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Preface

Shortly after 9/11, a Russian scientist named Dmitri Gusev pro-
posed an explanation for the origin of  the name Al Qaeda. He
suggested that the terrorist organization took its name from Isaac
Asimov’s famous 1950s science fiction novels known as the Foun-
dation Trilogy. After all, he reasoned, the Arabic word “qaeda”
means something like “base” or “foundation.” And the first novel in
Asimov’s trilogy, Foundation, apparently was titled “al-Qaida” in an
Arabic translation.

In Asimov’s books, “Foundation” referred to an organization
dedicated to salvaging a decaying galactic empire. The empire was
hopeless, destined to crumble into chaos, leaving civilization in
ruins for 30,000 years. Foreseeing the inevitability of  the empire’s
demise, one man devised a plan to truncate the coming era of
darkness to a mere millennium. His strategy was to establish a
“foundation” of  scholars who would preserve human knowledge
for civilization’s eventual rebirth.

At least that’s what he told the empire’s authorities.
In fact, Asimov’s hero, a mathematician named Hari Seldon,

created a community of  scientists devoted to manipulating the fu-
ture. Seldon actually formed two foundations—one in a remote
but known locale (sort of  like Afghanistan), the other in a mystery
location referred to only with riddles. Foundation I participated
openly in the affairs of  the galaxy. Foundation II operated surrep-
titiously, intervening at key points in history to nudge events along
Seldon’s chosen path.

Seldon’s plan for controlling human affairs was based on a
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iv PREFACE

mathematical system that he invented called psychohistory. It en-
abled Seldon to predict political, economic, and social trends; fore-
see the rise and fall of  governments; and anticipate the onset of
wars and periods of  peace.

I don’t think Osama bin Laden is Hari Seldon. But it’s not so
far-fetched to believe that the organizers of  the real Al Qaeda
perceived Western civilization as an empire in decay. Or that they
anointed themselves as society’s saviors, hoping to manipulate
events in a way that would lead to a new world order more to their
liking. So perhaps they adopted some of  Hari Seldon’s strategies.
(Certainly Osama bin Laden’s occasional taped messages are eerily
similar to Seldon’s video appearances from time to time, prepared
before his death for delivery decades or even centuries later.)

Of  course, any such link to Asimov changes nothing about
terrorism. Al Qaeda gains no justification for atrocity from any
connection to science fiction. And frankly, the similarities seem
rather superficial. Had the terrorists really studied Foundation, they
would have noticed Asimov’s assertion that “violence is the last
refuge of  the incompetent.”

But in fact, Asimov’s series did inspire some real-world imita-
tors: not terrorists, but scientists—scientists seeking the secrets of
Hari Seldon’s psychohistory. If  there is a real-life Hari Seldon, it is
not Osama bin Laden, but John Forbes Nash.

Nash’s life, chronicled so engagingly by Sylvia Nasar in A Beau-
tiful Mind, is a story of  the struggles of  a brilliant but troubled
man. Nash’s math, for which he won a Nobel Prize, is an entirely
different tale, still unfolding, about science’s struggle to cope with
the complexities of  collective human behavior.

At the same time Asimov was publishing his Foundation books,
Nash was publishing papers establishing foundational principles
for a science called game theory. Game theory is the science of
strategy; its formulas tell you what choices to make to get the best
deal you can get when interacting with other people. Originally
formulated to be applied to economics, game theory has now infil-
trated nearly every field of  modern science, especially those con-
cerned with human nature and behavior. It has begun to establish
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links with the physical sciences as well, and ultimately, I suspect, it
will forge a merger of  all the sciences in the spirit of  Asimov’s
psychohistory. At least that is the prospect that I explore in this
book.

Game theory is a rich, profound, and controversial field, and
there is much more to it than you could find in any one book.
What follows is in no way a textbook on game theory. Nor do I
attempt to give any account of  its widespread uses in economics,
the realm for which it was invented, or the many variants and
refinements that have been developed to expand its economic ap-
plications. My focus is rather on how various manifestations of
game theory built on Nash’s foundation are now applied in a vast
range of  other scientific disciplines, with special attention to those
arenas where game theory illuminates human nature and behavior
(and where it connects with other fields seeking similar insights). I
view these efforts in the context of  the ancient quest for a “Code
of  Nature” describing the “laws” of  human behavior, a historical
precursor to Asimov’s notion of  psychohistory.

As with all my books, I try to give any interested reader a
flavor of  what scientists are doing at the frontiers of  knowledge,
where there are no guarantees of  ultimate success, but where pio-
neers are probing intriguing possibilities. There are scientists who
regard some of  this pioneering work as at best misguided and at
worst a fruitless waste of  time. Consequently, there may be objec-
tions from traditionalists who believe that the importance of  game
theory is overstated or that the prospects for a science of  society
are overhyped. Well, maybe so. Time will tell. For now, the fact is
that game theory has already established itself  as an essential tool
in the behavioral sciences, where it is widely regarded as a unifying
language for investigating human behavior. Game theory’s promi-
nence in evolutionary biology builds a natural bridge between the
life sciences and the behavioral sciences. And connections have
been established between game theory and two of  the most promi-
nent pillars of  physics: statistical mechanics and quantum theory.
Certainly many physicists, neuroscientists, and social scientists from
various disciplines are indeed pursuing the dream of  a quantitative
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science of  human behavior. Game theory is showing signs of  play-
ing an increasingly important role in that endeavor. It’s a story of
exploration along the shoreline separating the continent of  knowl-
edge from an ocean of  ignorance, and I think it’s a story worth
telling.

I owe much gratitude to those who helped make this book
possible, particularly the many scientists who have discussed their
research with me over the years. Their help is acknowledged by
their presence in the pages that follow. Many other friends and
colleagues have listened patiently while I’ve shaped my thoughts
on this book during conversations with them. They know who
they are, and I appreciate them all. The one person I want to thank
by name is my wife, Chris, who really made it possible for me to
write this book, because she has a job.

Tom Siegfried
Los Angeles, California
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1

Introduction

Could not mind, as well as mindless motion, have an

underlying order?

—Emperor Cleon to Hari Seldon, Prelude to Foundation

Isaac Asimov excelled at predicting the future.
In one of  his early science fiction stories, he introduced pocket

calculators decades before you could buy them at Radio Shack. In
a later book, he described a digital camera transmitting photos
directly to a computer via WiFi.1  He just forgot to mention that
you could also use the same device to make phone calls. And in his
most celebrated work, a series of  1950s science fiction novels
known as the Foundation Trilogy, Asimov foresaw a new kind of
science called psychohistory, capable itself  of  forecasting political,
economic, and social events. Psychohistory, as Asimov envisioned
it, was “the science of  human behavior reduced to mathematical
equations.”2

Real-life psychohistory does not yet exist—not now, not re-
ally, and not for a long time. But there are many research enter-
prises under way in the world today that share the goal of  better
understanding human behavior in order to foresee the future. At
the foundation of  these enterprises are mathematical methods
closely resembling Asimov’s psychohistory. And in the midst of  it
all is the work of  a mathematician named John Forbes Nash.
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Brilliant but odd, intellectually sophisticated but socially awk-
ward, Nash dazzled the world of  mathematics in the 1950s with
astounding and original results in several arenas. He rattled the
routines at Princeton University and the Rand Corporation in Cali-
fornia with both his mental magnificence and his disruptive be-
havior. By now, the subsequent tragic aspects of  Nash’s life story
are familiar to millions of  people, thanks to the Oscar-winning
movie starring Russell Crowe, and Sylvia Nasar’s A Beautiful Mind,
the acclaimed book on which the movie was based. Yet while book
and movie probed the conflicting complexities in Nash the man,
neither delved deeply into Nash’s math. So for most people today,
his accomplishments remain obscure. Within the world of  science,
though, Nash’s math now touches more disciplines than Newton’s
or Einstein’s. What Newton’s and Einstein’s math did for the physi-
cal universe, Nash’s math may now be accomplishing for the bio-
logical and social universe.

Indeed, had mental illness not intervened, Nash’s name might
today be commonly uttered in the same breath with those scien-
tific giants of  the past. As it is, he made important contributions to
a few mathematical specialties. But he achieved his greatest fame in
economics, the field in which he shared the 1994 Nobel Prize
with John Harsanyi and Reinhard Selten for their seminal work on
the theory of  games—the math that analyzes how people make
choices in contests of  strategy.

Game theory originated in efforts to understand parlor games
like poker and chess, and was first fully formulated as a mathemati-
cal tool for describing economic behavior. But in principle, game
theory encompasses any situation involving strategic interaction—
from playing tennis to waging war. Game theory provides the
mathematical means of  computing the payoffs to be expected from
various possible choices of  strategies. So game theory’s math speci-
fies the formulas for making sound decisions in any competitive
arena. As such, it is “a tool for investigating the world,” as the
economist Herbert Gintis points out. But it is much more than a
mere tool. “Game theory is about how people cooperate as much
as how they compete,” Gintis writes. “Game theory is about the
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emergence, transformation, diffusion and stabilization of  forms of
behavior.”3

Nash did not invent game theory, but he expanded its scope
and provided it with more powerful tools for tackling real-world
problems. At first, though, the depth of  his accomplishment was
little appreciated. When his revolutionary papers appeared, in the
early 1950s, game theory briefly became popular among Cold
War analysts who saw similarities between international aggres-
sion and maximizing profits. But within economics, game theory
remained mainly a curiosity. “It didn’t take off,” the economist
Samuel Bowles told me. “Like a lot of  good ideas in economics, it
just fell by the wayside.”4

In the 1970s, though, evolutionary biologists adopted game
theory to study the competition for survival among animals and
plants. And in the 1980s, economists finally began to use game
theory in various ways, finding it especially helpful in designing
actual experiments to test economic theory. By the late 1980s game
theory had re-emerged in economics in a big way, leading to Nash’s
1994 Nobel.

Even before then, game theory had already migrated into the
curricula of  many scientific disciplines. You could find it taught in
departments not only of  mathematics and economics and biology
but also political science, psychology, and sociology. By the open-
ing years of  the 21st century, game theory’s uses had spread even
wider, to fields ranging from anthropology to neurobiology.

Today, economists continue to use game theory to analyze how
people make choices about money. Biologists apply it to scenarios
explaining the survival of  the fittest or the origin of  altruism.
Anthropologists play games with people from primitive cultures
to reveal the diversity of  human nature. And neuroscientists
have joined the fun, peering inside the brains of  game-playing
people to discover how their strategies reflect different motives
and emotions. In fact, a whole new field of  study, called
neuroeconomics, has taken shape, mixing game theory’s methods
with brain-scanning technology to detect and measure neural ac-
tivity corresponding to human judgments and behavior. “We’re
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quantifying human experience,” says neuroscientist Read
Montague, “in the same way we quantify airflow over the wings of
a Boeing 777.”5

In short, Nash’s math—with the rest of  modern game theory
built around it—is now the weapon of  choice in the scientist’s
arsenal on a wide range of  research frontiers related to human
behavior. In fact, Herbert Gintis contends, game theory has be-
come “a universal language for the unification of  the behavioral
sciences.”6

I think it might go even farther than that. Game theory may
become the language not just of  the behavioral sciences, but of  all
the sciences.

As science stands today, that claim is rather bold. It might even
be wrong. But game theory already has conquered the social sci-
ences and invaded biology. And it is now, in the works of  a few
pioneering scientists, forming a powerful alliance with physics.
Physicists, of  course, have always sought a unity in the ultimate
description of  nature, and game theory may have the potential to
be a great unifier.

That realization hit me in early 2004, when I read a paper by
physicist-mathematician David Wolpert, who works at NASA’s
Ames Research Center in California. Wolpert’s paper disclosed a
deep connection between the math of  game theory and statistical
mechanics, one of  the most powerful all-purpose tools used by
physicists for describing the complexities of  the world.

Physicists have used statistical mechanics for more than a cen-
tury to describe such things as gases, chemical reactions, and the
properties of  magnetic materials—essentially to quantify the be-
havior of  matter in all sorts of  circumstances. It’s a way to describe
the big picture when lacking data about the details. You can’t track
every one of  the trillion trillion molecules of  air zipping around in
a room, for instance, but statistical mechanics can tell you how an
air conditioner will affect the overall temperature.

It’s no coincidence that statistical mechanics (which encom-
passes the kinetic theory of  gases) is the math that inspired
Asimov’s heroic mathematician, Hari Seldon, to invent psycho-
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history. As Janov Pelorat, a character in the later novels of  the
Foundation series, explained:

Hari Seldon devised psychohistory by modeling it upon the kinetic
theory of  gases. Each atom or molecule in a gas moves randomly so
that we can’t know the position or velocity of  any one of  them.
Nevertheless, using statistics, we can work out the rules governing
their overall behavior with great precision. In the same way, Seldon
intended to work out the overall behavior of  human societies even
though the solutions would not apply to the behavior of  individual
human beings.7

In other words, put enough people together and the laws of
human interaction will produce predictable patterns—just as the
interactions and motion of  molecules determine the temperature
and pressure of  a gas. And describing people as though they were
molecules is just what many physicists are doing today—in effect,
they’re taking the temperature of  society.

One of  the best ways to take that temperature, it turns out, is
to view society in terms of  networks. In much the same way that
“temperature” captures an essential property of  a jumble of  gas
molecules, network math quantifies how “connected” the members
of  a social group are. Today’s new network math applies statistical
mechanics to all sorts of  social phenomena, from fashion trends
and voting behavior to the growth of  terrorist cells. So just as
Asimov envisioned, statistical physics has been enlisted to describe
human society in a mathematically precise way.

For the most part, this merger of  network math and statistical
mechanics has been exploring human behavior without recourse
to the modern views of  game theory built on Nash’s math. After
all, Nash’s original formulation had its limits; what works on paper
does not always play out the way his math predicts in real-world
games. But the latest research has begun to show ways that game
theory can help make sense out of  the intricate pattern of  links in
complicated networks. The game theory approach may be able to
induce the world of  complex networks to more readily surrender
its secrets.
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Wolpert’s insight suggests that game theory itself  can be el-
evated to a new level by exploiting its link to statistical mechanics.
His work shows that the math of  game theory can be recast in
equations that mimic those used by statistical physicists to describe
all sorts of  physical systems. In other words, at some deep level
statistical mechanics and game theory are, in a sense, two versions
of  the same underlying idea. And that may end up making game
theory an especially sensitive social thermometer.

This new realization—that game theory and statistical mechan-
ics share a deep mathematical unity—enhances game theory’s sta-
tus as the preferred tool for merging the life sciences and physical
sciences into a unified description of  nature. After all, there’s a
reason why game theory has been embraced by so many disci-
plines. Game theory could someday become the glue that holds all
of  science’s puzzle pieces together.

Some people (particularly many physicists) will scoff  at this
contention. But pause to consider how much sense it makes. Na-
ture encompasses so many complex networks for a reason: com-
plexity evolves. “Intelligent” design produces simple, predictable
systems that are easy to understand. The complex systems that
baffle science—like bodies, brains, and societies—arise not from
any plan, but from interactions among agents like cells or people,
all (more or less) out for themselves. And such competitive interac-
tion is precisely what game theory is all about.

So it should not be surprising that game theory has been so
useful in evolutionary biology. Game theory is about competition,
and evolution is the ultimate never-ending Olympic event. And if
evolution followed game theory’s rules in generating complicated
life, it no doubt also observed the same rules in developing the
human brain. So it’s perfectly natural that game theory has become
popular today in efforts to understand how the brain works, as
brain scientists explore the neural physiology behind economic
choices.

In turn, the brain underlies all the rest of  human behavior—
personal and interpersonal, social and political, as well as economic.
All that behavior directs the evolution of  all those networks of
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personal, social, political, or economic activity. Just as the com-
plexities of  life arose through eons of  survival of  the fittest, hu-
man culture evolves as societies or governments rise and fall;
economies evolve as companies are founded and go bankrupt; even
the World Wide Web evolves as pages are added and links expire.
So Nash’s math does seem capable of  catalyzing a merger of  meth-
ods for understanding individual behavior, biology, and society.

What about chemistry and physics? At first glance there doesn’t
seem to be any struggle for survival among the molecules engaged
in chemical reactions. But in a way there is, and the connections
between game theory and statistical mechanics promise to reveal
ways in which game theory still applies. Reacting molecules, for
instance, always seek a stable condition, in which their energy is at
a minimum. The “desire” for minimum energy in molecules is not
so different from the “desire” for maximum fitness in organisms.
They can be treated mathematically in a similar way.

True, there’s much more to physics than statistical mechanics.
At first glance, game theory does not seem to touch some of  the
grander arenas of  physical science, such as astrophysics and cos-
mology, or the subatomic realm ruled by quantum physics. But
guess what? In the past few years physicists and mathematicians
have developed quantum versions of  game theory. So far, quantum
theory seems to be enriching game theory, but that enrichment just
might turn out to be mutual.8

Furthermore, Wolpert forges the link between statistical me-
chanics and game theory with help from the mathematical theory
of  information. As I wrote in my book The Bit and the Pendulum
(Wiley, 2000), modern science has become enamored of  informa-
tion theory, using both its math and its metaphor to describe all
sorts of  science, from the contents of  black holes to the computa-
tional activity in the brain. Quantum physics itself  has been illu-
minated over the past decade by new insights emerging from
quantum information theory. And some theorists have pursued the
notion that information ideas hold the key to unifying quantum
physics with gravity, perhaps paving the way to the ultimate
“theory of  everything.” It’s possible, Wolpert speculates, that game
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theory is the ingredient that could enhance the prospects for suc-
cess in finding such a theory.

In any case, it’s already clear that Nash’s math shows an unex-
pectedly powerful way of  mirroring the regularities of  the real
world that make all science possible. As I described in my book
Strange Matters (Joseph Henry, 2002), there is something strange
about the human brain’s ability to produce math that captures deep
and true aspects of  reality, enabling scientists to predict the exist-
ence of  exotic things like antimatter and black holes before any
observer finds them. Part of  the solution to that mystery, I sug-
gested, is the fact that the brain evolved in the physical world, its
development constrained by the laws of  physics as much as by the
laws of  biology. I failed then to realize that game theory offers a
tool for describing how the laws of  physics and biology are
related.

It’s clear now that game theory’s math describes the capability
of  the universe to produce brains that can invent math. And math
in turn, as Asimov envisioned, can be used to describe the behavior
guided by those brains—including the social collective behav-
ior that creates civilization, culture, economics, and politics.

While seeking the secrets of  that math, we can along the way
watch people play games as neuroscientists monitor the activity in
their brains; we can follow anthropologists to the jungle where
they test the game-playing strategies of  different cultures; we can
track the efforts of  physicists to devise equations that capture the
essence of  human behavior. And just maybe we’ll see how Nash’s
math can broker the merger of  economics and psychology, anthro-
pology and sociology, with biology and physics—producing a
grand synthesis of  the sciences of  life in general, human behavior
in particular, and maybe even, someday, the entire physical world.
In the process, we should at least begin to appreciate the scope of
a burgeoning research field, merging the insights of  Nash’s 1950s
math with 21st-century neuroscience and 19th-century physics to
pursue the realization of  Asimov’s 1950s science fiction dream.

It would be wrong, though, to suggest that Asimov was the
first to articulate that dream. In a very real sense, psychohistory
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was the reincarnation of  the old Roman notion of  a “Code of
Nature” (fitting, since Asimov’s Foundation series was modeled on
the Roman Empire’s decline and fall). As interpreted much later,
that code supposedly captured the essence of  human nature, pro-
viding a sort of  rule book for behavior. It was not a rule book in
the sense of  prescribing behavior, but rather a book revealing how
humans naturally behave. With the arrival of  the Age of  Reason in
the 18th century, philosophers and the forerunners of  social scien-
tists sought in earnest to discover that code of  codes—the key to
understanding the natural order of  human interaction. One of  the
earliest and most influential of  those efforts was the economic
system described in The Wealth of  Nations by Adam Smith.
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Smith’s Hand
Searching for the Code of Nature

If  in the seventeenth century natural philosophers

borrowed notions of  law in human affairs and ap-

plied them to the study of  physical nature, in the

eighteenth century it was the turn of  the laws of

physical nature to suggest ways forward for knowl-

edge about human life.

—Roger Smith, The Norton History of  the Human Sciences

Colin Camerer was a child prodigy, one of  those kids who skipped
several grades of  school and enrolled in a special program for the
gifted. By age 5, he was reading Time magazine (even though no
one had taught him to read), and at 14 he entered Johns Hopkins
University. He graduated in three years, then went to the Univer-
sity of  Chicago to earn an M.B.A. and, for good measure, a Ph.D.
He joined the faculty at Northwestern University’s graduate school
of  management by the age of  22.

Today, he’s a full-fledged adult on the faculty at Caltech, where
he likes to play games. Or more accurately, he likes to analyze the
behavior of  other people during various game-playing experi-
ments. Camerer is one of  the nation’s premier behavioral game
theorists. He studies how game theory reveals the realities of  hu-
man economic behavior, how people in real life depart from the
purely rational choices assumed by traditional economic theory.
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Though unquestionably brilliant, Camerer communicates as
conversationally as a cab driver. Even in his prodigy days, he was a
wrestler and a golfer, so he has a broader view of  the world than
some of  the intellectually exalted scholars who live their lives on
such a higher mental level. And he has a broader view of  econom-
ics than you’ll find in the old-school textbooks. But in a sense,
Camerer’s views on economic behavior are not so revolutionary. In
fact, in some ways they were anticipated by the father of  tradi-
tional economics, Adam Smith.

