cardinality distributionρ(n) and a family
of symmetric joint distributions2 pn(x1, . . . ,xn), n ∈ N0,
x1, . . . ,xn ∈ X , that characterise the distribution of its
elements over the state spaceX , conditioned on cardinality
n.

Since a RFS is nothing but a finite-set valued random vari-
able, the usual probabilistic descriptors of a random variable,
such as the PDF and its moments, can be defined for any RFS.
Due to its convenience, we adopt Mahler’s [10] approach,
referred tofinite set statistics (FISST). The FISST PDF3 of
a RFS variableX is denoted byf(X). This PDF is uniquely
determined byρ(n) andpn(x, . . . ,xn) as follows [10]:

f({x1, . . . ,xn}) = n! · ρ(n) · pn(x1, . . . ,xn) (5)

for n ∈ N0. Using the set integral, defined as
∫
f(X) δX = f(∅)+

∞∑

n=1

1

n!

∫
f({x1, . . . ,xn}) dx1 . . . dxn.

(6)
it is straightforward to show thatf(X) of (5) integrates to one
(as it should, being a PDF).

The following RFSs are relevant for this paper.

1N0 denotes the set of natural numbers including zero.
2A joint distribution functionpn(x1, . . . ,xn) is said to be symmetric if

its value remains unchanged for all of then! possible permutations of its
variables.

3While the FISST densities are not probability densities, they have been
shown to be equivalent to probability densities relative to some reference
measure [13]. Subsequently, we do not distinguish between FISST densities
and probability densities of random finite sets.

a) Bernoulli RFS: The cardinality distributionρ(n) of
this RFS is Bernoulli. Thus the Bernoulli RFS can either be
empty (with probability1 − q) or have one element (with
probability q), distributed over the state spaceX according
to PDFp(x). The FISST PDF of a Bernoulli RFSX is given
by:

f(X) =

{
1 − q, if X = ∅

q · p(x), if X = {x}.
(7)

b) IID cluster RFS:Given cardinality|X|, the elements
of IID cluster RFSX are each independent identically dis-
tributed (IID) random variables distributed according to PDF
p(x) on X . The FISST PDF ofX is:

f(X) = |X|! · ρ(|X|)
∏

x∈X

p(x) (8)

Compare (8) with (5). Due to the IID property, the symmetric
joint distribution pn(x1, . . . ,xn) in (5) is replaced with the
product

∏
x∈X

p(x) in (8).
c) Poisson RFS:A Poisson RFSX is a special case of

the IID cluster RFS, whose cardinality distribution is Poisson,
that is:

ρ(n) =
e−λλn

n!
, n = 0, 1, 2, . . .

According to (8), its FISST PDF is given by:

f(X) = e−λ
∏

x∈X

λ p(x). (9)

d) Binomial RFS:A Binomial RFS4 X is also a special
case of the IID cluster RFS, whose cardinality distribution is
a binomial distribution with parametersL (number of binary
experiments) andq (the probability of success of each of the
experiments):

ρ(n) =

(
L

n

)
qn (1 − q)L−n, n = 0, 1, 2, . . . , L.

Its FISST PDF is then:

f(X) =
L!

(L− |X|)!
q|X| (1 − q)L−|X|

∏

x∈X

p(x). (10)

Note that ifL = 1, the Binomial RFS reduces to the Bernoulli
RFS.

Suppose at discrete-timek = 0, 1, 2 . . . , there arenk ∈ N0

objects with statesxk,1, . . . ,xk,nk
, taking values in the state

spaceX ⊆ R
nx . Both the number of objectsnk and their

individual states inX are random and time-varying. The
multi-object state atk, represented by a finite setXk =
{xk,1, . . . ,xk,nk

} ∈ F(X ), can conveniently be modelled as
a RFS onX . HereF(X ) is a set of all finite subsets ofX .
Let us assume that multi-object state is a Markov process with
transitional densityφk|k−1(Xk|Xk−1).

Let the measurement of multi-object stateXk be denoted
Υk. This is a general notation whereΥk can represent a vector
measurementzk, a random finite set measurementZk, or a
closed setζk (a crisp or fuzzy interval), depending on the
measurement model we adopt. Measurement models will be

4Note that a binomial point process, introduced in [34], is a completely
different concept, with a fixed cardinality.
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presented later in the article. GivenXk, measurementΥk, is
assumed to be statistically independent ofΥℓ, whereℓ 6= k.
Let ϕk(Υk|Xk) denote the likelihood function ofΥk.

The stochastic filtering problem can now be cast in the ran-
dom finite set framework. Suppose that at timek−1 the poste-
rior FISST PDF of multi-object statefk−1|k−1(Xk−1|Υ1:k−1)
is known. HereΥ1:k−1 ≡ Υ1, . . . ,Υk−1 is the sequence of
all previous measurements. Then the predicted and updated
multi-object posterior densities can be expressed as follows
[10]:

fk|k−1(Xk|Υ1:k−1) =∫
φk|k−1(Xk|Xk−1)fk−1|k−1(Xk−1|Υ1:k−1)δXk−1

(11)

fk|k(Xk|Υ1:k) =
ϕk(Υk|Xk)fk|k−1(Xk|Υ1:k−1)∫
ϕk(Υk|X)fk|k−1(X|Υ1:k−1)δX

. (12)

The recursion (11)-(12) is a non-trivial generalisation of (3)-
(4), because the integrals in (11)-(12) are set integrals and
the expressions forφk|k−1(Xk|Xk−1) and ϕk(Υk|Xk) can
be quite involved.

III. T HE STOCHASTIC DYNAMIC MODEL AND PREDICTION

A. The stochastic dynamic model

The common feature of all Bernoulli filters is the model
of object (system, target, phenomenon) dynamics. The object,
however, may or may not be present in the scene (surveillance
region) at a particular time. We therefore model the object
state at discrete-timek by the Bernoulli RFS; its state space
is ∅ ∪ S(X ), whereS(X ) is a set of all singletons5 {x} such
thatx ∈ X . According to (7), the probabilistic description of a
Bernoulli RFSX is completely specified by the probabilityq
of being a singleton and the PDFp(x), defined onX . In order
to verify that this PDF integrates to 1, we need to apply the set
integral defined by (6). In the special case wheref(X) = 0
for cardinality |X| ≥ 2, the set integral simplifies to:

∫
f(X) δX = f(∅) +

∫
f({x}) dx. (13)

Now using (7) we have
∫
f(X) δX = 1 − q + q

∫
p(x) dx = 1 (14)

becausep(x) is the (conventional) PDF onX and hence
integrates to 1.

If the object is present (i.e.Xk is a singleton), then it is
assumed that it is a Markov process with a known transitional
densityπk|k−1(x|x

′) during the sampling intervalTk = tk −
tk−1. In order to model object appearance and disappearance
during the observation period, it is convenient to introduce a
binary random variableǫk ∈ {0, 1} referred to as theexistence.
The convention is thatǫk = 1 means that object exists at
discrete-timek. Dynamics ofǫk is modelled by the first-order
two-state Markov chain with a transitional probability matrix
(TPM) Π. The elements of the TPM are defined as[Π]ij =

5A singleton is a set whose cardinality is1.

P{ǫk = j − 1|ǫk−1 = i − 1} for i, j ∈ {1, 2}. The TPM is
adopted as follows:

Π =

[
(1 − pb) pb

(1 − ps) ps

]
(15)

wherepb = P{ǫk+1 = 1|ǫk = 0} is the probability of object
“birth” during the sampling interval, andps = P{ǫk+1 =
1|ǫk = 1} the probability of target “survival” during the
sampling interval. These two probabilities, together with the
initial target existence probabilityq0 = P{ǫ0 = 1}, are
assumed known. If the object appears during the sampling
intervalTk, the PDFbk|k−1(x) denotes its birth density.

In summary, the dynamics of the Bernoulli Markov process
Xk, for k = 1, 2, . . . , is characterised by the transitional
FISST PDFφk|k−1(X|X′), from RFSX′ at k − 1 to RFS
X at k, specified as follows:

φk|k−1(X|∅) =






1 − pb if X = ∅

pb · bk|k−1(x) if X = {x}

0 if |X| ≥ 2

,

(16)

φk|k−1(X|{x′}) =






1 − ps if X = ∅

ps · πk|k−1(x|x
′) if X = {x}

0 if |X| ≥ 2

Now we are in the position to derive the prediction equations
of the Bernoulli filter.

B. Prediction equations of the Bernoulli filter

The Bernoulli filter, as a sequential Bayesian estimator,
estimates recursively the posterior PDF of object state through
the prediction and update stages, using the dynamic and mea-
surement models and received measurements. The posterior
FISST PDF at timek, denotedfk|k(Xk|Υ1:k), for a Bernoulli
RFS has the form (7) and is therefore completely specified by
two quantities:

• the posterior probability of object existenceqk|k =
P{|Xk| = 1 | Υ1:k};

• the posterior spatial PDF ofXk = {x}, that issk|k(x) =
p(xk|Υ1:k).

The Bernoulli filter therefore needs to propagate only these
two quantities over time.

The prediction equations of the Bernoulli filter have been
originally derived in [10, App.G.23] and [15, Sec.3.6]. Let
the posterior FISST PDF of a Bernoulli RFS at timek − 1
be fk−1|k−1(Xk−1|Υ1:k−1). The prediction equation of the
Bayes filter in the RFS framework was given by (11), that is:

fk|k−1(X|Υ1:k−1)

=

∫
φk|k−1(X|X′)fk−1|k−1(X

′|Υ1:k−1) δX
′ (17)

= φk|k−1(X|∅)fk−1|k−1(∅|Υ1:k−1)

+

∫
φk|k−1(X|{x′})fk−1|k−1({x

′}|Υ1:k−1) dx
′ (18)
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Equation (18) follows from (17) using (13). Let us first solve
(18) for the caseX = ∅. Using (16) we have:

fk|k−1(∅|Υ1:k−1) = φk|k−1(∅|∅) fk−1|k−1(∅|Υ1:k−1)+∫
φk|k−1(∅|{x

′})fk−1|k−1({x
′}|Υ1:k−1) dx

′ (19)

= (1 − pb)fk−1|k−1(∅|Υ1:k−1)+∫
(1 − ps)fk−1|k−1(x

′|Υ1:k−1) dx
′ (20)

= (1 − pb)(1 − qk−1|k−1)+

(1 − ps)qk−1|k−1

∫
sk−1|k−1(x

′) dx′ (21)

= (1 − pb)(1 − qk−1|k−1) + (1 − ps)qk−1|k−1 (22)

Next we solve (18) for the caseX = {x}. Using (16) we
have:

fk|k−1({x}|Υ1:k−1) = φk|k−1({x}|∅) fk−1|k−1(∅|Υ1:k−1)+∫
φk|k−1({x}|{x

′})fk−1|k−1(x
′|Υ1:k−1) dx

′ (23)

= bk|k−1(x)pb(1 − qk−1|k−1)+∫
psπk|k−1(x|x

′)qk−1|k−1sk−1|k−1(x
′)dx′ (24)

= pb(1 − qk−1|k−1)bk|k−1(x)+

psqk−1|k−1

∫
πk|k−1(x|x

′)sk−1|k−1(x
′)dx′ (25)

Additionally we have from (18) and (16) that:

fk|k−1(X|Υ1:k−1) = 0 if |X| ≥ 2 . (26)

Hence we can easily verify that
∫
fk|k−1(X|Υ1:k−1) δX =1,

and by comparing with (7) we have established that
fk|k−1(X|Υ1:k−1) is a FISST probability density for a
Bernoulli RFS.

Next we solve for qk|k−1 and sk|k−1(x) of
fk|k−1(X|Υ1:k−1). Since the predicted FISST PDF is
in the form (7), then the left-hand side of (22) equals
1 − qk|k−1 and we can write (22) as:

1−qk|k−1 = (1−pb)(1−qk−1|k−1)+(1−ps)qk−1|k−1. (27)

This leads to the prediction equation for the probability of
existence:

qk|k−1 = pb (1 − qk−1|k−1) + ps qk−1|k−1. (28)

Notice that (28) has an intuitive interpretation. Loosely speak-
ing, it states that a predicted target can arise from a new birth
or an existing survival. The predicted existence probability
consist of two additive terms: the probability of target non-
existence and target birth, and the probability of target exis-
tence and survival.

