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A Tutorial on Bernoulli Filters: Theory,
Implementation and Applications

B. Ristic, B.-T Vo?, B.-N. Vof and A. Farina

Abstract—Bernoulli filters are a class of exact Bayesian filters criterion) estimate of the state (including a measure of its
for non-linear/non-Gaussian recursive estimation of dynamic accuracy), can be obtained from this PDF. The posterior PDF
systems, recently emerged from the random set theoretical jg constructed recursively, in two stages: the prediction and
framework. The common feature of Bernoulli filters is that they . . .
are designed for stochastic dynamic systems which randomly update. The .concept.ual solution of th_e recursive propagatlon
switch on and off. The applications are primarily in target ~Of the posterior density forms the basis of the optimal Bayes
tracking, where the switching process models target appearance stochastic filter. The optimal Bayes filter is well known for
or disappearance from the surveillance volume. The concept, the so calledstandard problenil], [2], where the stochastic
however, is applicable to a range of dynamic phenomena, such asdynamic system is turnedn all the time and the measure-

epidemics, pollution, social trends, etc. Bernoulli filters in general i ffected v b d due t . ith
have no analytic solution and are implemented as patrticle filters ments are affected only by randomness due to noise (wi

or Gaussian sum filters. This tutorial paper reviews the theory Perfect detection). In the general nonlinear/non-Gaussian case,
of Bernoulli filters as well as their implementation for different there is no analytic solution for the standard Bayes filter.
measurement models. The theory is backed up by applications The last decade and a half has witnessed great popularity
in sensor networks, bearings-only tracking, passive radar/sonar ¢ Monte Carlo based approximate solutions. The resulting

surveillance, visual tracking, monitoring/prediction of an epi- . 8 ) .
demic and tracking using natural language statements. More particle filters due to their enormous popularity, have been

advanced topics of smoothing, multi-target detection/tracking reviewed in several books and tutorials [3]-[8]. The driving
and sensor control are briefly reviewed with pointers for further ~ forces behind this interest in particle filters have been the ever

reading. increasing computational power of computers and a wide range
Index Terms—Sequential Bayesian estimation, particle filters, Of applications, from navigation and autonomous vehicles to
random sets, target tracking bio-informatics, finance and radar.

In order to deal with a wider scope of nonlinear/non-
Gaussian stochastic filtering applications, with possibly multi-
ple on/off switching systems (objects, targets) involved, where

detection is imperfect (miss-detections and false alarms) and

This paper is devote_zd to estimation of the stgte ofa dynam\%ere measurements or measurement models could be impre-
sto_chasnc system (ol_)ject_or phenomenon) Wh'Ch can ra”deEF¥e, the standard Bayes filter has traditionally been used with
iw'tc? %n and(()jff. Estimation |sfdobne sequentially using prioy,, o5 additional layers of logic, developed in a fairly ad-hoc

ZOW? gehan a sequlence ot o dservatlons or measurehm Bhner. This is evident for example in target tracking systems
A opt_lng the commonly accepte state-space_ approach, i§¢ \yhere: (a) the presence or absence of a target is typically
state Is modelleo! by a state vector which contains all relev Stablished using logic-based track formation [9, Sec.13.3]; (b)
information required FO Qescrlbe the system. The s_tocha_ imperfect detection is dealt with using various methods of
WOde's of system switching (on/off), the state evolution W'tHata associatiorf9, Ch.6,7]; (c) imprecise measurements (e.g.
time, and _measurements are assumed_known. The mea?Hfﬁl’butes) are used in non-Bayesian estimation frameworks
ments, which can be related to the state in a nonlinear fashi g. Dempster-Shafer theory) [9, Ch.9]. While the provided
are typically noisy, imprecise (possibly fuzzy) and ambiguou chniques can be described as clever pieces of engineering

as th? may re_sult from |m|;erfegt dete_ct|0n. L solutions, their optimality is questionable, hence emphasizing
In the Bayesian approach to dynamic state estimation, need to develop a unified theory which will provide the

goal is to update on receipt of new measurements the timgsina| Bayes filter formulation for the aforementioned wider

varying posterior probability density function (PDF) of thescope of applications

state, using all information available up to that time. Since Sequential Bayesian estimation in conjunction withdom

the posterior PDF embodies all available statistical informaz, theory provides exactly that: an elegant mathematical

tlonhabouF thg syster[;, It represe_nts lthe_ ﬁomplete SOIUt'ﬁamework in which one can formulate the optimal Bayes filter

to the estimation problem. An optimal (with respect to any, tiple on/off switching systems, with possibly imperfect
bCorresponding author: Defence Science and Technology Organigaetecuon a”‘?' Imprecise measgrements or mea;urement mod-

tion, ISR Division, Bld. 51, 506 Lorimer Street, Melbourne, VIC 3207€ls [10]. While the mathematics is somewhat involved, the

Australia; Tel: +61 3 9626 7688; Fax: +61 3 9626 7088; emailfesults are rewarding, as it will hopefully be demonstrated

br?gkoT'”i\;/t'C@ds.to'defence'g(.)v‘a“. . in this tutorial. Since the implementation of the random set
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#B.-N. Vo is with Curtin University, Australia. formulation of the optimal Bayes filter for multiple dynamic
tA. Farina is with SELEX Sistemi Integrati, Italy. systems is computationally very demanding (see [10]-[14]),

I. INTRODUCTION
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four classes of its simplifications or principled approximatiorisvel of mathematics will be adequate to follow all derivations
have emerged recently: the Bernoulli filter (also known d@s the paper. Sec. 1l describes the stochastic model for binary
JoTT or joint target detection and tracking filter) [10], [15]-on/off switching dynamic systems, followed by the predic-
[18], the probability hypothesis density (PHD) filter [19]-[22]tion equations of the Bernoulli filter. Secs. IV through VII
the cardinalised PHD filter [23], [24] and the multi-Bernoullpresent the update equations of the Bernoulli filter for different
filter [10], [25]. measurement models. The model of intensity measurements is
This tutorial paper covers the Bernoulli filter, its implemeneonsidered in Sec. IV. Secs. V and VI present the detector-
tations and applications. The Bernoulli filter is the optimadutput measurement model for a point target and an extended
Bayes filter for asingle dynamic system which can randomlytarget, respectively. Measurement models for imprecise mea-
switch on or off. The applications so far have focused osurements, measurement functions and uncertain implication
target tracking, where the interpretation of binary switchingules are described in Sec. VII. Two approximate implemen-
is that targets can appear or disappear from the surveillatatons of the Bernoulli filter are presented in Sec.VIll, the
volume. The concept of binary switching between appearariBernoulli particle filter and the Bernoulli Gaussian sum filter.
and disappearance, however, is universal and applies td\gplications, involving different measurement models, are
number of different dynamic phenomena, such as epidemipsgesented in Sec. IX. They include: sensor networks, bearings-
pollution, social trends etc. The key idea in dealing witbnly tracking, visual tracking, monitoring/prediction of an
random on/off switching in the Bayesian filtering frameworlepidemic and tracking using natural language statements. More
is the introduction of theexistencebinary random variable. advanced topics for further research, including multi-sensor
This concept can be traced back to [26], [27], where it walistributed Bernoulli filters, smoothing, model parameter es-
used to derive Kalman-type filters for linear/Gaussian on/dffnation, multi-target detection/tracking and sensor control,
dynamic systems. The main difference between the Bernowllie briefly reviewed in Sec. X. The tutorial is summarised
random finite set formulation and the traditional approach af Sec.XI.
[26], [27] is that the underlying state is treated as a set (which
can be empty or singleton) instead of a vector augmented with II. NOTATION AND PRELIMINARIES
the pinary existence. variable. Bernoulli fiIters_ in a g_energ\l' Standard stochastic Bayes filter
nonlinear/non-Gaussian case have no analytic solution and o
are therefore implemented approximately, typically as particIeThe roots of stochastic filtering theory can be traced back to
filters or Gaussian sum filters. the early 1960s. Kalman and Bucy [30], [31] formulated the

The main feature of this tutorial is that it considers diﬁerer{pear_filtering theory, while Stratonovich [32] .a.m(-tl Kushner
measurement models, all of which are important in sign 3] pioneered the development of the probabilistic approach

processing. The first model is devoted to measurements as ]:gv(,\rc])nllggar filtering. formulation of th hastic filteri
intensity signals, such as acoustic or electromagnetic energy, a € discrete-time formulation of the stochastic filtering
chemical pollution level, images, and similar. This is importafOP/em in the Bayesian framework is as follows [1]. Suppose

in signal networks, radar/sonar or video surveillance. TH{@e state vectogy, € X provides thg complete specmcatpn of
jargon typically used to describe object detection and trackiﬂée state of dynam|c system (object., phenomgnon) atmme
with this type of measurements tsack-before-detecf2g], HereX S R" is the state space, whileis the discrete-time
[29]. The second model is where the measurements are {fd€x corresponding te;.. The stochastic dynamic system is
output of a detector. In this case, one needs to deal wiffScribed by two equations:
inevitable miss-detections and false alarms. The assumption X =1 (Xp—1) + Vi1, 1)
is that the object of interest is a point and consequently _

. . . Z, =hy (Xk) + W, (2)
at most one detection (among many) at a particular time
is due to the object; the rest are false detections. Naturalbferred to as thalynamics equatiorand the measurement
which detections are false is unknown. A version of thisquation respectively. The functiorfy_; : R"» — R"
model is when the object of interest is large with respeid a nonlinear transition function defining the evolution of
to the sensor resolution (non-point or extended object) atite state vector as a first-order Markov process. The random
consequently can give rise to a number of detections. Aggirocessvy € R™= is independent identically distributed (11D)
which detections are due to the object and which are falseaiscording to the PDRp,; vy is referred to agprocess noise
unknown. Finally, in some situations the measurement functiand its role is to model random disturbances in state evolution.
may not be precisely known, or the measurement itself coulthe dimension of the state vector and process noisg is N.
be imprecise and fuzzy. These type of measurements, referfée functionh, : R"= — R™= defines the relationship
to as non-standardmeasurements, can be incorporated intoetween the state; and the measuremenf, € Z, where
the Bayesin estimation framework within the random s&f C R": is the measurement space. The random process
theoretical framework. The paper derives the mathematieg), € R"=, independent ofvy, is also 1ID with PDF py,,
formulation of each respective Bernoulli filter and for eachnd referred to aseasurement noise . is the dimensions of
measurement model. the measurement vector.

The tutorial is organised as follows. Sec. Il introduces the In the formulation specified by (1)-(2), functiofisandhy,

preliminaries: the recursive equations of the standard optinzs well as PDF®, andp,, are known. Equations (1) and (2)
Bayes filter and the mathematics of random finite sets. Thaffectively define two probability functions, thiansitional
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density 1 (Xk[Xk-1) = pv (xx — fr_1(xx-1)) and the a) Bernoulli RFS: The cardinality distributiorp(n) of
likelihood functiongy (zx|xx) = pw (2r — hi(xx)). The goal this RFS is Bernoulli. Thus the Bernoulli RFS can either be
of stochastic Bayesian filtering is to estimate recursively trempty (with probabilityl — ¢) or have one element (with
posterior PDF of the state, denotetk;|z1..), wherez,., = probability ¢), distributed over the state spaéé according
Z1,29, ", Zk. to PDFp(x). The FISST PDF of a Bernoulli RFX is given
Assuming the initial density of the statp(xy) is known, by:
the solution is usually presented as a two step procedure. 1—gq, if X=10
Let p(xx—1|z1.k—1) denote the posterior PDF &t— 1. The fX) = {q p(x), if X = {x}.
first step predicts the density of the state to time (when ’

measurement,, is available) via the Chapman - Kolmogorov ~ b) 11D cluster RFS:Given cardinality| X|, the elements
equation [1]: of IID cluster RFSX are each independent identically dis-

tributed (1ID) random variables distributed according to PDF
P(Xk|Z1:k71):/ Thlh—1 (X [Xk—1)P(Xk—1]Z1:0—1)dXp -1 p(x) on X. The FISST PDF oKX is:

()

®) X) = X! p(|X x 8
The second step applies the Bayes rulapgdatethe predicted JOE) = X (XD xg(p( ) (®)
PDF using measurement.: Compare (8) with (5). Due to the IID property, the symmetric
gr(Zx|[X1) p(Xk|Z1:8-1) joint distribution p,,(x1,...,x,) in (5) is replaced with the

plxslen) = J 9k (i |3k )p (i |Z1:00—1 ) dxi @

Knowing the posteriorp(xy|zi.,), one can compute point
estimates of the state, e.g. the expected a posterior (E

product] [, .x p(x) in (8).
c) Poisson RFSA Poisson RFSX is a special case of
IID cluster RFS, whose cardinality distribution is Poisson,

estimate or the maximum a posterior (MAP) estimate. that is: e\
p(n) = , n=20,1,2,...
n!