Smith’s “invisible hand” is probably the most famous metaphor
in all of  economics, and his equally famous book, Wealth of  Na-
tions, remains revered by today’s advocates of  free-market econo-
mies more than two centuries after its publication. But Smith was
not a one-dimensional thinker, and he understood a lot more about
human behavior than many of  his present-day disciples do. His
insights foreshadowed much in current attempts to decipher the
code of  human conduct, in economics and other social arenas. He
was not a game theorist, but his theories illuminate the links be-
tween games, economics, biology, physics, and society—which is
what the book you’re reading now is all about. The way I see it,
Adam Smith was the premier player in the origins of  this story, as
he inspired belief  in the merit of  melding the Newtonian physics
of  the material world with the science of  human behavior.

THE ECONOMICS OF INVISIBILITY

Adam Smith had a lot in common with Isaac Newton. Both were
lifelong bachelors. Both became professors at the university they
had attended (and both had reputations for being absentminded
professors as well). Both were born after their fathers had died.
And both became fathers themselves of  a new scientific discipline.
Newton built the foundation of  physics; Smith authored the bible
of  economics.

Both men literally rewrote the book of  their science, trans-
forming the somewhat inchoate insights of  their predecessors into
treatises that guided modern thought. Just as modern physics de-
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scended from Newton’s codification of  what was then known as
natural philosophy, modern economics is the offspring of  Adam
Smith’s treatise on political economy. And though their major
works were separated by nearly a century, the philosophies they
articulated merged to forge a new worldview coloring virtually
every aspect of  European culture in the centuries that followed.

While Newton established the notion of  natural law in the
physical world, Smith tried to do the same in the social world of
economic intercourse. Newton’s unexplained law of  gravity
reached across space to guide the motion of  planets; Smith’s “in-
visible hand” guided individual laborers and businessmen to pro-
duce the wealth of  nations. Together, Newton’s and Smith’s works
inspired great thinkers to believe that all aspects of  the world—
physical and social—could be understood, and explained, by sci-
ence. When Smith’s Wealth of  Nations was published in 1776, the
Age of  Reason reached its pinnacle.

Nowadays, of  course, physics has moved beyond Newton, and
most economists would say that their science has moved far be-
yond Adam Smith. But Smith’s imprint on modern culture persists,
and his impact on economic science remains substantial. If  you
look closely, you can even find echoes of  Smith’s ideas in various
aspects of  game theory.

For one thing, Smith ingrained the idea that pursuing
self-interest drives economic prosperity. And it is pursuit of  self-
interest that game theory, at its most basic level, attempts to quan-
tify. At a deeper level, Smith sought a system that captured the
essence of  human nature and behavior, a motivation shared by
many modern game theorists. Game theory tries to delimit what
rational behavior is; Smith helped deposit the idea in the modern
mind that minds operate in a rational way.

It was one thing for Newton to assert that rational laws gov-
erned the motions of  the planets or falling apples. It was much
more ambitious for Smith to ascribe similar orderliness to the so-
cial behavior of  humans engaging in economic activity. As Jacob
Bronowski and Bruce Mazlish observed in a now old, but still
insightful, book on Western thought, Smith took a bit of  an intel-
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lectual leap to make his system fly. “In order to discover such a
science as economics,” they wrote, “Smith had to posit a faith in
the orderly structure of  nature, underlying appearances and acces-
sible to man’s reason.”1

Viewed in these terms, Smith’s book was an important thread
in a fabric of  thought seeking a Code of  Nature, a system of  rules
that explained human behavior (economic and otherwise) in much
the same way that Newton had explained the cosmos. First phi-
losophers, and then later sociologists and psychologists, tried to
articulate a science of  human behavior based on principles “under-
lying appearances” but “accessible to man’s reason.” Smith’s efforts
reflected the influence of  his friend and fellow Scotsman David
Hume, the historian-philosopher who regarded a “science of  man”
as the ultimate goal of  the scientific enterprise. “There is no ques-
tion of  importance, whose decision is not comprised in the science
of  man,” Hume wrote, “and there is none, which can be decided
with any certainty, before we become acquainted with that sci-
ence.”2  In the attempt “to explain the principles of  human nature,
we in effect propose a compleat system of  the sciences.”

Today, game theory’s ubiquitous role in the human sciences
suggests that its ambitions are woven from that same fabric. Game
theory may, someday, turn out to be the foundation of  a new and
improved 21st-century version of  the Code of  Nature, fulfilling
the dreams of  Hume, Smith, and many others in centuries past.

That claim is enhanced, I think, with the realization
that threads of  Smith’s thought are entangled not only in physical
and social science, but biological science as well. Smith’s ideas ex-
erted a profound influence on Charles Darwin. Principles describ-
ing competition in the economic world, Darwin realized, made
equal sense when applied to the battle for survival in the biological
arena. And the benefits of  the division of  labor among workers
that Smith extolled meshed nicely with the appearance of  new
species in nature. So it is surely no accident that, today, applying
economic game theory to the study of  evolution is a major intel-
lectual industry.
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LOGIC AND MORALS

All in all, Smith’s economics provides a critical backdrop for un-
derstanding the economic world that game theory conquered in
the 20th century. His influence on today’s world stemmed from a
life spent gathering unusual insights into his own world.

Born in Scotland in 1723, Smith was a sickly weakling as a
child (today we’d probably call him athletically challenged). At the
age of  3, he was kidnapped from his uncle’s front porch by some
gypsylike vagrants known as tinkers. Apparently the uncle rescued
the toddler shortly thereafter. Growing up, Adam was a bright kid,
earning a reputation as a bookworm with a spectacular memory. At
14 he entered the University of  Glasgow (in those days, that was
not unusually young). At 17 he went to Oxford, at first with the
intention of  entering the clergy. But after seven years there he
returned to Scotland in search of  a different kind of  life. His inter-
ests destined him to the academic world, as he had no acumen for
business and, as one biographer noted, “a strong preference for the
life of  learning and literature over the professional or political
life.”3

After a time, Smith got the job that fit his interests and tal-
ents—professor of  logic at the University of  Glasgow. Soon he
was also appointed to a professorship in “moral philosophy,” pro-
viding a fitting combination of  duties for someone planning to
forge a rational understanding of  human behavior. It was, in fact,
moral philosophy that Smith seized on for his first significant trea-
tise. And in it he outlined a very different view of  life and govern-
ment than what he is generally known for today. His book on
morals won him the confidence of  Charles Townsend, who em-
ployed Smith to tutor his stepson, the young Duke of  Buccleuch.
Smith left Glasgow for London in 1764 to assume his tutorial task.
He and the duke traveled much during this tutorship, spending a
lot of  time in France, where Smith familiarized himself  with the
new economic ideas of  a group known as the physiocrats.

Smith was especially taken with one François Quesnay, a fasci-
nating character who deserves to be much better known than he is.
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Orphaned from working-class parents (some sources say farmers)
at 13, Quesnay taught himself  to read using a medical book, and
so decided he might as well become a doctor. He established him-
self  as a physician and became an early advocate for surgery as an
important part of  medical practice—not such a popular position
among doctors of  his day. Quesnay played a part, though, in get-
ting the King of  France to separate surgeons from barbers, surely a
benefit for both professions. Quesnay’s even stronger influence
with King Louis XV was later secured when he attained an ap-
pointment as personal physician to Madame de Pampadour, the
king’s mistress.

Quesnay must have possessed an unusually fine mind; he im-
pressed his patients dramatically, generating the word of  mouth
that led to such connections in high places. Once established
among the aristocracy, Quesnay’s brilliance attracted the other
leading intellects of  his age, so much so that he was invited to
write articles on agriculture for the famous French Encyclopédie.
Somewhere along the way his agricultural interest led to an inter-
est in economic theory, and Quesnay founded the new school of
economists whose practitioners came to be called the physiocrats,
out of  their affinity for the methods of  physics.

In those days, conventional wisdom conceived of  a nation’s
economic strength in terms of  trade; favorable trade balances,
therefore, supposedly brought wealth to a nation. But Quesnay
argued that the true source of  wealth was agriculture—the pro-
ductivity of  the land. He further argued that governments imposed
a human-designed impairment to the “natural order” of  economic
and social interaction. A “laissez-faire” or “hands-off ” policy should
be preferred, he believed, to allow the natural flow to occur.

Encountering Quesnay while in Paris, Smith was also entranced
and began to merge the physiocratic philosophy with his own.
Upon his return to England in 1766, Smith embarked on the
decade-long task of  compiling his insights into human nature and
the production of  prosperity, ending with the famous tome titled
An Inquiry into the Nature and Causes of  the Wealth of  Nations, merci-
fully shortened in casual usage to simply Wealth of  Nations.
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THE INVISIBLE HAND

Smith’s views differed from Quesnay’s in one major respect: The
source of  wealth, Smith argued, was not the land, but labor. “The
annual labour of  every nation is the fund which originally supplies
it with all the necessaries and conveniences of  life,” Smith declared
in his book’s Introduction. And the production of  wealth was en-
hanced by dividing the labor into subtasks that could be performed
more efficiently using specialized skills. “The greatest improvement
in the productive powers of  labour, and the greater part of  the
skill, dexterity, and judgment with which it is any where directed,
or applied, seem to have been the effects of  the division of  labour,”
Smith pronounced at the beginning of  Chapter 1.4

Modern caricatures of  Wealth of  Nations do not do it justice. It
is usually summed up with a reference to the “invisible hand” that
makes capitalism work just fine as long as government doesn’t get
involved. There is no need for any planning or external economic
controls—if  everyone simply pursues profits without restraint, the
system as a whole will be most efficient at distributing goods and
services. With his “invisible hand” analogy, Smith seems to assert
that pure selfishness serves the world well: “It is not from the be-
nevolence of  the butcher, the brewer, or the baker, that we can
expect our dinner, but from their regard to their own interest,”
Smith wrote. “By directing that industry in such a manner as its
produce may be of  the greatest value, he intends only his own
gain, and he is in this, as in many other cases, led by an invisible
hand to promote an end which was no part of  his intention.”5

In fact, Smith’s ideas about a free-market economy were subtle
and sophisticated, much more thoughtful than the knee-jerk free-
market-to-the-max mantra that people promote, invoking his name,
today. (Among other things, he noted that the invisible hand
worked effectively only if  the people doing business weren’t crooks
cooking the books.) He did believe that government interference
in business—either to assist or restrain—subverted the benefits of
natural and free enterprise. By eliminating both preferences (or
“encouragements”) and restraints, “the obvious and simple system
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of  natural liberty establishes itself  of  its own accord.” But even
then he restricted his concern to “extraordinary encouragements”
or “extraordinary restraints.” And he cited three specific roles that
government ought to fulfill: defending the country from invasion,
enforcing the laws so as to protect individuals from injustice, and
providing for the public works and institutions that private indi-
viduals would not find profitable (like protecting New Orleans
from hurricanes).

Modern economists have noted that Smith’s devotion to the
invisible hand was expressed in rather qualified language. “There
can be little doubt that Smith’s faith in the power of  an invisible
hand has been exaggerated by modern commentators,” Princeton
economist Alan Krueger wrote in an introduction to a recent re-
printing of  Wealth of  Nations.6  Besides, Krueger added, “most of
postwar economics can be thought of  as an effort to determine
theoretically and empirically when, and under what conditions,
Adam Smith’s invisible hand turns out to be all thumbs.”7

All this is not to say that Smith’s support for free enterprise is
entirely a misreading. (Nor am I saying that free enterprise is ex-
actly a bad idea.) But as economists who followed Smith often
observed, his invisible hand does not always guarantee efficient mar-
kets or fairness. A critique by Thomas Edward Cliffe Leslie, an
economic historian in Belfast, about a century after Wealth of  Na-
tions appeared, noted that Smith wrote in a preindustrial age. How-
ever deep his insights into the world he lived in, Smith was
nevertheless incapable of  escaping his own time.

Some of  Smith’s followers, Cliffe Leslie wrote, considered
Wealth of  Nations not just an “inquiry,” as Smith’s full title sug-
gested, but “a final answer to the inquiry—a body of  necessary
and universal truth, founded on invariable laws of  nature, and de-
duced from the constitution of  the human mind.” Cliffe Leslie
demurred: “I venture to maintain, to the contrary, that political
economy is not a body of  natural laws in the true sense, but an
assemblage of  speculations and doctrines . . . colored even by the
history and character of  its chief  writers.”8

Cliff  Leslie’s account, published in 1870, dismissed the idea—
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promoted by many of  Smith’s disciples—that Smith had revealed
“a natural order of  things,” an “offshoot of  the ancient fiction of  a
Code of  Nature.”

This idea of  a “code of  natural law” had been around since
Roman times, with possible Greek antecedents. The Roman legal
system recognized not only Roman civil law (Jus Civile), the spe-
cific legal codes of  the Romans, but a more general law (Jus Gen-
tium), consisting of  laws arising “by natural reason” that are
“common to all mankind,” as described by Gaius, a Roman jurist
of  the second century A.D.

Apparently some Roman legal philosophers regarded Jus Gen-
tium as the offspring of  a forgotten “natural law” (Jus Naturale) or
“Code of  Nature”—an assumed primordial “government-free” le-
gal code shared by all nations and peoples. Human political insti-
tutions, in this view, disturb “a beneficial and harmonious natural
order of  things.” So as near as I can tell, “Code of  Nature” is what
people commonly refer to today as the law of  the jungle.9  (Per-
haps the FOX network will develop it as the next new reality-TV
series.) “The belief  gradually prevailed among the Roman lawyers
that the old Jus Gentium was in fact the lost code of  Nature,” En-
glish legal scholar Henry Maine wrote in an 1861 treatise titled
Ancient Law. “Framing . . . jurisprudence on the principles of  the Jus
Gentium was gradually restoring a type from which law had only
departed to deteriorate.”10

In any event, as Cliffe Leslie recounted, the “Code of  Nature”
idea was, in Smith’s day, one of  two approaches to grasping “the
fundamental laws of  human society.” The Code of  Nature method
sought to reason out the laws of  society by deducing the natural
order of  things from innate features of  the human mind. The other
approach “induced” societal laws by examining history and fea-
tures of  real life to find out how things actually are, rather than
some idealized notion of  how human nature should be.

In fact, Smith’s work did express sentiments favorable to the
Code of  Nature view; his statement that eliminating governmental
preferences and restraints allows “the obvious and simple system
of  natural liberty” to establish itself  clearly resonates with the con-
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cept of  such a code. And Dugald Stewart, in a biographical mem-
oir of  Smith, asserted that Smith’s “speculations” attempted “to
illustrate the provisions made by Nature in the principles of  the
human mind” for gradual augmentation of  national wealth and “to
demonstrate that the most effectual means of  advancing a people
to greatness is to maintain that order of  things which Nature has
pointed out.”11

Cliffe Leslie maintained, on the other hand, that Smith actu-
ally pursued both methods—some deductive reasoning, to be sure,
but also thorough observations of  actual economic conditions of
his day. While Smith might have believed himself  to be articulat-
ing the natural laws of  human economic behavior—a Code of
Nature—in fact he just developed another human-invented system
colored by culture and history, Cliffe Leslie declared.

“What he did not see was, that his own system . . . was the
product of  a particular history; that what he regarded as the Sys-
tem of  Nature was a descendant of  the System of  Nature as con-
ceived by the ancients, in a form fashioned by the ideas and
circumstances of  his own time,” Cliffe Leslie wrote of  Smith. “Had
he lived even two generations later, his general theory of  the orga-
nization of  the economic world . . . would have been cast in a very
different mould.”12

If  Smith’s Code of  Nature was tainted by his times, it was
nevertheless in tune with many similar efforts by others, before
him and after. Various versions of  such an idea—the existence of  a
“natural order” of  human behavior and interaction—influenced all
manner of  philosophers and scientists and political revolutionaries
seeking to understand society, everybody from the monarchist phi-
losopher Thomas Hobbes to the science-fan and journalist Karl
Marx. Smith’s two great works, on moral philosophy and the laws
of  wealth, were really part of  one grander intellectual enterprise
that ultimately produced both economics and the “human sciences”
of  sociology and psychology. As science historian Roger Smith has
pointed out, the 18th century—Adam Smith’s century—was a time
of  profound intellectual mergers, with the physical sciences and
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the social world, economic interaction and human nature, all mu-
tually inspiring new views of  understanding and explaining life,
the universe, and everything.

“In the eighteenth century,” Roger Smith writes, “pleasure and
confidence in the design of  the created physical world played an
important part in the search for the design of  the human world.”
Just as Newton discovered the “natural order” of  the physical uni-
verse, thinkers who followed pursued the principles behind the
“natural order” of  society. In fact, the forerunner of  economics,
political economy, emerged in the last half  of  the 18th century as
“the study of  the link between the natural order and material pros-
perity,” investigating “the laws, physical and social, that underlie
wealth.”13

And of  course, precisely the same sort of  merger fever afflicts
scientists today. The mix of  math and physics with biology, sociol-
ogy, and economics is (to use economic terminology) a growth
industry, and game theory is becoming the catalyst accelerating
the trend.

RATIONAL ISN’T NATURAL

There’s an additional subtle point about all this that’s essential for
understanding the relationship between Smith’s ideas and modern
notions of  human nature and game theory. The cartoon view of
Smith’s story is that human nature is selfish, and that economic
behavior is rooted in that “truth.” And game theory seems to incor-
porate that belief. In its original form, game theory math describes
“rational” behavior in a way that essentially synonymizes “rational”
with “selfish.” But as it is interpreted today, game theory does not
actually assume that people always behave selfishly—or rationally.
Game theory tells you what will happen if  people do behave self-
ishly and rationally.

Besides, Adam Smith did not believe that humans are univer-
sally selfish (and he was right, as game theory experiments have
recently rediscovered). In fact, Smith glimpsed many findings of
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today’s experimental economic science. Modern commentators of-
ten don’t realize that, though, because they neglect to consider
that Wealth of  Nations was not Smith’s only book.

When writing Wealth of  Nations, Smith assumed (as do all au-
thors) that its readers would have also read his first book: the Theory
of  Moral Sentiments, published in 1759. So he did not think it nec-
essary to revisit the much different picture of  human nature he had
previously presented. Read together, Smith’s two books show that
he had a kinder and gentler view of  human nature than today’s
economics textbooks indicate.

This point was made to me by Colin Camerer, whose research
is at the forefront of  understanding the connections between game
theory and human behavior. Camerer’s specialty, “behavioral
game theory,” is a subdivision of  the field generally described as
“behavioral economics.” By the 1980s, when game theory began
to infiltrate the economics mainstream, various economists had be-
come disenchanted with the old notion, descended with mutations
from Adam Smith, that humans were merely rational actors pursu-
ing profits. Some even hit on the bright idea of  testing economic
theory by doing experiments, with actual people (and sometimes
even real money). Not surprisingly, experiments showed that people
often act “irrationally”—that is, their choices do not always maxi-
mize their profits. Pursuing such experiments led to some Nobel
prizes and some new insights into the mathematics underlying eco-
nomic activity.

Game theory played a central role in those developments, as it
quantified the profit maximization, or “utility,” that people in ex-
periments were supposed to be pursuing. In a complicated experi-
ment, it’s not always obvious what the utility-maximizing strategy
really is. Game theory can tell you. In any event, Camerer finds it
fascinating that game theory shows, in so many ways, that humans
defy traditional economic ideas. But those experimental results, he
told me, don’t really defy Adam Smith.

During one of  our conversations, at a coffee shop on the
Caltech campus, Camerer stressed that Smith never contended that
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all people are inherently selfish, out for themselves with no con-
cern for anyone else. Smith merely pointed out that even if people
operated totally out of  selfishness, the economic system could still
function efficiently for the good of  all. “The idea was, if  people
want to make a lot of  dough, the way to do it is by giving you
what you want, and they don’t care about you per se. And that
doesn’t logically imply that people don’t care about others; it just
means that even if  they didn’t, you could have an effective capital-
ist economy and produce what people most want,” Camerer said. “I
think Adam Smith has been kind of  misread. People say, ‘Gee,
Adam Smith proved that people don’t care about each other.’ What
he conjectured, and later was proved mathematically, was that even
if  people didn’t care about each other, markets could do a pretty
good job of  producing the right goods. But logically that doesn’t
imply that people don’t care.”14  So human nature is not necessarily
as adamantly self-serving as some people would like to believe.
Some people are selfish, of  course, but others are not.

In fact, in Smith’s treatise on moral sentiments, he identified
sympathy as one of  the most important of  human feelings. And he
described the conflict between the person’s “impartial spectator”—
a sort of  long-term planner or “conscience”—and the passions,
including hunger, fear, anger, and other drives and emotions. The
brain’s impartial spectator weighs the costs and consequences of
actions, encouraging rational choices that should control the reac-
tions of  the passions. While economists have traditionally assumed
that people make rational economic choices, Smith knew that in
real life the passions often prevailed. “Smith recognized . . . that
the impartial spectator could be led astray or rendered impotent by
sufficiently intense passions,” Camerer and two colleagues wrote in
a 2005 paper.15

Nevertheless, the notion of  self-interest and utility was drama-
tized by Smith in such a way that it formed a central core of
subsequent economic philosophy. And not only economics was
shaped by Smith’s ideas. His books also contributed in a significant
way to the birth of  modern biology.
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ORIGIN OF DARWINISM

I’m not sure whether Charles Darwin ever read Wealth of  Nations.
But he certainly read accounts of  it, including Dugald Stewart’s
eulogy-biography of  Adam Smith. And Darwin was familiar with
Smith’s Moral Sentiments, citing its “striking” first chapter in a pas-
sage in Descent of  Man. And while Darwin’s Origin of  Species does
not mention Smith, its notion of  natural selection and survival of
the fittest appears to be intellectually descended from Smith’s ideas
of economic competition.