Similarly, since the predicted FISST PDF is in the form
of (7), the left-hand side of (25) equalsqk|k−1sk|k−1(x).

This leads to the update equation for the spatial PDF of the
Bernoulli filter:

sk|k−1(x) =
pb (1 − qk−1|k−1) bk|k−1(x)

qk|k−1
+

ps qk−1|k−1

∫
πk|k−1(x|x

′) sk−1|k−1(x
′)dx′

qk|k−1
. (29)

Notice also that (29) has an intuitive interpretation. Loosely
speaking, it states that the probability density of the predicted
state comprises a birth component and a surviving component.
The birth component is the birth density weighted by the
probability of target non-existence and new birth. The surviv-
ing component comprises the standard Chapman-Kolmogorov
prediction weighted by the probability of target existence and
survival.

Equations (28) and (29) fully specify the prediction step
of the Bernoulli filter. Note that ifpb = 0, and qk−1|k−1 =
1, then from (28) qk|k−1 = 1 while (29) reduces to
sk|k−1(x) =

∫
πk|k−1(x|x

′) sk−1|k−1(x
′)dx′, which is the

standard Chapman-Kolmogorov prediction given by (3).
In the next three sections we will present the update

equations of the Bernoulli filter for different measurement
models.

IV. I NTENSITY MEASUREMENTS

A. Intensity measurement model

Suppose the sensor at our disposal consist ofn ≥ 1 in-
tensity measuring elements at known locations, each reporting
instantaneously at timek a measured valuez(s)

k , s = 1, . . . , n.
In this (fairly general) formulation, an element can be one of
the following.

a) A pixels of an image:For a monochromatic image,
the value in pixeli can be a measure of reflective light or
temperature. For a colour image, it can be a measure of the
similarity between the colour histogram computed in a box
centered at pixeli and a reference histogram [35].

b) A bin in a range-Doppler-azimuth map:This corre-
sponds to the radar context [36], where intensity of a bin refers
to the electromagnetic energy gathered in a resolution volume
of the corresponding range-Doppler-azimuth cell.

c) A node in a sensor network:The assumption is that all
sensor nodes sample the environment synchronously. Intensity
in this context depends on the purpose of the sensor network
- it can refer to the level of pollution (for a chemical sensor
network), radiation (for a network of Geiger-Müller counters),
or acoustic energy (for an array of microphones). Note that the
placement of nodes in the sensor network can be arbitrary, as
long as their locations are known.

We can stack alln measurements into a single measurement
vector collected at timetk:

zk =
[
z
(1)
k z

(2)
k · · · z

(n)
k

]⊺
, (30)

and express the measurement equation as in (2). The measured
intensity in elementi can be modelled as a function of the
Bernoulli stateXk as follows:

z
(s)
k =

{
h

(s)
k (xk) + w

(s)
k if Xk = {xk}

w
(s)
k if Xk = ∅

(31)
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where h(s)
k (xk) is the contribution to intensity in element

s = 1, . . . , n from an object in the statexk, and w(s)
k is

the background noise in elements. Let us assume that the
background noise in elements is independent of noise in
other elements, and identically distributed according to PDF
g
(s)
0 . The measurement functionh(s)

k (xk) can take the form
of a Gaussian point spread function [6, Ch.11], the inverse
distance squared law [37] or an ambiguity function [38]. Let
the measurement likelihood in elements in the presence of an
object in the statexk be denotedg(s)

1 . The likelihood function
of the measurement vectorzk, as a function of the Bernoulli
stateXk, can then be expressed as6:

ϕk(zk|Xk) =






n∏
s=1

g
(s)
1

(
z
(s)
k |x

)
if Xk = {x}

n∏
s=1

g
(s)
0

(
z
(s)
k

)
, if Xk = ∅.

(32)

The intensity measurement model does not need to dis-
tinguish between small and large objects. A large object is
typically sensed by many elements (pixels or resolution cells)
due to its size. However, even a physically small object can
be sensed by many elements of the intensity sensor, due to the
spread generated by the measurement functionh

(s)
k (xk). The

distinction between small and large objects should be reflected
only in the choice of the state vectorx; thus for large objects
it may be necessary to include the shape/size in the state.

B. Update equations

The update equations of the Bernoulli filter for the intensity
measurement model were derived using FISST in [29]. An
attempt to derive these equations using the standard non-FISST
approach, resulted in very complicated, almost untractable
mathematics, see [39].

Recall from Sec.III-B that the output of the prediction
step is the FISST PDFfk|k−1(X|Υ1:k−1), which is uniquely
specified by the pair

(
qk|k−1, sk|k−1(x)

)
and takes the form

(7). Also note that for the intensity measurement model,
Υk ≡ zk. The updated FISST PDF given by (12) follows
from the Bayes rule:

fk|k(Xk|z1:k) =
ϕk(zk|Xk) · fk|k−1(Xk|z1:k−1)

pk(zk|z1:k−1)
(33)

where

pk(zk|z1:k−1) =

∫
ϕk(zk|X) · fk|k−1(X|z1:k−1) δX (34)

= ϕk(zk|∅) fk|k−1(∅|z1:k−1)+∫
ϕk(zk|{x}) fk|k−1({x}|z1:k−1) dx (35)

= (1 − qk|k−1)ϕk(zk|∅)+

qk|k−1

∫
ϕk(zk|{x}) sk|k−1(x) dx (36)

6In applications where intensity measurements are quantised, the expression
for ϕk(zk |Xk) will involve the integrals (with quantisation thresholds as
limits) of likelihoods g

(s)
1 andg

(s)
0 .

Eq.(35) results from the application of (13). Since
fk|k−1(Xk|z1:k−1) = 0 for |X| ≥ 2, we have that

fk|k(X|z1:k) = 0 if |X| ≥ 2

and obviously from (33)
∫
fk|k(X|z1:k) δX =1,

from which by comparison with (7) we have established that
fk|k(Xk|z1:k) is a FISST probability density for a Bernoulli
RFS.

The update step (33) can be expressed for the caseXk = ∅
as:

fk|k(∅|z1:k) =

ϕk(zk|∅) · fk|k−1(∅|z1:k−1)

(1 − qk|k−1)ϕk(zk|∅) + qk|k−1

∫
ϕk(zk|{x}) sk|k−1(x) dx

(37)

which is equivalent to

1 − qk|k =
1 − qk|k−1

1 − qk|k−1 + qk|k−1

∫
ℓk(zk|x) sk|k−1(x) dx

(38)
where

ℓk(zk|x) =
ϕk(zk|{x})

ϕk(zk|∅)
=

n∏

s=1

g
(s)
1

(
z
(s)
k |x

)

g
(s)
0

(
z
(s)
k

) (39)

is the measurement likelihood ratio. From (38) follows the
update equation for the probability of existence:

qk|k =
qk|k−1

∫
ℓk(zk|x) sk|k−1(x) dx

1 − qk|k−1 + qk|k−1

∫
ℓk(zk|x) sk|k−1(x) dx

(40)

Eq. (40) is effectively a Bayesian update for the prior existence
probability.

The update equation for the spatial PDF can be derived
from (33) for the caseXk = {x} using the fact that
fk|k({x}|z1:k) = qk|k sk|k(x). First we have:

qk|k sk|k(x) =
qk|k−1ℓk(zk|x)sk|k−1(x)

(1 − qk|k−1 + qk|k−1

∫
ℓk(zk|x)sk|k−1(x) dx

(41)
which using (40) and (39) leads to:

sk|k(x) =
ϕk(zk|{x}) sk|k−1(x)∫
ϕk(zk|{x}) sk|k−1(x) dx

(42)

Equations (40) and (42) are the update equations of the
Bernoulli filter for the intensity measurement model. Note
that (42) is effectively the same as the conventional nonlinear
Bayesian filter update equation (4).

V. DETECTOROUTPUT MEASUREMENTS FOR APOINT

TARGET

A. Measurement model

The intensity measurement model can become computation-
ally intractable if the number of sensor elementsn is too large.
In order to reduce the data flow, in many cases it is necessary
to introduce a detector and report only the values which are
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above a certain threshold. This is illustrated in Fig.1, where
n = 32, but only three detections,z1, z2 andz3, are reported
for further processing. Note that the true target detection can
be missing due to the low signal-to-noise ratio or excessively
high detection threshold. A low detection threshold increases
the probability of detection but creates more false detections.

5 10 15 20 25 30
0

2

4

6

8

10

12

14

Measurement space

In
te

ns
ity

z
1

z
2

z
3

THRESHOLD 

Figure 1. Detection threshold reduces the data flow: of32 measurements
reported by the sensor, only a setZ = {z1, z2, z3} passed the detection
threshold (the candidates for detections are only the local maxima)

The measurements produced by a detector can math-
ematically be represented by a random finite setZ =
{z1, z2, . . . , zm}. The main feature of this representation is
that both the cardinalitym = |Z| and the position of elements
z ∈ Z in the measurement spaceZ ⊆ R

nz , are random. Also
note that the order of detections in the RFSZ is irrelevant.

The RFSZ can be seen as a union of two independent
random finite sets:

Z = C ∪ W (43)

whereC is the RFS of false detections (also known as clutter)
and W is the RFS due to the object of interest. We assume
here a “point object” (target) which, if detected, produces
only one detection (the measurement model for non-point or
extended objects will be considered in Sec.VI). For a point
object, the RFSW can be either an empty set or a singleton,
depending on whether the object has been detected or not.
We are now after the mathematical model of the likelihood
function of the measurement setZ, denotedϕ(Z|X), where
X is (as always) the Bernoulli RFS. The likelihood function
ϕ(Z|X) will therefore have two forms, one forX = ∅ and
the other forX = {x}.

For the caseX = ∅, the measurement set will consist of
false detections only, i.e.Z = C ∪ ∅ = C. Typically the
number of false detections in the measurement set is modelled
by the Poisson distribution:

P{|C| = s} =
e−λλs

s!
, s = 0, 1, 2, . . . (44)

whereλ is the excepted value. Furthermore, conditioned on
|C|, false detections are modelled as independent, identically
distributed (IID) random vectors taking values fromZ with
PDF c(z). A RFS with such characteristics was introduced in
Sec.II-B as the Poisson RFS [10]. According to (9), the FISST

PDF of clutter only detections has the form:

ϕ(Z|∅) = κ(Z) = e−λ
∏

z∈Z

λ c(z). (45)

In order to derive the likelihood functionϕ(Z|{x}) we first
need to specify the FISST PDF of the RFSW|{x}, denoted as
η(W|{x}). This is a Bernoulli RFS which can be either empty
(if the object is undetected, i.e.W = ∅) or a singleton (if
object is detected and caused a measurementz, i.e.W = {z}).
Hence we can write:

η(W|{x}) =

{
1 − pd(x), if W = ∅

pd(x) g(z|x), if W = {z}
(46)

where g(z|x) is the (conventional) likelihood function of
measurementz due to the object in statex and pd(x) is the
probability of detecting the object in statex.

Now we are in the position to find the expression for
ϕ(Z|{x}) using one of the fundamental results of the FISST
calculus: the convolution formula [10, p.385]. For a union of
independent RFS, as in (43), the FISST PDF is given by:

ϕ(Z|{x}) =
∑

W⊆Z

η(W|{x})κ(Z \ W) (47)

where sign\ denotes the set-difference operation andκ was
defined by (45). Since the RFSW can be either empty or
a singleton, the summation in (47) greatly simplifies and we
have:

ϕ(Z|{x})

= η(∅|{x}) · κ(Z) +
∑

z∈Z

η({z}|{x}) · κ(Z \ {z}) (48)

= κ(Z)

[
1 − pd(x) + pd(x)

∑

z∈Z

g(z|x)
κ(Z \ {z})

κ(Z)

]
(49)

Next we derive the update equations of the Bernoulli filter for
the described measurement model.