B. Random finite sets According to (8), its FISST PDF is given by:

A random finite set (RFS) is a random variable that takes A
values as unordered finite sets. The cardinality of a RES F(X) =e g(/\p(x)' ©)
is random and modelled by a discrete distributiom) = *
P{|X| = n}, wherd n € Ny. A RFS X is completely d) Binomial RFS:A Binomial RFS X is also a special
specified by its cardinality distributiop(n) and a family case of the IID cluster RFS, whose cardinality distribution is
of symmetric joint distributior’s p,,(x1,...,x,), n € Ny, @ binomial distribution with parameters (number of binary
X1,...,X, € X, that characterise the distribution of itsexperiments) ang (the probability of success of each of the
elements over the state spagk conditioned on cardinality €xperiments):
n. L .

Since a RFS is nothing but a finite-set valued random vari- £(1) = <n) " (1—g)"", n=0,1,2,..., L.

able, the usual probabilistic descriptors of a random variable, _ _
such as the PDF and its moments, can be defined for any RE& FISST PDF is then:
Due to its convenience, we adopt Mahler's [10] approach, o L! IX| (1 NL—|X]|

referred tofinite set statistics (FISSTYhe FISST PDF of F(X) (L — |X])! @ (1=q) H px). - (10)
a RFS variabléX is denoted byf(X). This PDF is uniquely

xeX
Note that if L = 1, the Binomial RFS reduces to the Bernoulli

determined by(n) andp, (x,...,x,) as follows [10]: RFS
FxL, -, xn ) =0l p(n) - pr(x1, ..., Xy) (5) Suppose at discrete-timle=0,1,2..., there aren;, € Ny
objects with statesy, 1, ..., Xk n,, taking values in the state

for n € No. Using the set integral, defined as spaceX C R™. Both the number of objects; and their

> 1 individual states inX are random and time-varying. The
/f(X) 5XZf(®)+za/f({xlv'“vxn})dxl"'dxn' multi-object state atk, represented by a finite s&; =
n=1

(6) {Xk 1,y Xk, r € F(X), can conveniently be modelled as
it is straightforward to show that(X) of (5) integrates to one & RFS on’. Here 7(X) is a set of all finite subsets ot.
(as it should, being a PDF). Let us assume that multi-object state is a Markov process with

The following RFSs are relevant for this paper. transitional densitypy 1 (Xx|Xx-1)-
Let the measurement of multi-object staXg, be denoted
Ny denotes the set of natural numbers including zero. Y. This is a general notation whe¥, can represent a vector

2A joint distribution functionpy, (x1,...,xx) is said to be symmetric if measurement;, a random finite set measuremefit, or a

SZri\;eéllléeS remains unchanged for all of theé possible permutations of its closed setCk (a crisp or fuzzy interval), depending on the

3While the FISST densities are not probability densities, they have beBag€asurement model we adopt. Measurement models will be
shown to be equivalent to probability densities relative to some reference
measure [13]. Subsequently, we do not distinguish between FISST densitie$Note that a binomial point process, introduced in [34], is a completely
and probability densities of random finite sets. different concept, with a fixed cardinality.
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presented later in the article. GivéX,, measuremen¥y, is P{ex = j — l|ex—1 = i — 1} for 4,5 € {1,2}. The TPM is
assumed to be statistically independent¥of, where? £ k. adopted as follows:
Let vr(Y|Xx) denote the likelihood function ofy.

The stochastic filtering problem can now be cast in the ran- I — [(1 — D) pb} (15)
dom finite set framework. Suppose that at tilme1 the poste- (1—=ps) ps

rior FISST PDF of multi-object statf, i1 (Xk—1/Y1:1-1) wherep, = P{ex11 = 1|ex = 0} is the probability of object

is known. HereY1.,_1 = Y1,..., X1 is the sequence of . . . . v = -
all previous measurements. Then the predicted and updaﬁ'&th during the sampling interval, ang, = P{exy1 =

multi-object posterior densities can be expressed as follo sk 1} the probability of target "survival" during the

[10]; fsa_lr_npling intervz_;ll. These two prpbabilities, together with the
' initial target existence probabilityy = P{¢, = 1}, are
Frppo1 (X X1pm1) = assumed known. If the object appears during the sampling
interval Ty, the PDFby,;,_; (x) denotes its birth density.
/¢k\k71(Xk|Xk—1)fk71|k71(Xk—1|T1:k—1)5Xk—1 In summary, the dynamics of the Bernoulli Markov process
(11) Xy, for k = 1,2,..., is characterised by the transitional
or (k1 Xk) Fugiomt (K| Trk1) FISST PDF(;_S,?‘k,l(X|X’), f.rom RFSX’ atk — 1 to RFS
Trpp (X[ X1p) = T on (2 X e (X Trn1)oX (12) X atk, specified as follows:
The recursion (11)-(12) is a non-trivial generalisation of (3)- 1 —ps if X =190
(4), because the integrals in (11)-(12) are set integrals and ¢ (X[0) = ¢ pp-bypo1(x)  if X ={x},
the e>_<pr(_assions oty -1 (X |Xp—1) and ox (T |Xy) can 0 if |X| > 2
be quite involved. (16)
IIl. THE STOCHASTIC DYNAMIC MODEL AND PREDICTION , L= , ff X=0
A. The stochastic dynamic model Pk (X)) = Ps - Teji—1 (X[') !f X={x)
0 if |X]|>2

The common feature of all Bernoulli filters is the model
of object (system, target, phenomenon) dynamics. The objedgw we are in the position to derive the prediction equations
however, may or may not be present in the scene (surveillaredethe Bernoulli filter.
region) at a particular time. We therefore model the object
state at discrete-timg by the Bernoulli RFS; its state space
is ) US(X), whereS(X) is a set of all singletoRs{x} such B. Prediction equations of the Bernoulli filter
thatx € X'. According to (7), the probabilistic description of & The Bernoulii filter, as a sequential Bayesian estimator,
Bernoulli RFSX is completely specified by the probabilidy estimates recursively the posterior PDF of object state through
of being a singleton and the PDx), defined onY'. In order  1he prediction and update stages, using the dynamic and mea-
to verify that this PDF integrates to 1, we need to apply the sg{rement models and received measurements. The posterior
integral defined by (6). In the special case Whé(X) = 0 F|SST PDF at timé:, denotedfy, (Xx|Y1.1), for a Bernoulli
for cardinality |X| > 2, the set integral simplifies to: RFS has the form (7) and is therefore completely specified by

/f(X)(SX— (0) + ({x}) d (13) two quantities:
=f /f x}) dx. « the posterior probability of object existeneg, =

Now using (7) we have P{IXg| = 1] Yok} _
« the posterior spatial PDF &, = {x}, that iss;(x) =
/f(X) X =1-q+gq /p(x) dx =1 (14) Pk Y1)
The Bernoulli filter therefore needs to propagate only these
becausep(x) is the (conventional) PDF ot' and hence two quantities over time.
integrates to 1. . . . _ The prediction equations of the Bernoulli filter have been
If the object is present (i.eXy is a singleton), then it is originally derived in [10, App.G.23] and [15, Sec.3.6]. Let
assumed that it is a Markov process with a known transitiongle posterior FISST PDF of a Bernoulli RFS at tirhe- 1
density 7.1 (x|x’) during the sampling intervall, = tx — be f, ;1 (X)—1|X1.4-1). The prediction equation of the
tx—1- In order to model object appearance and disappearagges filter in the RFS framework was given by (11), that is:
during the observation period, it is convenient to introduce a
binary random variable, € {0, 1} referred to as thexistence =1 (X[ T 1p-1)

The convention is that, = 1 means that object exists at , , ,
discrete-timek. Dynamics ofe;, is modelled by the first-order = /¢k|k—1(X|X Ve—1p—1 (X[ T1k-1) 06X (7)
two-state Markov chain with a transitional probability matrix ~— _ it (X10) fio ot (0 Lr1)

(TPM) II. The elements of the TPM are defined [88,;, =
# [ oupe XU Do () Trac)dx’ (18)

5A singleton is a set whose cardinality is
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Equation (18) follows from (17) using (13). Let us first solveThis leads to the update equation for the spatial PDF of the

(18) for the caseX = (. Using (16) we have: Bernoulli filter:
Py (L= gr1jp—1) brjr—1(x)
Trepe—1 (0 C1:6—1) = rje—1(D10) fr—1jp—1(D[X1:p—1)+ Sklk—1(x) = QIJ\k—l | +
/¢k\k71(®|{X/})fk71|k71({X/}|T1:k—1) dx'  (19) Ds Qe—11k—1 J Thoj—1 (X[X") 81 -1 (x')dx’ (29)
=1 =po) fe-1k—1(O| L 1:6-1)+ _ Tele—1 _
, , Notice also that (29) has an intuitive interpretation. Loosely
/(1 = Ps) fr—1jh—1 (X[ L 1:p-1) dx (20) speaking, it states that the probability density of the predicted

state comprises a birth component and a surviving component.

=1 =pp)(1 = gr—1jp—1)+ The birth component is the birth density weighted by the

(1= ps)qh1jh1 / Sk_1jp_1(x') dx’ (21) probability of target non-existence and new birth. The surviv-
ing component comprises the standard Chapman-Kolmogorov
=1 =po)(1 = qr—1jk—1) + (1 = Ps)qr—1jp—1 (22)  prediction weighted by the probability of target existence and
survival.

Next we solve (18) for the casX = {x}. Using (16) we

have:
. 1, then from (28) qyr—1 = 1 while (29) reduces to
fk\kfl({x}rrl:k—l) = ¢k|kfl({x}|®) fk71|k71(@|'r1:k—1)+ Sk\kfl(x) _ fﬂ'k|k—1(x|xl)Sk71|k71(xl)dxla which is the

/¢k\k—1({X}|{X/})fk—l|k—1(X/|T1:k—1) dx’ (23) standard Chapman-Kolmogorov prediction given by (3).
In the next three sections we will present the update
= bpp—1(x)pp(1 _Qkfl\kfl)"f' equations of the Bernoulli filter for different measurement

models.
/psﬂ'ldk—l (X[%")qr—1|k—15k—1jk—1 (X" )dx"  (24)

= po(1 = Gr—1]k—1)brj—1(X)+

Equations (28) and (29) fully specify the prediction step
of the Bernoulli filter. Note that ifp, = 0, and g _1jx—1 =

IV. INTENSITY MEASUREMENTS
A. Intensity measurement model

/ / /
PsQh—1]k—1 /m\k—l(XlX )Sk—1)k—1(x)dx (25)  syuppose the sensor at our disposal consist of 1 in-
tensity measuring elements at known locations, each reporting

Additionally we have from (18) and (16) that: instantaneously at time a measured valug.™, s = 1,..., .
. In this (fairly general) formulation, an element can be one of
e = > . .
Srpe—1 (XX pp1) =0 if [X] =2 (26) he following.

a) A pixels of an imageFfor a monochromatic image,
the value in pixeli can be a measure of reflective light or
/f (X Crp1) 6X =1 temperature. For a colour image, it can be a measure of the

klk—1 bt ’ similarity between the colour histogram computed in a box

Hence we can easily verify that

. . . centered at pixel and a reference histogram [35].
and by comparing with (7) we have established that b) A bin in a range-Doppler-azimuth magEhis corre-

éﬂ?ﬁéﬁﬁ'%&?l) s @ FISST probability density for a sponds to the radar context [36], where intensity of a bin refers

' to the electromagnetic energy gathered in a resolution volume
Next we solve for gy and spp_i(x) OF 4o corresponding range-Doppler-azimuth cell.

fep—1(X[Y1x-1). Since the predicted FISST PDF is ) A node in a sensor networkthe assumption is that all

in the form (7), then the left-hand side of (22) equal§engor nodes sample the environment synchronously. Intensity

1 — gkjr—1 and we can write (22) as: in this context depends on the purpose of the sensor network

o - it can refer to the level of pollution (for a chemical sensor

L=qrp—1 = (1=po)(I=qu1jx—1)+ (L =ps)@r—1jp—1- (27) network), radiation (for a network of Geiger-Miiller counters),

This leads to the prediction equation for the probability &' acoustic energy (for an array of microphones). Note that the

existence: placement of nodes in the sensor network can be arbitrary, as
long as their locations are known.
Q-1 = Po (1 = Qu—1jk—1) + Ps Qo—1]—1- (28) We can stack alh measurements into a single measurement

vector collected at timey,:
Notice that (28) has an intuitive interpretation. Loosely speak- O @ (n)
ing, it states that a predicted target can arise from a new birth Zk = {Zk g Rk ) (30)

or an existing survival. The predicted existence probability,q express the measurement equation as in (2). The measured
consist of two additive terms: the probability of target NONptensity in element can be modelled as a function of the
existence and target birth, and the probability of target exiarnoulii stateX, as follows:

tence and survival. () o
Similarly, since the predicted FISST PDF is in the form S8 _ hy,” (%) + wy, if Xp = {xx} (31)
of (7), the left-hand side of (25) equalg 1 sk 1(x). k w® if X; =0
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where h,(:)(xk) is the contribution to intensity in elementEq.(35) results from the application of (13). Since
s = 1,...,n from an object in the statey, and w\” is fijk—1(Xx|z1:1-1) = 0 for [X| > 2, we have that

the background noise in element Let us assume that the . .