Smith’s influence on Darwin was pointed out more than two
decades ago by the science historian Silvan Schweber. I first en-
countered the connection, though, in the late Stephen Jay Gould’s
massive tome on evolutionary biology. Gould examined Darwin’s
writings inside and out and traced all sorts of  historical, philo-
sophical, scientific, and literary influences on the origin of
Darwin’s views on origins. Among the most intriguing of  those
influences was the work of  William Paley, the theologian often
cited today by supporters of  creationism and intelligent (sic)
design.

Paley is most famous for his watchmaker analogy. If  you find a
watch on the ground, Paley wrote in 1802, you can see that it’s
nothing like a rock. The watch’s parts are clearly “put together for
a purpose,” adjusted to produce “motion so regulated as to point
out the hour of  the day.” The inevitable inference, Paley concluded,
was “the watch must have a maker . . . who comprehended its
construction, and designed its use.” Paley’s point was that the bio-
logical world was so full of  orderly complexity, exquisite adapta-
tion to the needs of  efficient living, that it must have been the
product of  an exquisite design, and hence, a designer. To arrive at
his own evolutionary theory, Darwin required an alternative logic
to explain the efficiency of  life. Adam Smith, Gould concluded,
supplied that logic.

“In fact, I would advance the even stronger claim that the
theory of  natural selection is, in essence, Adam Smith’s economics
transferred to nature,” Gould wrote. “Individual organisms engaged
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in the ‘struggle for existence’ act as the analog of  firms in compe-
tition. Reproductive success becomes the analog of  profit.”16  In
other words, as Smith argued, there is no need to design an effi-
cient economy (and in fact, a designer would be a bad idea). The
economy designs itself  quite well if  left alone, so that the indi-
viduals within that economy are free to pursue their self-interest.
Darwin saw a similar picture in biology: Organisms pursuing their
own interest (survival and reproduction) can create, over time, com-
plexities of  life that mirror the complexities of  an economy. In one
passage, Darwin refers specifically to the concept of  “division of
labor,” a favorite topic of  Smith’s. In his famous example of  the
pin factory, Smith described how specialization breeds efficiency.
It seemed to Darwin quite analogous to the origin of  new species
in nature.

“No naturalist doubts the advantage of  what has been called
the ‘physiological division of  labour’; hence we may believe that it
would be advantageous to a plant to produce stamens alone in one
flower or on one whole plant, and pistils alone in another flower
or on another plant,” Darwin wrote in Origin of  Species. Similar
advantages of  such specialization, he noted, apply to diversity
among organisms.

“We may, I think, assume that the modified descendants of  any
one species will succeed by so much the better as they become
more diversified in structure, and are thus enabled to encroach on
places occupied by other beings,” Darwin commented. “So in the
general economy of  any land, the more widely and perfectly the
animals and plants are diversified for different habits of  life, so
will a greater number of  individuals be capable of  there support-
ing themselves.”17

Clearly Darwin’s “general economy” of  life reflected sentiments
similar to those expressed in the “political economy” described by
Adam Smith. As Gould summed it up, Smith’s ideas may not work
so well in economics, but they are perfect for biology. And via
Smith’s insights, Paley’s argument for the necessity of  a creator is
refuted.18

“The very phenomena that Paley had revered as the most glori-
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ous handiwork of  God . . . ‘just happen’ as a consequence of
causes operating at a lower level among struggling individuals,”
Gould asserted.19

THE GAME’S AFOOT

In a way, Darwin’s Origin of  Species represents the third work in a
trilogy summarizing the scientific understanding of  the world at
the end of  the 19th century. Just as Newton had tamed the physi-
cal world in the 17th century, and Smith had codified economics
in the 18th, Charles Darwin in the 19th century added life to the
list. Where Smith followed in Newton’s footsteps, Darwin followed
in Smith’s. So by the end of  the 19th century, the groundwork was
laid for a comprehensive rational understanding of  just about ev-
erything.

Oddly, it seems, the 20th century produced no such book of
similar impact and fame.20  No volume arrived, for instance, to
articulate the long-sought Code of  Nature. But one book that ap-
peared in midcentury may someday be remembered as the first
significant step toward such a comprehensive handbook of  human
social behavior: Theory of  Games and Economic Behavior, by John
von Neumann and Oskar Morgenstern.
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Von Neumann’s Games
Game theory’s origins

Games combining chance and skill give the best rep-

resentation of  human life, particularly of  military

affairs and of  the practice of  medicine which neces-

sarily depend partly on skill and partly on chance. . . .

It would be desirable to have a complete study made

of  games, treated mathematically.

—Gottfried Wilhelm von Leibniz (quoted by

Oskar Morgenstern, Dictionary of  the History of  Ideas)

It’s no mystery why economics is called the dismal science.
With most sciences, experts make pretty accurate predictions.

Mix two known chemicals, and a chemist can tell you ahead of
time what you’ll get. Ask an astronomer when the next solar eclipse
will be, and you’ll get the date, time, and best viewing locations,
even if  the eclipse won’t occur for decades.

But mix people with money, and you generally get madness.
And no economist really has any idea when you’ll see the next
total eclipse of  the stock market. Yet many economists continue to
believe that they will someday practice a sounder science. In fact,
some would insist that they are already practicing a sounder
science—by viewing the economy as basically just one gigantic
game.

27
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At first glance, building economic science on the mathematical
theory of  games seems about as sensible as forecasting real-estate
trends by playing Monopoly. But in the past half  century, and
particularly the past two decades, game theory has established it-
self  as the precise mathematical tool that economists had long
lacked.

Game theory provides precision to the once fuzzy economic
notion about how consumers compare their preferences (a measure
labeled by the deceptively simple term utility). Even more impor-
tant, game theory shows how to determine the strategies necessary
to achieve the maximum possible utility—that is, to acquire the
highest payoff—the presumed goal of  every rational participant in
the dogfights of  economic life.

Yet while people have played games for millennia, and have
engaged in economic exchange for probably just as long, nobody
had ever made the connection explicit—mathematically—until the
20th century. This merger of  games with economics—the math-
ematical mapping of  the real world of  choices and money onto
the contrived realm of  poker and chess—has revolutionized the
use of  math to quantify human behavior. And most of  the credit
for game theory’s invention goes to one of  the 20th century’s
most brilliant thinkers, the magical mathman John von Neumann.

LACK OF FOCUS

If  any one person of  the previous century personified the word
polymath, it was von Neumann. I’m really sorry he died so young.

Had von Neumann lived to a reasonably old age—say, 80 or
so—I might have had the chance to hear him talk, or maybe even
interview him. And that would have given me a chance to observe
his remarkable genius for myself. Sadly, he died at the age of  53.
But he lived long enough to leave a legendary legacy in several
disciplines. His contributions to physics, mathematics, computer
science, and economics rank him as one of  the all-time intellectual
giants of  each field. Imagine what he could have accomplished if
he’d learned to focus himself !
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Of  course, he accomplished plenty anyway. Von Neumann
produced the standard mathematical formulation of  quantum
mechanics, for instance. He didn’t exactly invent the modern
digital computer, but he improved it and pioneered its use for sci-
entific research. And, apparently just for kicks, he revolutionized
economics.

Born in 1903 in Hungary, von Neumann was given the name
Janos but went by the nickname Jancsi. He was the son of  a banker
(who had paid for the right to use the honorific title von). As a
child, Jancsi dazzled adults with his mental powers, telling jokes in
Greek and memorizing the numbers in phone books. Later he en-
rolled in the University of  Budapest as a math major, but didn’t
bother to attend the classes—at the same time, he was majoring in
chemistry at the University of  Berlin. He traveled back to Budapest
for exams, aced them, and continued his chemical education, first
at Berlin and then later at the University of  Zurich.

I’ve recounted some of  von Neumann’s adult intellectual esca-
pades before (in my book The Bit and the Pendulum), such as the time
when he was called in as a consultant to determine whether the
Rand Corporation needed a new computer to solve a difficult prob-
lem. Rand didn’t need a new computer, von Neumann declared,
after solving the problem in his head. In her biography of  John
Nash, Sylvia Nasar relates another telling von Neumann anecdote,
about a famous trick-question math problem. Two cyclists start out
20 miles apart, heading for each other at 10 miles an hour. Mean-
while a fly flies back and forth between the bicycles at 15 miles an
hour. How far has the fly flown by the time the bicycles meet? You
can solve it by adding up the fly’s many shorter and shorter paths
between bikes (this would be known in mathematical terms as sum-
ming the infinite series). If  you detect the trick, though, you can
solve the problem in an instant—it will take the bikes an hour to
meet, so the fly obviously will have flown 15 miles.

When jokesters posed this question to von Neumann, sure
enough, he answered within a second or two. Oh, you knew the
trick, they moaned. “What trick?” said von Neumann. “All I did
was sum the infinite series.”
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Before von Neumann first came to America in 1930, he had
established himself  in Europe as an exceptionally brilliant math-
ematician, contributing major insights into such topics as logic and
set theory, and he lectured at the University of  Berlin. But he was
not exactly a bookworm. He enjoyed Berlin’s cabaret-style
nightlife, and more important for science, he enjoyed poker. He
turned his talent for both math and cards into a new paradigm for
economics—and in so doing devised mathematical tools that some-
day may reveal deep similarities underlying his many diverse sci-
entific interests. More than that, he showed how to apply rigorous
methods to social questions, not unlike Asimov’s Hari Seldon.

“Von Neumann was a brilliant mathematician whose contribu-
tions to other sciences stem from his belief  that impartial rules
could be found behind human interaction,” writes one commenta-
tor. “Accordingly, his work proved crucial in converting mathemat-
ics into a key tool to social theory.”1

UTILITY AND STRATEGY

By most accounts, the invention of  modern game theory came in a
technical paper published by von Neumann in 1928. But the roots
of  game theory reach much deeper. After all, games are as old as
humankind, and from time to time intelligent thinkers had consid-
ered how such games could most effectively be played. As a branch
of  mathematics, though, game theory did not appear in its modern
form until the 20th century, with the merger of  two rather simple
ideas. The first is utility—a measure of  what you want; the second
is strategy—how to get what you want.

Utility is basically a measure of  value, or preference. It’s an
idea with a long and complex history, enmeshed in the philosophi-
cal doctrine known as utilitarianism. One of  the more famous ex-
positors of  the idea was Jeremy Bentham, the British social
philosopher and legal scholar. Utility, Bentham wrote in 1780, is
“that property in any object, whereby it tends to produce benefit,
advantage, pleasure, good, or happiness . . . or . . . to prevent the
happening of  mischief, pain, evil, or unhappiness.”2  So to
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Bentham, utility was roughly identical to happiness or pleasure—
in “maximizing their utility,” individual people would seek to in-
crease pleasure and diminish pain. For society as a whole, maximum
utility meant “the greatest happiness of  the greatest number.”3

Bentham’s utilitarianism incorporated some of  the philosophical
views of  David Hume, friend to Adam Smith. And one of
Bentham’s influential followers was the British economist David
Ricardo, who incorporated the idea of  utility into his economic
philosophy.

In economics, utility’s usefulness depends on expressing it
quantitatively. Happiness isn’t easily quantifiable, for example, but
(as Bentham noted) the means to happiness can also be regarded as
a measure of  utility. Wealth, for example, provides a means of
enhancing happiness, and wealth is easier to measure. So in eco-
nomics, the usual approach is to measure self-interest in terms of
money. It’s a convenient medium of  exchange for comparing the
value of  different things. But in most walks of  life (except perhaps
publishing), money isn’t everything. So you need a general defini-
tion that makes it possible to express utility in a useful mathemati-
cal form.

One mathematical approach to quantifying utility came along
long before Bentham, in a famous 1738 result from Daniel
Bernoulli, the Swiss mathematician (one of  many famous
Bernoullis of  that era). In solving a mathematical paradox about
gambling posed by his cousin Nicholas, Daniel realized that utility
does not simply equate to quantity. The utility of  a certain amount
of  money, for instance, depends on how much money you already
have. A million-dollar lottery prize has less utility for Bill Gates
than it would for, say, me. Daniel Bernoulli proposed a method for
calculating the reduction in utility as the amount of  money
increased.4

Obviously the idea of  utility—what you want to maximize—
can sometimes get pretty complicated. But in many ordinary situa-
tions, utility is no mystery. If  you’re playing basketball, you want
to score the most points. In chess, you want to checkmate your
opponent’s king. In poker, you want to win the pot. Often
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your problem is not defining utility, but choosing a good strategy
to maximize it. Game theory is all about figuring out which strat-
egy is best.5

The first substantial mathematical attempt to solve that part of
the problem seems to have been taken by an Englishman named
James Waldegrave in 1713. Waldegrave was analyzing a two-
person card game called “le Her,” and he described a way to find
the best strategy, using what today is known as the “minimax” (or
sometimes “minmax”) approach. Nobody paid much attention to
Waldegrave, though, so his work didn’t affect later developments
of  game theory. Other mathematicians also occasionally dabbled
in what is now recognized to be game theory math, but there was
no one coherent approach or clear chain of  intellectual influence.
Only in the 20th century did really serious work begin on devis-
ing the mathematical principles behind games of  strategy. First
was Ernst Zermelo, a German mathematician, whose 1913 paper
examining the game of  chess is sometimes cited as the beginning
of  real game theory mathematics. He chose chess merely as an
illustration of  the more general idea of  a two-person game of
strategy where the players choose all the moves with no contribu-
tion from chance. And that is an important distinction, by the way.
Poker involves strategy, but also includes the luck of  the draw. If
you get a bum hand, you’re likely to lose no matter how clever
your strategy. In chess, on the other hand, all the moves are chosen
by the players—there’s no shuffling of  cards, tossing of  dice, flip-
ping coins, or spinning the wheel of  fortune. Zermelo limited him-
self  to games of  pure strategy, games without the complications
of  random factors.

Zermelo’s paper on chess apparently confused some of  its read-
ers, as many secondary reports of  his results are vague and contra-
dictory.6  But it seems he tried to show that if  the White player
managed to create an advantageous arrangement of  pieces—a
“winning configuration”—it would then be possible to end the
game within fewer moves than the number of  possible chessboard
arrangements. (Having an “advantageous arrangement” means
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achieving a situation from which White would be sure to win—
assuming no dumb moves—no matter what Black does.)

Using principles of  set theory (one of  von Neumann’s math-
ematical specialties, by the way), Zermelo proved that proposition.
His original proof  required some later tweaking by other math-
ematicians and Zermelo himself. But the main lesson from it all
was not so important for strategy in chess as it was to show that
math could be used to analyze important features of  any such
game of  strategy.

As it turns out, chess was a good choice because it is a perfect
example of  a particularly important type of  game of  strategy,
known as a two-person zero-sum game. It’s called “zero-sum” be-
cause whatever one player wins, the other loses. The interests of
the two competitors are diametrically opposed. (Chess is also a
game where the players have “perfect information.” That means the
game situation and all the decisions of  all the players are known at
all times—like playing poker with all the cards always dealt face
up.)

Zermelo did not address the question of  exactly what the best
strategy is to play in chess, or even whether there actually is a
surefire best strategy. The first move in that direction came from
the brilliant French mathematician Émile Borel. In the early 1920s,
Borel showed that there is a demonstrable best strategy in two-
person zero-sum games—in some special cases. He doubted that it
would be possible to prove the existence of  a certain best strategy
for such games in general.

But that’s exactly what von Neumann did. In two-person zero-
sum games, he determined, there is always a way to find the best
strategy possible, the strategy that will maximize your winnings
(or minimize your losses) to whatever extent is possible by the
rules of  the game and your opponent’s choices. That’s the modern
minimax7  theorem, which von Neumann first presented in De-
cember 1926 to the Göttingen Mathematical Society and then de-
veloped fully in his 1928 paper called “Zur Theorie der
Gesellshaftsspiele” (Theory of  Parlor Games), laying the founda-
tion for von Neumann’s economics revolution.8
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GAMES INVADE ECONOMICS

In his 1928 paper, von Neumann did not attempt to do econom-
ics9 —it was strictly math, proving a theorem about strategic games.
Only years later did he merge game theory with economics, with
the assistance of  an economist named Oskar Morgenstern.

Morgenstern, born in Germany in 1902, taught economics at
the University of  Vienna from 1929 to 1938. In a book published
in 1928, the same year as von Neumann’s minimax paper,
Morgenstern discussed problems of  economic forecasting. A par-
ticular point he addressed was the “influence of  predictions on
predicted events.” This, Morgenstern knew, was a problem peculiar
to the social sciences, including economics. When a chemist pre-
dicts how molecules will react in a test tube, the molecules are
oblivious. They do what they do the same way whether a chemist
correctly predicts it or not. But in the social sciences, people dis-
play much more independence than molecules do. In particular, if
people know what you’re predicting they will do, they might do
something else just to annoy you. More realistically, some people
might learn of  a prediction and try to turn that foreknowledge to
their advantage, upsetting the conditions that led to the prediction
and so throwing random factors into the outcome. (By the way, in
the Foundation Trilogy, that’s why Seldon’s Plan had to be so se-
cret. It wouldn’t work if  anybody knew what it was.)

Anyway, Morgenstern illustrated the problem with a scenario
from The Adventures of  Sherlock Holmes. In the story The Final Prob-
lem, Holmes was attempting to elude Professor Moriarty while trav-
eling from London to Paris. It wasn’t obvious that Holmes could
simply outthink Moriarty. Moriarty might anticipate what Holmes
was thinking. But then Holmes could anticipate Moriarty’s antici-
pation, and so on: I think that he thinks that I think that he thinks,
ad infinitum, or at least nauseum.10  Consequently, Morgenstern
concluded, the situation called for strategy. He returned to the
Holmes–Moriarty issue in a 1935 paper exploring the paradoxes
of  perfect future knowledge.

At that time, after a lecture on these issues, a mathematician
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named Eduard Čech approached Morgenstern and told him about
similar ideas in von Neumann’s 1928 paper on parlor games.
Morgenstern was entranced, and he awaited an opportunity to meet
von Neumann and discuss the relevance of  the 1928 paper to
Morgenstern’s views on economics.

The chance came in 1938, when Morgenstern accepted a three-
year appointment to lecture at Princeton University. (Von Neumann
had by then taken up his position at the nearby Institute for Ad-
vanced Study.) “The principal reason for my wanting to go to
Princeton,” Morgenstern said, “was the possibility that I might be-
come acquainted with von Neumann.”11  As Morgenstern told the
story, he soon revived von Neumann’s interest in game theory and
began writing a paper to show its relevance to economics. As von
Neumann critiqued early drafts, the paper grew longer, with von
Neumann eventually joining Morgenstern as a coauthor. By this
time—it was now 1940—the paper had grown substantially, and
it kept growing, ultimately into a book published by the Princeton
University Press in 1944. (Subsequent historical study suggests,
though, that von Neumann had previously written most of  the
book without Morgenstern’s help.12 )

Theory of  Games and Economic Behavior instantly became the
game theory bible. In the eyes of  game theory believers, it was to
economics what Newton’s Principia was to physics. It was a sort of
newtonizing of  Adam Smith, providing mathematical rigor to de-
scribe how individual interactions affect a collective economy. “We
hope to establish,” wrote von Neumann and Morgenstern, “that the
typical problems of  economic behavior become strictly identical
with the mathematical notions of  suitable games of  strategy.” It
will become apparent, they asserted, that “this theory of  games of
strategy is the proper instrument with which to develop a theory
of  economic behavior.”13  The authors then developed the theory
throughout more than 600 pages, dense with equations and dia-
grams. But the opening sections are remarkably readable, laying
out the authors’ goals and intentions in a kind of  extended pre-
amble designed to persuade skeptical economists that their field
needed an overhaul.
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While noting that many economists had already been using
mathematics, von Neumann and Morgenstern declared that “its use
has not been highly successful,” especially when compared to other
sciences such as physics. Throughout its early pages, the book
draws on physics as the model for how math can make murky
knowledge precise and practical—in contrast to economics, where
the basic ideas had been expressed so fuzzily that past efforts to
use math had been doomed. “Economic problems . . . are often
stated in such vague terms as to make mathematical treatment a
priori appear hopeless because it is quite uncertain what the prob-
lems really are,” the authors wrote.14  What economics needed was
a theory that made precise and meaningful measurements possible,
and game theory filled the bill.

Von Neumann and Morgenstern were careful to emphasize,
though, that their theory was just a first step. “There exists at
present no universal system of  economic theory,” they wrote, and
if  such a theory were ever to be developed, “it will very probably
not be during our lifetime.”15  But game theory could provide the
foundation for such a theory, by focusing on the simplest of  eco-
nomic interactions as a guide to developing general principles that
would someday be able to solve more complicated problems. Just
as modern physics began when Galileo studied the rather simple
problem of  falling bodies, economics could benefit from a similar
understanding of  simple economic behavior.