B. Update equations

Update equations for the Bernoulli filter using the detector-
output measurement model of point targets was originally
derived in [10, App.G.24] and [15, Sec.3.6]. Recall from
Sec.III-B, the output of the prediction step is the FISST
PDF fk|k−1(X|Υ1:k−1), which is uniquely determined by
the pair

(
qk|k−1, sk|k−1(x)

)
and takes the form (7). For the

measurement model we consider here,Υk ≡ Zk. The updated
FISST PDF follows from (12):

fk|k(Xk|Z1:k) =
ϕk(Zk|Xk) · fk|k−1(Xk|Z1:k−1)

fk(Zk|Z1:k−1)
(50)
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whereϕk(Zk|Xk) was specified by (45) and (49), and

fk(Zk|Z1:k−1)

=

∫
ϕk(Zk|X) · fk|k−1(X|Z1:k−1) δX (51)

= ϕk(Zk|∅) fk|k−1(∅|Z1:k−1)+∫
ϕk(Zk|{x}) fk|k−1({x}|Z1:k−1) dx (52)

= (1 − qk|k−1)ϕk(Zk|∅)+

qk|k−1

∫
ϕk(Zk|{x}) sk|k−1(x) dx (53)

Using (45) and (49), the expression in (53) can be written
(after a few steps) as:

fk(Zk|Z1:k−1) = κ(Zk)

{
1 − qk|k−1

∫
pd(x)sk|k−1(x)dx

+qk|k−1

∑

z∈Zk

κ(Zk \ {z})

κ(Zk)

∫
pd(x)gk(z|x)sk|k−1(x)dx

}

(54)

where notation gk(z|x) emphasizes the (possibly) time-
varying aspect of this likelihood function. Again, since
fk|k−1(Xk|Z1:k−1) = 0 for |X| ≥ 2, we have that

fk|k(X|Z1:k) = 0 if |X| ≥ 2

and obviously from (50)
∫
fk|k(X|Z1:k) δX =1,

from which by comparison with (7) we have established that
fk|k(Xk|Z1:k) is a FISST probability density for a Bernoulli
RFS.

Let us now work out the posteriorfk|k(Xk|Z1:k) for the
caseXk = ∅. First note that using (45), we can write:

κ(Zk \ {z})

κ(Zk)
=

1

λ c(z)
(55)

Using (45), (54), (55) and the fact thatfk|k(Xk|Z1:k) =
1 − qk|k, equation (50) leads to the update equation for the
probability of existence:

qk|k =
1 − ∆k

1 − qk|k−1∆k
qk|k−1 (56)

where

∆k =

∫
pd(x)sk|k−1(x)dx

−
∑

z∈Zk

∫
pd(x)gk(z|x) sk|k−1(x)dx

λc(z)
(57)

If pd = const (independent of the target state), then (57)
simplifies to:

∆k = pd

(
1 −

∑

z∈Zk

∫
gk(z|x) sk|k−1(x)dx

λc(z)

)
(58)

sincesk|k−1(x) being the conventional PDF, integrates to1.
By evaluation of the posteriorfk|k(Xk|Z1:k) for the case

Xk = {x} from (50), and using the fact thatfk|k({x}|Z1:k) =

qk|k sk|k(x), one can derive the update equation for the spatial
PDF sk|k(x). The final expression is:

sk|k(x) =

1 − pd(x) + pd(x)
∑

z∈Zk

gk(z|x)
λ c(z)

1 − ∆k
sk|k−1(x) (59)

Note that if qk|k−1 = 1 andpd = 1, then from (56) and (58)
it follows that qk|k = 1. Furthermore, under the additional
assumption that there are no false detections, the measurement
setZk has to be a singleton whose only elementz is due to
the object of interest. Then (59) simplifies to:

sk|k(x) =
gk(zk|x) sk|k−1(x)∫
gk(zk|x) sk|k−1(x) dx

(60)

which is the standard Bayes filter update equation (4).
Notice also that both (56) and (59) can be interpreted as

comprising|Zk|+1 independent contributions or components.
The first component is derived from the hypothesis that the
state is not detected. Each of the remaining|Zk| components
is derived from the hypothesis that the state is detected and
generated the measurementz ∈ Zk. All quantities are of
course normalised.

VI. D ETECTOROUTPUT MEASUREMENTS FOR AN

EXTENDED TARGET

We have earlier described a point object as an object that
can cause at most one detection. In situations where the
object is far away and smaller than sensor resolution (e.g.
radar surveillance of aircraft), this is a reasonable assumption.
However, there are also many situations where this assumption
is not appropriate. For example, if a high resolution radar is
used for maritime surveillance, a ship (object of interest) can
appear in many resolution cells. In computer vision this is
particularly widespread, because an object typically occupies
the whole region of an image, consisting of many pixels.

A. Measurement model

The main feature of an extended or non-point object is
that it consists of several scattering (feature or measurement
generating) points. The number of these scattering points is
unknown and time-varying (as the object moves, turns, etc).
Since the probability of detecting each scattering point is
typically less than one, an extended object can cause zero,
one or more detections. In computer vision, for example, the
scattering points could be the corners [40, p.320] or invariant
features [41, Ch.10].

The measurement set is modelled by a RFSZ =
{z1, z2, . . . , zm}, as in Sec.V-A. Let the number of scattering
points beL. We can again representZ as a union (43), where
C is the RFS of false detections. The RFSW is a problem
- one can be tempted to adopt the modelW = ∪L

j=1Wj ,
where Wj are mutually independent Bernoulli RFSs, each
corresponding to one scattering pointj = 1, . . . , L. This type
of RFS is known as the multi-Bernoulli RFS [10]. If we
were to continue the derivation in this framework, we would
practically develop a method that tracksL individual scattering
points, see [42]. This framework, however, is exceptionally
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complex and the resulting algorithm computationally difficult
to implement in a general non-linear/non-Gaussian case.

We take a different approach, and model the RFSW by
a binomial RFS, which treats object originated detections
as having a single source. In this way, instead of tracking
individual scattering points, we will track the object centroid
and its shape/size7. According to Sec.II-B, the cardinality
distribution of the binomial RFS is the binomial distribution,
while the elements ofW are IID with the spatial distribution
g(w|x). Following (10), the FISST PDF of this RFS is given
by:

η(W|{x})

=
L!

(L− |W|)!
p
|W|
d [1 − pd]

L−|W|
∏

w∈W

g(w|x) (61)

=






(1 − pd)
L, if W = ∅

Lpd (1 − pd)
L−1 g(w|x), if W = {w}

· · ·

L! pL
d g(w1|x) · · · g(wL|x), if W = {w1, . . . ,wL}

(62)

for cardinalities|W| = 0, 1, 2, . . . , L. Herepd is the probabil-
ity of detection of a scattering point; it can be made dependent
on the object statex, but this is omitted for simplicity.

Recall that an extended object occupies an area in 2D or a
volume in 3D. The state space for an extended object should
therefore include, in addition to the kinematic properties of its
centroid, the object size in a parametric from. For example,
we can assume that the object is an ellipse with the state
vector is specified by:x =

[
x ẋ y ẏ a b c

]⊺
, where

(x, y) and (ẋ, ẏ) are the centroid position and velocity in a
2D Cartesian coordinate system, respectively. Components of
the statea, b and c determine the size and orientation of its
elliptic shape. The likelihoodg(w|x) can be for example the
Gaussian distribution whose mean is the object centroid, and
whose covariance reflects the elliptic shape of the object.

Note, however, that we can also adopt a different form of
the likelihoodg(w|x), based on the interpretation ofx as a
closed set. For example, if the object is in the shape of an
ellipse,x can be interpreted as a set of points which belong
to the ellipse centered at(x, y) with parametersa, b, c. In this
interpretation, the state is modelled by a special type of a
random variable which takes values as closed sets, referred
to as a random closed set (RCS) [10]. Leth(x) define the
mapping from the state space to the measurement space. Since
x is a RCS, thenh(x) too is a RCS. For a measurement
w ∈ W, which is due to a RCSx, the likelihoodg(w|x)
is referred to as thegeneralisedlikelihood function (GLF)
[10], [44], and is defined as:̃g(w|x) = P{w ∈ h(x)}. A
convenient choice is for example the indicator function, i.e.
g̃(w|x) = Ih(x)(w), which equals1 if w ∈ h(x) and zero
otherwise. More will be said about generalised likelihoods in
Sec.VII.

7There is also another similar approach that models the object originated
detections by a Poisson RFS, see [43]. Due to the space limitation, this
approach will not be considered in the tutorial.

Following the procedure in Sec.V-A, we next apply the
convolution formula (47) in order to deriveϕk(Z|{x}). For
the caseX = ∅, as usual we haveϕk(Z|∅) = κ(Z). The
convolution leads to:

ϕ(Z|{x})

=
∑

W⊆Z

η(W|{x})κ(Z \ W) (63)

= η(∅|{x})κ(Z) +
∑

Ω∈P1:L(Z)

η(Ω|{x})κ(Z \ Ω) (64)

whereP1:L(Z) is the set of all subsets ofZ with cardinalities
equal to1, 2, . . . , L. If L ≥ |Z|, thenP1:L(Z) is the power set
of Z minus the empty set. Using (61) with (55), the expression
in (64) simplifies to:

ϕ(Z|{x}) = κ(Z)
{
(1 − pd)

L+

∑

Ω∈P1:L(Z)

L!

(L − |Ω|)!
p
|Ω|
d (1 − pd)

L−|Ω|
∏

z∈Ω

g(z|x)

λ c(z)






(65)

B. Update equations

The updated FISST PDF follows from the Bayes rule, see
(12) or (50), whereϕk(Z|∅) = κ(Z) andϕk(Zk|{x}) is given
by (65). As usual, the first step is to findfk(Zk|Z1:k−1).
Assuming the reader is already familiar with the steps in
derivation, we state only the final expression:

f(Zk|Z1:k−1) = κ(Zk)

{
1 − qk|k−1 + qk|k−1(1 − pd)

Lk+

∑

Ω∈P1:Lk
(Zk)

ψk

∫ ∏
z∈Ω

gk(z|x) sk|k−1(x) dx

∏
z∈Ω

λ c(z)

}
(66)

with

ψk =
Lk!

(Lk − |Ω|)!

p
|Ω|
d

(1 − pd)|Ω|−Lk
. (67)

The subscriptk in ψk, Lk andgk(z|x) is there to emphasize
the time varying nature of the number of scatters and the
likelihood function.

Solving the Bayesian update equation (50) forX = ∅ leads
to the update equation for the probability of existence:

qk|k =
1 − ∆k

1 − qk|k−1∆k
qk|k−1 (68)

where

∆k = 1 − (1 − pd)
Lk−

∑

Ω∈P1:Lk
(Zk)

ψk

∫ ∏
z∈Ω

gk(z|x) sk|k−1(x) dx

∏
z∈Ω

λ c(z)
(69)

Similarly, solving (50) forX = {x} leads to the update
equation for the spatial PDF:

sk|k(x) =

(1 − pd)
Lk +

∑
Ω∈P1:Lk

(Zk)

ψk

∏
z∈Ω

gk(z|x)
λ c(z)

1 − ∆k
·sk|k−1(x)

(70)
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If Lk = 1, then (69) and (70) reduce to (58) and (59),
respectively.

VII. N ON-STANDARD MEASUREMENTS

Up to this point we implicitly made two assumptions about
sensor measurements. First, each measurement is a point in
the measurement spaceZ. Second, the likelihood function
of a point measurement,gk(z|x), is precisely known. While
these two assumptions are widespread, they could be fairly
unrealistic in many fields of science and engineering. For
example, a natural language statement, such as “the ball
is near the center of the field”, is an instance of a non-
point measurements about the object of interest (the ball).
This statement can be translated to a “measurement” which
covers a region (an area) around the “center of the field”
consisting of an infinite number of points. Imprecise likelihood
functions are also very common in practice. For example,
object localisation based on the received signal strength in
cellular networks involves an imprecise likelihood function,
because this likelihood depends on imprecisely known path-
loss exponent [45].

When we make inference about a certain system, object or
phenomenon, we sometimes have at our disposal prior knowl-
edge expressed in the form of uncertain implication rules. For
example, suppose the goal is to localize a suspect and the
following piece of intelligence is available for reasoning: “The
suspect is often in theCorner cafebetween 9am and 10am”.
This piece of intelligence can be expressed as an uncertain
implication rule: if y ∈ Y , then x ∈ X, with probability α
(y is time, Y is an interval of time,x is the state, that is
the location of the suspect, andX is the subset of the state
space). The rule is characterised asuncertainbecauseα can
be smaller than1.

This section reviews the update step of the Bernoulli filter
using so-callednon-standard measurements. By non-standard
measurements we mean any combination of the following: (1)
imprecise measurements (such as intervals or fuzzy intervals)
characterised by precise likelihoods; (2) precise (point) mea-
surements characterised by imprecise likelihoods; (3) uncertain
implication rules.