background noise in element is independent of noise in Tip(Xlza) =0 if X[ 2 2
other elements, and identically distributed according to PQ¥nd obviously from (33)

959, The measurement functidzf) (xx) can take the form

of a Gaussian point spread function [6, Ch.11], the inverse /fk|k(X|Z1:k)6X =1,

distance squared law [37] or an ambiguity function [38]. Let ) ) ) )

the measurement likelihood in elemerin the presence of an from which by comparison with (7) we have established that

object in the state;, be denoted;{*). The likelihood function frk(Xx|z1:1) is @ FISST probability density for a Bernoulli
of the measurement vectay,, as a function of the Bernoulli RFS.

stateX, can then be expressedas The update step (33) can be expressed for the Xase 0
as:
];[ g§s) (Z;(CS)|X) |f Xk = {X} fk|k(®|zlik) =
or(zx|Xp) = { *=" 32)

or(2k0) - frjk—1(0Z1:—1)

(1 — qrjp—1) 0k (2k|0) + qrjp—1 [ or(2e{x}) spjp—1(x) dx
(37)

The intensity measurement model does not need to dis-
tinguish between small and large objects. A large object W¥hich is equivalent to
typically sensed by many elements (pixels or resolution cells)1 1 — Qg1
due to its size. However, even a ph_yS|caI_Iy small object can® ~ dklk = 7 Delp1 + Grr1 ] Cr(Z5]%) Spp_1(X) dx
be sensed by many elements of the intensity sensor, due to the (38)
spread generated by the measurement fundtfﬁ)r(xk). The where
distinction between small and large objects should be reflected () { ()
only in the choice of the state vectar thus for large objects Cenzl{x}) 9 (Zk |X)
it may be necessary to include the shape/size in the state. Ui (zklx) = or(ze|0) 51_[1 g(()s) (21(:))

is the measurement likelihood ratio. From (38) follows the
update equation for the probability of existence:

The update equations of the I_3ernou|]i filter for th.e intensity Gup—1 [ Lr(28]%) Skip_1 (%) dx
measurement model were derived using FISST in [29]. An gxx = - 7 ) Vd
attempt to derive these equations using the standard non-FISST Gilie—1 + Quln—1 [ Cr (2 [x) g1 (x) dx
approach, resulted in very complicated, almost untractalitg. (40) is effectively a Bayesian update for the prior existence
mathematics, see [39]. probability.

Recall from Sec.lll-B that the output of the prediction The update equation for the spatial PDF can be derived
step is the FISST PDFy . (X|Y1.5—1), which is uniquely from (33) for the caseX, = {x} using the fact that
specified by the paifgy 1., skx—1(x)) and takes the form fix({x}|z1:k) = qrjk skjx(x). First we have:

(7). Also note that for the intensity measurement model,
Y, = z,. The updated FISST PDF given by (12) followsgy sik(x) =

(39)

B. Update equations

(40)

Qk|k71€k(zk|x)5k\k71 (x)

2| X5) - Frip1(Xp|z1:6— which using (40) and (39) leads to:
e (Kl — P Tk Xelmic) g
Pr(2Zk|Z1:8-1) i () = or(ze[{x}) spjp—1(x) (42)
where | T on(nl{x}) sy (x) dx
Equations (40) and (42) are the update equations of the
Pr(2Zk|210—1) = /%(ZMX)'fk\k—l(X|Z1:k71)5X (34) Bernoulli filter for the intensity measurement model. Note
that (42) is effectively the same as the conventional nonlinear
= ¢k (2x10) frjp—1(0]Z1:0—1)+

Bayesian filter update equation (4).

[ ortamnltxh) figes () ma) dx (35)
V. DETECTOROUTPUT MEASUREMENTS FOR APOINT
= (1 = qrjp—1) pr(ze]0)+ TARGET

qk|k—1 /‘Pk(zka}) Sk\k—l(x) dx (36) A. Measurement model
The intensity measurement model can become computation-
8In applications where intensity measurements are quantised, the expresagx intractable if the number of Se_nsor elementis _tO_O Iarge.
for (25| X5) will involve the integrals (with quantisation thresholds adn order to reduce the data flow, in many cases it is necessary
limits) of likelihoods gls) and gés). to introduce a detector and report only the values which are
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above a certain threshold. This is illustrated in Fig.1, whefeDF of clutter only detections has the form:

n = 32, but only three detectiong;, z, andzs, are reported

for fu_rthgr processing. Note.that the true target detectlon_ can O(Z|0) = K(Z) = e H Ae(z). (45)
be missing due to the low signal-to-noise ratio or excessively
high detection threshold. A low detection threshold increases
the probability of detection but creates more false detections

zZ€EZ

In order to derive the likelihood functiop(Z|{x}) we first

need to specify the FISST PDF of the RW3|{x}, denoted as
14 ‘ ‘ ‘ ‘ ‘ ‘ n(W|{x}). This is a Bernoulli RFS which can be either empty
12l ] (if the object is undetected, i.&V = () or a singleton (if
object is detected and caused a measuremet. W = {z}).
Hence we can write:

10r

Intensity

1
6 THRESHOLD %

1) — 1 —pa(x), if W=10
WD) {pd<x> g, tw=fzp O

where ¢(z|x) is the (conventional) likelihood function of
R s 20 pT R measurement due to the object in state and p,(x) is the
Measurement space probability of detecting the object in state

Figure 1. Detection threshold reduces the data flow3®fmeasurements Now we ‘_”u‘e in the position to find the expression for

reported by the sensor, only a sBt= {z1,z2,z3} passed the detection ©(Z|{x}) using one of the fundamental results of the FISST

threshold (the candidates for detections are only the local maxima) calculus: the convolution formula [10, p.385]. For a union of
independent RFS, as in (43), the FISST PDF is given by:

The measurements produced by a detector can math-
ematically be represented by a random finite Zet = 7
) . S xf) = W{x})k(Z\W a7
{21,22,...,2,}. The main feature of this representation is (2} chzn( {xh) r(ZAW) (47)
that both the cardinalityn = |Z| and the position of elements -

ﬁoeteztr:r;ttrtfen(])?gz?ﬁ%i?é;?jf% I';Khe ,Razrgsrailrr:g:)ercérﬁlso where sign\ denotes the set-difference operation andvas
" defined by (45). Since the RF® can be either empty or

The R'.:S.Z can be seen as a union of two IndependeQtsingleton, the summation in (47) greatly simplifies and we
random finite sets: have:

Z=CUW (43)

whereC is the RFS of false detections (also known as clutter)@(ZHX})
and W is the RFS due to the object of interest. We assume = n(0|{x}) - «(Z) + Zn({z}|{x}) -k(Z\{z}) (48)

here a “point object” (target) which, if detected, produces zEZ

only one detection (the measurement model for non-point or K(Z\ {z})
extended objects will be considered in Sec.VI). For a point = #(Z) |1 = pa(x) + pa(x) ZQ(Z|X)W (49)
object, the RFSW can be either an empty set or a singleton, z2€Z

depending on whether the object has been detected or not. ) ) o

We are now after the mathematical model of the likelihoot€xt we derive the update equations of the Bernoulli filter for
function of the measurement s& denotedy(Z|X), where the described measurement model.

X is (as always) the Bernoulli RFS. The likelihood function

»(Z|X) will therefore have two forms, one faX = @ and

the other forX. = {x}. _ _B. Update equations
For the caseX = (), the measurement set will consist of

false detections only, i.eZz = C U = C. Typically the  ypdate equations for the Bernoulli filter using the detector-
number of false detections in the measurement set is modeuﬁﬁput measurement model of point targets was Origina”y

by the Poisson distribution: derived in [10, App.G.24] and [15, Sec.3.6]. Recall from
Sy Sec.llI-B, the output of the prediction step is the FISST
P{|C| =5} = ¢ s=0,1,2,... (44) PDF fup—1(X[YX1.x—1), which is uniquely determined by

st the pair (gxx—1, skjx—1(x)) and takes the form (7). For the

where ) is the excepted value. Furthermore, conditioned dReasurement model we consider héfg, = Z;. The updated
|C|, false detections are modelled as independent, identicdfil5ST PDF follows from (12):

distributed (1ID) random vectors taking values frafh with

PDF ¢(z). A RFS with such characteristics was introduced in Ok (Z| X))« frp—1(Xp|Z1ip—1)
Sec.lI-B as the Poisson RFS [10]. According to (9), the FISST Ttk Xkl Zek) = F1(Zi|Zr—1)

(50)
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wherep(Z;|X) was specified by (45) and (49), and x|k Sk|k(X), One can derive the update equation for the spatial
PDF 541 (x). The final expression is:
Tu(Zk)Z1:1-1)

gk (2]x)
:/‘Pk(zk|x)'fk|k—1(X|lek71)5X (51) 1= palx) + palx )zezk A=)
sk(x) = T—A Splk—1(x)  (59)
= ok (Zk|0) frjp—1(0|Z1k—1)+ k
Note that if g, = 1 andpy = 1, then from (56) and (58)
/@k(Zka})fklkfl({xﬂzl:k—l)dx (52) it follows that g4, = 1. Furthermore, under the additional
— (- ) o (Zn 0) + assumption that there are no false detections, the measurement
Bklfe—1) P\ Lk setZ;, has to be a singleton whose only elemeris due to

Qk|k—1/90k(zk|{x}) Sik—1(x) dx (53) the object of interest. Then (59) simplifies to:

gr(zk|x) Sk|k— 1(x)

Using (45) and (49), the expression in (53) can be written S|k (X) = (60)
(after a few steps) as: J (&%) spp—1(x) dx

which is the standard Bayes filter update equation (4).
Je(Zp)|Zyk—1) = K(Zy) {1 — k-1 /pd(x)slﬂkfl(x)dx Notice also that both (56) and (59) can be interpreted as

\ { N comprising|Z|+ 1 independent contributions or components.
Zk z / The first component is derived from the hypothesis that the
+ d
Akli—1 Z a(ox)gi (2) i1 (%) X} state is not detected. Each of the remainjiig] components
(54) s derived from the hypothesis that the state is detected and

) generated the measuremente Z;. All quantities are of
where notation g (z|x) emphasizes the (possibly) tlme-Course normalised.

varying aspect of this likelihood function. Again, since

P2 (X|Zp—1) = 0 for [X]| > 2, we have that VI. DETECTOROUTPUT MEASUREMENTS FOR AN
Jrop(X|Zyg) =0 if [X] >2 EXTENDED TARGET

We have earlier described a point object as an object that
can cause at most one detection. In situations where the
/fk|k(X|lek)6X =1, object is far away and smaller than sensor resolution (e.g.

radar surveillance of aircraft), this is a reasonable assumption.
from which by comparison with (7) we have established th&towever, there are also many situations where this assumption
frje(Xk|Z1.1) is @ FISST probability density for a Bernoulliis not appropriate. For example, if a high resolution radar is

zEZy,

and obviously from (50)

RFS. used for maritime surveillance, a ship (object of interest) can
Let us now work out the posteriofy,(Xx|Z1.x) for the appear in many resolution cells. In computer vision this is
caseX; = (. First note that using (45), we can write: particularly widespread, because an object typically occupies
K(Zi\{z}) 1 the whole region of an image, consisting of many pixels.

= (55)
k(Zy) Ac(z)

A M t model
Using (45), (54), (55) and the fact thalh(Xs|Z1k) = easurement mode

1 — gy, €quation (50) leads to the update equation for theThe main feature of an extended or non-point object is
probability of existence: that it consists of several scattering (feature or measurement

1_A generating) points. The number of these scattering points is
- Rk

Gk = o Q1 (56) upknown and time_—_varying (as t_he object moves, turns,_ etc_:).