“The great progress in every science came when, in the study
of  problems which were modest as compared with ultimate aims,
methods were developed that could be extended further and fur-
ther,” von Neumann and Morgenstern declared.16  And so it made
sense to focus on the simplest aspect of economics—the economic
interaction of  individual buyers and sellers. While economic sci-
ence as a whole involves the entire complicated system of  produc-
ing and pricing goods, and earning and spending money, at the
root of  it all is the choicemaking of  the individuals participating
in the economy.
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ROBINSON CRUSOE MEETS GILLIGAN

Back in the days when von Neumann and Morgenstern were work-
ing all this out, standard economic textbooks extolled a simple
economic model of  their own, called the “Robinson Crusoe”
economy. Stranded on a desert island, Crusoe was an economy
unto himself. He made choices about how to use the resources
available to him to maximize his utility, coping only with the cir-
cumstances established by nature.

Samuel Bowles, an economist at the University of  Massachu-
setts, explained to me that textbooks viewed economics as just the
activities of  many individual Robinson Crusoes. Where Crusoe
interacted with nature, consumers in a big-time economy inter-
acted with prices. And that was the standard “neoclassical” view of
economic theory. “That’s what everybody taught,” Bowles said.
“But there was something odd about it.” It seemed to be a theory
of  social interactions based on someone who had interacted only
nonsocially, that is, with nature, not with other people. “Game
theory adopts a different framework,” Bowles said. “I’m in a situa-
tion in which my well-being depends on what somebody else does,
and your well-being depends on what I do—therefore we are go-
ing to think strategically.”17

And that ’s exactly the point that von Neumann and
Morgenstern stressed back in 1944. The Robinson Crusoe
economy is fundamentally different, conceptually, from a Gilligan’s
Island economy. It’s not just the complication of  social influences
from other people affecting your choices about the prices of  goods
and services. The results of  your choices—and thus your ability to
achieve your desired utility—are inevitably intertwined with the
choices of  the others. “If  two or more persons exchange goods
with each other, then the result for each one will depend in general
not merely upon his own actions but on those of  the others as
well,” von Neumann and Morgenstern declared.18

Mathematically, that meant that no longer could you simply
compute a single simple maximum utility for Robinson Crusoe.
Your calculations had to accommodate a mixture of  competing
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goals, maximum utilities for Gilligan, the Skipper too, the million-
aire, and his wife, the movie star, the Professor and Mary Ann.
“This kind of  problem is nowhere dealt with in classical math-
ematics,” von Neumann and Morgenstern noted.

Indeed, Bentham’s notion of  the “greatest possible good of
the greatest possible number” is mathematically meaningless. It’s
like saying you want the most possible food at the least possible
cost. Think about it—you can have zero cost (and no food) or all
the food in the world, at a very high cost. Which do you want? You
certainly can’t calculate an answer to that question. In a Gilligan’s
Island economy, it’s not really an issue of  wanting the maximum
utility for the maximum number, but rather that all the individuals
want their own personal possible maximum. In other words, “All
maxima are desired at once—by various participants.”19  And in
trying to fulfill their desires, every individual’s actions will be in-
fluenced by expectations of  everyone else’s actions, and vice versa,
the old “I think he thinks I think” problem. That makes a social
economy, with multiple participants, inherently distinct from the
Robinson Crusoe economy. “And it is this problem which the
theory of  ‘games of  strategy’ is mainly devised to meet,” von
Neumann and Morgenstern announced.20

Of  course, it is easier said than done. It’s one thing to realize
that Gilligan’s Island is more complex than Robinson Crusoe’s; it’s
something else again to figure out how to do the math. Sure, you
can start with something simple, like analyzing the interactions
between just two people. Then, once you understand how two
people will interact, you can use the same principles to analyze
what will happen when a third person enters the game, and then a
fourth, and so on. (Eventually, then, you would possess the elusive
Code of  Nature, once you mastered the math of  analyzing the
behavior of  all the individuals in society as a whole.)

However, you can see how things would rapidly become diffi-
cult to keep track of. Each person in the game (or the economy)
will make choices based on a wide range of  variables. In the
Robinson Crusoe economy, his set of  variables encompasses all
those factors that would affect his quest for maximum utility. But
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if  the Minnow had beached on Crusoe’s island, each new player
would have brought an additional set of  variables of  his or her
own into the game. Then Crusoe would need to take all of  those
new variables into account, too.

On top of  all that, more players means a more complex
economy, more kinds of  goods and services, different methods of
production. So the social economy rapidly becomes a mathemati-
cal nightmare, it would seem, beyond even the ability of  the know-
it-all Professor to resolve. But there is hope, for economics and for
understanding society, and it’s a hope that’s based on the simple
idea of  taking a temperature.

TAKING SOCIETY’S TEMPERATURE

In drawing analogies between economics and physics, von
Neumann and Morgenstern talked a lot about the theory of  heat
(or, as it is more pretentiously known, thermodynamics). They
pointed out, for instance, that measuring heat precisely did not
lead to a theory of  heat; physicists needed the theory first, in order
to understand how to measure heat in an unambiguous way. In a
similar way, game theory needed to be developed first to give
economists the tools they needed to measure economic variables
properly.

The example of  the theory of  heat played another crucial
role—in articulating a basic issue within game theory itself. At the
outset, von Neumann and Morgenstern made it clear that they did
not want to venture into the philosophical quagmire of  defining
all the nuances of  utility. For them, to develop game theory for use
in economics, it was enough to equate utility with money. For the
businessman, money (as in profits) is a logical measure of  utility;
for consumers, income (minus expenses) is a good measure of  util-
ity, or you could think of  the utility of  an object as the price you
were willing to pay for it. And money can be used as a currency for
translating what anyone wants into more specific objects or events
or experiences or whatever. So equating utility with money is a
convenient simplifying assumption, allowing the theory to focus
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on the strategic aspects of  how to achieve what you want, without
worrying about the complications involved in defining what you
want.

However, there remained an important aspect of  utility that
von Neumann and Morgenstern had to address. Was it even pos-
sible, in the first place, to define utility in a numerical way, to make
it susceptible to a mathematical theory? (Bernoulli had proposed a
way to calculate utility, but he had not tried to prove that the
concept could be a basis for making rational choices in a consistent
way.) Money (which obviously is numerical) could really be a good
stand-in for the more complex concept of  utility only if  utility can
really be represented by a numerical concept. And so they had to
show that it was possible to define utility in a mathematically rig-
orous way. That meant identifying axioms from which the notion
of  utility could be deduced and measured quantitatively.

As it turned out, utility could be quantified in a way not unlike
the approach physicists used to construct a scientifically rigorous
definition of  temperature. After all, primitive notions of  utility and
temperature are similar. Utility, or preference, can be thought of  as
just a rank ordering. If  you prefer A to B, and B to C, you surely
prefer A to C. But it is not so obvious that you can ascribe a num-
ber to how much you prefer A to B, or B to C. It was once much the
same with heat—you could say that something felt warmer or
cooler than something else, but not necessarily how much, cer-
tainly not in a precise way—before the development of  the theory
of  heat. But nowadays the absolute temperature scale, based on
the laws of  thermodynamics, gives temperature an exact quantita-
tive meaning. And von Neumann and Morgenstern showed how
you could similarly convert rank orderings into numerically pre-
cise measures of  utility.

You can get the essence of  the method from playing a modi-
fied version of  Let’s Make a Deal. (For the youngsters among you,
that was a famous TV game show, in which host Monty Hall of-
fered contestants a chance to trade their prizes for possibly more
valuable prizes, at the risk of  getting a clunker.) Suppose Monty
offers you three choices: a BMW convertible, a top-of-the-line big-
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screen plasma TV, or a used tricycle. Let’s say you want the BMW
most of  all, and that you’d prefer the TV to the tricycle. So it’s a
simple matter to rank the relative utility of  the three products. But
here comes the deal. Your choice is to get either the plasma TV,
OR a 50-50 chance of  getting the BMW. That is, the TV is behind
Door Number 1, and the BMW is behind either Door Number 2
or Door Number 3. The other door conceals the tricycle.

Now you really have to think. If  you choose Door Number
1—the plasma TV—you must value it at more than 50 percent as
much as the BMW. But suppose the game is more complicated,
with more doors, and the odds change to a 60 percent chance of
the BMW, or 70 percent. At some point you will be likely to opt
for the chance to get the BMW, and at that point, you could con-
clude that the utilities are numerically equal—you value the plasma
TV at, say, 75 percent as much as the BMW (plus 25 percent of  the
tricycle, to be technically precise). Consequently, to give utility a
numerical value, you just have to arbitrarily assign some number to
one choice, and then you can compare other choices to that one
using the probabilistic version of  Let’s Make a Deal.

So far so good. But there remains the problem of  operating in
a social economy where your personal utility is not the only is-
sue—you have to anticipate the choices of  others. And in a small-
scale Gilligan’s Island economy, pure strategic choices can be
subverted by things like coalitions among some of  the players.
Again, the theory of  heat offers hope.

Temperature is a measure of  how fast molecules are moving. In
principle, it’s not too hard to describe the velocity of  a single
molecule, just as you could easily calculate Robinson Crusoe’s util-
ity. But you’d have a hard time with Gilligan’s Island, just as it
becomes virtually impossible to keep track of  all the speeds of  a
relatively few number of  interacting molecules. But if  you have a
trillion trillion molecules or so, the interactions tend to average
out, and using the theory of  heat you can make precise predictions
about temperature. (The math behind this is, of  course, statistical
mechanics, which will become even more central to the game
theory story in later chapters.)
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As von Neumann and Morgenstern pointed out, “very great
numbers are often easier to handle than those of  medium size.”21

That was exactly the point made by Asimov’s psychohistorians:
Even though you can’t track each individual molecule, you can
predict the aggregate behavior of  vast numbers, precisely what
taking the temperature of  a gas is all about. You can measure a
value related to the average velocity of  all the molecules, which
reflects the way the individual molecules interact. Why not do the
same for people? It worked for Hari Seldon. And it might work for
a sufficiently large economy. “When the number of  participants
becomes really great,” von Neumann and Morgenstern wrote,
“some hope emerges that the influence of  every particular partici-
pant will become negligible.”22

With the basis for utility established at the outset, von
Neumann and Morgenstern could proceed simply by taking money
to be utility’s measure. The bulk of  their book was then devoted to
the issue of  finding the best strategy to make the most money.

At this point, it’s important to clarify what they meant by the
concept of  strategy. A strategy in game theory is a very specific
course of  action, not a general approach to the game. It’s not like
tennis, for instance, where your strategy might be “play aggres-
sively” or “play safe shots.” A game theory strategy is a defined set
of  choices to make for every possible circumstance that might arise.
In tennis, your strategy might be to “never rush the net when your
opponent serves; serve and volley whenever you are even or ahead
in a game; always stay back when behind in a game.” And you’d
have other rules for all the other situations.

There’s one additional essential point about strategy in game
theory—the distinction between “pure” strategies and “mixed”
strategies. In tennis, you might rush the net after every serve (a
pure strategy) or you might rush the net after one out of  every
three serves, staying back at the baseline two times out of  three (a
mixed strategy). Mixed strategies often turn out to be essential for
making game theory work.

In any event, the question isn’t whether there is always a good
general strategy, but whether there is always an optimum set of
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rules for strategic behavior that covers all eventualities. And in fact,
there is—for two-person zero-sum games. You can find the best
strategy using the minimax theorem that von Neumann published
in 1928. His proof  of  that theorem was notoriously complicated.
But its essence can be boiled down into something fairly easy to
remember: When playing poker, sometimes you need to bluff.

MASTERING MINIMAX

The secret behind the minimax approach in two-person zero-sum
games is the need to remember that whatever one player wins, the
other loses (the definition of  zero sum). So your strategy should
seek to maximize your winnings, which would have the effect of
minimizing your opponent’s winnings. And of  course your oppo-
nent wants to do the same.

Depending on the game, you may be able to play as well as
possible and still not win anything, of  course. The rules and stakes
may be such that whoever plays first will always win, for instance,
and if  you go second, you’re screwed. Still, it is likely that some
strategies will lose more than others, so you would attempt to mini-
mize your opponent’s gains (and your losses). The question is, what
strategy do you choose to do so? And should you stick with that
strategy every time you play?

It turns out that in some games, you may indeed find one pure
strategy that will maximize your winnings (or minimize your losses)
no matter what the other player does. Obviously, then, you would
play that strategy, and if  the game is repeated, you would play the
same strategy every time. But sometimes, depending on the rules
of  the game, your wisest choice will depend on what your oppo-
nent does, and you might not know what that choice will be. That’s
where game theory gets interesting.

Let’s look at an easy example first. Say that Bob owes Alice
$10. Bob proposes a game whereby if  he wins, his debt will be
reduced. (In the real world, Alice will tell Bob to take a hike and
fork over the $10.) But for purposes of  illustrating game theory,
she might agree.
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Bob suggests these rules: He and Alice will meet at the library.
If  he gets there first, he pays Alice $4; if  she gets there first, he
pays her $6. If  they both arrive at the same time, he pays $5. (As I
said, Alice would probably tell him to shove it.)

Now, let’s say they live together, or at least live next door to
each other. They both have two possible strategies for getting to
the library—walking or taking the bus. (They are too poor to own
a car, which is why Bob is haggling over the $10.) And they both
know that the bus will always beat walking. So this game is
trivial—both will take the bus, both will arrive at the same time,
and Bob will pay Alice $5.23  And here’s how game theory shows
what strategy to choose: a “payoff  matrix.” The numbers show
how much the player on the left (Alice) wins.

Bob

Bus Walk

Bus 5 6
Alice

Walk 4 5

In a zero-sum game, the numbers in a payoff matrix designate
how much the person on the left (in this case, Alice) wins (since
it’s zero sum, the numbers tell how much the player on top, Bob,
loses). If the number is negative, that means the player on top
wins that much (negative numbers signaling a loss for Alice). In
non-zero-sum games, each matrix cell will include two numbers,
one for each player (or more if there are more players, which
makes it very hard to show the matrix for multiplayer games).

Obviously, Alice must choose the bus strategy because it al-
ways does as well as or better than walking, no matter what Bob
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does. And Bob will choose the bus also, because it minimizes his
losses, no matter what Alice does. Walking can do no better and
might be worse.

Of  course, you didn’t need game theory to figure this out. So
let’s look at another example, from real-world warfare, a favorite
of  game theory textbooks.

In World War II, General George Kenney knew that the Japa-
nese would be sending a convoy of  supply ships to New Guinea.
The Allies naturally wanted to bomb the hell out of  the convoy.
But the convoy would be taking one of  two possible routes—one
to the north of  New Britain, one to the south.

Either route would take three days, so in principle the Allies
could get in three days’ worth of  bombing time against the con-
voy. But the weather could interfere. Forecasters said the northern
route would be rainy one of  the days, limiting the bombing time
to a maximum of  two days. The southern route would be clear,
providing visibility for three days of  bombing. General Kenney
had to decide whether to send his reconnaissance planes north or
south. If  he sent them south and the convoy went north, he would
lose a day of  bombing time (of  only two bombing days available).
If  the recon planes went north, the bombers would still have time
to get two bombing days in if  the convoy went south.

So the “payoff ” matrix looks like this, with the numbers giving
the Allies’ “winnings” in days of  bombing:

Japanese

North South

North 2 2
Allies

South 1 3
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If  you just look at this game matrix from the Allies’ point of
view, you might not see instantly what the obvious strategy is. But
from the Japanese side, you can easily see that going north is the
only move that makes sense. If  the convoy took the southern route,
it was guaranteed to get bombed for two days and maybe even
three. By going north, it would get a maximum of  two days (and
maybe only one), as good as or better than any of  the possibilities
going south. General Kenney could therefore confidently conclude
that the Japanese would go north, so the only logical Allies strat-
egy would be to send the reconnaissance planes north as well. (The
Japanese did in fact take the northern route and suffered heavy
losses from the Allied bombers.)

Proper strategies are not, of  course, always so obvious. Let’s
revisit Alice and Bob and see what happened after Alice refused to
play Bob’s stupid game. Knowing that she was unlikely ever to get
her whole $10 back, she proposed another game that would cause
Bob to scratch his head about what strategy to play.

In Alice’s version of  the game, they go the library every week-
day for a month. If  they both ride the bus, Bob pays Alice $3. If
they both walk, Bob pays Alice $4. If  Bob rides the bus and Alice
walks, arriving second, Bob pays $5. If  Bob walks and Alice rides
the bus, arriving first, Bob pays $6. If  you are puzzled, don’t worry.
This game puzzles Bob, too. Here’s the matrix.

Bob

Bus Walk

Bus 3 6
Alice

Walk 5 4

Bob realizes there is no simple strategy for playing this game. If  he
rides the bus, he might get off  paying only $3. But Alice, realizing
that, will probably walk, meaning Bob would have to pay her $5.
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So Bob might decide to walk, hoping to pay only $4. But then
Alice might figure that out and ride the bus, so Bob would have to
pay her $6. Neither Bob nor Alice can be sure of  what the other
will do, so there is no obvious “best” strategy.

Remember, however, that Alice required the game to be played
repeatedly, say for a total of  20 times. Nothing in the rules says
you have to play the same strategy every day. (If  you did, that
would be a pure strategy—one that never varied.) To the contrary,
Alice realizes that she should play a mixed strategy—some days
walking, some days riding the bus. She wants to keep Bob guess-
ing. Of  course, Bob wants to keep Alice guessing too. So he will
take a mixed strategy approach also.

And that was the essence of  von Neumann’s ingenious insight.
In a two-person zero-sum game, you can always find a best
strategy—it’s just that in many cases the best strategy is a mixed
strategy.

In this particular example, it’s easy to calculate the best mixed
strategies for Alice and Bob. Remember, a mixed strategy is a mix
of  pure strategies, each to be chosen a specific percentage of  the
time (or in other words, with a specific probability).24  So Bob
wants to compute the ratio of  the percentages for choosing “walk”
versus “bus,” using a recipe from an old game theory book that he
found in the library.25  Following the book’s advice, he compares
the payoffs for each choice when Alice walks (the first row of  the
matrix) to the values when Alice takes the bus (the second row of
the matrix), subtracting the payoffs in the second row from those
in the first. (The answers are -2 and 2, but the minus sign is irrel-
evant.) Those two numbers determine the best ratio for Bob’s two
strategies—2:2, or 50-50. (Note, however, that it is the number in
the second column that determines the proportion for the first
strategy, and the number in the first column that determines the
proportion for the second strategy. It just so happened that in this
case the numbers are equal.) For Alice, on the other hand, subtract-
ing the second column from the first column gives -3 and 1 (or 3
and 1, ignoring the minus sign). So she should play the first strat-
egy (bus) three times as often as the second strategy (walk).26
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Consequently, Alice should ride the bus one time in four and
walk three-fourths of  the time. Bob should ride the bus half  the
time and walk half  the time. Both should decide which strategy to
choose by using some suitable random-choice device. Bob could
just flip a coin; Alice might use a random number table, or a game
spinner with three-fourths of  the pie allocated to walking and
one-fourth to the bus.27  If  either Alice or Bob always walked (or
took the bus), the other would be able to play a more profitable
strategy.

So you have to keep your opponent guessing. And that’s why
game theory boils down to the need to bluff  while playing poker.
If  you always raise when dealt a good hand but never when dealt a
poor hand, your opponents will be able to figure out what kind of
a hand you hold.

Real poker is too complicated for an easy game theory analy-
sis. But consider a simple two-player version of  poker, where Bob
and Alice are each dealt a single card, and black always beats red.28

Before the cards are dealt, each player antes $5, so there is $10 in
the pot. Alice then plays first, and she may either fold or bet an
additional $3. If  she folds, both players turn over their cards, and
whoever holds a black card wins the pot. (If  both have black or
both have red, they split the pot.)

If  Alice wagers the additional $3, Bob can then either match
the $3 and call (making a total of  $16 in the pot) or fold. If  he
folds, Alice takes the $13 in the pot; if  he calls, they turn over their
cards to see who wins the $16.

You’d think, at first, that if  Alice had a red card she’d simply
pass and hope that Bob also had red. But if  she bets, Bob might
think she must have black. If  he has red, he might fold—and Alice
will win with a red card. Bluffing sometimes pays off. On the
other hand, Bob knows that Alice might be bluffing (since she is
not a Vulcan), and so he may go ahead and call.

The question is, how often should Alice bluff, and how often
should Bob call her (possible) bluff ? Maybe von Neumann could
have figured that out in his head, but I think most people would
need game theory.
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A matrix for this game would show that both players can
choose from four strategies. Alice can always pass, always bet, pass
with red and bet with black, or bet with red and pass with black.
Bob can always fold, always call, fold with red and call with
black, or fold with black and call with red. If  you calculate the
payoffs, you will see that Alice should bet three-fifths of  the time
no matter what card she has; the other two-fifths of  the time she
should bet only if  she has black. Bob, on the other hand, should
call Alice’s bet two-fifths of  the time no matter what card he has;
three-fifths of  the time he should fold if  he has red and call if  he
has black.29 (By the way, another thing game theory can show you
is that this game is stacked in favor of  Alice, if  she always goes
first. Playing the mixed strategies dictated by the game matrix as-
sures her an average of  30 cents per hand.)