Before we proceed with the treatment of each non-standard
measurement separately, we first state the common framework
for their processing. The theory is based on [10]. Essentially,
all update equations of the Bernoulli filter that we presented
so far for traditional measurements (point measurements with
precise likelihoods) are valid for non-standard measurements.
The only difference is that when we deal with non-standard
measurements, the likelihood functionsgk(z|x) andc(z) need
to be replaced with generalised likelihood functionsg̃k(z|x)
and c̃(z), respectively. A theoretical justification of the GLF
from the measure-theoretic point of view is given in [46]. The
generalised likelihood also provides a useful relationship with
Dempster-Shafer theory (DST) [47], because by definition
it is identical to the plausibility function (which plays an
important role in the DST) on singletons [48]. The rest of
this section defines the generalised likelihoods for imprecise
measurements, imprecise likelihoods and uncertain implication
rules.

A. Imprecise measurements

Imprecision is a form of uncertainty distinctly different
from randomness. The two kinds of uncertainties have been
debated by philosophers under the termsepistemic uncertainty
(due to lack of knowledge) andaleatory uncertainty(due to
randomness) [49]. Imprecision or epistemic uncertainty has
been studied intensively in the field of expert systems and
artificial intelligence [50], but significantly less in statistics
[51].

Supposeh(x) is the measurement function which maps
the statex ∈ X into a point in the measurement spaceZ.
Furthermore, let’s assume that the standard point measurement
can be modelled as:z = h(x)+w, wherew is additive noise,
distributed according topw.

An imprecise measurement, denoted byζ, is a subset of the
measurement spaceZ, see Fig.2. The imprecise measurement
is therefore modelled by a special type of a random variable,
which takes values as closed sets onZ. A rigorous mathemat-
ical treatment of random closed sets is beyond the scope of
this tutorial, with details in [10, Ch.4-7], [52].

x

h(x)+w
ζ

state space measurement space

Figure 2. An imprecise measurementζ is a subset of the measurement space
Z

The GLF of a random set measurementζ is defined by [10],
[53]:

g̃(ζ|x) = P{z ∈ ζ} = P{h(x) + w ∈ ζ}. (71)

The imprecise measurementζ can be a fuzzy or a crisp set8 in
the measurement spaceZ ⊆ R

nz . If h(x) is a proper function,
the GLF can be modelled by a single membership function of
a fuzzy set onZ. In some cases, however, there is ambiguity
in mapping from the state spaceX to the measurement space
Z, that is a point in the state spacex ∈ X maps into multiple
regions inZ. For example, suppose a report is received that
the object we want to localise has been seen near a traffic
light. The source of ambiguity could be the existence of
several traffic lights in the surveillance region. In this case the
GLF can be represented by a weighted sum of membership
functions, describing multiple fuzzy sets onZ [10, Ch.5], i.e.:

g̃(ζ|x) =
∑

i

wi · µi

(
h(x)

)
(72)

whereµi(z) andwi are membership functions and weights,
respectively. Eq.(72) represents the most general form of a
generalised likelihood.

8A fuzzy set is a set whose elements have a degree of membership. The
classical set theory deals with crisp sets, whose membership of elements is
binary, i.e. an element either belongs to it or not.
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The Bernoulli filter for imprecise measurements has been
discussed in [54] and [53]. Its application to detection and
tracking using spatially referring natural language statements
will be presented in Sec.IX-E.

B. Imprecise likelihoods

The traditional measurementz ∈ Z is related to the state
x ∈ X via the measurement equation:

z = h(x; θ) + w (73)

where h : X → Z is the measurement function,θ is a
precisely known parameter vector andw is additive noise,
distributed according topw.

But what if the parameter vectorθ is not known precisely
[44]? For example, we may know only thatθ ∈ [θ], where[θ]
denotes an interval in the parameter space. Then the mapping
h : X → Z is not a function any more, because a point
from X maps into an infinite number of points inZ, see
Fig.3. The solution proposed in [10, Ch.4-7] is to represent the
measurement seth(x; [θ])+w by a random closed setSx ⊆ Z.
The GLF of a point measurementz ∈ Z, characterised by an
imprecise measurement functionh(x; [θ]), is then defined as:

g̃(z|x) = P{z ∈ Sx} = P{z ∈ h(x; [θ]) + w} (74)

If w is zero mean white Gaussian with covariance matrixΣ,
that is pw(w) = N (w;0,Σ), the GLF (74) has an analytic
solution [44]:

g̃(z|x) =

∫ hx

h
x

N (h; z,Σ) dh = C(z;hx,Σ) − C(z;hx,Σ)

(75)
where C(z; µz,Pz) =

∫ z

−∞ N (u; µz,Pz)du is the Gaus-
sian cumulative distribution function (CDF) andhx =
min
[θ]

{h(x; [θ])} and hx = max
[θ]

{h(x; [θ])} are the limits of

the seth(x; [θ]).

x

h(x,[θ])+w

state space measurement space

Sx
z

Figure 3. Mapping by an imprecise measurement functionh(x; θ) + w,
where θ ∈ [θ] and [θ] is an interval in the parameter space, results in a
random setSx ⊆ Z

In general, partial knowledge ofθ can be represented by
multiple non-overlapping and fuzzy intervals. Accordingly,
the most general form of the GLF is a weighted sum of
membership functions as in (72), i.e.g̃(z|x) =

∑
i wi · µi(z).

Robust Bayesian estimation using imprecise likelihood
functions has been applied to localisation in [44]. The con-
sequence of imprecision is a broader, hence more cautious,
posterior PDF (compared to the posterior PDF obtained using
the precise values ofθ). The support of the posterior, however,
is guaranteed to include the true statex.

C. Uncertain implication rules

The first-order implication rule “ifY thenX”, mathemati-
cally expressed asY ⇒ X, is a shorter notation for

R : y ∈ Y ⊆ Y ⇒ x ∈ X ⊆ X ,

wherey is a measurement on the measurement spaceY. In
the example: “The suspect is often in theCorner cafebetween
9am and 10am”, the measurement spaceY is time. The rule
is typically assigned confidenceα ∈ [0, 1].

Prior knowledge expressed by the ruleR is treated as a
non-standard measurement which updates the posterior via the
Bayes rule. The expression for the GLF of an uncertain rule
R can be found in [10], [55].

VIII. I MPLEMENTATION

A. Bernoulli particle filter

The sequential Monte Carlo method [3]–[8] provides a
general framework for the implementation of Bernoulli filters
[10]. The resulting Bernoulli-particle filters approximate the
spatial PDF sk|k(x) by a particle system{w(i)

k ,x
(i)
k }N

i=1,

wherex(i)
k is the state of particlei andw(i)

k is its weight. Since
sk|k(x) is a conventional PDF, the weights are normalised, that

is
∑N

i=1 w
(i)
k = 1.

Suppose at timek − 1, the probability of existence is
qk−1|k−1 and the spatial PDF is approximated by

ŝk−1|k−1(x) =
N∑

i=1

w
(i)
k−1 δx(i)

k−1

(x) (76)

whereδb(x) is the Dirac delta function concentrated at point
b. The computation of the predicted probability of existence
qk|k−1 is straightforward, see (28). According to (29), the
prediction step for the spatial PDF involves the sum of two
terms. Hence particle approximation ofsk|k−1(x) be written
as

ŝk|k−1(x) =

N+B∑

i=1

w
(i)
k|k−1 δx(i)

k|k−1

(x) (77)

where the particles are drawn from two proposal distributions
[16]:

x
(i)
k|k−1 ∼

{
̺k(xk|x

(i)
k−1,Zk) i = 1, . . . , N

βk(xk|Zk) i = N + 1, . . . , N +B
(78)

with weights

w
(i)
k|k−1 =






ps qk−1|k−1

qk|k−1

πk|k−1(x
(i)

k|k−1
|x

(i)
k−1)w

(i)
k−1

̺k(x
(i)

k|k−1
|x

(i)
k−1,Zk)

,

i = 1, . . . , N

pb(1−qk−1|k−1)

qk|k−1

bk|k−1(x
(i)

k|k−1
)

βk(x
(i)

k|k−1
|Zk)

1
B ,

i = N + 1, . . . , N +B

(79)

HereB is the number of object-birth particles drawn from the
proposalβk. The design of proposal distributions has been
discussed in standard particle filtering references [3]–[8]. One
technique we found particularly useful is known as importance
sampling withprogressive correctionor tempering[56]–[58].

 PREPRINT: IEEE Trans. Signal Processing, Vol. 61, No. 13, pp. 3406 - 3430, 2013.



12

In the absence of any prior knowledge on object birth, it
is necessary to assume that the object of interest can appear
anywhere in the state spaceX . One may attempt in this case
to modelbk|k−1(x) by the uniform distribution overX . The
birth proposalβk in (78) needs to have the same support as
bk|k−1(x) (i.e. the entireX ) and consequently this approach
would lead to a very inefficient algorithm requiring a massive
number of birth particles.

A more efficient alternative is to use the measurements to
build adaptively the birth density [17]. In this case

bk|k−1(x) ≈

∫
πk|k−1(x|x

′) bk−1(x
′;Zk−1)dx

′ (80)

where bk−1(x;Zk−1) is the object birth density atk − 1,
constructed using the measurement set atk − 1 and prior
knowledge (e.g. max/min speed). Letx

(i)
k−1 ∼ bk−1(x;Zk−1),

for i = N + 1, . . . , N +B, be a sample representing the birth
density atk − 1. Then (78) and (79) can be written as:

x
(i)
k|k−1 ∼ ̺k(xk|x

(i)
k−1,Zk), (81)

for i = 1, . . . , N,N + 1, . . . , N +B and

w
(i)
k|k−1 =






ps qk−1|k−1

qk|k−1

πk|k−1(x
(i)

k|k−1
|x

(i)
k−1)

̺k(x
(i)

k|k−1
|x

(i)
k−1,Zk)

· w
(i)
k−1,

i = 1, . . . , N

pb(1−qk−1|k−1)

qk|k−1

πk|k−1(x
(i)

k|k−1
|x

(i)
k−1)

̺k(x
(i)

k|k−1
|x

(i)
k−1,Zk)

1
B ,

i = N + 1, . . . , N +B

(82)

respectively.
The predicted Bernoulli PDF at timek is represented by

qk|k−1 and (77) approximated by{w(i)
k|k−1,x

(i)
k|k−1}

N+B
i=1 . The

implementation of the update step depends on the measure-
ment model, however the basic steps are the same. First, all
integrals involvingsk|k−1(x) are approximated by sums, due
to (77), and computed. This is followed by the calculation
of the probability of existence and updated particle weights.
Finally, the resampling step is applied [4], [6] to eliminate
the particles with small weights and multiply the particles
with large weights. At the end of this procedure it is usually
necessary to increase the particle diversity, for example by
applying the MCMC move step [6], [59].

The pseudo-code of a Bernoulli particle filter (PF) for
intensity measurements is presented in Alg. 1. The prediction
is carried out in lines 3-5. Lines 6-10 compute the likelihood
ratios for each predicted particle. Line 11 approximates, using
particles, the integral which features in (40):

Ik =

∫
ℓk(zk|x) sk|k−(x)dx ≈

N+B∑

i=1

ℓk(z|x
(i)
k|k−1)w

(i)
k|k−1

(83)
Unnormalised weights are computed in lines 13-15, followed
by normalisation in line 16. Resampling of particles is carried
out in lines 17-20. After resampling, the weights of particles
are uniform, see line 22. The birth particles, which will be
required in the next cycle of the Bernoulli-particle filter, are
drawn in line 23 and their weights set in line 24. It is important
to note that in line 25 we output only the firstN particles,

because the particle system{w(i)
k ,x

(i)
k }N

i=1 approximates the
spatial PDFsk|k(x).

The complexity of the Bernoulli-particle filter for intensity
measurements generally is higher than that for the standard
particle filter. Even though each particle is drawn, updated
and resampled as usual, the update for each particles involves a
likelihood ratio calculation for all intensity returns, the number
of which can be high for example in the case of an image
measurement. The resultant cost remains linear in the number
of particles, but becomes linear in the number of intensity
returns which can be large. The recursion for the existence
probability incurs a negligible increase in cost since the value
of Bayes normalising constant is already computed and can
be reused from the update of the spatial PDF.