L= qrjp—14% Since the probability of detecting each scattering point is
where typically less than one, an extended object can cause zero,
one or more detections. In computer vision, for example, the

Ay, =/pd(X)Sk\k71(X)dX scattering points could be the corners [40, p.320] or invariant

I d features [41, Ch.10].
-y Pa(x)gr(2]%) k)1 (x)dx (57)  The measurement set is modelled by a RES =
2eZ, Ac(z) {21,22,...,2m,}, as in Sec.V-A. Let the number of scattering
oints beL. We can again represefitas a union (43), where
is the RFS of false detections. The RV is a problem
- one can be tempted to adopt the mod¥®l = Ul W,
J gr(2|x) sgpp—1 (x)dx where W; are mutually independent Bernoulli RFSs, each
Ak = pa <1 - Z Ac(z) ) (58) corresponding to one scattering pojnt 1,. .., L. This type
of RFS is known as the multi-Bernoulli RFS [10]. If we
sincesy,,—1(x) being the conventional PDF, integratesito were to continue the derivation in this framework, we would
By evaluation of the posteriofy,,(X|Z1.x) for the case practically develop a method that tracksndividual scattering
X = {x} from (50), and using the fact thiit , ({x}|Z:.x) = points, see [42]. This framework, however, is exceptionally

If p4 = const (independent of the target state), then (5
simplifies to:

z€Zy,
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complex and the resulting algorithm computationally difficult Following the procedure in Sec.V-A, we next apply the

to implement in a general non-linear/non-Gaussian case. convolution formula (47) in order to derivg,(Z|{x}). For
We take a different approach, and model the RRSby the caseX = (), as usual we havey,(Z|0) = x(Z). The

a binomial RFS, which treats object originated detectiogonvolution leads to:

as having a single source. In this way, instead of trackinqp Z/{x})

individual scattering points, we will track the object centroid

and its shape/siZe According to Sec.ll-B, the cardinality = > n(WH{x}) k(Z\W) (63)
distribution of the binomial RFS is the binomial distribution, wcz
while the eIemgnts oW are 1ID with the spat.ial distri.butilon =n0|{x}) K(Z) + Z n(Q{x}) k(Z\ Q) (64)
g(w|x). Following (10), the FISST PDF of this RFS is given QEP1.L(2)
by: whereP;.;,(Z) is the set of all subsets & with cardinalities
D(W{x}) equal tol,2,..., L. If L > |Z|, thenPy..(Z) is the power set
Il of Z minus the empty set. Using (61) with (55), the expression
= =T PV L= pa W T a(wix) (61) in (64) simplifies to:
wew e(Z|{x}) = x(Z) {(1 = pa)"+
(1 _pd) ) if W= @
_ : !
) Lnat g g, W = () > -t IS
. QeP1.L(Z) GQ Z
Lpkg(wilx)---g(wp|x), if W={wq,...,wr} (65)
(62)

B. Update equations

for cardinalitiess W| = 0,1,2,..., L. Herep, is the probabil- ~ The updated FISST PDF follows from the Bayes rule, see

ity of detection of a scattering point; it can be made dependgnP) or (50), wherep,(Z|0) = x(Z) andpy(Zi|{x}) is given

on the object state, but this is omitted for simplicity. by (65). As usual, the first step is to finfl.(Zx|Z1.,_1).
Recall that an extended object occupies an area in 2D oAssuming the reader is already familiar with the steps in

volume in 3D. The state space for an extended object shodierivation, we state only the final expression:

therefore include, in addition to the kinematic properties of its

centroid, the object size in a parametric from. For examplef(zk|zl:k_l) - m(Zk){l — Qi1 + G (1 _pd)Lk+

we can assume that the object is an ellipse with the state

vector is specified byx = [z & y § a b c|’, where [ 11 gr(zlx) sgpp_1 (x) dx

(z,y) and (&,y) are the centroid position and velocity in a Z Py —2E } (66)
2D Cartesian coordinate system, respectively. Components of  ,_,“~ , | [1 Ae(z)

the statea, b and ¢ determine the size and orientation of its o “e9

elliptic shape. The likelihoog(w|x) can be for example the With Q|

Gaussian distribution whose mean is the object centroid, and Vi = Ly! ) (67)
whose covariance reflects the elliptic shape of the object. (L — QD! (1 — pg)ll=Lr

Note, however, that we can also adopt a different form athe subscript in v, Ly andg(z|x) is there to emphasize
the likelihood g(w|x), based on the interpretation afas a the time varying nature of the number of scatters and the
closed set. For example, if the object is in the shape of #kelihood function.
ellipse,x can be interpreted as a set of points which belong Solving the Bayesian update equation (50) ¥or= ) leads
to the ellipse centered &t, y) with parameters, b, c. In this  to the update equation for the probability of existence:
interpretation, the state is modelled by a special type of a 1— A,
random variable which takes values as closed sets, referred Qk|k = Ak|k—1 (68)
to as a random closed set (RCS) [10]. lUgix) define the
mapping from the state space to the measurement space. SiHaere
x is a RCS, then(x) too is a RCS. For a measurement Ap=1—(1—pg)r—
w € W, which is due to a RC%, the likelihood g(w|x) 11 gu(@lx) s (x) dx
is referred to as thgeneralisedlikelihood function (GLF) L Ik klk—1
[10], [44], and is defined agj(w|x) = P{w € h(x)}. A Y. W T e (69)
convenient choice is for example the indicator function, i.e. QEP1Ly (Z1) z€Q

g(wlx) = Ipx) (W), which equalsl if w € h(x) and zero gimilarly, solving (50) forX = {x} leads to the update
otherwise. More will be said about generalised likelihoods Bguation for the spatial PDF:

1 — qrr—1A%

Sec.VII. L (2]x)
(1 _pd) b Z djk o )\c(z)
"There is also another similar approach that models the object originatefl, (x) — Q€Prr, (Zr) =€ Splh_1(X)
detections by a Poisson RFS, see [43]. Due to the space limitation, th ‘ 1— A lke—

approach will not be considered in the tutorial. (70)
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If L, = 1, then (69) and (70) reduce to (58) and (59)A. Imprecise measurements

respectively. Imprecision is a form of uncertainty distinctly different

from randomness. The two kinds of uncertainties have been

) . L . debated by philosophers under the teepsstemic uncertainty
Up to this point we implicitly made two assumptions aboylye to lack of knowledge) andleatory uncertaintydue to

sensor measurements. First, each measurement is a poi Kbomness) [49]. Imprecision or epistemic uncertainty has

the measurement spacg. Second, the likelihood function heen studied intensively in the field of expert systems and
of a point measuremenyy (z|x), is precisely known. While g ificial intelligence [50], but significantly less in statistics
these two assumptions are widespread, they could be faijty

unrealistic in many fields of science and engineering. Forsﬁpposeh(x)

example, a natural language statement, such as *the Rall giatex ¢ ¥ into a point in the measurement spage
IS near the center of the field”, IS an m;tance of a NOR rthermore, let’s assume that the standard point measurement
point measurements about the object of interest (the ball)\ ha modelled ag: — h(x) +w, wherew is additive noise,
This statement can be translated to a “measurement” Whigh\ i ted according tp

H “ H ” w
covers a region (an area) around the “center of the field An imprecise measurement, denoteddbys a subset of the
consisting of an infinite number of points. Imprecise Iikelihooﬂmalsurement spac®, see Fig.2. The imprecise measurement
functmns are 6_“50 Very common in p_ractlcg. For examp'% therefore modelled by a special type of a random variable,
object localisation based on the received signal strengthv{miCh takes values as closed sets@nA rigorous mathemat-

cellular networks involves an imprecise likelihood functior\Cal treatment of random closed sets is beyond the scope of
because this likelihood depends on imprecisely known patlsc 1 oviai with details in [10, Ch.4-7], [52]

loss exponent [45].

When we make inference about a certain system, object or
phenomenon, we sometimes have at our disposal prior knowl-
edge expressed in the form of uncertain implication rules. For
example, suppose the goal is to localize a suspect and the
following piece of intelligence is available for reasoning: “The 6
suspect is often in th€orner cafebetween 9am and 10am”.

This piece of intelligence can be expressed as an uncertain state space measurement space

implication rule:if y € Y, then x € X, with probability «

(y is time, Y is an interval of timex is the state, that is Figure 2. An imprecise measuremehis a subset of the measurement space
the location of the suspect, af is the subset of the statez

space). The rule is characteriseduaxertainbecausey can

be smaller thar. The GLF of a random set measureméris defined by [10],

This section reviews the update step of the Bernoulli filtg¢53]:
using so-callechon-standard measuremen®y non-standard
measurements we mean any combination of the following: (1) 9(¢lx) = P{z € ¢} = P{h(x) + w € (}. (71)

imprecise measurements (such as intervals or fuzzy intervaf.ﬁe imprecise measurementan be a fuzzy or a crisp S
characterised by precise likelihoods; (2) precise (point) MeRa measurement spageC R, If h(x) is a proper function,

§ure_mepts characterised by imprecise likelihoods; (3) uncert{;w% GLF can be modelled by a single membership function of
implication rules. a fuzzy set onZ. In some cases, however, there is ambiguity

Before we proceed with the treatment of each non'Stand"i’\ﬁdmapping from the state spadé to the measurement space
measurement separately, we first state the common framew hat is a point in the state spagec & maps into multiple

for their processing. The theory is based on [10]. Essential gions inZ. For example, suppose a report is received that

all update equations of the Bernoulli filter that we presented. object we want to localise has been seen near a traffic
so far for traditional measurements (point measurements WV The source of ambiguity could be the existence of

precise likelihoods) are valid for non-standard measureme veral traffic lights in the surveillance region. In this case the

The only difference is that when we deal with non-standa . :
I . LF can be represented by a weighted sum of membership

measurements, the likelihood functiongz|x) andc(z) need : e . S

o be replaced with generalised likelihood functicgz|x) functions, describing multiple fuzzy sets éh[10, Ch.5], i.e.:

and ¢(z), respectively. A t_heor_etical jgstif_icat?on Qf the GLF G(¢x) = Zwi i (h(x)) (72)
from the measure-theoretic point of view is given in [46]. The 2
generalised likelihood also provides a useful relationship withh q bershio f ) d weiah
Dempster-Shafer theory (DST) [47], because by definitioll ereu_i(zl) andw; are members r:p unctions an I \;velg tsf,
it is identical to the plausibility function (which plays anf€SPectively. Eq.(72) represents the most general form of a
important role in the DST) on singletons [48]. The rest dgyeneralised likelihood.
this section defines the generalised likelihoods for imprecise _ _

. . [ - . .. °A fuzzy set is a set whose elements have a degree of membership. The
measurements, imprecise likelihoods and uncertain 'mpl'cat'a%sical set theory deals with crisp sets, whose membership of elements is
rules. binary, i.e. an element either belongs to it or not.

VII. NON-STANDARD MEASUREMENTS

is the measurement function which maps

h(x)+w
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The Bernoulli filter for imprecise measurements has beé&h Uncertain implication rules

discussed in [54] and [53]. Its application to detection and The first-order implication rule “ifY’ then X”, mathemati-

tracking using spatially referring natural language statemer@g.”y expressed a¥ = X, is a shorter notation for
will be presented in Sec.IX-E.
R: yeYCY=>xeXCAXA,

B. Imprecise likelihoods wherey is a measurement on the measurement spacn

The traditional measuremente Z is related to the state the example: “The suspect is often in tBerner cafebetween
x € X via the measurement equation: 9am and 10am”, the measurement spdce time. The rule
B _ is typically assigned confideneec [0, 1].
2 =h(x;0) +w (73) Prior knowledge expressed by the ruleis treated as a
whereh : X — Z is the measurement functio, is a non-standard measurement which updates the posterior via the
precisely known parameter vector amd is additive noise, Bayes rule. The expression for the GLF of an uncertain rule

distributed according t@,,. R can be found in [10], [55].
But what if the parameter vectd is not known precisely
[44]? For example, we may know only th@te [0], where[6] VIIl. | MPLEMENTATION

denotes an interval in the parameter space. Then the mapg&n
h : X — Z is not a function any more, because a point’ _ .
from X maps into an infinite number of points i, see  The sequential Monte Carlo method [3]-{8] provides a
Fig.3. The solution proposed in [10, Ch.4-7] is to represent tgeneral framework for the implementation of Bernoulli filters
measurement sét(x; [])+w by a random closed s&t C Z. [10]. The resulting Bernoulli-particle filters approximate the
The GLF of a point measuremente Z, characterised by an spatial PDF sy x(x) by a particle system{w,(j),xg)}f\’:l,
imprecise measurement functibrx; [6]), is then defined as: wherex,(j) is the state of particleandw,(j) is its weight. Since

_ is a conventional PDF, the weights are normalised, that

dla) = Plac S} = Plachx (o) +w) (74 HE0) A ’

i=1 W = L
If w is zero mean white Gaussian with covariance mafiix ~ Suppose at timek — 1, the probability of existence is
that is pw(w) = N (w;0,X), the GLF (74) has an analytic qr—1x—1 and the spatial PDF is approximated by
solution [44]:

%Bermoulli particle filter

N

R _ 3 - @ 5 76

e = [N 52, )dh = C(ai by, D) ~ Clai T, B) Bt (9 = 2w By (9 7o)
s ~

; _ (75) wheredy (x) is the Dirac delta function concentrated at point
where C(z; p,, P,) = [~ N(u;p,,P,)du is the Gaus- b, The computation of the predicted probability of existence

sian cumulative distribution function (CDF) and, = ¢, | is straightforward, see (28). According to (29), the
Hbin{h(x [0])} and b, = Ing]x{h(x; [6])} are the limits of prediction step for the spatial PDF involves the sum of two

the seth(x; [6)). gesrms. Hence particle approximation &fj,_,(x) be written

N+B "

Skolk— = ! i 77

Sk|k 1(X) ; Wi lk—1 5,(;‘)%1(?() (77)
where the particles are drawn from two proposal distributions

[16]:
: W Zy) i=1,...,N
state space I on(Xklxy 1, Zy) i=1,..., 28
measuement space Tk {mmm =N+l N+B O

Figure 3. Mapping by an imprecise measurement functiér; 8) + w, with weights
where & € [0] and [0] is an interval in the parameter space, results in a

random se8x C Z Ps Qk—1]k—1 ﬂ—k\kfl(xgci\)k—l‘xl(:ll)wl(cill
. Tklk—1 ok (xy1x7 1020)

In general, partial knowledge @ can be represented by , i=1 N
e

multiple non-overlapping and fuzzy intervals. Accordingly, wkﬁ)k_l = (79)
the most general form of the GLF is a weighted sum of
membership functions as in (72), igz|x) = >, w; - 1i(2).