The notion of  a mixed strategy, using some random method to
choose from among the various pure strategies, is the essence of
von Neumann’s proof  of  the minimax theorem. By choosing the
correct mixed strategy, you can guarantee the best possible out-
come you can get—if  your opponent plays as well as possible.
If  your opponent doesn’t know game theory, you might do even
better.

BEYOND GAMES

Game theory was not supposed to be just about playing poker or
chess, or even just about economics. It was about making strategic
decisions—whether in the economy or in any other realm of  real
life. Whenever people compete or interact in pursuit of  some goal,
game theory describes the outcomes to be expected by the use of
different strategies. If  you know what outcome you want, game
theory dictates the proper strategy for achieving it. If  you believe
that people interacting with other people are all trying to find the
best possible strategy for achieving their desires, it makes sense
that game theory might potentially be relevant to the modern idea
of  a Code of  Nature, the guide to human behavior.

In their book, von Neumann and Morgenstern did not speak
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of  a “Code of  Nature,” but did allude to game theory as a descrip-
tion of  “order of  society” or “standard of  behavior” in a social
organization. And they emphasized how a “theory of  social phe-
nomena” would require a different sort of  math from that com-
monly used in physics—such as the math of  game theory. “The
mathematical theory of  games of  strategy,” they wrote, “gains defi-
nitely in plausibility by the correspondence which exists between
its concepts and those of  social organizations.”30

In its original form, though, game theory was rather limited as
a tool for coping with real-world strategic problems. You can find
examples of  two-person zero-sum games in real life, but they are
typically either so simple that you don’t need game theory to tell
you what to do, or so complicated that game theory can’t incorpo-
rate all the considerations.

Of  course, expecting the book that introduces a new field to
solve all of  that field’s problems would be a little unrealistic. So it’s
no surprise that in applying game theory to situations more com-
plicated than the two-person zero-sum game, von Neumann and
Morgenstern were not entirely successful. But it wasn’t long before
game theory’s power was substantially enhanced, thanks to the
beautiful math of  John Forbes Nash.
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Nash’s Equilibrium
Game theory’s foundation

Nash’s theory of  noncooperative games should now

be recognized as one of  the outstanding intellectual

advances of  the twentieth century . . . comparable to

that of  the discovery of  the DNA double helix in the

biological sciences.

 —economist Roger Myerson

As letters of  recommendation go, it was not very elaborate, just a
single sentence: “This man is a genius.”

That was how Carnegie Tech professor R. L. Duffin described
John Nash to the faculty at Princeton University, where Nash en-
tered as a 20-year-old graduate student in 1948. Within two years,
Duffin’s assessment had been verified. Nash’s “beautiful mind” had
by then launched an intellectual revolution that eventually pro-
pelled game theory from the fad du jour to the foundation of  the
social sciences.

Shortly before Nash’s arrival at Princeton, von Neumann and
Morgenstern had opened a whole new continent for mathematical
exploration with the groundbreaking book Theory of  Games and
Economic Behavior. It was the Louisiana Purchase of  economics.
Nash played the role of  Lewis and Clark.

As it turned out, Nash spent more time in the wilderness than
Lewis and Clark did, as mental illness robbed the rationality of  the

3
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man whose math captured rationality’s essence. But before his pro-
longed departure, Nash successfully steered game theory toward
the mathematical equivalent of  manifest destiny. Though not
warmly welcomed at first, Nash’s approach to game theory eventu-
ally captured a major share of  the economic-theory market, lead-
ing to his Nobel Prize for economics in 1994. By then game theory
had also conquered evolutionary biology and invaded political sci-
ence, psychology, and sociology. Since Nash’s Nobel, game theory
has infiltrated anthropology and neuroscience, and even physics.
There is no doubt that game theory’s wide application throughout
the intellectual world was made possible by Nash’s math.

“Nash carried social science into a new world where a unified
analytical structure can be found for studying all situations of  con-
flict and cooperation,” writes University of  Chicago economist
Roger Myerson. “The theory of  noncooperative games that
Nash founded has developed into a practical calculus of  incentives
that can help us to better understand the problems of  conflict
and cooperation in virtually any social, political, or economic
institution.”1

So it’s not too outrageous to suggest that in a very real way,
Nash’s math provides the foundation for a modern-day Code of
Nature. But of  course it’s not as simple as that. Since its inception,
game theory has had a complicated and controversial history. To-
day it is worshiped by some but still ridiculed by others. Some
experimenters claim that their results refute game theory; others
say the experiments expand game theory and refine it. In any event,
game theory has assumed such a prominent role in so many realms
of  science that it can no longer intelligently be ignored, as it often
was in its early days.

IGNORED AT BIRTH

When von Neumann and Morgenstern introduced game theory as
the math for economics, it made quite a splash. But most econo-
mists remained dry. In the mid-1960s, the economics guru Paul
Samuelson praised the von Neumann–Morgenstern book’s insight
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and impact—in other fields. “The book has accomplished every-
thing except what it started out to do—namely, revolutionize eco-
nomic theory,” Samuelson wrote.2

It’s not that economists hadn’t heard about it. In the years
following its publication, Theory of  Games and Economic Behavior
was widely reviewed in social science and economics journals. In
the American Economic Review, for example, Leonid Hurwicz ad-
mired the book’s “audacity of  vision” and “depth of  thought.”3

“The potentialities of  von Neumann’s and Morgenstern’s new ap-
proach seem tremendous and may, one hopes, lead to revamping,
and enriching in realism, a good deal of  economic theory,”
Hurwicz wrote. “But to a large extent they are only potentialities:
results are still largely a matter of  future developments.”4  A more
enthusiastic assessment appeared in a mathematics journal, where a
reviewer wrote that “posterity may regard this book as one of  the
major scientific achievements of  the first half  of  the twentieth
century.”5

The world at large also soon learned about game theory. In
1946, the von Neumann–Morgenstern book rated a front page
story in the New York Times; three years later a major piece ap-
peared in Fortune magazine.

It was also clearly appreciated from the beginning that game
theory promised applications outside economics—that (as von
Neumann and Morgenstern had themselves emphasized) it con-
tained elements of  the long-sought theory of  human behavior
generally. “The techniques applied by the authors in tackling eco-
nomic problems are of  sufficient generality to be valid in political
science, sociology, or even military strategy,” Hurwicz pointed out
in his review.6  And Herbert Simon, a Nobel laureate-to-be, made
similar observations in the American Journal of  Sociology. “The stu-
dent of  the Theory of  Games . . . will come away from the volume
with a wealth of  ideas for application . . . of  the theory into a
fundamental tool of  analysis for the social sciences.”7

Yet it was also clear from the outset that the original theory of
games was severely limited. Von Neumann had mastered two-
person zero-sum games, but introducing multiple players led to



54 A BEAUTIFUL MATH

problems. Game theory worked just fine if  Robinson Crusoe was
playing games with Friday, but the math for Gilligan’s Island wasn’t
as rigorous.

Von Neumann’s approach to multiple-player games was to as-
sume that coalitions would form. If  Gilligan, the Skipper, and Mary
Ann teamed up against the Professor, the Howells, and Ginger, you
could go back to the simple two-person game rules. Many players
might be involved, but if  they formed two teams, the teams could
take the place of  individual players in the mathematical analysis.

But as later commentators noted, von Neumann had led him-
self  into an inconsistency, threatening his theory’s internal integ-
rity. A key part of  two-person zero-sum games was choosing a
strategy that was the best you could do against a smart opponent.
Your best bet was to play your optimal (probably mixed) strategy
no matter what anybody else did. But if  coalitions formed among play-
ers in many-person games, as von Neumann believed they would,
that meant your strategy would in fact depend on coordinating it
with at least some of  the other players. In any event, game theory
describing many players interacting in non-zero-sum situations—
that is, game theory applicable to real life—needed something more
than the original Theory of  Games had to offer. And that’s what
John Nash provided.

BEAUTIFUL MATH

The book A Beautiful Mind offers limited insight into Nash’s math,
particularly in regard to all the many areas of  science where that
math has lately become prominent.8  But the book reveals a lot
about Nash’s personal troubles. Sylvia Nasar’s portrait of  Nash
is not very flattering, though. He is depicted as immature, self-
centered, arrogant, uncaring, and oblivious. But brilliant.

Nash was born in West Virginia, in the coal-mining town of
Bluefield, in 1928. While showing some interest in math in high
school (he even took some advanced courses at a local college), he
planned to become an electrical engineer, like his father. But by the
time he enrolled at Carnegie Tech (the Carnegie Institute of  Tech-
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nology) in Pittsburgh, his choice for major had become chemical
engineering. He soon switched to chemistry, but that didn’t last,
either. Finding no joy in manipulating laboratory apparatus, Nash
turned to math, where he excelled.

He first mixed math with economics while taking an under-
graduate course at Carnegie Tech in international economics. In
that class Nash conceived the idea for a paper on what came to be
called the “bargaining problem.” As later observers noted, it was a
paper obviously written by a teenager—not because it was intel-
lectually naive, but because the bargaining he considered was over
things like balls, bats, and pocket knives. Nevertheless the math-
ematical principles involved were clearly relevant to more sophisti-
cated economic situations.

When Nash arrived at Princeton in 1948, it had already be-
come game theory’s world capital. Von Neumann was at the Insti-
tute for Advanced Study, just a mile from the university, and
Morgenstern was in the Princeton economics department. And at
the university math department, a cadre of  young game theory
enthusiasts had begun exploring the new von Neumann–
Morgenstern continent in earnest. Nash himself  attended a game
theory seminar led by Albert W. Tucker (but also explored
game theory’s implications on his own).

Shortly after his arrival, Nash realized that his undergraduate
ideas about the “bargaining problem” represented a major new
game theory insight. He prepared a paper for publication (with
assistance from von Neumann and Morgenstern, who “gave helpful
advice as to the presentation”).

“Bargaining” represents a different form of  game theory in
which the players share some common concerns. Unlike the two-
person zero-sum game, in which the loser loses what the winner
wins, a bargaining game offers possible benefits to both sides. In
this “cooperative” game theory, the goal is for all players to do the
best they can, but not necessarily at the expense of  the others. In a
good bargain, both sides gain. A typical real-life bargaining situa-
tion would be negotiations between a corporation and a labor
union.
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In his bargaining paper, Nash discussed the situation when
there is more than one way for the players to achieve a mutual
benefit. The problem is to find which way maximizes the benefit
(or utility) for both sides—given that both players are rational (and
know how to quantify their desires), are equally skilled bargainers,
and are equally knowledgeable about each other’s desires.

When bargaining over a possible exchange of  resources (in
Nash’s example, things like a book, ball, pen, knife, bat, and hat),
the two players might assess the values of  the objects differently.
(To the athletic minded, a bat might seem more valuable than a
book, while the more intellectually oriented bargainer might rank
the book more valuable than the bat.) Nash showed how to con-
sider such valuations and compute each player’s gain in utility for
various exchanges, providing a mathematical map for finding the
location of  the optimal bargain—the one giving the best deal
for both (in terms of  maximizing the increase in their respective
utilities).9

SEEKING EQUILIBRIUM

Nash’s bargaining problem paper would in itself  have established
him as one of  game theory’s leading pioneers. But it was another
paper, soon to become his doctoral dissertation, that established
Nash as the theory’s prophet. It was the paper introducing the
“Nash equilibrium,” eventually to become game theory’s most
prominent pillar.

The idea of  equilibrium is, of  course, immensely important to
many realms of  science. Equilibrium means things are in balance,
or stable. And stability turns out to be an essential idea for under-
standing many natural processes. Biological systems, chemical and
physical systems, even social systems all seek stability. So identify-
ing how stability is reached is often the key to predicting the fu-
ture. If  a situation is unstable—as many often are—you can predict
the future course of  events by figuring out what needs to happen
to achieve stability. Understanding stability is a way of  knowing
where things are going.



NASH’S EQUILIBRIUM 57

The simplest example is a rock balanced atop a sharply peaked
hill. It’s not a very stable situation, and you can predict the future
pretty confidently: That rock is going to roll down the hill, reach-
ing an equilibrium point in the valley. Another common example
of  equilibrium shows up when you try to dissolve too much sugar
in a glass of  iced tea. A pile of  sugar will settle at the bottom of
the glass. When the solution reaches equilibrium, molecules will
continue to dissolve out of  the pile, but at the same rate as other
sugar molecules drop out of  the tea and join the pile. The tea is
then in a stable situation, maintaining a constant sweetness.

It’s the same principle, just a little more complicated, in a
chemical reaction, where stability means achieving a state of
“chemical equilibrium,” in which the amounts of  the reacting
chemicals and their products remain constant. In a typical reaction,
two different chemical substances interact to produce a new, third
substance. But it’s often not the case that both original substances
will entirely disappear, leaving only the new one. At first, amounts
of  the reacting substances will diminish as the quantity of  the
product grows. But eventually you may reach a point where the
amount of  each substance doesn’t change. The reaction contin-
ues—but as the first two substances react to make the third, some
of  the third decomposes to replenish supplies of  the first two. In
other words, the action continues, but the big picture doesn’t
change.

That’s chemical equilibrium, and it is described mathemati-
cally by what chemists call the law of  mass action. Nash had just
this sort of  physical equilibrium in mind when he was contemplat-
ing stability in game theory. In his dissertation he refers to “the
‘mass-action’ interpretation of  equilibrium,” and that such an equi-
librium is approached in a game as players “accumulate empirical
information” about the payoffs of  their strategies.10

When equilibrium is reached in a chemical reaction, the quan-
tities of  the chemicals no longer change; when equilibrium is
reached in a game, nobody has any incentive to change strate-
gies—so the choice of  strategies should remain constant (the game
situation is, in other words, stable). All the players should be satis-
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fied with the strategy they’ve adopted, in the sense that no other
strategy would do better (as long as nobody else changes strate-
gies, either). Similarly, in social situations, stability means that ev-
erybody is pretty much content with the status quo. It may not be
that you like things the way they are, but changing them will only
make things worse. There’s no impetus for change, so like a rock in
a valley, the situation is at an equilibrium point.

In a two-person zero-sum game, you can determine the equi-
librium point using von Neumann’s minimax solution. Whether
using a pure strategy or a mixed strategy, neither player has any-
thing to gain by deviating from the optimum strategy that game
theory prescribes. But von Neumann did not prove that similarly
stable solutions could be found when you moved from the
Robinson Crusoe–Friday economy to the Gilligan’s Island
economy or Manhattan Island economy. And as you’ll recall, von
Neumann thought the way to analyze large economies (or games)
was by considering coalitions among the players.

Nash, however, took a different approach—deviating from the
“party line” in game theory, as he described it decades later. Sup-
pose there are no coalitions, no cooperation among the players.
Every player wants the best deal he or she can get. Is there always
a set of  strategies that makes the game stable, giving each player
the best possible personal payoff  (assuming everybody chooses
the best available strategy)? Nash answered yes. Borrowing a clever
piece of  mathematical trickery known as a “fixed-point theorem,”
he proved that every game of  many players (as long as you didn’t
have an infinite number of  players) had an equilibrium point.

Nash derived his proof  in different ways, using either of  two
fixed-point theorems—one by Luitzen Brouwer, the other by
Shizuo Kakutani. A detailed explanation of  fixed-point theorems
requires some dense mathematics, but the essential idea can be
illustrated rather simply. Take two identical sheets of  paper,
crumple one up, and place it on top of  the other. Somewhere in
the crumpled sheet will be a point lying directly above the corre-
sponding point on the uncrumpled sheet. That’s the fixed point. If
you don’t believe it, take a map of  the United States and place it
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on the floor—any floor within the United States. (The map repre-
sents the crumpled up piece of  paper.) No matter where you place
the map, there will be one point that is directly above the corre-
sponding actual location in the United States. Applying the same
principle to the players in a game, Nash showed that there was
always at least one “stable” point where competing players’ strate-
gies would be at equilibrium.

“An equilibrium point,” he wrote in his Ph.D. thesis, “is . . .
such that each player’s mixed strategy maximizes his payoff  if  the
strategies of  the others are held fixed.”11  In other words, if  you’re
playing such a game, there is at least one combination of  strategies
such that if  you change yours (and nobody else changes theirs)
you’ll do worse. To put it more colloquially, says economist Robert
Weber, you could say that “the Nash equilibrium tells us what we
might expect to see in a world where no one does anything
wrong.”12  Or as Samuel Bowles described it to me, the Nash equi-
librium “is a situation in which everybody is doing the best they
can, given what everybody else is doing.”13

Von Neumann was dismissive of  Nash’s result, as it did turn
game theory in a different direction. But eventually many others
recognized its brilliance and usefulness. “The concept of  the Nash
equilibrium is probably the single most fundamental concept in
game theory,” declared Bowles. “It’s absolutely fundamental.”14

GAME THEORY GROWS UP

Nash published his equilibrium idea quickly. A brief  (two-page)
version appeared in 1950 in the Proceedings of  the National Academy
of  Sciences. Titled “Equilibrium Points in n-Person Games,” the pa-
per established concisely (although not particularly clearly for
nonmathematicians) the existence of  “solutions” to many-player
games (a solution being a set of  strategies such that no single
player could expect to do any better by unilaterally trying a differ-
ent strategy). He expanded the original paper into his Ph.D. thesis,
and a longer version was published in 1951 in Annals of  Mathemat-
ics, titled “Non-cooperative Games.”
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Von Neumann and Morgenstern, Nash politely noted in his
paper, had produced a “very fruitful” theory of  two-person zero-
sum games. Their theory of  many-player games, however, was re-
stricted to games that Nash termed “cooperative,” in the sense that
it analyzed the interactions among coalitions of  players. “Our
theory, in contradistinction, is based on the absence of  coalitions in
that it is assumed that each participant acts independently, without
collaboration or communication with any of  the others.”15  In other
words, Nash devised an “every man for himself ” version of  many-
player games—which is why he called it “noncooperative” game
theory. When you think about it, that approach pretty much sums
up many social situations. In a dog-eat-dog world, the Nash equi-
librium describes how every dog can have its best possible day.
“The distinction between non-cooperative and cooperative games
that Nash made is decisive to this day,” wrote game theorist Harold
Kuhn.16

To me, the really key point about the Nash equilibrium is that
it cements the analogy between game theory math and the laws of
physics—game theory describing social systems, the laws of  phys-
ics describing natural systems. In the natural world, everything
seeks stability, which means seeking a state of  minimum energy.
The rock rolls downhill because a rock at the top of  a hill has a
high potential energy; it gives that energy away by rolling down-
hill. It’s because of  the law of  gravity. In a chemical reaction, all
the atoms involved are seeking a stable arrangement, possessing a
minimum amount of  energy. It’s because of  the laws of  thermody-
namics.

And just as in a chemical reaction all the atoms are simulta-
neously seeking a state with minimum energy, in an economy all
the people are seeking to maximize their utility. A chemical reac-
tion reaches an equilibrium enforced by the laws of  thermody-
namics; an economy should reach a Nash equilibrium dictated by
game theory.17

Real life isn’t quite that simple, of  course. There are usually
complicating factors. A bulldozer can push the rock back up the
hill; you can add chemicals to spark new chemistry in a batch of
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molecules. When people are involved, all sorts of  new sources of
unpredictability complicate the game theory playing field. (Imag-
ine how much trickier chemistry would become if  molecules could
think.18 )

Nevertheless, Nash’s notion of  equilibrium captures a critical
feature of  the social world. Using Nash’s math, you can figure out
how people could reach stability in a social situation by comparing
that situation to an appropriate game. So if  you want to apply
game theory to real life, you need to devise a game that captures
the essential features of  the real-life situation you’re interested in.
And life, if  you haven’t noticed, poses all sorts of  different circum-
stances to cope with.

Consequently game theorists have invented more games than
you can buy at Toys R Us. Peruse the game theory literature, and
you’ll find the matching pennies game, the game of  chicken, pub-
lic goods games, and the battle of  the sexes. There’s the stag hunt
game, the ultimatum game, and the “so long sucker” game. And
hundreds of  others. But by far the most famous of  all such games
is a diabolical scenario known as the Prisoner’s Dilemma.

TO RAT OR NOT TO RAT

As in all my books, a key point has once again been anticipated by
Edgar Allan Poe. In “The Mystery of  Marie Roget,” Poe described
a murder believed by Detective Dupin to have been committed by
a gang. Dupin’s strategy is to offer immunity to the first member
of  the gang to come forward and confess. “Each one of  a gang, so
placed, is not so much . . . anxious for escape, as fearful of  be-
trayal,” Poe’s detective reasoned. “He betrays eagerly and early that
he may not himself  be betrayed.”19  It’s too bad that Poe (who was
in fact a trained mathematician) had not thought to work out the
math of  betrayal—he might have invented game theory a century
early.

As it happened, the Prisoner’s Dilemma in game theory was
first described by Nash’s Princeton professor, Albert W. Tucker, in
1950. At that time, Tucker was visiting Stanford and had men-

 R
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tioned his game theory interests. He was asked unexpectedly to
present a seminar, so he quickly conjured up the scenario of  two
criminals captured by the police and separately interrogated.20

You know the story. The police have enough evidence to con-
vict two criminal conspirators on a lesser offense, but need one or
the other to rat out his accomplice to make an armed robbery
charge stick. So if  both keep mum, both will get a year in prison.
But whoever agrees to testify goes free. If  only one squeals, the
partner gets five years. If  both sing like a canary, then both get
three years (a two-year reduction for copping a plea).