Algorithm 1 Pseudo-code of a Bernoulli particle filter: inten-
sity measurement model
1: function BERNOULLI PARTICLE FILTER 1
2: Input: qk−1|k−1, {w(i)

k−1,x
(i)
k−1}

N+B
i=1 , zk

3: Predict existence probability using (28)
4: Draw a sample:x(i)

k|k−1
∼ ̺k(xk|x

(i)
k−1, zk) for i = 1, . . . , N + B

5: Predicted weightsw(i)
k|k−1

for i = 1, . . . , N + B according to (82)
6: Compute likelihoodϕk(zk |∅), see (32)
7: for i = 1, . . . , N + B do
8: Compute likelihoodsϕk(zk|x

(i)
k|k−1

), see (32)

9: Compute likelihood ratiosℓk(zk |x
(i)
k|k−1

), see (39)
10: end for
11: Approximate integralIk =

∫
ℓk(zk |x) sk|k−(x)dx, using (83)

12: Update existence probability:qk|k =
Ikqk|k−1

1−qk|k−1+qk|k−1·Ik

13: for i = 1, . . . , N + B do
14: Update weights, eq.(42):̃w(i)

k|k
= ϕk(zk |x

(i)
k|k−1

) w
(i)
k|k−1

15: end for

16: Normalise weights:w(i)
k|k

=
w̃

(i)
k|k

∑N+B
j=1 w̃

(j)
k|k

, for i = 1, . . . , N + B

17: for i = 1, . . . , N do
18: Select indexj(i) ∈ {1, . . . , N} with probability w

(i)
k|k

19: x
(i)
k = x

(ji)
k|k−1

20: end for
21: Particle regularisation (MCMC move)
22: Set weights:w(i)

k = 1/N for i = 1, . . . , N .

23: Draw birth particles:x(i)
k ∼ bk(x; zk), i = N + 1, . . . , N + B

24: Birth particle weights:w(i)
k = 1/B for i = N + 1, . . . , N + B.

25: Output:qk|k, {w(i)
k ,x

(i)
k }N

i=1
26: end function

The pseudo-code of a Bernoulli PF for the detector-output
measurement model (point target) of Sec.V is given in Alg.
2. The prediction, carried out in lines 3-5, is the same as in
Alg.1. The relevant equations of the filter update are (56), (57)
and (59). Integrals involvingsk|k−1(x) are approximated by
sums as follows:

I1 =

∫
pd(x) sk|k−1(x) dx ≈

N+B∑

i=1

pd

(
x

(i)
k|k−1

)
w

(i)
k|k−1

(84)

I2(z) =

∫
pd(x) gk(z|x) sk|k−1(x) dx

≈
N+B∑

i=1

pd

(
x

(i)
k|k−1

)
gk

(
z|x

(i)
k|k−1

)
w

(i)
k|k−1 (85)
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Computation of integrals is carried out in lines 6 and 7 of Alg.
2. The expression for∆k in (57) is then approximated by:

∆k ≈ I1 −
∑

z∈Zk

I2(z)

λ c(z)
. (86)

∆k, which is computed in line 8, is then plugged into (56) to
computeqk|k, see line 9. Updated weights before normalisa-
tion are computed using (59) as follows:

w̃
(i)
k|k =

[
1 − pd

(
x

(i)
k|k−1

)
+

pd

(
x

(i)
k|k−1

) ∑

z∈Zk

gk

(
z|x

(i)
k|k−1

)

λ c(z)

]
· w

(i)
k|k−1 (87)

for i = 1, . . . , N + B. This is carried out in line 10. The
remaining steps of the Bernoulli-particle filter in Alg.2 are
identical to those in Alg.1. The number of birth particles
B, drawn in lines 18, is typically made dependent on the
cardinality of the measurement setZk (e.g. for eachz ∈ Zk

one can draw a fixed number of birth particles).
The complexity of the Bernoulli-particle filter for detector-

output measurements is generally similar to that of the
standard particle filter. Each particle is drawn, updated and
resampled, in a similar manner. The main difference lies in
the computation of the detector-output likelihood for each
particle, which involves a sum over all detections, and results
in a cost that is linear in the number of particles and in
the number of detections, thus incurring an additional cost
compared to the computation of standard likelihood. The
increase in computational cost is generally marginal, however
it may become noticeable with a high rate of false alarms.
There is also the added calculation of the existence probability,
which incurs a small and fixed computational cost, and is
related to the calculation of the Bayes normalising constant.

Algorithm 2 Pseudo-code of a Bernoulli particle filter:
detector-output measurement model (point target)
1: function BERNOULLI PARTICLE FILTER 2
2: Input: qk−1|k−1, {w(i)

k−1,x
(i)
k−1}

N+B
i=1 , Zk

3: Predict existence probability using eq.(28)
4: Draw a sample:x(i)

k|k−1
∼ ̺k(xk |x

(i)
k−1,Zk) for i = 1, . . . , N +B

5: Predicted weightsw(i)
k|k−1

for i = 1, . . . , N + B according to (82)
6: Approximate integralI1 of (84)
7: For everyz ∈ Zk approximate integralI2(z) of (85)
8: Compute∆k approximation using (86)
9: Update existence:qk|k = 1−∆k

1−∆k·qk|k−1
· qk|k−1

10: Update weights̃w(i)
k|k

, according to (87), fori = 1, . . . , N + B.

11: Normalise weights:w(i)
k|k

=
w̃

(i)
k|k

∑N+B
j=1 w̃

(j)
k|k

, for i = 1, . . . , N + B

12: for i = 1, . . . , N do
13: Select indexj(i) ∈ {1, . . . , N} with probability w

(i)
k|k

14: x
(i)
k = x

(ji)
k|k−1

15: end for
16: Particle regularisation (MCMC move)
17: Set weights:w(i)

k = 1/N for i = 1, . . . , N .

18: Draw birth particles:x(i)
k ∼ bk(x;Zk), i = N + 1, . . . , N + B

19: Birth particle weights:w(i)
k = 1/B for i = N + 1, . . . , N + B.

20: Output:qk|k, {w(i)
k , x

(i)
k }N

i=1
21: end function

The pseudo-code of the Bernoulli PF for the detector-output
measurement model and anextended objectis a straightfor-
ward extension of Alg.2 and is therefore omitted from the
tutorial.

If the measurements are non-standard, the only difference
with respect to the above Bernoulli PF implementations is in
the update of the particle weights. In particular, the (stan-
dard) likelihood functionsg(z|x(i)

k|k−1) are replaced by the

generalised likelihoods̃g(z|x(i)
k|k−1). The non-standard mea-

surements tend to diffuse the posterior PDFsk|k(x) and con-
sequently require more particles for accurate approximation.
This was a motivation to develop a version of the Bernoulli
PF for interval measurements, referred to as Bernoulli box-
particle filter [53]. Box particle filtering is outside the scope
of this tutorial, but further details can be found in [60].

Convergence analysis of the particle implementation of the
Bernoulli filter can be found in [61]. In particular, [61] es-
tablished the conditions for uniform convergence of a general
class of filtering algorithms, including the particle Bernoulli
filter. These results also hold for other implementations such
as the Gaussian mixture.

B. Bernoulli Gaussian sum filter

The Bernoulli Gaussian sum filter (GSF) implementation
[18] follows as a straightforward extension of the standard
Gaussian sum filter [1], [2], [6], [62]. Under linear Gaussian
assumptions, it is possible to propagate the spatial PDFsk|k(x)
as a Gaussian sum, in exact closed form, i.e. analytically as a
set of weights, means and covariances{w

(i)
k ,m

(i)
k ,P

(i)
k }Nk

i=1 .
Pruning and merging of Gaussians is naturally required, and
discussed briefly after the statement of the recursion.

We present the solution for the case of the detector-output
measurement model (point target) of Sec.V. Equations for the
extended object case are a straightforward extension and hence
omitted. The case of intensity measurements where noise is
usually non-Gaussian is best dealt with via the particle filter.
As usual,N (x;m,P) denotes a Gaussian PDF in the variable
x, with mean vectorm and covariance matrixP.

Assume a linear Gaussian transition, likelihood and birth
model, i.e.

πk|k−1(x|x
′) = N (x;Fk−1x

′,Qk−1), (88)

gk(z|x) = N (z;Hkx,Rk), (89)

bk|k−1(x) =

Nb,k∑

i=1

w
(i)
b,kN (x;m

(i)
b,k,Q

(i)
b,k) (90)

and constant survival and detection probabilities, i.e.ps(x) =
ps andpd(x) = pd.

Suppose at timek − 1, the probability of existence is
qk−1|k−1 and the spatial PDF is given by a Gaussian sum
of the form

sk−1|k−1(x) =

Nk−1∑

i=1

w
(j)
k−1N (x;m

(i)
k−1,P

(i)
k−1), (91)

where
Nk−1∑
i=1

w
(j)
k−1 = 1, then,

qk|k−1 = pb (1 − qk−1|k−1) + ps qk−1|k−1, (92)
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sk|k−1(x) =
pb(1 − qk−1|k−1)

qk|k−1
bk|k−1(x)+

psqk−1|k−1

qk|k−1

Nk−1∑

i=1

w
(i)
k−1N (x;m

(i)
k|k−1,P

(i)
k|k−1), (93)

wherebk|k−1(x) is expressed as a Gaussian sum in (90) and

m
(i)
k|k−1 = Fk−1m

(i)
k−1, (94)

P
(i)
k|k−1 = Qk−1 + Fk−1P

(i)
k−1F

T

k−1. (95)

The predicted spatial PDF (93) can be expressed by a Gaussian
sum of the form:

sk|k−1(x) =

Nk|k−1∑

i=1

w
(i)
k|k−1N (x;m

(i)
k|k−1,P

(i)
k|k−1), (96)

where
Nk|k−1∑

i=1

w
(i)
k|k−1. The update equations of the Bernoulli

GSF are then:

qk|k =
1 − ∆k

1 − qk|k−1∆k
qk|k−1, (97)

sk|k(x) =
(1 − pd)

1 − ∆k
sk|k−1(x) +

pd

1 − ∆k
×

∑

z∈Zk

Nk|k−1∑

i=1

w
(i)
k|k−1q

(i)
k (z)

λ c(z)
N (x;m

(i)
k|k,P

(i)
k|k), (98)

∆k = pd

[
1 −

∑

z∈Zk

Nk−1∑

i=1

w
(i)
k−1q

(i)
k (z)

λc(z)

]
, (99)

where

q
(i)
k (z) = N (z; η

(i)
k|k−1,S

(i)
k|k−1), (100)

η
(i)
k|k−1 = Hkm

(i)
k|k−1, (101)

S
(i)
k|k−1 = HkP

(i)
k|k−1H

T
k + Rk, (102)

m
(i)
k|k(z) = m

(i)
k|k−1 + K

(i)
k (z − η

(i)
k|k−1), (103)

P
(i)
k|k = P

(i)
k|k−1 − P

(i)
k|k−1H

T
k [S

(i)
k|k−1]

−1HkP
(i)
k|k−1

(104)

K
(i)
k = P

(i)
k|k−1H

T
k [S

(i)
k|k−1]

−1. (105)

The above results specify a closed form recursion for the
spatial PDF in terms of a Gaussian sum, i.e. a recursion for
the weights, means, and covariances{w

(i)
k|k,m

(i)
k|k,P

(i)
k|k}

Nk

i=1

from {w
(i)
k−1|k−1,m

(i)
k−1|k−1,P

(i)
k−1|k−1}

Nk−1

i=1 . As expected,
the number of Gaussian componentsNk required to represent
the spatial PDF grows without bound over time. Implemen-
tation thus requires pruning of components with insignificant
weights (i.e. deletion of components with low weights), and
possibly merging of components which are closely spaced (i.e.
replacement of several closely spaced ones, via a Mahalonbis
distance, with a single matching mean and covariance). Adap-
tations of the Gaussian sum solution to accommodate mild
non-linearities are also possible, typically via the approach
of the extended Kalman filter (linearisation) or the unscented

Kalman filter (sigma point approximation), however these are
outside the scope of this tutorial.

IX. SELECTED APPLICATIONS

This section presents five applications of the Bernoulli
filter which also demonstrate the choice of the appropriate
measurement model.