Robust Bayesian estimation using imprecise likelihood
functions has been applied to localisation in [44]. The comdere B is the number of object-birth particles drawn from the
sequence of imprecision is a broader, hence more cautiopyposals,. The design of proposal distributions has been
posterior PDF (compared to the posterior PDF obtained usidigcussed in standard particle filtering references [3]-[8]. One
the precise values @f). The support of the posterior, howevertechnique we found particularly useful is known as importance
is guaranteed to include the true state sampling withprogressive correctiomr tempering[56]—[58].

(i)
Po(1=qr—1jx—1) bk\kfl(xk\kq) 1
qr|k—1 Bk(xgj‘)k71|zk) B>

i=N+1,....N+B
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In the absence of any prior knowledge on object birth,

12

itecause the particle syste{*m,C ,xk)}N 1, approximates the

is necessary to assume that the object of interest can appsgatial PDFsy,; (x).
anywhere in the state spadé One may attempt in this case The complexity of the Bernoulli-particle filter for intensity

to modelby,—, (x) by the uniform distribution ove®’. The

measurements generally is higher than that for the standard

birth proposals,, in (78) needs to have the same support gsarticle filter. Even though each particle is drawn, updated
brjk—1(x) (i.e. the entireX) and consequently this approactand resampled as usual, the update for each particles involves a
would lead to a very inefficient algorithm requiring a massiviikelihood ratio calculation for all intensity returns, the number

number of birth particles.
A more efficient alternative is to use the measurements
build adaptively the birth density [17]. In this case
b1 (3) % [ T (i) b (5 Zi)dx (80)
where by, _1(x;Z;—1) is the object birth density ak — 1,
constructed using the measurement set:at 1 and prior
knowledge (e.g. max/min speed). I.xz:,(ﬁ1 ~ bi—1(%;Zk—-1),
fori=N+1,...
density atk — 1. Then (78) and (79) can be written as:

X;(c‘)k 1™ Qk(Xk|X§;zl,Zk)v (81)
fori=1,...,NNN+1,...,N+ B and
Ps Qk—1]k—1 Tklk— 1(xkrk 1"‘(1) .w(i)
Tklk—1  gp(x fc“c x 7 k—1>
) i=1,...,N
w 1 82
klk— 1= Po(1=qr_1|k—1) Tklk— 1(xkrk l‘xl(c)l) ( )
qk|k—1 ok (x i‘kiltxkfl k) B’
i=N+1,.... N+ B
respectively.

The predicted Bernoulli PDF at timk is represented by
ax/k—1 and (77) approximated b{/wk‘k ’ k|k OB The

implementation of the update step depends on the measure-

ment model, however the basic steps are the same. First,

integrals involvings;, ;i (x) are approximated by sums, dueto:

to (77), and computed. This is followed by the calculatio

of the probability of existence and updated particle Weight%"zl_
Finally, the resampling step is applied [4], [6] to eliminatesj

the particles with small weights and multiply the particle
with large weights. At the end of this procedure it is usuall
necessary to increase the particle diversity, for example
applying the MCMC move step [6], [59].

The pseudo-code of a Bernoulli particle filter (PF) fo
intensity measurements is presented in Alg. 1. The predicti
is carried out in lines 3-5. Lines 6-10 compute the likelihoo

ratios for each predicted particle. Line 11 approximates, usrr&

particles, the integral which features in (40):

N+B

of which can be high for example in the case of an image
rfeeasurement. The resultant cost remains linear in the number
of particles, but becomes linear in the number of intensity
returns which can be large. The recursion for the existence
probability incurs a negligible increase in cost since the value
of Bayes normalising constant is already computed and can
be reused from the update of the spatial PDF.

Algorithm 1 Pseudo-code of a Bernoulli particle filter: inten-

,IN + B, be a sample representing the birtlsity measurement model

1: function BERNOULLI PARTICLE FILTER 1

20 Inputiqr k1, {w”y, (Z HotP, 2
3: Predict exrstence probabrhty usmg (28)
4 Draw asamplexk‘k .~ gk(xk\xk 2zE)fori=1,... . N+ B
5: Predicted werghtsué‘)ki fori=1,..., N + B according to (82)
6: Compute likelihoodpy, (z|0), see (32)
7 fori=1,...,N+ B do
8: Compute ||ke||hood3pk(zk|xk‘k 1) see (32)
9: Compute likelihood rat|02¥k(zk|xk‘k 1)» see (39)
10: end for
11: Approximate integraly, = [ £ (zx|x) sg,— (x)dx, using (83)
: i ilitgs 1, = — KGklE—1
12: Update existence probability;,|, = T=ares tan i Tk
13: fori=1,...,N+ Bdo _
14: Update Werghts eq. (42@0,% = gok(zk|x,(;‘)kil) ](j‘)k L
15: end for o
16: Normalise Weightswff‘)k = Z}\,f% fori=1,..., N+ B
j=1 k|k

fori=1,...,N do

1all Select indexj (9 € {1, ..., N} with probability wk“C
( ) _ Ui
= ijtkfl
PO: end for
: Particle regularisation (MCMC move)

Set Weightsw,?) =1/Nfori=1,...,N.

Draw birth particlesxl(j) ~bp(x;2),i=N+1,...,N+ B

Birth particle werghtsrt;(’) =1/Bfori=N+1,...,N+ B.

Output: ke |k {wk ,xk }
end function

" The pseudo-code of a Bernoulli PF for the detector-output

asurement model (point target) of Sec.V is given in Alg.
The prediction, carried out in lines 3-5, is the same as in
gg 1. The relevant equations of the filter update are (56), (57)

and (59). Integrals involving ;1 (x) are approximated by
sums as follows:

/Zk (Z1|x) s (x)dx ~ Z lr(z |Xk\k 1 k|k 1 N+B
) 1= [miss o= S o (<) ufy

Unnormalised weights are computed in lines 13-15, followed i=1 84)
by normalisation in line 16. Resampling of particles is carried
out in lines 17-20. After resampling, the weights of particles . /
are uniform, see line 22. The birth particles, which will be [2(2) = [ Pa(x) gx(2[x) st1-1 (x) dx
required in the next cycle of the Bernoulli-particle filter, are N+B _ _
drawn in line 23 end their weights set in line 24. Itis important R~ Z Pd (x;j’k_l) 9k (Z|X,(f|),€_1) w,(j)k 1 (85)
to note that in line 25 we output only the firdf particles, i=1
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Computation of integrals is carried out in lines 6 and 7 of Alg. The pseudo-code of the Bernoulli PF for the detector-output
2. The expression fod; in (57) is then approximated by: measurement model and a&xtended objecis a straightfor-
I>(2) ward extension of Alg.2 and is therefore omitted from the
Ap =1 — Ne(z) (86) tutorial.

2E€Zy, If the measurements are non-standard, the only difference
A, which is computed in line 8, is then plugged into (56) t§ith respect to the above Bernoulli PF implementations is in
computegy i, see line 9. Updated weights before normalisdl® update of the particle weights. In particular, the (stan-

tion are computed using (59) as follows: dard) likelihood functionSg(z|x](;|)]€71) are replaced by the
. . generalised IikeIihood@(z|x,(j|)k_1). The non-standard mea-
“71(@?1@ = ll — Dd (X/(Czl)k—l) + surements tend to diffuse the posterior PRF, (x) and con-
sequently require more particles for accurate approximation.
_ ; (Z|X§:)k 1) _ This was a motivation to develop a version of the Berpoulli
Da (xé?k_l) Z ;] .wf;l)lc_l (87) PF for interval measurements, referred to as Bernoulli box-
2eZ, Ac(z) particle filter [53]. Box particle filtering is outside the scope

of this tutorial, but further details can be found in [60].

fori =1,...,N + B. This is carried out in line 10. The Convergence analysis of the particle implementation of the

remaining steps of the Bernoulli-particle filter in Alg.2 ar&s . rnoulli filter can be found in [61]. In particular, [61] es-

identical tq th_ose n A!g.l. The number of birth partICIe?ablished the conditions for uniform convergence of a general
B, drawn in lines 18, is typically made dependent on th

cardinality of the measurement <&, (e.g. for eachz € Zj aass of filtering algorithms, including the particle Bernoulll
) ; : filter. These results also hold for other implementations such
one can draw a fixed number of birth particles).

The complexity of the Bernoulli-particle filter for detector>® the Gaussian mixture.

output measurements is generally similar to that of the Bernoulli Gaussian sum filter
standard particle filter. Each particle is drawn, updated and

resampled, in a similar manner. The main difference lies r118] follows as a straightforward extension of the standard

the _comput_at|o_n of the detector-output I|keI_|hood for ea aussian sum filter [1], [2], [6], [62]. Under linear Gaussian
particle, which involves a sum over all detections, and resulls | tions. it is possible to bropagate the spatial )
in a cost that is linear in the number of particles and in P ' P propag P RRRx

the number of detections, thus incurring an additional coat 2 Gaussian sum, in exact closed form, i.e. analytically as a

- ; i) (i) p(i)y Ny
compared to the computation of standard likelihood. TSet of weights, means and covarlam@&é oy Py

increase in computational cost is generally marginal, howe uning and merging of Gaussians is naturally reguwed, and
Iscussed briefly after the statement of the recursion.

it may become noticeable with a high rate of false alarms. X
Y . g . .. We present the solution for the case of the detector-output
There is also the added calculation of the existence probablllrtX

which incurs a small and fixed computational cost, and Iséasurement model (point target) of Sec.V. Equations for the

. - ?xtended object case are a straightforward extension and hence
related to the calculation of the Bayes normalising constant,” . . : o
omitted. The case of intensity measurements where noise is

usually non-Gaussian is best dealt with via the particle filter.
As usual N (x; m, P) denotes a Gaussian PDF in the variable
x, with mean vectomm and covariance matri®.