If  you look at this game matrix, you can easily see where the
Nash equilibrium is. There’s only one combination of  choices
where neither player has any incentive to change strategies—they
both rat each other out. Think about it. Let’s say our game theory
experts Alice and Bob have decided to turn to crime, but the police
catch them. The police shine a light in Bob’s face and spell out the
terms of  the game. He has to decide right away. He ponders what
Alice might do. If  Alice rats him out—a distinct possibility, know-
ing Alice—his best choice is to rat her out, too, thereby getting
only three years instead of  five. But suppose Alice keeps mum.
Then Bob’s best choice is still to rat her out, as he’ll then get off
free. No matter which strategy Alice chooses, Bob’s best choice is betrayal,
just as Poe’s detective had intuited. And Alice, obviously, must rea-

Alice

Keep Mum Rat

Keep Mum 1, 1 5, 0
Bob

Rat 0, 5 3, 3

Years in prison for Bob, Alice
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son the same way about Bob. The only stable outcome is for both
to agree to testify, ratting out their accomplice.

Ironically, and the reason it’s called a dilemma, they would
both be better off  overall if  they both kept quiet. But they are
interrogated separately, with no communication between them per-
mitted. So the best strategy for each individual produces a result
that is not the best result for the team. If  they both keep mum (that
is, they cooperate with each other), they spend a total of  two years
in prison (one each). If  one rats out the other (technical term:
defects), but the other keeps mum, they serve a total of  five years
(all by the silent partner). But when they rat each other out, they
serve a total of  six years—a worse overall outcome than any of  the
other pairs of  strategies. The Nash equilibrium—the stable pair of
choices dictated by self-interest—produces a poorer payoff  for the
group. From the standpoint of  game theory and Nash’s math, the
choice is clear. If  everybody’s incentive is to get the best individual
deal, the proper choice is to defect.

In real life, of  course, you never know what will happen, be-
cause the crooks may have additional considerations (such as the
prospect of  sleeping with the fishes if  they rat out the wrong guy).
Consequently the Nash equilibrium calculation does not always
predict how people will really behave. Sometimes people temper
their choices with considerations of  fairness, and sometimes they
act out of  spite. In Prisoner’s Dilemma situations, some people
actually do choose to cooperate. But that doesn’t detract from the
importance of  the Nash equilibrium, as economists Charles Holt
and Alvin Roth point out. “The Nash equilibrium is useful not just
when it is itself  an accurate predictor of  how people will behave
in a game but also when it is not,” they write, “because then it
identifies a situation in which there is a tension between individual
incentives and other motivations.” So if  people cooperate (at least
at first) in a Prisoner’s Dilemma situation, Nash’s math tells us that
such cooperation, “because it is not an equilibrium, is going to be
unstable in ways that can make cooperation difficult to maintain.”21

Though it is a simplified representation of  real life, the
Prisoner’s Dilemma game does capture the essence of  many social
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interactions. But obviously you cannot easily assess any social situ-
ation by calculating the Nash equilibrium. Real-life games often
involve many players and complicated payoff  rules. While Nash
showed that there is always at least one equilibrium point, it’s an-
other matter to figure out what that point is. (And often there is
more than one Nash equilibrium point, which makes things really
messy.) Remember, each player’s “strategy” will typically be a mixed
strategy, drawn from maybe dozens or hundreds or thousands (or
more) of  pure “specific” strategies. In most games with many play-
ers, calculating all the probabilities for all the combinations of  all
those choices exceeds the computational capacity of  Intel,
Microsoft, IBM, and Apple put together.

THE PUBLIC GOOD

It’s not hopeless, though. Consider another favorite game to illus-
trate “defection”—the public goods game. The idea is that some
members in a community reap the benefits of  membership with-
out paying their dues. It’s like watching public television but never
calling in to make a pledge during the fund drives. At first glance,
the defector wins this game—getting the benefit of  enjoying
Morse and Poirot without paying a price. But wait a minute. If
everybody defected, there would be no benefit for anybody. The
free riders would become hapless hitchhikers.

Similarly, suppose your neighborhood association decided to
collect donations to create a park. You’d enjoy the park, but if  you
reason that enough others in the neighborhood will contribute
enough money to build it, you might decline to contribute. If
everybody reasons the same way, though, there will be no park.
But suppose that defecting (declining to pay) and cooperating (con-
tributing your fair share) are not the only possible strategies. You
can imagine a third strategy, called reciprocating. If  you are a re-
ciprocator, you pay only if  you know that a certain number of  the
other players have decided to pay. Computer simulations of  this
kind of  game suggest that a mix of  these strategies among the
players can reach a Nash equilibrium.
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Experiments with real people show the same thing. One study,
reported in 2005, tested college students on a contrived version of
the public goods game. Four players were each given tokens (repre-
senting money) and told they could contribute as many as they
liked into a “public pot,” keeping the rest in their personal account.
The experimenter then doubled the number of  tokens in the pot.
One player at a time was told how much had been contributed to
the pot and then given a chance to change his or her contribution.
When the game ended (after a random number of  rounds), all the
tokens were then evenly divided up among all the players.

How would you play? Since, in the end, all four players split
the pot equally, the people who put in the least to begin with end
up with the most tokens—their share of  the pot plus the money
they held back in their personal account. Of  course, if  nobody put
any in to begin with, nobody reaped the benefit of  the experi-
menter’s largesse, kind of  like a local government forgoing federal
matching funds for a highway project. So it would seem to be a
good strategy to donate something to the pot. But if  you want to get
a better payoff  than anyone else, you should put in less than the
others. Maybe one token. On the other hand, everybody in the
group will get more if  you put more in the pot to begin with.
(That way, you might not get more than everybody else, but you’ll
get more than you otherwise would.)

When groups of  four played this game repeatedly, a pattern of
behavior emerged. Players fell into three readily identifiable groups:
cooperators, defectors (or “free riders”), and reciprocators. Since all
the players learned at some point how much had been contributed,
they could adjust their behavior accordingly. Some players re-
mained stingy (defectors), some continued to contribute generously
(cooperators), and others contributed more if others in the group
had donated significantly (reciprocators).

Over time, the members of  each group earned equal amounts
of  money, suggesting that something like a Nash equilibrium had
been achieved—they all won as much as they could, given the
strategy of  the others. In other words, in this kind of  game, the
human race plays a mixed strategy—about 13 percent cooperators,
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20 percent defectors (free riders), and 63 percent reciprocators in
this particular experiment. “Our results support the view that our
human subject population is in a stable . . . equilibrium of  types,”
wrote the researchers, Robert Kurzban and Daniel Houser.22

Knowing about the Nash equilibrium helps make sense of  results
like these.

GAME THEORY TODAY

Together with his paper on the bargaining problem (which treats
cooperative game situations), Nash’s work on equilibria in many-
player games greatly expanded game theory’s scope beyond von
Neumann and Morgenstern’s book, providing the foundation for
much of  the work in game theory going on today. There’s more to
game theory than the Nash equilibrium, of  course, but it is still at
the heart of  current endeavors to apply game theory to society
broadly.

Over the years, game theorists have developed math for games
where coalitions do form, where information is incomplete, where
players are less than perfectly rational. Models of  all of  these situ-
ations, plus many others, can be built using game theory’s complex
mathematical tools. It would take a whole book (actually, several
books) to describe all of  those subsequent developments (and many
such books have been written). It’s not necessary to know all those
details of  game theory history, but it is important to know that
game theory does have a rich and complex history. It is a deep and
complicated subject, full of  many highly technical and nuanced
contributions of  substantial mathematical sophistication.

Even today game theory remains very much a work in progress.
Many deep questions about it do not seem to have been given
compelling answers. In fact, if  you peruse the various accounts of
game theory, you are likely to come away confused. Its practi-
tioners do not all agree on how to interpret some aspects of  game
theory, and they certainly disagree about how to advertise it.

Some presentations seem to suggest that game theory should
predict human behavior—what choices people will make in games
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(or in economics or other realms of  life). Others insist that game
theory does not predict, but prescribes—it tells you what you ought
to do (if  you want to win the game), not what any player would
actually do in a game. Or some experts will say that game theory
predicts what a “rational” person will do, acknowledging that
there’s no accounting for how irrational some people (even those
playing high-stakes games) can be. Of  course, if  you ask such
experts to define “rational,” they’re likely to say that it means be-
having in the way that game theory predicts.

To me, it seems obvious that basic game theory does not al-
ways successfully predict what people will do, since most people
are about as rational as pi. Neither is it obvious that game theory
offers a foolproof  way to determine what is the rational thing to
do. There may always be additional considerations in making a
“rational” choice that have not been included in game theory’s
mathematical framework.

Game theory does predict outcomes for different strategies in
different situations, though. In principle you could use game theory
to analyze lots of  ordinary games, like checkers, as well as many
problems in the real world where the concept of  game is much
broader. It can range from trying to beat another car into a parking
place to global thermonuclear war. The idea is that when faced
with deciding what to do in some strategic interaction, the math
can tell you which move is most likely to be successful. So if  you
know what you want to achieve, game theory can help you—if
your circumstances lend themselves to game theory representation.

The question is, are there ever any such circumstances? Early
euphoria about game theory’s potential to illuminate social issues
soon dissipated, as a famous game theory text noted in 1957. “Ini-
tially there was a naive band-wagon feeling that game theory
solved innumerable problems of  sociology and economics, or that,
at the least, it made their solution a practical matter of  a few years’
work. This has not turned out to be the case.”23

Such an early pessimistic assessment isn’t so surprising. There’s
always a lack of  patience in the scientific world; many people want
new ideas to pay off  quickly, even when more rational observers
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realize that decades of  difficult work may be needed for a theory
to reach maturity. But even six decades after the von Neumann–
Morgenstern book appeared, you could find some rather negative
assessments of  game theory’s relevance to real life.

In an afterword to the 60-year-anniversary edition of  Theory
of  Games, Ariel Rubenstein acknowledged that game theory had
successfully entrenched itself  in economic science. “Game theory
has moved from the fringe of  economics into its mainstream,” he
wrote. “The distinction between economic theorist and game theo-
rist has virtually disappeared.”24  But he was not impressed with
claims that game theory was really good for much else, not even
games. “Game theory is not a box of  magic tricks that can help us
play games more successfully. There are very few insights from
game theory that would improve one’s game of  chess or poker,”
Rubenstein wrote.25

He scoffed at theorists who believed game theory could actu-
ally predict behavior, or even improve performance in real-life stra-
tegic interactions. “I have never been persuaded that there is a solid
foundation for this belief,” he wrote. “The fact that the academics
have a vested interest in it makes it even less credible.” Game theory
in Rubenstein’s view is much like logic—form without substance,
a guide for comparing contingencies but not a handbook for ac-
tion. “Game theory does not tell us which action is preferable or
predict what other people will do. . . . The challenges facing the
world today are far too complex to be captured by any matrix
game.”26

OK—maybe this book should end here. But no. I think
Rubenstein has a point, but also that he is taking a very narrow
view. In fact, I think his attitude neglects an important fact about
the nature of  science.

Scientists make models. Models capture the essence of  some
aspect of  something, hopefully the aspect of  interest for some
particular use or another. Game theory is all about making models
of  human interactions. Of  course game theory does not capture all
the nuances of  human behavior—no model does. No map of  Los
Angeles shows every building, every crack in every sidewalk, or
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every pothole—if  it showed all that, it wouldn’t be a map of  Los
Angeles, it would be Los Angeles. Nevertheless, a map that leaves
out all those things can still help you get where you want to go
(although in L.A. you might get there slowly).

Naturally, game theory introduces simplifications—it is, after
all, a model of  real-life situations, not real life itself. In that respect
it is just like all other science, providing simplified models of  real-
ity that are accurate enough to draw useful conclusions about that
reality. You don’t have to worry about the chemical composition of
the moon and sun when predicting eclipses, only their masses and
motions. It’s like predicting the weather. The atmosphere is a physi-
cal system, but Isaac Newton was no meteorologist. Eighteenth-
century scholars did not throw away Newton’s Principia because it
couldn’t predict thunderstorms. But after a few centuries, physics
did get to the point where it could offer reasonably decent weather
forecasts. Just because game theory cannot predict human behavior
infallibly today doesn’t mean that its insights are worthless.

In his book Behavioral Game Theory, Colin Camerer addresses
these issues with exceptional insight and eloquence. It is true, he
notes, that many experiments produce results that seem—at first—
to disconfirm game theory’s predictions. But it’s clearly a mistake
to think that therefore there is something wrong with game
theory’s math. “If  people don’t play the way theory says, their
behavior does not prove the mathematics wrong, any more than
finding that cashiers sometimes give the wrong change disproves
arithmetic,” Camerer points out.27  Besides, game theory (in its
original form) is based on players’ behaving rationally and self-
ishly. If  actual real-life behavior departs from game theory’s fore-
cast, perhaps there’s just something wrong with the concepts of
rationality and selfishness. In that case, incorporating better knowl-
edge of  human psychology (especially in social situations) into
game theory’s equations can dramatically improve predictions of
human behavior and help explain why that behavior is sometimes
surprising. That is exactly the sort of  thing that Camerer’s spe-
cialty, behavioral game theory, is intended to do. “The goal is not
to ‘disprove’ game theory . . . but to improve it,” Camerer writes.28
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As it turns out, game theory is widely used today in scientific
efforts to understand all sorts of  things. While Nash’s 1994 Nobel
Prize recognized the math establishing game theory’s foundations,
the 2005 economics Nobel trumpeted the achievements of  two
important pioneers of  game theory’s many important applications.
Economist Thomas Schelling, of  the University of  Maryland, un-
derstood in the 1950s that game theory offered a mathematical
language suitable for unifying the social sciences, a vision he ar-
ticulated in his 1960 book The Strategy of  Conflict. “Schelling’s work
prompted new developments in game theory and accelerated its
use and application throughout the social sciences,” the Royal
Swedish Academy of  Sciences remarked on awarding the prize.29

Schelling paid particular attention to game-theoretic analysis
of  international relations, specifically (not surprising for the time)
focusing on the risks of  armed conflict. In gamelike conflict situa-
tions with more than one Nash equilibrium, Schelling showed how
to determine which of  the equilibrium possibilities was most plau-
sible. And he identified various counterintuitive conclusions about
conflict strategy that game theory revealed. An advancing general
burning bridges behind him would seem to be limiting his army’s
options, for example. But the signal sent to the enemy—that the
oncoming army had no way to retreat—would likely diminish the
opposition’s willingness to fight. Similar reasoning transferred to
the economic realm, where a company might decide to build a big,
expensive production plant, even if  it meant a higher cost of  mak-
ing its product, if  by flaunting such a major commitment it scared
competitors out of  the market.

Schelling’s insights also extended to games where all the play-
ers desire a common (coordinated) outcome more than any par-
ticular outcome—in other words, when it is better for everybody
to be on the same page, regardless of  what the page is. A simple
example would be a team of  people desiring to eat dinner at the
same restaurant. It doesn’t matter what restaurant (as long as the
food is not too spicy); the goal is for everyone to be together.
When everybody can communicate with each other, coordination
is rarely a problem (or at least it shouldn’t be), but in many such
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situations communication is restricted. Schelling shed considerable
light on the game-theoretic issues involved in reaching coordi-
nated solutions to such social problems. Some of  Schelling’s later
work applied game theory to the rapid change in some neighbor-
hoods from a mixture of  races to being largely segregated, and to
limits on individual control over behavior—why people do so
many things they really don’t want to do, like smoke or drink too
much, while not doing things they really want to, like exercising.

2005’s other economics Nobel winner, Robert Aumann, has
long been a leading force in expanding the scope of  game theory
to many disciplines, from biology to mathematics. A German-born
Israeli at the Hebrew University of  Jerusalem, Aumann took spe-
cial interest in long-term cooperative behavior, a topic of  special
relevance to the social sciences (after all, long-term cooperation is
the defining feature of  civilization itself ). In particular, Aumann
analyzed the Prisoner’s Dilemma game from the perspective of
infinitely repeated play, rather than the one-shot deal in which
both players’ best move is to rat the other out. Over the long run,
Aumann showed, cooperative behavior can be sustained even by
players who still have their own self-interest at heart.

Aumann’s “repeated games” approach had wide application,
both in cases where it led to cooperation and where it didn’t. By
showing how game theory’s rules could facilitate cooperation, he
also identified the circumstances where cooperation was less
likely—when many players are involved, for instance, or when
communication is limited or time is short. Game theory helps to
show why certain common forms of  collective behavior material-
ize under such circumstances. “The repeated-games approach clari-
fies the raison d’être of  many institutions, ranging from merchant
guilds and organized crime to wage negotiations and international
trade agreements,” the Swedish academy pointed out.

While Nobel Prizes shine the media spotlight on specific
achievements of  game theory, they tell only a small portion of  the
whole story. Game theory’s uses have expanded to multiple arenas
in recent years. Economics is full of  applications, from guiding
negotiations between labor unions and management to auctioning
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licenses for exploiting the electromagnetic spectrum. Game theory
is helpful in matching medical residents to hospitals, in under-
standing the spread of  disease, and in determining how to best
vaccinate against various diseases—even to explain the incentives
(or lack thereof ) for hospitals to invest in fighting bacterial resis-
tance to antibiotics. Game theory is valuable for understanding
terrorist organizations and forecasting terrorist strategies. For
analyzing voting behaviors, for understanding consciousness and
artificial intelligence, for solving problems in ecology, for compre-
hending cancer. You can call on game theory to explain why the
numbers of  male and female births are roughly equal, why people
get stingier as they get older, and why people like to gossip about
other people.

Gossip, in fact, turns out to be a crucial outcome of  game
theory in action, for it’s at the heart of  understanding human so-
cial behavior, the Code of  Nature that made it possible for civiliza-
tion to establish itself  out of  the selfish struggles to survive in the
jungle. For it is in biology that game theory has demonstrated its
power most dramatically, in explaining otherwise mysterious out-
comes of  Darwinian evolution. After all, people may not always
play game theory the way you’d expect, but animals do, where the
Code of  Nature really is the law of  the jungle.
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Smith’s Strategies
Evolution, altruism, and cooperation

The stunning variety of  life forms that surround us, as

well as the beliefs, practices, techniques, and behav-

ioral forms that constitute human culture, are the

product of  evolutionary dynamics.

—Herbert Gintis, Game Theory Evolving

To understand human sociality we have much to learn

from primates, birds, termites, and even dung beetles

and pond scum.

—Herbert Gintis, Game Theory Evolving

In the winter of  1979, Cambridge University biologist David
Harper decided it would be fun to feed the ducks.

A flock of  33 mallards inhabited the university’s botanical gar-
den, hanging out at a particular pond where they foraged for food.
Daily foraging is important for ducks, as they must maintain a
minimum weight for low-stress flying. Unlike landlubber animals
that can gorge themselves in the fall and live off  their fat in the
winter, ducks have to be prepared for takeoff  at any time. They
therefore ought to be good at finding food fast, in order to main-
tain an eat-as-you-go lifestyle.

Harper wanted to find out just how clever the ducks could be
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at maximizing their food intake. So he cut up some white bread
into precisely weighed pieces and enlisted some friends to toss the
pieces onto the pond.

The ducks, naturally, were delighted with this experiment, so
they all rapidly paddled into position. But then Harper’s helpers
began tossing the bread onto two separated patches of  the pond.
At one spot, the bread tosser dispensed one piece of  bread every
five seconds. The second was slower, tossing out the bread balls
just once every 10 seconds.

Now, the burning scientific question was, if  you’re a duck,
what do you do? Do you swim to the spot in front of  the fast
tosser or the slow tosser? It’s not an easy question. When I ask
people what they would do, I inevitably get a mix of  answers (and
some keep changing their mind as they think about it longer).

Perhaps (if  you were a duck) your first thought would be to go
for the guy throwing the bread the fastest. But all the other ducks
might have the same idea. You’d get more bread for yourself  if  you
switched to the other guy, right? But you’re probably not the only
duck who would realize that. So the choice of  the optimum strat-
egy isn’t immediately obvious, even for people. To get the answer
you have to calculate a Nash equilibrium.

After all, foraging for food is a lot like a game. In this case, the
chunks of  bread are the payoff. You want to get as much as you
can. So do all the other ducks. As these were university ducks, they
were no doubt aware that there is a Nash equilibrium point,
an arrangement that gets every duck the most food possible when
all the other ducks are also pursuing a maximum food-getting
strategy.

Knowing (or observing) the rate of  tosses, you can calculate
the equilibrium point using Nash’s math. In this case the calcula-
tion is pretty simple: The ducks all get their best possible deal if
one-third of  them stand in front of  the slow tosser and the other
two-thirds stand in front of  the fast tosser.

And guess what? It took the ducks about a minute to figure
that out. They split into two groups almost precisely the size that
game theory predicted. Ducks know how to play game theory!
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When the experimenters complicated things—by throwing
bread chunks of  different sizes—the ducks needed to consider
both the rate of  tossing and the amount of  bread per toss. Even
then, the ducks eventually sorted themselves into the group sizes
that Nash equilibrium required, although it took a little longer.1

Now you have to admit, that’s a little strange. Game theory
was designed to describe how “rational” humans would maximize
their utility. And now it turns out you don’t need to be rational, or
even human.2  The duck experiment shows, I think, that there’s
more to game theory than meets the eye. Game theory is not just a
clever way to figure out how to play poker. Game theory captures
something about how the world works.