A. Detection and tracking using a sensor network

Sensor networks are used in many applications, such as
pollution monitoring, battlefield surveillance, machine fault
detection, etc. Sensors are typically spatially distributed and
measure physical or environmental properties, such as sound,
vibration, pressure, pollution, temperature, to name a few
[63]. We consider the problem of simultaneous detection and
tracking of a moving object through a region of interest,
in the ground surveillance context. The assumption is that
the moving object produces energy (e.g. acoustic energy)
and that the surveillance region is populated by sensors (e.g.
microphones) which sample the energy field at their respective
locations. Sensor locations are arbitrary and known to the
fusion centre, which collects and processes the measurements
in order to detect and track the moving objects. This problem
has been studied by many authors, see for example [37], [64],
[65]. In this application we deal with intensity measurements,
whose model was described in Sec. IV-A. We consider two
cases: in case 1 the measurement functionh

(s)
k (xk) in (31)

is precisely known; in case 2, the measurement function is
known only partially, as in Sec. VII-B.

The measurement model is adopted from [37], [65]. A mea-
surement at sensors = 1, . . . , n at discrete-timek = 1, 2, . . .
is modelled by (31) with the measurement function expressed
as [37]:

h
(s)
k (x) = ~s ·Ak ·

[
d0

‖ps − pk‖

]αs

(106)

where Ak is emitted energy by the object of interest at
reference distanced0; ~s is the gain factor of sensors;
αs is the propagation loss factor of sensors, which in
general depends on the environment, and‖ps − pk‖ is the
Euclidean distance between the position of the moving object
at time k, pk = [xk yk]⊺, and the location of sensors,
ps = [xs ys]

⊺. Measurement noise in (31) is modelled as
w

(s)
k ∼ N (w;µw , σ

2
w) for all sensors, see [37], [65]. The

propagation loss factor in open space isαs = 2, but in practical
applications, due to multipath and shadowing, it can take any
value in the interval[2, 4] [66], [45].

According to the described measurement model, the mea-
surement functionhk(xk) is parametrised by vectorθ, which
includesαs, ~s, xs, ys, for s = 1, . . . , n. Case 1 corresponds
to the perfectly calibrated sensor network whereθ is known
precisely. Case 2 considers a more realistic situation whereθ

is only partially known, as an interval value (see Sec. VII-B).
Thus αs ∈ [2, 4], ~s ∈ [~, ~], xs ∈ [x̂s − ǫx, x̂s + ǫx] and
ys ∈ [ŷs − ǫy, ŷs + ǫy], for s = 1, . . . , n. Here x̂s and ŷs

are the nominal sensor coordinates in the Cartesian coordinate
system withǫx and ǫy being their confidence bounds. The
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fusion centre knows only the nominal sensor coordinates and
ǫx andǫy.

The state vector in this application isxk =
[xk ẋk yk ẏk Ak]⊺. Its dynamics is described by model
(16) with πk|k−1(x|x

′) = N (x;Fkx
′,Qk), where

Fk =




Gk 022 021

022 Gk 021

012 021 1



 Qk =




Ξk 022 021

022 Ξk 021

012 021 ̟2Tk



 .

(107)
Here0nm is ann×m zero-matrix,

Gk =

[
1 Tk

0 1

]
, Ξk =

[
̟1T 3

k

3
̟1T 2

k

2
̟1T 2

k

2 ̟1Tk

]
, (108)

Tk = tk+1−tk is the sampling interval and̟ 1 and̟2 denote
the intensity of process noise [67, p.269].

The objective of the fusion centre is to detect and track
the object using received sensor measurements and prior
knowledge of (measurement and dynamic) models and their
parameters:µw, σw, d0, {~s, αs, xs, ys}n

s=1, ̟1, ̟2, Tk, pb

andps.
The Bernoulli PF for this application is implemented ac-

cording to Alg.1. The likelihoods functions, which are com-
puted in line 6, are defined by (32). In case 1, whenθ is
precisely known, we have:

g
(s)
1

(
z
(s)
k |x

(i)
k|k−1

)
= N

(
z;h

(s)
k

(
x

(i)
k|k−1

)
+ µw, σ

2
w

)
,

g
(s)
0

(
z
(s)
k

)
= N

(
z;µw;σ2

w

)

for i = 1, . . . , N + B and s = 1, . . . , n. In case 2, when
the measurement model is imprecise, we need to compute the
generalised likelihood̃g(s)

1 (z
(s)
k |xk) which follows from (75).

Thushx and hx, which feature in (75), are computed for each
particlex

(i)
k|k−1, i = 1, . . . , N+B and measurementz(s)

k from
sensors = 1, . . . , n as follows:

h(s)
x (x

(i)
k|k−1) = min

{
~sA

(i)
k|k−1

dαs

0

‖ps − p
(i)
k|k−1‖

αs

+ µx

}

h
(s)

x (x
(i)
k|k−1) = max

{
~sA

(i)
k|k−1

dαs

0

‖ps − p
(i)
k|k−1‖

αs

+ µx

}

with minimisation/maximisation over~s, αs, xs, ys. Since the
likelihood ratio (39), which is computed in line 9 of Alg.1,
does not have units, we need to adopt the generalised likeli-
hood even for the noise-only case. For this purpose we used
in simulations

g̃
(s)
0

(
z
(s)
k

)
=

N
(
z;µw;σ2

w

)

max
u

{N (u;µw;σ2
w)}

. (109)

Fig.4 shows the placement ofn = 40 sensors, the moving
object trajectory (ground truth, gray solid line) and two esti-
mated trajectories obtained by the two Bernoulli PFs (using
the precise and imprecise models). As expected, the precise
(perfectly calibrated) measurement model results in the more
accurate estimate of the trajectory (red line).

The moving object starts emitting atk = 5 and continues
to do so untilk = 45. The total observation time isK = 50.
The initial state of the moving objects atk = 5 is x5 =
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0

10

20

30

40

50

60

70

80

90

100

 x[m]

 y
[m

]

 

 

Ground Truth
Imprecise Model
Sensor Positions
Precise Model

Figure 4. Sensor network application: moving object true trajectory ( gray
sold line), estimated trajectory using the precise correct model (red), estimated
trajectory using the imprecise model (green); sensor locations indicated by
squares.

[25m 1.2m/s80m −1.65m/s2000]⊺. One half of the sensors is
characterised byα = 2.3 and~ = 1.02, while for the other half
α = 2.9 and~ = 1.08. The true placement of sensors is also
random withxs ∼ U [x̂s−ǫx, x̂s+ǫx], ys ∼ U [ŷs−ǫy, ŷs+ǫy]
and ǫx = ǫy = 0.3m. Other parameters were selected as:
µw = 1, σw = 0.1, d0 = 1m, Tk = 1s, ̟1 = 0.04,
̟2 = 1. Both Bernoulli PFs usedN = B = 2000 particles
and applied the progressive correction in line 4 of Alg.1.
Other algorithmic parameters were:pb = 0.02, ps = 0.98.
Birth density bk(x; z) in line 18 was selected as follows.
Birth particles in(x, y) were drawn from a Gaussian density
whose mean is the weighted mean of the locations of three
sensors with the strongest readings, with appropriately chosen
variance. The birth particles in velocity were drawn from a
uniform density in ẋ and ẏ, which spans from−5m/s to
+5m/s. Finally, the birth particles in amplitude were drawn
from a uniform density which spans from5 to 8000. The
Bernoulli PF using the imprecise measurement model was
based on partial prior knowledge ofαs ∈ [2, 4], ~s ∈ [0.9, 1.1]
for s = 1, . . . , n and ǫx = ǫy = 0.3m. The point estimates
shown in Fig.4 were obtained using the expected value of the
particle approximated posterior PDF.

Estimated probabilities of existenceqk|k of two Bernoulli
PFs are shown in Fig.5 for precise and imprecise measurement
models. Finally, Fig.6 displays a zoomed-in particle approxi-
mation of the posterior PDFsk|k(x) at k = 30, both for the
precise and imprecise measurement models.

The numerical results show that both Bernoulli PFs success-
fully detect the presence of the object and track its motion
through the state space. In accordance with intuition, the
Bernoulli PF using the precise (and correct) measurement
model is far more accurate in estimation of the posterior PDF
sk|k(x). However, considering that the perfect calibration of a
sensor network is difficult and often impossible, an imprecise
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Figure 5. Estimated probability of existenceqk|k over time: (a) using the
precise model; (b) using the imprecise model
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Figure 6. Particle approximation of the posterior PDFsk|k(x) atk = 30: (a)
histogram inAk space, precise model; (b) histogram inAk space, imprecise
model; (c) (xk, yk) space, precise model; (d)(xk, yk) space, imprecise
model. The true value in (a) and (b) indicated by a vertical red line. The
true values in (c) and (d) indicated by asterisk. The centre of each red circle
in (c) and (d) represents the location of a sensor, while the radius of the circle
is proportional to the measured value.

measurement model becomes a practical alternative. While its
estimated posterior PDF is much broader (than the posterior
obtained using the precise correct model), its support will
contain the true object state, provided that the particle filter is
properly implemented. This has been confirmed numerically
in [44], [53]. Finally, note that using the precise but incorrect
measurement model (e.g. by selecting wrongly the values of

gains, propagation factors and sensor locations) typically leads
to divergence of the filter.

B. Bearings-only tracking

The problem of autonomous bearings-only target tracking
has been studied over many years due to its tremendous
importance in passive surveillance. The basic problem is the
sequential estimation of target location, speed and heading,
from noise corrupted detector-output measurements of target
line-of-sight (LOS) bearing. Due to the nonlinear measurement
equation, the optimal solution in the sequential Bayesian
framework results in a non-Gaussian posterior PDF. The con-
sequence of this nonlinear/non-Gaussian context is the absence
of a closed form solution even if detection is perfect (no false
and missed detections). Various approximate implementations
of the sequential Bayesian estimator have been considered in
the ideal detection case, see reviews in [68] and [69].

The target state vector at discrete-timek is adopted as:

xt
k =

[
xt

k ẋt
k yt

k ẏt
k

]⊺
(110)

where(xt
k, y

t
k) and(ẋt

k, ẏ
t
k) determine the target position and

velocity in the two-dimensional Cartesian coordinate-system.
The ownship state vectorxo

k, which is known, is similarly
defined. The motion model is then written for the relative state
vector, defined as:

xk := xt
k − xo

k =
[
xk ẋk yk ẏk

]⊺
. (111)

Target motion is modelled by a nearly constant velocity model,
that is

πk|k−1(x|x
′) = N (x;Fkx

′ − Uk+1,k,Qk) (112)

whereFk is the transition matrix,Uk is a known deterministic
matrix taking into account the effect of observer accelerations.
Relevant matrices in (112) are:Fk = I2⊗Gk, Qk = I2⊗Ξk,
and

Uk+1,k =





xo
k+1 − x0

k − Tkẋ
o
k

ẋo
k+1 − ẋo

k

yo
k+1 − y0

k − Tkẏ
o
k

ẏo
k+1 − ẏo

k



 , (113)

where⊗ is the Kroneker product,I2 is 2× 2 identity matrix,
while Tk, Gk and Ξk have been defined in Sec.IX-A. By
adoptingTk = T = const, notation simplifies toFk = F and
Qk = Q. The model of target appearance and disappearance
has been described in Sec.III-A.

The measurement model is described in Sec. V-A. The
measurement space is the interval of bearings measurements
Z = (−π, π], with the (conventional) likelihood function
gk(z|x) for everyz ∈ Zk = {zk,1, . . . , zk,mk

} adopted as:

gk(z|xk) = N (z;h(xk), σ2
w) (114)

where the measurement function

h(xk) = atan2(xk, yk) (115)

is the four-quadrant inverse tangent function, taking values in
Z. The probability of target detection is assumed independent
of the state, i.e.pd(x) = pd. The model of false detections is
given by (45).
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The Bernoulli PF has been implemented for this application
following the pseudo-code in Alg.2. The importance density in
line 4 of Alg.2 is the transitional prior (hence the Bernoulli PF
will require a large number of particles). Target birth density
bk(x;Zk), which features in line 18 of Alg.2, is approximated
by an equally weighted Gaussian mixture. Each component of
this mixture density corresponds to a bearing measurement
z ∈ Zk, and is designed using the standard initialisation
technique for bearings only tracking, explained for example in
Sec. 4.1.1 of [69]. The initialisation technique is based on three
parameters: the initial target ranger̄, its standard deviationσr̄,
and target velocity standard deviationσẋ = σẏ = σv.