The Bernoulli Gaussian sum filter (GSF) implementation

Algorithm 2 Pseudo-code of a Bernoulli particle filter:
detector-output measurement model (point target)
1: function BERNOULLI PARTICLE FILTER 2

2 Input gy, fw” x JNEE 7, Assume a linear Gaussian transition, likelihood and birth
3:  Predict existence probability usingg.geq.(28) model, i.e.
4:  Drawasamplex\’)  ~ op(xp|x\?  Zp)fori=1,...,N+B

_ . RIS ke . Thk—1(X[X) = N(x; Fp1x’, Qi-1), (88)
5: Predicted We|ght$uk“€71 for:=1,..., N + B according to (82)
6: Approximate integrall; of (84) gr(2]x) = N(z; Hpx, Ry,), (89)
7: For everyz € Zj approximate integralz(z) of (85) Nk
8:  ComputeA, approximation using (86) _ (1) . (4)
9:  Update existenceyy, = ﬁ Qhjk—1 bije—1(x) = Z wb_’k/\f(x, my, > b,k) (90)

. - =1

10: Update Weightsb]iz‘)k, according to (87), fot =1,..., N + B.

and constant survival and detection probabilities, j€x) =

o)

11: Normalise Weightswmk = Eki““ fori=1,...,N+B Ps andpg(x) = pq.

k| N+B () : - . :

122 fori=1.. .. Ndo g=L TRIE Suppose at timek — 1, the probability of existence is
13: Select index () € {1,..., N} with probabilitwaj‘)k qx—1jk—1 and the spatial PDF is given by a Gaussian sum
14: (1) _ () of the form
15- dxfk = Xglk—1 N

. end for k—1
16:  Particle regularisation (MCMC move — (4) O] (@)

o ( ) Sk—1]k—1(X) = w N(xmy” P, (91)

17 Set weightsw,” =1/N fori=1,...,N. ]

18: Draw birth particlesx(i) ~bg(x;Zg),i=N+1,...,N+ B

k. Ni—1 ;
19: Birth particle weightsmf;) =1/Bfori=N+1,...,N+B. where Y w](cﬂ)l =1, then,
20:  Output:qy, {wg),xg)}if\il i=1

21: end function Q-1 = Do (1 = Qu_1jk—1) + Ps Gr—1]k—1, (92)
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Skjpo1 (%) = pp(1 — qk71|k71)bklkil(x)+ Kalman filter (sigma point approximation), however these are
Qk|k—1 outside the scope of this tutorial.
Psqr—1|k—1 (z) (4)
7%1@ ) Z w2 N (x mk\k 1’Pk|k 1) (93) IX. SELECTED APPLICATIONS
=1

This section presents five applications of the Bernoulli

whereby,—1 (x) is expressed as a Gaussian sum in (30) aq’ﬁter which also demonstrate the choice of the appropriate

mz(;\)k L =Fi 1ml(€i)17 (94) measurement model.
P = Qi +Fi P Fy . (95)

A. Detection and tracking using a sensor network
The predicted spatial PDF (93) can be expressed byan;tussmgensor networks are used in many applications, such as

sum of the form: pollution monitoring, battlefield surveillance, machine fault
Ntk -1 0 @ detection, etc. Sensors are typically spatially distributed and
Stpk—1( Z wk‘k 1 N(x; My 1,Pk|k 1)s  (96) measure physical or environmental properties, such as sound,
vibration, pressure, pollution, temperature, to name a few

Nijk—1 [63]. We consider the problem of simultaneous detection and
where Z wk|)k .- The update equations of the Bernoulliracking of a moving object through a region of interest,
GSF are then: in the ground surveillance context. The assumption is that

1— A, the moving object_ produces_ energy (e.g. acoustic energy)
x|k = m Qr|k—15 (97) and that the surveillance region is populated by sensors (e.g.

microphones) which sample the energy field at their respective

locations. Sensor locations are arbitrary and known to the

skiR(X) = Msk\k—l( )+ Pd fusion centre, which collects and processes the measurements
1= A 1= Ak in order to detect and track the moving objects. This problem

Nin—1 () q(l)( ) , , has been studied by many authors, see for example [37], [64],
k\k L Ll N VOSSO YO . o o .
Z Z (x my i Pk\k)’ (98) [65]. In this application we deal with intensity measurements,
z€Zy  i=1 whose model was described in Sec. IV-A. We consider two
Ny 1 z) z) (2) cases: in case 1 the measurement funcﬁésr)l(xk) in (31)
Ap=pa|l— Z 1q’“ , (99) is precisely known; in case 2, the measurement function is
2€Zy i=1 known only partially, as in Sec. VII-B.
where The measurement model is adopted from [37], [65]. A mea-
(_) 0 i surement at sensar=1,...,n at discrete-timek = 1,2, ...
U (2) = N(@ 01> Sih1): (100) is modelled by (31) with the measurement function expressed
(i) (@) as [37]:
My = Haml) (1o1) 2137 N T S L
S{ = HiP{,_ H + Ry, (102 R [l (109
1(;|k(z) = m;?k ) +K(i)(z—77,(f|3€ s (103) where A;, is emitted energy by the object of interest at
@ o) () Trald) 1 () reference distancely; hs is the gain factor of sensos;
P, =P -P H;[S | HP, : : iR
klk = T klk—1 klk—1 klk—1 k|k—1 as is the propagation loss factor of senser which in
(104) general depends on the environment, dpd — px|| is the
K(Z> Pl(cl|)k 1H£[S§j\)k—1]_l- (105) Euclidean distance between the position of the moving object

at time k, pr = [zx T, and the location of sensoy,
. . ps = [zs ys|T. Measurement noise in (31) is modelled as
The above results specify a closed form recursion for thes) N (w; i, 02) for all sensors, see [37], [65]. The

spatial PDF in terms of a Gaussian sur)n, . %)a r((ecursmn opagation loss factor in open spacejs= 2, butin practical
the Welghts means, and covariandges; , m;; , P} |k}z 1 applications, due to multipath and shadowing, it can take any
from {w,C k- 1,m§;) ke I,ng) b1 Ne-1. As expected, value in the interval2, 4] [66], [45].

the number of Gaussian componenis requwed to represent  According to the described measurement model, the mea-
the spatial PDF grows without bound over time. Implemersurement functiorhy (x;) is parametrised by vectd, which
tation thus requires pruning of components with insignificaimicludesas, hs, xs, ys, for s =1,...,n. Case 1 corresponds
weights (i.e. deletion of components with low weights), antb the perfectly calibrated sensor network whérés known
possibly merging of components which are closely spaced (iprecisely. Case 2 considers a more realistic situation where
replacement of several closely spaced ones, via a Mahaloribisnly partially known, as an interval value (see Sec. VII-B).
distance, with a single matching mean and covariance). Adapus o, € [2,4], hs € [, A], s € [Ts — €4, 25 + €] and
tations of the Gaussian sum solution to accommodate myd € [Js — €,,9s + €], for s = 1,...,n. HereZ, and g
non-linearities are also possible, typically via the approaeine the nominal sensor coordinates in the Cartesian coordinate
of the extended Kalman filter (linearisation) or the unscentegstem withe, and ¢, being their confidence bounds. The



PREPRINT: IEEE Trans. Signal Processing, Vol. 61, No. 13, pp. 3406 - 3430, 2013.

fusion centre knows only the nominal sensor coordinates an
€x ande,.

The state vector in this application isx; =
[*r &r yr yr Ag]T. Its dynamics is described by model
(16) with 7y, (x|x") = N(x; Fx’, Qi), where

Gr 022 02 Er 022 02
Frp= 102 Gg 02| Qrp= |02 Zr 02
012 021 1 012 021 woT}
107)
HereO0,,,, IS ann x m zero-matrix,
_ |1 Ty = W1TT2 ijTg

Ty = tx+1—ty is the sampling interval ang; andw- denote
the intensity of process noise [67, p.269].

The objective of the fusion centre is to detect and track
the object using received sensor measurements and pric
knowledge of (measurement and dynamic) models and their

y[m]
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Figure 4. Sensor network application: moving object true trajectory ( gray

n
parametersiiy, ow, do, {hs’ sy Tss yS}s:l’ @1, w2, Tk, Py sold line), estimated trajectory using the precise correct model (red), estimated
andp,. trajectory using the imprecise model (green); sensor locations indicated by

The Bernoulli PF for this application is implemented acsquares.
cording to Alg.1. The likelihoods functions, which are com-
puted in line 6, are defined by (32). In case 1, whers

precisely known, we have:

[25m 1.2m/s80m —1.65m/s2000]T. One half of the sensors is

characterised by = 2.3 andh = 1.02, while for the other half

(s) [, (s))(2) _ L (s) () 2 .
9 (Zk |Xk|k71) = N (Za hy, Xk|k71) + fw, C’w) J a = 2.9 andh = 1.08. The true placement of sensors is also
(s) ( (s)) NP random withzs ~ U[&s — €z, Ts+e€z], Ys ~ U[s — €y, Us + €]
90 % (25w 72 ande, = ¢, = 0.3m. Other parameters were selected as:
fori =1,...,N+Bands = 1,...,n. In case 2, when ptww = 1, 0, = 0.1, do = Im, T, = 1s, w1 = 0.04,

the measurement model is imprecise, we need to compute the = 1. |_30th Bernoulli PFs usedv = B = 2000 particles
generalised likelihood* (="' |x;) which follows from (75). and applied the progressive correction in line 4 of Alg.1.
Thush, and h,., which feature in (75), are computed for eacther algorithmic parameters werg; = 0.02, p, = 0.98.

partidexz(c?kq- i=1,...,N+B and measuremen{” from Birth density by (x;z) in line 18 was selected as follows.
sensors = 1, ..., n as follows: Birth particles in(z,y) were drawn from a Gaussian density
e whose mean is the weighted mean of the locations of three

hgf)(xl(c?k—l) = min {ﬁs Al(c?k—l + + Mm} sensors with the strongest readings, with appropriately chosen
IPs = Ppjp— 1% variance. The birth particles in velocity were drawn from a

—(s),_ (i) @ dge uniform density in# and ¢, which spans from—5m/s to

he (%) = max{ﬁs Ak|kflm +Mz} +5m/s. Finally, the birth particles in amplitude were drawn

s 7 Prlg—11"7

from a uniform density which spans from to 8000. The

with minimisation/maximisation ovel, o, z,, ys. Since the Bernoulli PF using the imprecise measurement model was
likelihood ratio (39), which is computed in line 9 of Alg.1,based on partial prior knowledge of € [2,4], iis € [0.9,1.1]
does not have units, we need to adopt the generalised likéir s = 1,...,n ande, = ¢, = 0.3m. The point estimates
hood even for the noise-only case. For this purpose we us#tbwn in Fig.4 were obtained using the expected value of the
in simulations particle approximated posterior PDF.
) { (&) N (2 pru; 02) Estimated probabilities of existengg;, of two Bernoulli
90 (Zk ) = — : (109)  PFs are shown in Fig.5 for precise and imprecise measurement
max {N (u; py; 02)} . . . : . .
u models. Finally, Fig.6 displays a zoomed-in particle approxi-
Fig.4 shows the placement af= 40 sensors, the moving mation of the posterior PDEy(x) at k = 30, both for the
object trajectory (ground truth, gray solid line) and two estPrecise and imprecise measurement models.
mated trajectories obtained by the two Bernoulli PFs (using The numerical results show that both Bernoulli PFs success-
the precise and imprecise models). As expected, the predisy detect the presence of the object and track its motion
(perfectly calibrated) measurement model results in the mdhgough the state space. In accordance with intuition, the
accurate estimate of the trajectory (red line). Bernoulli PF using the precise (and correct) measurement
The moving object starts emitting at= 5 and continues model is far more accurate in estimation of the posterior PDF

to do so untilk = 45. The total observation time i& = 50. sy (x). However, considering that the perfect calibration of a
The initial state of the moving objects & = 5 is x5 = sensor network is difficult and often impossible, an imprecise
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gains, propagation factors and sensor locations) typically leads
to divergence of the filter.

B. Bearings-only tracking

The problem of autonomous bearings-only target tracking
has been studied over many years due to its tremendous
importance in passive surveillance. The basic problem is the
sequential estimation of target location, speed and heading,
from noise corrupted detector-output measurements of target
line-of-sight (LOS) bearing. Due to the nonlinear measurement
equation, the optimal solution in the sequential Bayesian
framework results in a non-Gaussian posterior PDF. The con-
sequence of this nonlinear/non-Gaussian context is the absence
of a closed form solution even if detection is perfect (nho false
and missed detections). Various approximate implementations
of the sequential Bayesian estimator have been considered in
the ideal detection case, see reviews in [68] and [69].

The target state vector at discrete-timnés adopted as:

vi kT (110)
where(z!,yt) and (i}, yi) determine the target position and
velocity in the two-dimensional Cartesian coordinate-system.
The ownship state vectat?, which is known, is similarly
defined. The motion model is then written for the relative state
vector, defined as:

t t -t
X = [xk L,

X = X}; — XZ = [xk ik Yk y'k}T. (111)

Target motion is modelled by a nearly constant velocity model,
that is

Tik—1(X[X") = N (% Fpx’ — Upp15, Qr) (112)

whereF}, is the transition matrixUU;, is a known deterministic
matrix taking into account the effect of observer accelerations.
Relevant matrices in (112) ar®y = I, @ G, Qr = I, ® 2,

and 0
o ol
xp o — Ty — Tyay,

Tiyp — T

U = ol 113

k+1,k yZH. y,? 'Tky,‘i (113)
Yrer — U

where® is the Kroneker produci is 2 x 2 identity matrix,
while T, Gy and =, have been defined in Sec.IX-A. By
adoptingTy, = T' = const, notation simplifies t&', = F and
Qr = Q. The model of target appearance and disappearance
has been described in Sec.lll-A.