At least the biological world. And it was in fact the realization
that game theory describes biology that gave it its first major scien-
tific successes. Game theory, it turns out, captures many features of
biological evolution. Many experts believe that it explains the mys-
tery of  human cooperation, how civilization itself  could emerge
from individuals observing the laws of  the jungle. And it even
seems to help explain the origin of  language, including why people
like to gossip.

LIFE AND MATH

I learned about evolution and game theory by visiting the Institute
of  Advanced Study in Princeton, home of  von Neumann during
game theory’s infancy. Long recognized as one of  the world’s pre-
mier centers for math and physics, the institute had been slow to
acknowledge the ascent of  biology in the hierarchy of  scientific
disciplines. By the late 1990s, though, the institute had decided to
plunge into the 21st century a little early by initiating a program in
theoretical biology.

Just as the newborn institute had reached across the Atlantic to
bring von Neumann, Einstein, and others to America, it recruited a
director for its biology program from Europe—Martin Nowak, an
Austrian working at the University of  Oxford in England. Nowak
was an accomplished mathematical biologist who had mixed bio-
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chemistry with math during his student years at the University of
Vienna, where he earned his doctorate in 1988. He soon moved on
to Oxford, where he eventually became head of  the mathematical
biology program. I visited him in Princeton in the fall of  1998 to
inquire about the institute’s plans for mixing math with the science
of  life.

Nowak described a diverse research program, touching on ev-
erything from the immune system—deciphering the math behind
fighting the AIDS virus, for instance—to inferring the origins of
human language. Underlying much of  his work was a common
theme that at the time I really didn’t appreciate: the pervasive rel-
evance of  game theory.

It makes sense, of  course. In biology almost everything in-
volves interaction. The sexes interact to reproduce, obviously. There
are the fierce interactions of  immune system cells battling viruses,
or toxic molecules tangling with DNA to cause cancer. And hu-
mans, of  course, always interact—cooperatively or contentiously,
or just by talking to each other.

Evolutionary processes shape the way that such interactions
occur and what their outcomes will be. And that’s a key point:
Evolution is not just about the origin of  new species from com-
mon ancestors. Evolution is about virtually everything in biology—
the physiology of  individuals, the diversity of  appearances within
groups, the distribution of  species in an ecosystem, and the behav-
ior of  individuals in response to other individuals or groups inter-
acting with other groups. Evolution underlies all the biological
action, and underlying evolution’s power is the mathematics of
game theory. “Game theory has been very successfully used in evo-
lution,” Nowak told me. “An overwhelming number of  problems
in evolution are of  a game-theoretic nature.”3

In particular, game theory helps explain the evolution of  social
behavior in the animal (including humans) kingdom, solving a per-
plexing mystery in the original formulation of  Darwinism: Why
do animals cooperate? You’d think that the struggle to survive
would put a premium on selfishness. Yet cooperation is common in
the biological world, from symbiotic relationships between para-
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sites and their hosts to out-and-out altruism that people often ex-
hibit toward total strangers. Human civilization could never have
developed as it has without such widespread cooperation; finding
the Code of  Nature describing human social behavior will not be
possible without understanding how that cooperation evolved. And
the key clues to that understanding are coming from game theory.

GAMES OF LIFE

In the 1960s, even before most economists took game theory seri-
ously, several biologists noticed that it might prove useful in ex-
plaining aspects of  evolution. But the man who really put
evolutionary game theory on the scientific map was the British
biologist John Maynard Smith.

 He was “an approachable man with unruly white hair and
thick glasses,” one of  his obituaries noted, “remembered by col-
leagues and friends as a charismatic speaker but deadly debater, a
lover of  nature and an avid gardener, and a man who enjoyed
nothing better than discussing scientific ideas with young research-
ers over a glass of  beer in a pub.”4  Unfortunately I never had a
chance to have a beer with him. He died in 2004.

Maynard Smith was born in 1920. As a child, he enjoyed col-
lecting beetles and bird-watching, foreshadowing his future bio-
logical interests. At Eton College he was immersed in mathematics
and then specialized in engineering at Cambridge University. Dur-
ing World War II he did engineering research on airplane stability,
but after the war he returned to biology, studying zoology under
the famed J. B. S. Haldane at University College London.

In the early 1970s, Maynard Smith received a paper to review
that had been submitted to the journal Nature by an American re-
searcher named George Price. Price had attempted to explain why
animals competing for resources did not always fight as ferociously
as they might have, a puzzling observation if  natural selection
really implied that they should fight to the death if  only the fittest
survive. Price’s paper was too long for Nature, but the issue re-
mained in the back of  Maynard Smith’s mind. A year later, while
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visiting the theoretical biology department at the University of
Chicago, he studied game theory and began to explore the ways in
which evolution is like a game.5

Eventually, Maynard Smith showed that game theory could
illuminate how organisms adopt different strategies to survive the
slings and arrows of  ecological fortune and produce offspring to
carry the battle on to future generations. Evolution is a game that
all life plays. All animals participate; so do plants, so do bacteria.
You don’t need to attribute any rationality or reasoning power to
the organisms—their strategy is simply the sum of  their properties
and propensities. Is it a better strategy to be a short tree or a tall
tree? To be a super speedy quadruped or a slower but smarter
biped? Animals don’t choose their strategies so much as they are
their strategies.

This is a curious observation, I think. If  every animal (plant,
bug) is a different strategy, then why are there so many different
forms of  life out there, why so many different strategies for surviv-
ing? Why isn’t there one best strategy? Why doesn’t one outper-
form all the others, making it the sole survivor, the winner of  the
ultimate fitness sweepstakes? Darwin, of  course, had dealt with
that issue, explaining how different kinds of  survival advantages
could be exploited by natural selection to diversify life into a smor-
gasbord of  species (like the specialization of  workers in Adam
Smith’s pin factory). Maynard Smith, though, took the Darwinian
explanation to greater depths, using game theory to demonstrate
with mathematical rigor why evolution is not a winner-takes-all
game.

In doing so, Maynard Smith perceived the need to modify clas-
sical game theory in two ways: substituting the evolutionary ideas
of  “fitness” for utility and “natural selection” for rationality. In eco-
nomic game theory, he noted, “utility” is somewhat artificial; it’s a
notion that attempts “to place on a single linear scale a set of
qualitatively distinct outcomes” such as a thousand dollars, “losing
one’s girl friend, losing one’s life.” In biology, though, “fitness, or
expected number of  offspring, may be difficult to measure, but it
is unambiguous. There is only one correct way of  combining dif-
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ferent components—for example, chances of  survival and of  re-
production.”6  And “rationality” as a strategy for human game play-
ers exhibits two “snags,” Maynard Smith noted: “It is hard to decide
what is rational, and in any case people do not behave rationally.”
Consequently, he asserted, “the effect of  these changes is to make
game theory more readily applicable in biology than in the human
sciences.”7

To illustrate his insight, he invented a clever but simple
animal-fighting game. Known as the hawk-dove game, it showed
why one single strategy would not produce a stable population.
Imagine such a world, a “bird planet” populated solely by birds.
These birds are capable of  behaving either like hawks (aggressive,
always ready to fight over food), or doves (always peaceful and
passive). Now suppose these birds all decide that being hawkish is
the best survival strategy. Whenever two of  them encounter some
food, they fight over it—the winner eats, the loser nurses his
wounds, starves, and maybe even dies. But even the winner may
suffer some injuries, incurring a cost that diminishes its benefits
from getting the food.

Now suppose one of  these hawkish birds decides that all this
fighting is . . . well, for the birds. He starts behaving like a dove.
Upon encountering some food, he eats only if  no other bird is
around. If  one of  those hawks shows up, the “dove” flies away.
The dove might miss a few meals, but at least he’s not losing his
feathers in fights. Furthermore, suppose a few other birds try the
dove approach. When they meet each other, they share the food.
While the hawks are chewing each other up, the doves are chew-
ing on dinner.

Consequently, Maynard Smith noted, an all-hawk population
is not an “evolutionary stable strategy.” An all-hawk society is sus-
ceptible to invasion by doves. On the other hand, it is equally true
that an all-dove society is not stable, either. The first hawk who
comes along will eat pretty well, because all the other birds will fly
away at the sight of  him. Only when more hawks begin to appear
will there be any danger of  dying in a fight. So the question is,
what is the best strategy? Hawk or dove?
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It turns out that the best strategy for surviving depends on
how many hawks there are in the population. If  hawks are rare, a
hawkish strategy is best because most of  the opponents will be
doves and will run from a fight. If  hawks are plentiful, though,
they will get into many costly fights—yielding an advantage for
dovish behavior. So a society should evolve to include a mix of
hawks and doves. The higher the cost of  fighting, the fewer the
number of  hawks. Maynard Smith showed how game theory de-
scribed this situation perfectly, with an evolutionary stable strategy
being the biological counterpart of  a Nash equilibrium.

While an evolutionary stable strategy is analogous to a Nash
equilibrium, it is not always precisely equivalent. In many sorts of
games there can be more than one Nash equilibrium, and some of
them may not be evolutionary stable strategies. An ecosystem com-
posed of  various species with a fixed set of  behavioral strategies
could be at a Nash equilibrium without being immune to invasion
by a mutant capable of  introducing a new strategy into the compe-
tition. Such an ecosystem would not be evolutionarily stable.8  But
the birds are unlikely to appreciate that distinction. In any case, the
birds have to choose to play hawk or dove just as the ducks had to
decide which bread tosser to favor. The best mix—the evolution-
ary stable strategy—will be a split population, some percentage
doves, some hawks.

Exactly what those percentages are depends on the precise costs
of  fighting compared to the food you miss by fleeing. Here’s one
game matrix showing a possible weighting of  the costs:

Bird 2

Hawk Dove

Hawk –2, –2 2, 0

Bird 1

Dove 0, 2 1, 1
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If  two hawks meet, both are losers (getting “scores” of  –2)
because they beat each other up. If  Bird 1 is a hawk and Bird 2 a
dove, the dove flies away and gets 0, the hawk gets all the food (2).
But if  two doves meet, they share the food and both get 1 point.
(Or you could say that one dove defers to the other half  the time,
the 1 point each signifying a 50-50 chance of  either bird getting
the food.) If  you calculate it out, you find that the best mix of
strategies (for these values of  the costs) is that two-thirds should
be doves and one-third hawks.9  (Keep in mind that, mathemati-
cally, you could have a mix of  hawks and doves, or just birds that
play mixed strategies. In other words, if  you’re a bird in this sce-
nario, your best bet is to behave like a hawk one-third of  the time
and behave like a dove two-thirds of  the time.)10

Obviously this is a rather simplified view of  biology. Hawks
and doves are not the only possible behavioral strategies, even
for birds. But you can see the basic idea, and you should also be
able to see how game theory could describe situations with added
complexity.

Suppose, for instance, “spectator birds” watched as other birds
battled. In fact, like human boxing or football fans, some birds do
like to watch the gladiators of  their group slug it out in a good
fight (as do certain fishes). And that desire to view violence may
offer a clue to why societies provide so much violence to view.
Spectating may be wired into animal genes by evolutionary his-
tory, and maybe game theory has something to do with it.

At first glance, spectating offers one obvious survival advan-
tage—you’re less likely to get killed watching than fighting. But
you don’t have to be a spectator to avoid the danger of  a fight. You
can simply get as far away from any fighting as you can. So why
watch? The answer emerges naturally from game theory. You may
find yourself  in an unavoidable fight someday, in which case it
would be a good idea to know your opponent’s record.

Face it: You can’t always run from a fight. The wimps who
retreat from every encounter don’t really enhance their chance of
survival, for they will lose out in the competition for food, mates,
and other essential resources. On the other hand, looking for a
fight at every opportunity is not so smart, either—the battle may
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exact a greater cost than the benefit of  acquiring the resource. You
would expect clever birds to realize that they might have to fight
someday, so they better scout their potential opponents by
observing them in battle. The observers (or “eavesdroppers” in
biolingo) could choose to be either a hawk or a dove when it’s
their turn to fight—depending on what they’ve observed about
their adversary.

Rufus Johnstone, of  the University of  Cambridge, extended
the math of  the hawk-dove game in just this manner to evaluate
the eavesdropper factor. In this game, the eavesdropper knows
whether its opponent has won or lost its previous fight. An eaves-
dropper encountering a loser will act hawkish, but if  encountering
a winner the eavesdropper will adopt a dove strategy and forgo the
chance to win the resource.

“An individual that is victorious in one round is more likely to
win in the next, because its opponent is less likely to mount an
escalated challenge,” Johnstone concluded.11

Since eavesdroppers have the advantage of  knowing when to
run, avoiding fights with dangerous foes, you might guess that
eavesdropping would reduce the amount of  violent conflict in a
society. Alas, the math shows otherwise. Adding eavesdroppers
to the hawk-dove game raises the rate of  “escalated” fighting—
occasions where both combatants take the hawk approach.

Why? Because of  the presence of  spectators! If  nobody is
watching, it is not so bad to be a dove. But in the jungle, reputation
is everything. With spectators around, acting like a dove guaran-
tees that you’ll face an aggressive opponent in your next fight.
Whereas if  everybody sees that you’re a ferocious hawk, your next
opponent may head for the hills at the sight of  you.

So the presence of  spectators encourages violence, and watch-
ing violence today offers an advantage for the spectators who may
be fighters tomorrow. In other words, the benefit to an individual
of  eavesdropping—helping that individual avoid high-risk
conflict—drives a tendency toward a higher level of  high-risk con-
flict in the society as a whole.

But don’t forget that adding spectators is just one of  many
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complications that could be considered in the still very simplified
hawk-dove game. Fights depend on more than just aggressiveness.
Size and skill come into play as well. And one study noted that a
bird’s self-assessment of  its own fighting skills can also influence
the fight-or-flight decision. If  the birds know their own skill lev-
els accurately, overall fighting might be diminished. (You can think
of  this as the Clint Eastwood version of  the hawk-dove game: A
bird has got to know its limitations.)12

In any case, policy makers who would feel justified in advocat-
ing wars based on game theory should pause and realize that real
life is more complicated than biologists’ mathematical games.
Humans, after all, have supposedly advanced to a civilized state
where the law of  the jungle doesn’t call all the shots. And in
fact, game theory can help show how that civilized state
came about. Game theory describes how the circumstances can
arise that make cooperation and communication a stable strategy
for the members of  a species. Without game theory, cooperative
human social behavior is hard to understand.

EVOLVING ON A LANDSCAPE

Game theory can help illuminate how different strategies fare in
the battle to survive. Even more important, game theory helps to
show how the best strategies might differ as circumstances change.
After all, a set of  behavioral propensities that’s successful in the
jungle might not be such a hot idea in the Antarctic.

When evolutionists talk about circumstances changing, typi-
cally they’ll be referring to something like the climate, or the
trauma of  a recent asteroid impact. But the changing strategies of
the organisms themselves can be just as important. And that’s why
game theory is essential for understanding evolution. Remember
the basic concept of  a Nash equilibrium—it’s when everybody is
doing the best they can do, given what everybody else is doing. In
other words, the best survival strategy depends on who else is
around and how they are behaving. If  your survival hinges on the
actions of  others, you’re in a game whether you like it or not.
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Using the language of  evolution, success in the survival game
equates to “fitness.” The fittest survive and procreate. Obviously
some individuals score better in this game than others. Biologists
like to describe such differences in fitness in geographic terms,
using the metaphor of  a landscape. Using this metaphor, you can
think of  fitness—or the goal of  a game—as getting a good van-
tage point, living on the peak of  a mountain with a good view of
your surroundings. For convenience you can describe your fitness
just by specifying your latitude and longitude on the landscape
map. Some latitude–longitude positions will put you on high
ground; some will leave you in a chasm. In other words, some
positions are more fit than others. It’s just another way of  saying
that some combinations of  features and behaviors improve your
chance to survive and reproduce. Real biological fitness is analo-
gous to the better vantage point of  a mountain peak.

In a fitness landscape (just like a real landscape) there can, of
course, be more than one peak—more than one combination of
properties with a high likelihood for having viable offspring. (In
the simple landscape of  the all-bird island, you’d have a dove peak
and a hawk peak.) In a landscape with many fitness peaks, some
would be “higher” than others (meaning your odds of  reproducing
are more favorable), but still many peaks would be good enough
for a species to survive.

On a real landscape, your vantage point can be disturbed by
many kinds of  events. A natural disaster—a hurricane like Katrina,
say, or an earthquake and tsunami—can literally reshape the land-
scape, and a latitude and longitude that previously gave you a great
view may now be a muddy rut. Similarly in evolution, a change in
the fitness landscape can leave a once successful species in a sur-
vival valley. Something like this seems to be what happened to the
dinosaurs.

You don’t need an asteroid impact to change the biological
fitness landscape, though. Simply suppose that some new species
moves into the neighborhood. What used to be a good strategy—
say, swimming in the lake, away from waterphobic predators—
might not be so smart if  crocodiles move in. So as evolution
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proceeds, the fitness landscape changes. Your best evolutionary
strategy, in other words, depends on who else is evolving along
with you. No species is a Robinson Crusoe alone on an island. And
when what you should do depends on what others are doing, game
theory is the name of  the game.

Recognizing this ever-shifting evolution landscape is the key
to explaining how cooperative behavior comes about. In particu-
lar, it helps to explain the vastly more elaborate cooperation exhib-
ited by humans compared with other animals.

KIN AND COOPERATION

It’s not that nonhuman animals never cooperate. Look at ants, for
instance. But such social insect societies can easily be explained by
evolution’s basis in genetic inheritance. The ants in an ant colony
are all closely related. By cooperating they enhance the prospect
that their shared genes will be passed along to future colonies.

Similar reasoning should explain some human cooperation—
that between relatives. As Maynard Smith’s teacher J. B. S. Haldane
once remarked, it would make sense to dive into a river to save two
drowning siblings or eight drowning cousins. (On average, you
share one-half  of  a sibling’s genes, one-eighth of  a cousin’s.) But
human cooperation is not limited to planning family reunion pic-
nics. Somehow, humans evolved to cooperate with strangers.

When I visited Martin Nowak, he emphasized that such nonkin
cooperation was one of  the defining differences between humans
and the rest of  the planet’s species. The other was language. “I
think humans are really distinct from animals in two different
ways,” he said. “One is that they have a language which allows us
to talk about everything. No other animal species has evolved such
a system of  unlimited communication. Animals can talk about a lot
of  things and signal about a lot of  things to each other, but it
seems that they are limited to a certain finite number of  things that
they can actually tell each other.”

Humans, though, have a “combinatorial” language, a mix-and-
match system of  sounds that can describe any number of  circum-
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stances, even those never previously encountered. “There must have
been a transition in evolution,” Nowak said, that allowed humans
to develop this “infinite” communication system. Such a flexible
language system no doubt helped humans evolve their other dis-
tinction—widespread cooperation. “Humans are the only species
that have solved the problem of  large-scale cooperation between
nonrelated individuals,” Nowak pointed out. “That cooperation is
interesting because evolution is based on competition, and if  you
want survival of  the fittest, this competition makes it difficult to
explain cooperation.”13

Charles Darwin himself  noted this “altruism” problem. Behav-
ing altruistically—helping someone else out, at a cost to you with
no benefit in return—does seem to be a rather foolish strategy in
the struggle to survive. But humans (many of  them, at least) pos-
sess a compelling instinct to be helpful. There must have been
some survival advantage to being a nice guy, no matter what Leo
Durocher might have thought. (He was the baseball manager of
the mid-20th century who was famous for saying “Nice guys fin-
ish last.”)

One early guess was that altruism works to the altruist’s advan-
tage in some way, like mutual backscratching. If  you help out your
neighbor, maybe someday your neighbor will return the favor.
(This is the notion of  “reciprocal altruism.”) But that explanation
doesn’t take you very far. It only works if  you will encounter the
recipient of  your help again in the future. Yet people often help
others whom they will probably never see again.

Maybe you can still get an advantage from being nice in
an indirect way. Suppose you help out a stranger whom you never
see again, but that stranger—overwhelmed by your kindness—
becomes a traveling Good Samaritan, rendering aid to all sorts of
disadvantaged souls. Someday maybe one of  the Samaritan’s ben-
eficiaries will encounter you and help you out, thanks to the lesson
learned from the Samaritan you initially inspired.

Such “indirect reciprocity,” Nowak told me, had been men-
tioned long ago by the biologist Richard Alexander but was gener-
ally dismissed by evolutionary biologists. And on the face of  it, it
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sounds a little far-fetched. Nowak, though, had explored the idea
of  indirect reciprocity in detail with the mathematician Karl
Sigmund in Vienna. They had recently published a paper showing
how indirect reciprocity might actually work, using the mathemat-
ics of  game theory (in the form of  the Prisoner’s Dilemma) to
make the point. The secret to altruism, Nowak suggested, is the
power of  reputation. “By helping someone we can increase our
reputation,” he said, “and to have a higher reputation in the group
increases the chance that someone will help you.”

The importance of  reputation explains why human language
became important—so people could gossip. Gossip spreads repu-
tation, making altruistic behavior based on reputation more likely.
“It’s interesting how much time humans spend talking about other
people, as though they were constantly evaluating the reputations
of  other people,” Nowak said. “Language helped the evolution of
cooperation and vice versa. A cooperative population makes lan-
guage more important. . . . With indirect reciprocity you can either
observe the person, you can look at how he behaves, or more effi-
ciently you can just talk to people. . . . Language is essential for
this.”14

Reputation breeds cooperation because it permits players in
the game of  life to better predict the actions of  others. In the
Prisoner’s Dilemma game, for instance, both players come out
ahead if  they cooperate. But if  you suspect your opponent won’t
cooperate, you’re better off  defecting. In a one-shot game against
an unknown opponent, the smart play is to defect. If, however,
your opponent has a well-known reputation as a cooperator, it’s a
better idea to cooperate also, so both of  you are better off. In
situations where the game is played repeatedly, cooperation offers
the added benefit of  enhancing your reputation.