The testing scenario is shown in Fig. 7. Its total dura-
tion is 30 minutes, the sampling interval isT = 30s (i.e.
k = 1, . . . , 60). The target exists throughout the observation
period. Initially it is8 km away from the observer, it maintains
the course of−130◦ and travels at a constant speed of7 knots.
The observer is traveling at the speed of5 knots and its course
during the first leg of its trajectory is140◦. At the end of the
first leg (after 30 scans), the observer makes a manoeuvre
and chooses a new course of20◦. The measurement standard
deviation, which features in (114), isσw = 1◦, the probability
of detection pd = 0.9 and the average number of false
detections per scan isλ = 1. The model of clutter spatial
distribution is uniform, i.e.c(z) = (2π)−1.
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Figure 7. Bearings-only tracking application: (a) observer/target trajectories
and the Bernoulli PF estimated trajectory atk = 60; (b) the probability of
target existenceqk|k versusk

The parameters of the Bernoulli PF are as follows: probabil-
ity of survival ps = 0.98, birth probabilitypb = 0.01, process

noise intensity̟ = 0.2, number of particlesN = B = 5000,
the parameters ofβk(x|Zk) are r̄ = 11 km, σr̄ = 3.5 km
and σv = 2.6 m/s. The estimated target trajectory indicates
a good agreement with the ground truth after the observer
has manoeuvered. The probability of existence grows to 1
after only a few time steps and remains high throughout the
observation interval. Occasionally, when the target detection is
missing, it drops to about 0.8. The occasional false detections
do not affect significantly the performance of the Bernoulli
PF. More technical details about this application, including
the observer motion control, can be found in [17].

C. Video tracking of an extended object

There are many features one can use for video tracking, such
as colour, shape, motion, body/head pedestrian detections, etc
[40]. In this section we explore tracking of a moving object
using, as features, corner detections [70]. The dataset (PETS
2000, [71]) consist of227 image frames, each of size768×576
pixels. The goal is to detect and track a moving car, which
enters the scene from the right and during the observation
period changes its size and aspect ratio. The object of interest
begins entering the scene at framek = 12 and leaves the scene
at framek = 225. OpenCV [41, Ch.10] implementation of the
Shi-Tomasi corner detector was used in creating detection sets
Zk, k = 1, 2, . . . , 227. Detections are filtered using a clutter
map created from 30 frames of background images. In this
way, detections which arise in areas deemed to be part of the
background, are likely to be removed. Four image frames of
the sequence are shown in Fig.8.

Corner detections, shown as green dots in Fig.8, are in-
stances of detector-output measurements for an extended tar-
get, discussed in Sec.VI. The state vector consists of the object
centroid positionp = [x, y]⊺, its velocity vectorυ = [ẋ, ẏ]⊺

and the ellipsoidal shape defined by vectorθ = [a, b, c]⊺.
Similarly to [72], θ defines the elements of the covariance
matrix which determines the spread of a Gaussian PDF with
mean p. Thus a and b are the diagonal elements of this
covariance matrix, whilec determines the cross-covariance
term (effectively the orientation of the ellipse). The state vector
thus consists of7 components:x = [p⊺ υ⊺ θ⊺]⊺. Target dy-
namics is described by the transitional densityπk|k−1(x|x

′) =
N (x;Fx′,Q), whereF andQ are selected so that the centroid
of the target moves with nearly constant velocity, while the
shape parameters evolve according to random walk [67].
The model of target appearance and disappearance has been
described in Sec.III-A.

Measurementsz ∈ Zk represent coordinates of corner
detections on image framek. The (conventional) likelihood
function g(z|xk), which features in update equations of the
Bernoulli filter (69) and (70), is replaced by the generalised
likelihood g̃(z|xk). This generalised likelihood is expressed
as an indicator functioñg(z|xk) = P{z ∈ Sxk

} = ISxk
(z),

whereSxk
is the random closed set specified by the ellipsoid

in the image plane, whose center ispk and whose contour is
determined byθk. This practically means that if a corner de-
tection is inside the extended object (specified by the ellipse),
its likelihood is one, otherwise it is zero. The probability of
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target detectionpd is assumed independent of the state; the
model of false detections is given by (45).

The Bernoulli PF for this application has been implemented
following the mains steps of Alg.2, but using update equations
(69) and (70). The location of birth particles atk is randomly
generated from a Gaussian distribution whose mean equals
the mean of the measurements in subsetsΩ ∈ P(Zk). The
velocities of target-birth particles are randomly sampled from
a uniform distribution from−vmax to +vmax. The shape vector
of target-birth particles is also Gaussian distributed with the
mean corresponding to the elements of the covariance matrix
of measurements inΩ ∈ P(Zk). If Ω is a singleton, then the
shape vector represents a circle with a small random diameter.

The number of scattering points, that iscorners in this
context,Lk, is estimated from as follows:

L̂k = min

{⌊
|Zk| − λ

pd

⌉
, L∗

}
. (116)

where⌊·⌉ denotes the nearest integer function,λ andpd have
been defined in Sec. VI, andL∗ > 0 is adopted as a trade-off
between the computational speed and accuracy.

In order to reduce the computational load of the algorithm
(which is heavy because the algorithm deals with all partitions
of the measurement set), validation orgatingof measurements
is introduced. This means that a subsetZ∗

k ⊆ Zk is selected as
follows: z ∈ Zk is included inZ∗

k if
∑N+B

i=1 g̃k(z|x
(i)
k|k−1) > η,

whereη ≥ 0 is a user specified threshold. The update step of
the Bernoulli filter is then carried out usingZ∗

k.

The values used in the Bernoulli PF for this applications are:
pb = 0.01, ps = 0.95, λ = 0.5, pd = 0.65, L∗ = 5, η = 50,
N = 5000, B = 250 · |P1:Lk

(Zk)|, c(z) is the uniform density
over the image frame andvmax = 50. While the density of
false detections was very low and therefore relatively easy
to handle, the main challenges with this dataset are: (1) the
variation of the size of the object over time (especially as the
object grows as it enters the scene); (2) the variation of object
speed (starts at approximately 150 pixels/s, to drop towards the
end to only 5 pixels/s). In order to deal with this variability
the algorithm was applied with large amount of process noise.

The estimated probability of object existenceqk|k, shown in
Fig.9.(a), demonstrates reliable detection of both appearance
and disappearance of the object of interest. Fig.9.(b) displays
the estimated trajectory of the centroid of the object of interest
(blue solid line), as well as all corner detections accumulated
over the observation period of 227 frames. Due to the large
amount of process noise, the trajectory is not smooth, but it
follows fairly accurately the cluster of detections. This can be
also seen in Fig.8, which displays four image frames of the
video sequence, with overlayed object size/shape estimates. As
the object enters the scene (frames 14), both the object and its
the estimate grow rapidly. As the object moves far away, both
its speed and size slowly reduce, which is correctly reflected

Frame 14 Frame 28

Frame 55 Frame 155

Figure 8. Four out of227 image frames demonstrating detection and tracking of the red car (PETS 2000 dataset): green dots are corner detections; each
ellipse (cyan solid line) represents the estimate of the extended object.
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by the estimates.
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Figure 9. Video surveillance sequence:(a) Estimated probability of existence
qk|k over time; (b) Estimated trajectory of the object centrod (blue solid line)
and all corner detections (circles)

D. Detection and prediction of an epidemic

The progress of an epidemic in many cases can be described
by mathematical models that involve only a few parameters.
One class of such models, called compartmental models,
is based on a premise that population can be divided into
the following classes in relation to the disease: susceptible
(S), infectious (I) and recovered or removed (R). Susceptible
individuals have never come into contact with the disease.
They are able to catch the disease and thus to move to
compartment I. All infectious individuals eventually recover
(or die) and thus move into compartment R.

Let the number of susceptible, infectious and recovered be
denoted byS, I andR, respectively, so thatS + I +R = P ,
whereP is the total population size. The dynamic model of an
epidemic progression in time can be expressed by two stochas-
tic differential equations [73], [74] and the “conservation” law
for the population as follows:

ds

dt
= −β i sν + σqξ, (117)

di

dt
= β i sν − γi− σqξ + σγζ, (118)

r = 1 − s− i. (119)

where: s = S/P , i = I/P , r = R/P are normalised
compartment sizes;ξ, ζ are two uncorrelated white Gaussian
noise processes, both with zero mean and unity variance;γ is
the recovery time (i.e. a reciprocal of the average infectious

period for the disease);ν ≥ 0 is the population ‘mixing’
parameter andβ is thecontact rateparameter. The caseν = 1
corresponds to the ‘well-mixed’ approximation, while for
ν = 0 we obtain a linear system without any social interactions
(self-isolation). Thecontact rateis a productβ = ρ·γ, whereρ
is thebasic reproductive number(an important parameter for
epidemiologists, representing the average number of people
infected by a direct contact with a sick person). The model in
(117)-(119) is referred to as the modified SIR (mSIR) epidemic
model. When we deal with a large number of individualsP ,
standard deviations of demographic noise can be approximated
as [75], [74]:

σq ≈

√
β i sν

P
, σγ ≈

√
γi

P
. (120)

Fig.10 shows by a solid line a realisation of the dynamic
system described by (117)-(119) during an interval of 200
days. The system was implemented in discrete-time using the
Euler approximation with integration intervalτ = 1/48. One
person in a community ofP = 10000 people was infected by
a contagious disease on the 30th day of the observation period.
The parameters used in simulations were:ν = 1.56, γ = 0.098
(i.e. infectious period of 10.2 days) andβ = 0.2549 (i.e.
ρ = 2.6). Fig.10 displays the normalised number of infected
people over time.
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Figure 10. The normalised number of infected people over time (solid red
line) and a sample of non-medical measurements (blue dotted line)

The measurements related to the number of infected are
assumed to come from non-medical sources, such as Google
searches and/or twitter messages with particular keywords
[76], [77]. Following [76] one can assume that a power law
relationship holds for odds-ratios of observations and the
number of infected people:

z
(s)
k

1 − z
(s)
k

∝

(
ik

1 − ik

)hs

, (121)

where z(s)
k is the measurement with index (e.g. keyword)

s = 1, . . . , n (normalised by population sizeP ), ik is the
normalised number of infected at discrete-timek and hs is
the power-law exponent. Since at the initial stage of epidemic
ik ≪ 1, z

(s)
k ≪ 1, eq.(121) can be reduced to a simple power-

law model:z(s)
k = bs i

hs + w
(s)
k , wherebs > 0 andw(s)

k is
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measurement noise. The described measurement model was
treated in Sec.IV-A, with the likelihood function given by (32).
The parameters of measurement noisew

(s)
k and coefficientsbs

andhs are typically determined during the calibration phase
(see for example the results of the linear regression fits in
[76]). We will assume a precise measurement model (although
in practice an imprecise model could be more appropriate); for
measurement noise we adopt Gaussian distribution with mean
µs > 0 and varianceσ2

s , so that the likelihoods in (32) are
given by:

ζ
(s)
1

(
z
(s)
k |x

)
= N (z;µs + bs i

hs , σ2
s) (122)

ζ
(s)
0

(
z
(s)
k

)
= N (z;µs, σ

2
s). (123)

Fig.10 shows by a dotted blue line a sample of measurements
collected over the observation interval of 200 days. The
measurements are collected once per day, with measurement
equation parameters:b1 = 0.2, h1 = 0.9, µ1 = 0.015 and
σ1 = µ1/4.