The measurement model is described in Sec. V-A. The

measurement space is the interval of bearings measurements

& = (—m,w|, with the (conventional) likelihood function
gr(z|x) for everyz € Zy = {zx1,. .., 2x,m, } adopted as:

gr(z[xk) = N(z; h(xr), 07,) (114)
measurement model becomes a practical alternative. Whileviteere the measurement function
estimated posterior PDF is much broader (than the posterior h(xe) = atanZzy, ye) (115)

obtained using the precise correct model), its support will
contain the true object state, provided that the particle filteris the four-quadrant inverse tangent function, taking values in
properly implemented. This has been confirmed numerically. The probability of target detection is assumed independent
in [44], [53]. Finally, note that using the precise but incorreaif the state, i.eps(x) = ps. The model of false detections is
measurement model (e.g. by selecting wrongly the valuesgfen by (45).
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The Bernoulli PF has been implemented for this applicatiamise intensityc = 0.2, number of particlesV = B = 5000,
following the pseudo-code in Alg.2. The importance density ithe parameters of;(x|Z;) are7 = 11 km, o = 3.5 km
line 4 of Alg.2 is the transitional prior (hence the Bernoulli Pland o, = 2.6 m/s. The estimated target trajectory indicates
will require a large number of particles). Target birth densitg good agreement with the ground truth after the observer
bi(x; Zy.), which features in line 18 of Alg.2, is approximatechas manoeuvered. The probability of existence grows to 1
by an equally weighted Gaussian mixture. Each componentaidter only a few time steps and remains high throughout the
this mixture density corresponds to a bearing measuremebservation interval. Occasionally, when the target detection is
z € Zy, and is designed using the standard initialisatiomissing, it drops to about 0.8. The occasional false detections
technique for bearings only tracking, explained for example @o not affect significantly the performance of the Bernoulli
Sec. 4.1.1 of [69]. The initialisation technique is based on thr@&. More technical details about this application, including
parameters: the initial target ranggeits standard deviatios=, the observer motion control, can be found in [17].
and target velocity standard deviation = o, = 0.

The testing scenario is shown in Fig. 7. Its total dur
tion is 30 minutes, the sampling interval & = 30s (i.e.
k = 1,...,60). The target exists throughout the observation There are many features one can use for video tracking, such
period. Initially it is 8 km away from the observer, it maintainsas colour, shape, motion, body/head pedestrian detections, etc
the course of-130° and travels at a constant speed’dnots. [40]. In this section we explore tracking of a moving object
The observer is traveling at the speedsdinots and its course using, as features, corner detections [70]. The dataset (PETS
during the first leg of its trajectory i$40°. At the end of the 2000, [71]) consist 0227 image frames, each of siZ68 x 576
first leg (after 30 scans), the observer makes a manoeupikels. The goal is to detect and track a moving car, which
and chooses a new course2if. The measurement standardnters the scene from the right and during the observation
deviation, which features in (114), és, = 1°, the probability period changes its size and aspect ratio. The object of interest

aé. Video tracking of an extended object

of detectionp; = 0.9 and the average number of falsébegins entering the scene at frame- 12 and leaves the scene
detections per scan i = 1. The model of clutter spatial at framek = 225. OpenCV [41, Ch.10] implementation of the
distribution is uniform, i.ec(z) = (2m)~. Shi-Tomasi corner detector was used in creating detection sets

Zy, k =1,2,...,227. Detections are filtered using a clutter
map created from 30 frames of background images. In this
way, detections which arise in areas deemed to be part of the
background, are likely to be removed. Four image frames of
the sequence are shown in Fig.8.

Corner detections, shown as green dots in Fig.8, are in-

Start |

Start stances of detector-output measurements for an extended tar-
o ] get, discussed in Sec.VI. The state vector consists of the object
gl e T centroid positionp = [z, y]T, its velocity vectorv = [, 9|7
g =i L and the ellipsoidal shape defined by vectbr= [a,b,]T.
-2 #  Estimate Similarly to [72], 6 defines the elements of the covariance
Cloud of gt matrix which determines the spread of a Gaussian PDF with
-3r particles— rajectory 1 - .
at k=60 meanp. Thus a and b are the diagonal elements of this
-4f ] covariance matrix, whilec determines the cross-covariance

term (effectively the orientation of the ellipse). The state vector
thus consists of componentsx = [pT vT 0T|T. Target dy-
namics is described by the transitional density, _; (x|x’) =
N(x;Fx', Q), whereF andQ are selected so that the centroid
(@ of the target moves with nearly constant velocity, while the
shape parameters evolve according to random walk [67].
The model of target appearance and disappearance has been
described in Sec.lll-A.
Measurementz € Z; represent coordinates of corner
detections on image frame. The (conventional) likelihood
. " - - - - +  function g(z|xz), which features in update equations of the
Discrete~time k Bernoulli filter (69) and (70), is replaced by the generalised
(b) likelihood g(z|xx). This generalised likelihood is expressed
Figure 7. Bearings-only tracking application: (a) observer/target trajectori(zea'sS an Indl(.:ator functiog(z|xy) = P{z € Sx"} - stk (Z.)’ .
and the Bernoulli PF estimated trajectorykat= 60; (b) the probability of WNereSx, is the random closed set specified by the ellipsoid
target existencey,j, versusk in the image plane, whose centerpg and whose contour is
determined byd,. This practically means that if a corner de-
The parameters of the Bernoulli PF are as follows: probabikction is inside the extended object (specified by the ellipse),
ity of survival p; = 0.98, birth probabilityp, = 0.01, process its likelihood is one, otherwise it is zero. The probability of

0.8

0.6

Ak

0.4r

021
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target detectiorp, is assumed independent of the state; theheren > 0 is a user specified threshold. The update step of
model of false detections is given by (45). the Bernoulli filter is then carried out usirig;.

The Bernoulli PF for this application has been implemented The vajues used in the Bernoulli PF for this applications are:
following the mains steps of Alg.2, but using update equatlo% = 0.01, ps = 0.95, A = 0.5, pg = 0.65, L* = 5, 57 = 50,
(69) and (70). The location of birth particles/ais randomly ' — 5000, B = 250-|Py.., (Z)|, c(2) is the uniform density

generated from a Gaussian distribution whose mean equalgr the image frame andn.. = 50. While the density of
the mean of the measurements in subsets P(Zx). The faise detections was very low and therefore relatively easy
velocities of target-birth particles are randomly sampled frogy handle, the main challenges with this dataset are: (1) the

a uniform distribution from-vmax 10 +vmax. The shape vector yariation of the size of the object over time (especially as the

of target-birth particles is also Gaussian distributed with ”B?oject grows as it enters the scene); (2) the variation of object

mean corresponding to the elements of the covariance malfhee( (starts at approximately 150 pixels/s, to drop towards the
of measurements ift € P(Z). If 2 is a singleton, then the eng to only 5 pixels/s). In order to deal with this variability

shape vector represents a circle with a small random diamejge algorithm was applied with large amount of process noise.
The number of scattering points, that éernersin this

; : . The estimated probability of object existengg,, shown in
context, Ly, is estimated from as follows: Fig.9.(a), demonstrates reliable detection of both appearance
[ |Zi| — A T 116 and disappearance of the object of interest. Fig.9.(b) displays
k = min ’ ’ (116) the estimated trajectory of the centroid of the object of interest
Pd

] ) (blue solid line), as well as all corner detections accumulated
where|.| denotes the nearest integer functiorandpa have oyer the observation period of 227 frames. Due to the large

been defined in Sec. VI, ant" > 0 is adopted as a trade-off amount of process noise, the trajectory is not smooth, but it
between the computational speed and accuracy. follows fairly accurately the cluster of detections. This can be
In order to reduce the computational load of the algorithisg seen in Fig.8, which displays four image frames of the
(which is heavy because the algorithm deals with all partitioRgdeo sequence, with overlayed object size/shape estimates. As
of the measurement set), validationgating of measurements the object enters the scene (frames 14), both the object and its
is introduced. This means that a sub&gtC Zy is selected as the estimate grow rapidly. As the object moves far away, both

follows: z € Zj, is included inZj, if S §k(ZIX,(f‘),€_1) >, its speed and size slowly reduce, which is correctly reflected

Frame 14 Frame 28

Figure 8. Four out oR27 image frames demonstrating detection and tracking of the red car (PETS 2000 dataset): green dots are corner detections; each

ellipse (cyan solid line) represents the estimate of the extended object.
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by the estimates. period for the disease)y > 0 is the population ‘mixing’
parameter ang@ is thecontact rateparameter. The case= 1
[ ST | v = 0 we obtain a linear system without any social interactions
A i (self-isolation). Thecontact rateis a produci3 = p-, wherep
I b | is the basic reproductive numbdan important parameter for
epidemiologists, representing the average number of people
I a infected by a direct contact with a sick person). The model in
I (117)-(119) is referred to as the modified SIR (mSIR) epidemic
J model. When we deal with a large number of individu&ls
IZt;iOsrete—tinrlloeU (frame—lri%mber) k
as [75], [74]:
@ [B1is” i
Oq R 5 O R \/; (120)
Fig.10 shows by a solid line a realisation of the dynamic
system described by (117)-(119) during an interval of 200
days. The system was implemented in discrete-time using the
Euler approximation with integration interval= 1/48. One
person in a community oP = 10000 people was infected by
a contagious disease on the 30th day of the observation period.

corresponds to the ‘well-mixed’ approximation, while for
200 standard deviations of demographic noise can be approximated
. The parameters used in simulations were: 1.56, v = 0.098

(i.e. infectious period of 10.2 days) angl = 0.2549 (i.e.
‘o me w0 @ sw o w0 p = 2.6). Fig.10 displays the normalised number of infected
people over time.
(b)
Figure 9. Video surveillance sequence:(a) Estimated probability of existence 0.18
qx|, Over time; (b) Estimated trajectory of the object centrod (blue solid line) 016"
and all corner detections (circles) ’
0.14+
0.12
D. Detection and prediction of an epidemic o 01f

The progress of an epidemic in many cases can be describe ~ o.08}
by mathematical models that involve only a few parameters. (g6l
One class of such models, called compartmental models

is based on a premise that population can be divided into oo ] .

the following classes in relation to the disease: susceptible =~ 00%[wi wutw v/ PR
(S), infectious (l) and recovered or removed (R). Susceptible % : 0 100 150 200
individuals have never come into contact with the disease. Tim e (days)

They are able to catch the disease and thus to move to _ _ _ ‘

compartment I. All infectious individuals eventually recovefigure 10. The normalised number of infected people over time (solid red
. . ine) and a sample of non-medical measurements (blue dotted line)

(or die) and thus move into compartment R.

Let the number of susceptible, infectious and recovered bethe measurements related to the number of infected are
denoted byS, I and R, respectively, so thaf + 7 + R = P, assumed to come from non-medical sources, such as Google
whereP is the total population size. The dynamic model of a8earches and/or twitter messages with particular keywords
epidemic progression in time can be expressed by two stochgs), [77]. Following [76] one can assume that a power law
tic differential equations [73], [74] and the “conservation” lawel|ationship holds for odds-ratios of observations and the

for the pOpu|atiOI’l as follows: number of infected peop'e:
ds - (s) : hs
il —Bis” + 048, (117) 2y tk (121)
. IO 1 — g ’
di L , “k
il Bis” —yi— o046+ 04, (118)

_ where z,(cs) is the measurement with index (e.g. keyword)

ro= l=s—u (119) o _ 1 " 5 (normalised by population siz®), iy, is the
where:s = S/P, i = I/P, r = R/P are normalised normalised number of infected at discrete-tifaeand i is
compartment sizes;, ¢ are two uncorrelated white Gaussiartihe power-law exponent. Since at the initial stage of epidemic
noise processes, both with zero mean and unity variané®; i < 1, z,(:) < 1, eq.(121) can be reduced to a simple power-
the recovery time (i.e. a reciprocal of the average infectiolesw model:z,(:) = byils + w,(f), wherebs; > 0 and w,(f) is
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measurement noise. The described measurement model we
treated in Sec.IV-A, with the likelihood function given by (32).
The parameters of measurement na'bég and coefficient$,

and h are typically determined during the calibration phase 0.6
(see for example the results of the linear regression fits in = oal
[76]). We will assume a precise measurement model (althougt
in practice an imprecise model could be more appropriate); for 021

s

0.8

measurement noise we adopt Gaussian distribution with meai Y A .
us > 0 and variancer?, so that the likelihoods in (32) are o 50 Tim 2 days 150 200
given by: @)
(15) (z,(j)|x) = N(zps +bsi", 0?) (122) 0.35
&7 (47) = Niuso?). (123)
Fig.10 shows by a dotted blue line a sample of measurements 0.25¢
collected over the observation interval of 200 days. The 02l
measurements are collected once per day, with measurement &
equation parameter$; = 0.2, h; = 0.9, 1 = 0.015 and T 015¢
o1 = p1/4. 01} ) \
Numerical results using the normalised number of infected ! %
people from Fig.10 as the truth and = 2 sources of 0.05¢ /\
measurements, with parametéis= 5,0.2, hy = hy = 0.9, . L ‘ e ‘
0 50 100 150 200

w1 = p2 = 0.015 andoy = o2 = /4, are shown in Fig.11.
The Bernoulli PF was implemented according to the pseudo- 5
code in Alg.1, usingN = B = 2000 particles and TPM (b)
parameterp, = 0.9 andp, = 0.01. The state vector containSFigure 11. Detection and prediction results: (a) the probability of existence
five componentsi,, s, and dynamic model parametef, of the epidemic over time; (b) The prediction of epidemic from day- 75:

. . shed line is the true curve (the same as in Fig.10); the two solid lines
Y& and vi.. The mo_del parameters are included in t_he Sta'g rting from day75 indicate the95% confidence band
vector because their values may not be known precisely (for
example, if the disease is caused by a new virus, then

and v are unknown;v depends on social interactions in &ye inherently imprecise and ambiguous as they depend greatly
community and is difficult to.)measure). Newborn particles ag, the context and grounding of the referenced subjects [79],
drawn as follows. Particleig(cZ yi=N+1,....,N+ Bare [g0]. SupposeZy, = {Ck.1,- .-, Cr.m, } denotes a set of spoken
drawn from a Gaussian with mede'” — 1,)/bs]"/"+ and propositions concerning the state of the object of interest at
standard deviatiotto; /b;)'/"+, with all negative samples settime k. In order to illustrate the concept, consider a very simple
to zero. Particles,(j) simply equal tol—i{”. Model parameters form of a NL statement:
are drawn from uniform densities a,@E” ~ U[0.156,0.39],

A~ U[0.06,0.15] andv{” ~ 1[0.9,2]. Fig.11.(a) displays
thg estimated probability of gxistence of the epidemj@k,_ wherea € A is an anchor whose location, is assumed
using the described non-medical measurements. The epidep)g, (A is the set of anchors). Here the spatial relationship

is .confi.delntly detec_ted.at day 68. Prediction of the size %f expressed using the womar. Other spatially referring

epldem_|c IS ShC_’W” in F'Q-l_l-(b) after d&_': 75'_ The sh_ort relationships can be added in a more realistic case, such as

green line in Fig.11.(b) indicates the estimateipf bearing behind in front of inside

in mind that estimation starts from the time epidemic was :

detected, i.ek = 68. The dashed red line is the true curve fo
’ - text of a detector-output t model of Sec.V-A

i, (the same as in Fig.10). The two solid lines in Fig.10.(b ontext o1 8 detectoroltput measuremen’ mocel of sec

tarting f davrs. indicate thed5% i band for th ith imprecise measurements of Sec.VII-A. The assumption
starting from dayro, Indicate o conhidence band for the iithat a speech recognition system and a parser are available

predict_ion o_f the epi_demic._Note how ac_curately the tim_ingq automatically transform the spoken propositions of the

Lhe gr:jldemu(:j peakﬂ:s predlc;ce_d.t T_he W'(;thl of the Conf'den?&m (124) into their corresponding generalised likelihood

and depends on the uncertainty in mode param&ﬁgrs/k functions, which are then used by the Bernoulli filter. The
f"mdy’“' More technical details of this application can be foungjemonstration is based on a simulation which mimics a busy
in [78]. public space (e.g. airport, railway station) populated by many
) ) . pedestrians and observers who report their sightings of a
E. Detection and tracking using natural language statementarson of interest (the target) using the NL statements such
The problem is detection, positioning and tracking of as (124). Observer statements are received continuously, but
dynamic object using measurements expressed by spatiglipcessed every’ seconds. The observers sometimes make
referring natural language (NL) statements. The NL statemefdtse detections and occasionally miss the target. The scenario

Tim e (days)

(o = the targetis nearthe anchora, (124)

We demonstrate the Bernoulli PF for this application in the
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is illustrated in Fig.12.(a): the solid lines represent the corridor
walls while the anchors are indicated by blue circles. The 1000
anchors can be, for example, the red bench, the news stand, 900
the clock, etc.

The Bernoulli PF was implemented for this application
based on pseudo-code in Alg.2. The state vector of the

800

700

moving object at timek is x; = [z &r Y& Uk, where 600

Py = |z wiT and v, = [ip 4]T denote object - 500
position and velocity, respectively, in the two-dimensional o
Cartesian coordinate system. Target motion was modelled o

by the transitional densityty,—1 (x|x") = N(x;Fpx', Qy), 300
whereF; = I, ® Gg, Qr = I ® Z¢. The model of target 200

appearance and disappearance has been described in Sec.lll-A.
Each NL statemeny, € Z; of the form (124) is represented

by the GLF of (71). For this example we adopt a very simple 0

GLF expressed as an indicator function, i.e.

100

1, if H Pk —Tg ||< 2da/3 (@)
0, otherwise

G (Calxr) = pa(xx) = {

whered, is the distance from ancharto its nearest neighbour.
The results of a single run of the Bernoulli PF are shown in
Fig.12. The probability of correct detection wag= 0.9, the
average number of false reporting per time inteffak 15s
was A = 0.15. The target “appears” & = 5 and “disappears”

at k = 60. Its position atk = 5 is ps = [295 990]T S EE— B S S 0
and velocityvs = [0.125 — 1.25]7. The Bernoulli PF was oieereeTime
implemented usingV = B = 5000 particles withp, = 0.98 (b)

andpy, = 0.02. T_he _eStimated Frajecmry is shown in I:ig-lz_-(aﬁigure 12. Detection and tracking using NL statements: (a) the scenario with
by a black solid line. The figure also shows the particlesichors (blue circles) and true and estimated trajectories; (b) the probability

representing the posterior spatial PDFfat= 15, k = 25 Of existence
andk = 55. The true target state is always inside the support
of the posterior spatial PDF. The probability of existence in

Fig.12.(b) reliably reflects the period of time when the target Fu3|or_1 n "”?fg? data neworks, however,_ s typically imple-
: i mented in a distributed (rather than centralised) manner, where
is present in the scene.

The tracking accuracy can be improved by incorporatir’EfCh node provides it local state estimate to its neighbours. The

implication rules. For example, we may know that if the alar timates from the different nodes are not conditionally inde-
is turned on th'e target mov’es south, with probabiity pendent and, if optimal fusion is to occur, common information

This rule is uninformative if the alarm is off, but when théjas to be *cancelled out” [82]. In most networks, computing

antecedent is satisfied, then the particles whose velocity vecgéi common information is prohibitively expensive and a

. . . . e optimal fusion techniques, such as covariance intersection
points south are assigned the wei@tt, while the remaining L ) i
particles are assigned weightl. Further technical details (Cl), have attracted significant interest [83]. A theoretical

related to this application and implication rules can be fouﬁarmullatmn of the CI method for distributed Bernoulli filters,
in [55]. adopting the detector output measurement model, has been

discussed in [84]. Other methods for distributed fusion of

Bernoulli filters remain largely unexplored.
X. ADVANCED TOPICS FOR FURTHER RESEARCH gely P

The Bernoulli filter is a relatively recent discovery with
many open problems for further research. Some of them @&e Bernoulli smoothing

discussed briefly in this section. The concept of stochastic smoothing [85], [86] is distin-

guished from stochastic filtering, in the sense that estimation
A. Fusion of multiple sensors at a specific point in time is to be determined from a batch
Sensor network application in Sec. IX-A considered af measurements, wherein part of the batch can contain data
simple case where fusion was carried out in a centralisatlalater time-step than the current. Consequently, there is a
manner assuming conditional independence of intensity meklay in producing the state estimate, but more observations
surements. The multi-sensor Bernoulli filter for centralisedn the system are now available.
fusion of detector output measurements of a point target hadn the realm of random sets and FISST, smoothing for multi-
been discussed in [18] and applied to multi-static Doppler-ontgrget states has recently been considered for the detector-
tracking in [81]. output measurement model [87]. In particular, the Bernoulli
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forward-backward smoother has been derived in [16]. It cooentrol is the on-line selection of actions to be taken by
sists of forward filtering followed by backward smoothingindividual sensors, in order to maximise the overall utility of
It has been shown that both forward filtering and backwatbte surveillance system.
smoothing preserve the Bernoulli FISST PDF form. Imple- This class of problems has been studied in the framework of
mentations of the Bernoulli forward-backward smoother hayartially observed Markov decision processes (POMDPs) [94].
been proposed, via particle filters [16] and Gaussian sufhe elements of a POMDP include the current information
techniques [87]. state, the set of admissible sensor control vectors (or actions)
Efficient Bernoulli particle filters and smoothers for variouand the reward function associated with each action. By
measurement models described in the paper need to be deadbpting the information theoretic approach to sensor control,
oped. This includes both the design of the proposal densihe uncertain information state at timkes represented by the
and the birth density. The rich literature on standard partigeedicted FISST PDF of a Bernoulli RES;,—1 (X[ Y 1.x-1),
filters serves as a guideline for further research [3]-[8].  introduced in Sec.llI-B, while the reward function is a measure
of information gainassociated with each action. A particularly
useful information measure is the Rényi divergence [95].

o ) ) ) The single-step ahead reward function based on the Rényi
The Bernoulli filter, as a sequential Bayesian estimatQfy ergence, in the context of the Bernoulli filter and the

depgnds on mathematical mode]s. In particular, the dynarﬂ'&tector-output measurement model, was derived in [17]. This
motion model, the appearance/disappearance model (Sec. Wyarg function was also used for the purpose of sensor
and the appropriate measurement model (discussed in S@gfaction in the multi-static Doppler-only radar [81]. Other

IV, V, VI, VIl). These models typically depend on manyy,44ches to sensor control involving different measurements
parameters, such as the probability of biph probability of ,J4els remain to be considered.
survival ps, process noise standard deviation, probability of

detection, false alarm rate, etc.

One way to deal with imprecise measurement model ph- Performance Bounds
rameters is by using the generalised likelihood functions, Theoretical performance limits, such as the posterior
as described in Secs. VII-B and IX-A. This approach do&ramer-Rao bound, would be of fundamental importance for
not attempt to improve the prior PDF on model parametetttie Bernoulli filter. Recently a posterior Cramer-Rao type
Another approach is to perform the estimation of imprecigsund for Bernoulli filtering with the detector-output (random
model parameters using the measurements, either recursifiglife set) measurement model has been studied in [96], using
or as a batch method, during the calibration phase. Ttiee Optimal Sub-Pattern Assignment (OSPA) distance [97].
topic of parameter calibration for the Bernoulli filter remaingxtending this result to the recursive posterior Cramer-Rao
unexplored until now, however, useful insights can be fouridwer bound [98], as well as to other measurement models,
in the literature on particle filters for parameter estimation @ire venues for further research. The main difficulty is that
dynamic systems [7], [88], [89]. Model parameter estimatiothe notion of estimation error for a set-valued state is not a
in the context of random finite sets and PHD filters, have alstraightforward extension of the standard root mean squared
been discussed in [90]. error based on the Euclidean distance.

C. Parameter estimation

D. Multi-target tracking G. Bernoulli filter for switching dynamic models

The Bernoulli filter, as an exact Bayesian single-object Once the system is turned on, it may follow one of several
detector/tracker, can be extended to track multiple objects.dpnamic modes of operation, with random switching between
the case of the detector-output model and point targets, taem. The switching is typically modelled by a finite state
approximate Multi-Bernoulli filter was proposed in [10], [25]homogeneous Markov chain with known transitional proba-
Related works using various data association techniques flities. Various practical solutions have been proposed in the
measurement-to-track assignment were also proposed in [¥dntext of the standard Bayes filter [67, Ch.11], [99, Ch.10],
[92]. The resulting multi-object trackers are suboptimal, bufowever, to the best our knowledge, a Bernoulli filter for
can be adequate for a number of practical applications [98}itching dynamic models has not been considered so far.
Further developments for Multi-Bernoulli filtering with image
measurements were proposed in [29]. The latest development XI. SUMMARY
is the exact closed form recursion or conjugate result known o . . -
as the Generalized Labeled Multi-Bernoulli filter in [14], [93]. 1he Bernoulli filter is a recent discovery of potential im-

Their performance accuracy remains to be compared wRf"ance in many fields of science and engineering where
other traditional and modern multi-target tracking algorithmStochastic dynamic systems (objects, phenomena) of interest
can appear and disappear. The key feature of the Bernoulli

filter is that it jointly estimates the posterior PDF of the system

E. Sensor control state and the probability of its existence. This tutorial article
Modern sensors are capable of a variety of actions, suaviewed the theory, implementation and several applications
as looking in certain directions, moving to other location®f the Bernoulli filter. The update equations of the Bernoulli
using different modes of operation, etc. The objective of senddter have been derived for various measurement models



PREPRINT: IEEE Trans. Signal Processing, Vol. 61, No. 13, pp. 3406 - 3430, 2013.

23

encountered in practice. These models have been illustrater] B. Ristic, D. Clark, B.-N. Vo, and B.-T. Vo, “Adaptive target birth inten-
by several applications of the Bernoulli filter for detection,

estimation and prediction of dynamic systems. The selec
applications are diverse in order to demonstrate the power

&

random set models. We are now in the position to apply the
optimal Bayes solution to a much wider spectrum of problems,
some of them previously unsolved. The most general imple-
mentation of the Bernoulli filter is based on the sequenti&Ppl
Monte Carlo method, resulting in a class of Bernoulli particle
filters. Finally the article presented an outlook on Bernoullpe)
filters with open problems for further research.
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