Numerical results using the normalised number of infected
people from Fig.10 as the truth andn = 2 sources of
measurements, with parametersb1 = b20.2, h1 = h2 = 0.9,
µ1 = µ2 = 0.015 andσ1 = σ2 = µ1/4, are shown in Fig.11.
The Bernoulli PF was implemented according to the pseudo-
code in Alg.1, usingN = B = 2000 particles and TPM
parametersps = 0.9 andpb = 0.01. The state vector contains
five components,ik, sk and dynamic model parametersβk,
γk and νk. The model parameters are included in the state
vector because their values may not be known precisely (for
example, if the disease is caused by a new virus, thenβ
and γ are unknown;ν depends on social interactions in a
community and is difficult to measure). Newborn particles are
drawn as follows. Particlesi(i)k , i = N + 1, . . . , N + B are
drawn from a Gaussian with mean[(z(s)

k − µs)/bs]
1/hs and

standard deviation(σs/bs)
1/hs , with all negative samples set

to zero. Particless(i)k simply equal to1−i(i)k . Model parameters
are drawn from uniform densities as:β(i)

k ∼ U [0.156, 0.39],
γ

(i)
k ∼ U [0.06, 0.15] andν(i)

k ∼ U [0.9, 2]. Fig.11.(a) displays
the estimated probability of existence of the epidemic,qk|k,
using the described non-medical measurements. The epidemic
is confidently detected at day 68. Prediction of the size of
epidemic is shown in Fig.11.(b) after dayk = 75. The short
green line in Fig.11.(b) indicates the estimate ofik, bearing
in mind that estimation starts from the time epidemic was
detected, i.e.k = 68. The dashed red line is the true curve for
ik (the same as in Fig.10). The two solid lines in Fig.10.(b),
starting from day75, indicate the95% confidence band for the
prediction of the epidemic. Note how accurately the timing of
the epidemic peak is predicted. The width of the confidence
band depends on the uncertainty in model parametersβk, γk

andνk. More technical details of this application can be found
in [78].

E. Detection and tracking using natural language statements

The problem is detection, positioning and tracking of a
dynamic object using measurements expressed by spatially
referring natural language (NL) statements. The NL statements
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Figure 11. Detection and prediction results: (a) the probability of existence
of the epidemic over time; (b) The prediction of epidemic from dayk = 75:
dashed line is the true curve (the same as in Fig.10); the two solid lines
starting from day75 indicate the95% confidence band

are inherently imprecise and ambiguous as they depend greatly
on the context and grounding of the referenced subjects [79],
[80]. SupposeZk = {ζk,1, . . . , ζk,mk

} denotes a set of spoken
propositions concerning the state of the object of interest at
timek. In order to illustrate the concept, consider a very simple
form of a NL statement:

ζa = the target is near the anchora, (124)

where a ∈ A is an anchor whose locationra is assumed
known (A is the set of anchors). Here the spatial relationship
is expressed using the wordnear. Other spatially referring
relationships can be added in a more realistic case, such as
behind, in front of, inside.

We demonstrate the Bernoulli PF for this application in the
context of a detector-output measurement model of Sec.V-A
with imprecise measurements of Sec.VII-A. The assumption
is that a speech recognition system and a parser are available
to automatically transform the spoken propositions of the
form (124) into their corresponding generalised likelihood
functions, which are then used by the Bernoulli filter. The
demonstration is based on a simulation which mimics a busy
public space (e.g. airport, railway station) populated by many
pedestrians and observers who report their sightings of a
person of interest (the target) using the NL statements such
as (124). Observer statements are received continuously, but
processed everyT seconds. The observers sometimes make
false detections and occasionally miss the target. The scenario
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is illustrated in Fig.12.(a): the solid lines represent the corridor
walls while the anchors are indicated by blue circles. The
anchors can be, for example, the red bench, the news stand,
the clock, etc.

The Bernoulli PF was implemented for this application
based on pseudo-code in Alg.2. The state vector of the
moving object at timek is xk =

[
xk ẋk yk ẏk

]⊺
, where

pk = [xk yk]⊺ and υk = [ẋk ẏk]⊺ denote object
position and velocity, respectively, in the two-dimensional
Cartesian coordinate system. Target motion was modelled
by the transitional densityπk|k−1(x|x

′) = N (x;Fkx
′,Qk),

whereFk = I2 ⊗ Gk, Qk = I2 ⊗ Ξk. The model of target
appearance and disappearance has been described in Sec.III-A.

Each NL statementζa ∈ Zk of the form (124) is represented
by the GLF of (71). For this example we adopt a very simple
GLF expressed as an indicator function, i.e.

g̃k(ζa|xk) = µa(xk) =

{
1, if ‖ pk − ra ‖< 2da/3

0, otherwise,

whereda is the distance from anchora to its nearest neighbour.
The results of a single run of the Bernoulli PF are shown in
Fig.12. The probability of correct detection waspd = 0.9, the
average number of false reporting per time intervalT = 15s
wasλ = 0.15. The target “appears” atk = 5 and “disappears”
at k = 60. Its position atk = 5 is p5 = [295 990]⊺

and velocityυ5 = [0.125 − 1.25]⊺. The Bernoulli PF was
implemented usingN = B = 5000 particles withps = 0.98
andpb = 0.02. The estimated trajectory is shown in Fig.12.(a)
by a black solid line. The figure also shows the particles
representing the posterior spatial PDF atk = 15, k = 25
andk = 55. The true target state is always inside the support
of the posterior spatial PDF. The probability of existence in
Fig.12.(b) reliably reflects the period of time when the target
is present in the scene.

The tracking accuracy can be improved by incorporating
implication rules. For example, we may know that if the alarm
is turned on, the target moves south, with probability0.9.
This rule is uninformative if the alarm is off, but when the
antecedent is satisfied, then the particles whose velocity vector
points south are assigned the weight0.9, while the remaining
particles are assigned weight0.1. Further technical details
related to this application and implication rules can be found
in [55].

X. A DVANCED TOPICS FOR FURTHER RESEARCH

The Bernoulli filter is a relatively recent discovery with
many open problems for further research. Some of them are
discussed briefly in this section.

A. Fusion of multiple sensors

Sensor network application in Sec. IX-A considered a
simple case where fusion was carried out in a centralised
manner assuming conditional independence of intensity mea-
surements. The multi-sensor Bernoulli filter for centralised
fusion of detector output measurements of a point target has
been discussed in [18] and applied to multi-static Doppler-only
tracking in [81].
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Figure 12. Detection and tracking using NL statements: (a) the scenario with
anchors (blue circles) and true and estimated trajectories; (b) the probability
of existence

Fusion in large data networks, however, is typically imple-
mented in a distributed (rather than centralised) manner, where
each node provides it local state estimate to its neighbours. The
estimates from the different nodes are not conditionally inde-
pendent and, if optimal fusion is to occur, common information
has to be “cancelled out” [82]. In most networks, computing
the common information is prohibitively expensive and a
suboptimal fusion techniques, such as covariance intersection
(CI), have attracted significant interest [83]. A theoretical
formulation of the CI method for distributed Bernoulli filters,
adopting the detector output measurement model, has been
discussed in [84]. Other methods for distributed fusion of
Bernoulli filters remain largely unexplored.

B. Bernoulli smoothing

The concept of stochastic smoothing [85], [86] is distin-
guished from stochastic filtering, in the sense that estimation
at a specific point in time is to be determined from a batch
of measurements, wherein part of the batch can contain data
at a later time-step than the current. Consequently, there is a
delay in producing the state estimate, but more observations
on the system are now available.

In the realm of random sets and FISST, smoothing for multi-
target states has recently been considered for the detector-
output measurement model [87]. In particular, the Bernoulli
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forward-backward smoother has been derived in [16]. It con-
sists of forward filtering followed by backward smoothing.
It has been shown that both forward filtering and backward
smoothing preserve the Bernoulli FISST PDF form. Imple-
mentations of the Bernoulli forward-backward smoother have
been proposed, via particle filters [16] and Gaussian sum
techniques [87].

Efficient Bernoulli particle filters and smoothers for various
measurement models described in the paper need to be devel-
oped. This includes both the design of the proposal density
and the birth density. The rich literature on standard particle
filters serves as a guideline for further research [3]–[8].

C. Parameter estimation

The Bernoulli filter, as a sequential Bayesian estimator,
depends on mathematical models. In particular, the dynamic
motion model, the appearance/disappearance model (Sec. III)
and the appropriate measurement model (discussed in Secs.
IV, V, VI, VII). These models typically depend on many
parameters, such as the probability of birthpb, probability of
survival ps, process noise standard deviation, probability of
detection, false alarm rate, etc.

One way to deal with imprecise measurement model pa-
rameters is by using the generalised likelihood functions,
as described in Secs. VII-B and IX-A. This approach does
not attempt to improve the prior PDF on model parameters.
Another approach is to perform the estimation of imprecise
model parameters using the measurements, either recursively
or as a batch method, during the calibration phase. The
topic of parameter calibration for the Bernoulli filter remains
unexplored until now, however, useful insights can be found
in the literature on particle filters for parameter estimation of
dynamic systems [7], [88], [89]. Model parameter estimation,
in the context of random finite sets and PHD filters, have also
been discussed in [90].

D. Multi-target tracking

The Bernoulli filter, as an exact Bayesian single-object
detector/tracker, can be extended to track multiple objects. In
the case of the detector-output model and point targets, an
approximate Multi-Bernoulli filter was proposed in [10], [25].
Related works using various data association techniques for
measurement-to-track assignment were also proposed in [91],
[92]. The resulting multi-object trackers are suboptimal, but
can be adequate for a number of practical applications [92].
Further developments for Multi-Bernoulli filtering with image
measurements were proposed in [29]. The latest development
is the exact closed form recursion or conjugate result known
as the Generalized Labeled Multi-Bernoulli filter in [14], [93].
Their performance accuracy remains to be compared with
other traditional and modern multi-target tracking algorithms.

E. Sensor control

Modern sensors are capable of a variety of actions, such
as looking in certain directions, moving to other locations,
using different modes of operation, etc. The objective of sensor

control is the on-line selection of actions to be taken by
individual sensors, in order to maximise the overall utility of
the surveillance system.

This class of problems has been studied in the framework of
partially observed Markov decision processes (POMDPs) [94].
The elements of a POMDP include the current information
state, the set of admissible sensor control vectors (or actions)
and the reward function associated with each action. By
adopting the information theoretic approach to sensor control,
the uncertain information state at timek is represented by the
predicted FISST PDF of a Bernoulli RFSfk|k−1(Xk|Υ1:k−1),
introduced in Sec.III-B, while the reward function is a measure
of information gainassociated with each action. A particularly
useful information measure is the Rényi divergence [95].
The single-step ahead reward function based on the Rényi
divergence, in the context of the Bernoulli filter and the
detector-output measurement model, was derived in [17]. This
reward function was also used for the purpose of sensor
selection in the multi-static Doppler-only radar [81]. Other
approaches to sensor control involving different measurements
models remain to be considered.

F. Performance Bounds

Theoretical performance limits, such as the posterior
Cramer-Rao bound, would be of fundamental importance for
the Bernoulli filter. Recently a posterior Cramer-Rao type
bound for Bernoulli filtering with the detector-output (random
finite set) measurement model has been studied in [96], using
the Optimal Sub-Pattern Assignment (OSPA) distance [97].
Extending this result to the recursive posterior Cramer-Rao
lower bound [98], as well as to other measurement models,
are venues for further research. The main difficulty is that
the notion of estimation error for a set-valued state is not a
straightforward extension of the standard root mean squared
error based on the Euclidean distance.

G. Bernoulli filter for switching dynamic models

Once the system is turned on, it may follow one of several
dynamic modes of operation, with random switching between
them. The switching is typically modelled by a finite state
homogeneous Markov chain with known transitional proba-
bilities. Various practical solutions have been proposed in the
context of the standard Bayes filter [67, Ch.11], [99, Ch.10],
however, to the best our knowledge, a Bernoulli filter for
switching dynamic models has not been considered so far.

XI. SUMMARY

The Bernoulli filter is a recent discovery of potential im-
portance in many fields of science and engineering where
stochastic dynamic systems (objects, phenomena) of interest
can appear and disappear. The key feature of the Bernoulli
filter is that it jointly estimates the posterior PDF of the system
state and the probability of its existence. This tutorial article
reviewed the theory, implementation and several applications
of the Bernoulli filter. The update equations of the Bernoulli
filter have been derived for various measurement models
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encountered in practice. These models have been illustrated
by several applications of the Bernoulli filter for detection,
estimation and prediction of dynamic systems. The selected
applications are diverse in order to demonstrate the power of
random set models. We are now in the position to apply the
optimal Bayes solution to a much wider spectrum of problems,
some of them previously unsolved. The most general imple-
mentation of the Bernoulli filter is based on the sequential
Monte Carlo method, resulting in a class of Bernoulli particle
filters. Finally the article presented an outlook on Bernoulli
filters with open problems for further research.
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