TIT FOR TAT

Gossip about reputations may not be enough to create a coopera-
tive society, though. Working out the math to prove that indirect
reciprocity can infuse a large society with altruistic behavior turned
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up some problems. Nowak and Sigmund’s model of  indirect reci-
procity was criticized by several other experts who pointed out
that it was unlikely to work except in very small groups. When I
next encountered Nowak, in 2004 at a complexity conference in
Boston, his story had grown more elaborate.

In his talk, Nowak recounted the role of  the Prisoner’s Di-
lemma game in analyzing evolutionary cooperation. The essential
backdrop was a famous game theory tournament held in 1980,
organized by the political scientist Robert Axelrod at the Univer-
sity of  Michigan. Axelrod conceived the brilliant idea of  testing
the skill of  game theoreticians themselves in a Prisoner’s Dilemma
contest. He invited game theory experts to submit a strategy for
playing Prisoner’s Dilemma (in the form of  a computer program)
and then let the programs battle it out in a round-robin competi-
tion. Each program played repeated games against each of  the
other programs to determine which strategy would be the most
“fit” in the Darwinian sense.

Of  the 14 strategies submitted, the winner was the simplest—
an imitative approach called tit for tat, submitted by the game theo-
rist Anatol Rapoport.15  In a tit-for-tat strategy, a player begins by
cooperating in the first round of  the game. After that, the player
does whatever its opponent did in the preceding round. If  the
other player cooperates, the tit-for-tat player does also. Whenever
the opponent defects, though, the tit-for-tat player defects on the
next play and continues to defect until the opponent cooperates
again.

In any given series of  games against a particular opponent, tit
for tat is likely to lose. But in a large number of  rounds versus
many different opposition strategies, tit for tat outperforms the
others on average. Or at least it did in Axelrod’s tournament.

Once tit for tat emerged as the winner, it seemed possible that
even better strategies might be developed. So Axelrod held a sec-
ond tournament, this time attracting 62 entries. Of  the contestants
in the second tournament, only one entered tit for tat. It was
Rapoport, and he won again.

You can see how playing tit for tat enhances opportunities for
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cooperation in a society. A reputation as a tit-for-tat player will
induce opponents to cooperate with you, knowing that if  they do,
you will. And if  they don’t, you won’t.

 Alas, the story gets even more complicated. Just because tit for
tat won Axelrod’s tournament, that doesn’t mean it’s the best strat-
egy in the real world. For one thing, it rarely won in head-to-head
competition against any other strategy; it just did the best overall
(because strategies that defeated tit for tat often lost badly against
other strategies).

In his talk at the conference, Nowak explored some of  the
nuances of  the tit-for-tat strategy in a broader context. At first
glance, tit for tat’s success seems to defy the Nash equilibrium
implication that everyone’s best strategy is to always defect. The
mathematics of  evolutionary game theory, based on analyzing an
infinitely large population, seems to confirm that expectation.
However, Nowak pointed out, for a more realistic finite popula-
tion, you can show that a tit-for-tat strategy, under certain circum-
stances, can successfully invade the all-defect population.

But if  you keep calculating what would happen if  the game
continues, it gets still more complicated. Tit for tat is an unforgiv-
ing strategy—if  your opponent meant to cooperate but acciden-
tally defected, you would then start defecting and cooperation
would diminish. If  you work out what would happen in such a
game, the tit-for-tat strategy becomes less successful than a modi-
fied strategy called “generous tit for tat.” So a generous tit-for-tat
strategy would take over the population.

“Generous tit for tat is a strategy that starts with cooperation,
and I cooperate whenever you cooperate, but sometimes I will co-
operate even when you defect,” Nowak explained. “This allows me
to correct for mistakes—if  it’s an accidental mistake, you can cor-
rect for it.”16

As the games go on, the situation gets even more surprising,
Nowak said. The generous tit-for-tat approach gets replaced by a
strategy of  full-scale cooperation! “Because if  everybody plays gen-
erous tit for tat, or tit for tat, then nobody deliberately tries to
defect; everybody is a cooperator.” Oh Happy Days.
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Except that “always cooperate” is not a stable strategy. As soon
as everybody cooperates, an always-defect strategy can invade, just
like a hawk among the doves, and clean up. So you start with all
defect, go to tit for tat, then generous tit for tat, then all cooperate,
then all defect. “And this,” said Nowak, “is the theory of  war and
peace in human history.”17

GAMES AND PUNISHMENT

Nevertheless, humans do cooperate. If  indirect reciprocity isn’t re-
sponsible for that cooperation, what is? Lately, one popular view
seems to be that cooperation thrives because it is enforced by the
threat of  punishment. And game theory shows how that can work.

Among the advocates of  this view are the economists Samuel
Bowles and Herbert Gintis and the anthropologist Robert Boyd.
They call this idea “strong reciprocity.” A strong reciprocator re-
wards cooperators but punishes defectors. In this case, a more com-
plicated game illustrates the interaction. Rather than playing the
Prisoner’s Dilemma game—a series of  one-on-one encounters—
strong reciprocity researchers conduct experiments with various
versions of  public goods games.

These are just the sorts of  games, described in Chapter 3, that
show how different individuals adopt different strategies—some
are selfish, some are cooperators, some are reciprocators. In a typi-
cal public goods game, players are given “points” at the outset (re-
deemable for real money later). In each round, players may
contribute some of  their points to a community fund and keep the
rest. Then each player receives a fraction of  the community fund.
A greedy player will donate nothing, assuring a maximum per-
sonal payoff, although the group as a whole would then be worse
off. Altruistic players will share some of  their points to increase
the payoff  to the whole group. Reciprocators base their contribu-
tions on what others are contributing, thereby punishing the “free
riders” who would donate little but reap the benefits of  the group
(but in so doing punish the rest of  the group, including them-
selves, as well). As we’ve seen, humankind comprises all three sorts
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of  players. Further studies suggest why the human race might have
evolved to include punishers.

In one such test of  a public goods game,18  most players began
by giving up an average of  half  their points. After several rounds,
though, contributions dropped off. In one test, nearly three-fourths
of  the players donated nothing by round 10. It appeared to the
researchers that people became angry at others who donated too
little at the beginning, and retaliated by lowering their own dona-
tions—punishing everybody. That is to say, more of  the players
became reciprocators.

But in another version of  the game, a researcher announced
each player’s contribution after every round and solicited com-
ments from the rest of  the group. When low-amount donors were
ridiculed, the cheapskates coughed up more generous contribu-
tions in later rounds. When nobody criticized the low donors, later
contributions dropped. Shame, apparently, induced improved be-
havior.

Other experiments consistently show that noncooperators risk
punishment. So it may have been in the evolutionary past that
groups containing punishers—and thus more incentive for coop-
eration—outsurvived groups that did not practice punishment. The
tendency to punish may therefore have become ingrained in sur-
viving human populations, even though the punishers do so at a
cost to themselves. (“Ingrained” might not be just in the genes,
though—many experts believe that culture transmits the punish-
ment attitude down through the generations.)

Of  course, it’s not so obvious what form that punishment
might have taken back in the human evolutionary past. Bowles
and Gintis have suggested that the punishment might have
consisted of  ostracism, making the cost to the punisher relatively
low but still inflicting a significant cost on the noncooperator.
They show how game theory interactions would naturally lead
societies to develop with some proportion of  all three types—
noncooperators (free riders), cooperators, and punishers (recipro-
cators)—just as other computer simulations have shown. The
human race plays a mixed strategy.
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Still, experts argue about these issues. I came across one paper
showing that, in fact, altruism could evolve solely through benefits
to the altruistic individual, not necessarily to the group, based on
simulations of  yet another popular game. Known as the ultimatum
game, it is widely used today in another realm of  game theory
research, the “behavioral game theory” explored by scientists like
Colin Camerer. Behavioral game theorists believe that getting to
the roots of  human social behavior—understanding the Code of
Nature—ultimately requires knowing what makes individuals tick.
In other words, you need to get inside people’s heads. And the
popular way of  doing that has spawned a hybrid discipline uniting
game theory, economics, psychology, and neuroscience in a con-
troversial new discipline called neuroeconomics.
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Freud’s Dream
Games and the brain

The intention is to furnish a psychology that shall be

a natural science: that is, to represent psychical pro-

cesses as quantitatively determinate states of  specifi-

able material particles, thus making those processes

perspicuous and free from contradiction.

—Sigmund Freud, Project for a Scientific Psychology, 1895

Sigmund Freud really wanted to understand the brain.
He studied medicine and specialized in neurology. He planned

to decipher the code linking the brain’s physical processes to the
mysteries of  the mind. In 1895, he outlined a project for “a scien-
tific psychology,” in which mental states and human behavior could
be explained materialistically, in terms of  the physical interaction
of  nerve cells in the brain. But Freud found the brain science of
the late 19th century too immature to link cranial chemistry to
thought and behavior. So he skipped the brain and went straight
to the mind, analyzing dreams for clues to the unconscious memo-
ries that manipulate mental life.

Others never even dreamed of  achieving the “brain physics”
that Freud envisioned. Many simply regarded the brain as off  lim-
its, declaring it to be a “black box” inaccessible to scientific scru-
tiny. These “behaviorists” decreed that psychology should stick to
observing behavior, studying stimulus and response.
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As the 20th century progressed, both Freudianism and behav-
iorism faded. The black box concealing the brain turned translu-
cent as molecular medicine revealed some of  its inner workings.
Nowadays the brain is almost transparent, thanks to a variety of
scanning technologies that produce images of  the brain in action.
And so the infant neuroscience that Freud abandoned over a cen-
tury ago has now matured, nearly to the point of  fulfilling his
original intention.

Freud could not have dreamed about merging neuroscience
with economics, though, for he died before the rise of  game theory.
And even though they regarded game theory as a window into
human behavior, game theory’s originators themselves did not
imagine that their math would someday advance the cause of  brain
science. The original game theorists would not have predicted that
game theory could someday partner with neuroscience, or that
such a partnership would facilitate game theory’s quest to conquer
economics.1  But in the late 1990s, game theory turned out to be
just the right math for bringing neuroscience and economics to-
gether, in a new hybrid field known as neuroeconomics.

BRAINS AND ECONOMICS

One of  the appealing features of  game theory is the way it reflects
so many aspects of  real life. To win a game, or survive in the
jungle, or succeed in business, you need to know how to play your
cards. You have to be clever about choosing whether to draw or
stand pat, bet or pass, or possibly bid nillo. You have to know when
to hold ’em and know when to fold ’em. And usually you have to
think fast. Winners excel at making smart snap judgments. In the
jungle, you don’t have time to calculate, using game theory
or otherwise, the relative merits of  fighting or fleeing, hiding or
seeking.

Animals know this. They constantly face many competing
choices from a long list of  possible behaviors, as neuroscientists
Gregory Berns and Read Montague have observed (in language
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rather more colloquial than what you usually find in a neuroscience
journal). “Do I chase this new prey or do I continue nibbling on
my last kill?” Berns and Montague wrote in Neuron. “Do I run from
the possible predator that I see in the bushes or the one that I hear?
Do I chase that potential mate or do I wait around for something
better?”2

Presumably, animals don’t deliberate such decisions con-
sciously, at least not for very long. Hesitation is bad for their health.
And even if  animals could think complexly and had time to do so,
there’s no obvious way for them to compare all their needs for
food, safety, and sex. Yet somehow animal brains add up all the
factors and compute a course of  action that enhances the odds of
survival. And humans differ little from other animals in that regard.
Brains have evolved a way to compare and choose among behav-
iors, apparently using some “common currency” for valuing one
choice over others. In other words, not only do people have money
on the brain, they have the neural equivalent of  money operating
within the brain. Just as money replaced the barter system—
providing a common currency for comparing various goods and
services—nerve cell circuitry evolved to translate diverse behav-
ioral choices into the common currency of  brain chemistry.

When you think about it, it makes a lot of  sense. But neurosci-
entists began to figure it all out only when they joined forces with
economists inspired by game theory. Game theory, after all, was
the key to quantifying the fuzzy notion of  economic utility. Von
Neumann and Morgenstern showed how utility could be rigor-
ously defined and derived logically from simple axioms, but still
thought of  utility in terms of  money. Economists continued to
consider people to be “rational” actors who would make behavioral
choices that maximized their money or the monetary value of  their
purchases.

Putting game theory into experimental action, though, showed
that people don’t always do that. Money—gasp—turned out not
to be everything, after all. And people turned out not to be utterly
rational, but pretty darn emotional. Imagine that.
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GAMES AND EMOTIONS

You might think (and some people do) that game theory therefore
becomes irrelevant to the real world of  human social interaction,
because people are not rational seekers of  maximum utility, as game
theory allegedly assumes. But while game theory is often described
in that way, it’s not quite the right picture. Game theory actually
only tells you what people would do if  they were “rationally” maxi-
mizing their utility. That makes game theory the ideal instrument
for identifying deviations from that notion of  rationality, and many
game theorists are happy with that.

There is, however, another interpretation of  what’s going on.
Perhaps people really do maximize their utility—but utility is not
really based on dollars and cents, at least not exclusively. And
maybe “emotional” and “rational” are not mutually exclusive de-
scriptions of  human behavior. Is it really so irrational to behave in
a way that makes you feel good, even if  it costs you money? After
all, the root notion of  utility was really based on happiness, which
is surely an emotional notion.

Actually, most economists have long recognized that people
are emotional. But when your goal is describing economics scien-
tifically—and mathematically—acknowledging emotions poses a
real problem, as Colin Camerer explained to me. “One of  the things
mainstream economists have said is, well, rationality is mathemati-
cally precise,” he said. “There’s one way to be rational. But there
are a lot of  ways to not be rational. So they’ve often used that as an
excuse—anything can happen if  people aren’t perfectly rational.”
And if  anything can happen, there’s no hope of  finding a math-
ematical handle on the situation. “Economists have been a little
defeatist about this—if  you give up rationality, we’ll never be able
to have anything precise.”

This argument seems very much like the strategy of  looking
for lost keys only under the lamp post, because you couldn’t see
them if  they were anywhere else. If  there’s only one sort of  be-
havior (rational) that you can describe with your math, then that’s
the behavior you will assume is correct. But Camerer and other
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behavioral economists would rather first figure out what behavior
is actually like. “Our view is to say, let’s find scientists who have
been thinking about how brains actually work . . . and ask them
for some help,” Camerer said. “It might be that even though, math-
ematically, there are lots of  possible alternative models, the psy-
chologists say, ‘oh, it’s this one.’”3

Of  course, there was a time—as in Freud’s day—when psy-
chologists couldn’t have provided very reliable answers to the ques-
tions about brain processes underlying human behavior. But with
the rise of  modern neuroscience, that situation has changed. Hu-
man emotions, for instance, are no longer as much of  a mystery as
they used to be. Scientists can now peer inside the brain to observe
what’s going on when people experience contempt and disgust,
fear or anger, empathy and love. Not to mention getting high on
drugs. The driving forces of  human decision making can now be
traced to signals traveling between specific brain regions. Conse-
quently human behavior, economic and otherwise, can now be
analyzed in terms other than the economist’s “rational” and mon-
etary notion of  utility. In fact, it now seems likely that the brain
measures utility not with dollars, but with dopamine. And that’s
just one of  the insights that the new discipline of  neuroeconomics
is providing into human economic behavior.

ECONOMICS AND THE BRAIN

I had encountered a few papers on neuroeconomics, but really
didn’t get the big picture until 2003, when I visited Read
Montague’s laboratory, at the Baylor College of  Medicine in Hous-
ton. His “Human Neuro-imaging Laboratory” is a cutting-edge
model of  advanced technology in the service of  science, with 100
or so computers, walls lined with plasma screen monitors, and state-
of-the-art brain scanning machines. Montague explains it all with
the speed of  a Pentium processor, emphasizing the power of  this
new science to grasp human behavior in a precise way.

“We’re quantifying the mind and human experience,” he said.
“We’re turning feelings into numbers.”4
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Montague began his scientific life in mathematics and biophys-
ics, but foresight warned him that physics was not the wave of  the
future. While dabbling in a quantum chemistry project, his
thoughts turned to the brain. Why not put math to use in compre-
hending cognition as well as the cosmos? He began to work on
computational modeling of  brain processes, and then proceeded
to peer deep into real brains, exploiting a technology provided by
physics to revolutionize psychology.

Brain scanners are so familiar today that it’s hard to remember
that a generation or so ago many scientists still considered the
brain to be forever inscrutable. The behaviorist psychology of  the
early 20th century, proselytized by B. F. Skinner, had left its im-
print on general beliefs about brain and behavior. Brains could not
be observed in action, so only the behaviors that the brain pro-
duced mattered to science, the behaviorists contended. It turned
out to be a misguided notion of  both science and the brain.

By the 1970s, imaginative new technologies had begun to
make the brain transparent to clever neurovoyeurs. Radioactive at-
oms could be attached to critical molecules, allowing their activity
to be observed in living brains, providing clues to what brains were
doing while animals were behaving. Later methods dispensed with
the radioactivity, using magnetic fields to jostle molecules in the
blood that flowed through brain tissue. Ultimately this method,
known as magnetic resonance imaging, or MRI, became widely
used in medicine to “see” beneath the skin. And a variant of  MRI
technology was adopted by researchers in neuroscience to watch
brains in action.5

“It can make a movie of  the dynamic blood flow changes in
every region of  your brain,” Montague said. And blood flow has
been shown to be tightly linked to neural activity—active neurons
need nourishment, so that’s where the blood goes. You can watch
how patterns of  activity change in different parts of  the brain as
its owner performs various behaviors.

Consequently, the old limits on which aspects of  the brain
could be studied and understood had dissolved, Montague ex-
plained, as a new wave of  neuroscientists embraced the imaging
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tools. “There’s a kind of  sea change of  belief  in what you can and
can’t explain,” he said. “People put people into scanners like this
and do every manner of  cognitive task, literally from having sex to
thinking about the word sailboat. The experiments are working
beautifully. I think the sky’s the limit.”6

A new scientific discipline to exploit these technological abili-
ties seems to have emerged almost out of  nowhere. The term
neuroeconomics itself  apparently first appeared in 2002.7  Before
that, people like Montague had been referring to their studies as
“neural economics.” In any event, the first attention-getting pub-
lished paper in the new genre appeared in 1999, reporting a study
by Paul Glimcher and Michael Platt of  the Center for Neural Sci-
ence at New York University. Glimcher and Platt had measured
nerve-cell activity in the brains of  monkeys performing a decision-
making task. The results supported the notion that nervous activity
reflects choice-making factors—that is, something like utility—
that economists had already identified.

Monkeys, of  course, are not obsessed with money, but they do
really enjoy getting squirts of  fruit juice and can be fairly easily
trained to perform all sorts of  tasks for a juice-squirt reward. In the
Platt-Glimcher experiment, all a monkey was required to do was
switch its gaze from a cross on a screen to one of  two lights.
Looking at a light earned a squirt of  juice.

Looking at one of  the lights, though, earned a bigger squirt
than looking at the other. It didn’t take the monkey long to figure
that out. (If  I’m going to maximize my utility, the monkey obvi-
ously thought, I should look at the light on the right.) If  the
experimenters changed the high-reward squirt to the other light,
the monkey caught on right away and preferred the new high-
reward light.

None of  that was very surprising—similar experiments had
been done before. But in this case, Platt and Glimcher also re-
corded the activity of  a nerve cell in a region of  the monkey brain
that processes visual input and is involved in directing eye move-
ment. (If  you must know, the cell was in the lateral intraparietal
cortex, or LIP.)
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Now here’s the tricky part of  the experiment. The lights on
the screen were positioned so that only one of  them was in the
field of  view accessible to the nerve cell being monitored. When
the accessible light appeared, that nerve cell fired electrical im-
pulses, as nerve cells do when stimulated. That nerve cell also
boosted its activity as the monkey’s eyes moved to gaze at that
light. No surprises there. But if  that light happened to be the
“high reward” light, the nerve cell fired its signals much more vig-
orously than when viewing the “low reward” light. To an old-
school neurophysiologist, that would be surprising. For the actual
visual stimulus was precisely the same in either case—a light comes
on, and the eyes move to look at it. Somehow the neuron linked to
that visual stimulus “knew” which light was the Big Gulp of  juice
dispensers. The monkey’s choice of  looking toward the high-
reward light (that is, the utility-maximizing choice) reflected a spe-
cific change in activity by a nerve cell in a specific region of  the
brain.8

Of  course, that experiment was just a start, but it opened a lot
of  scientists’ eyes to the possibility of  understanding economic
decision making by looking inside the brain. The next year,
neuroeconomics pioneers met in Princeton for the first major con-
ference on the topic. Montague recalls the skepticism expressed by
one of  the economists attending, who saw no reason to believe
that brain chemicals had anything to do with economics. “I said
that is just complete poppycock,” Montague recalled. “If  your brain
doesn’t generate economic behavior, what kind of  ghost horses do
you believe in?” Even worse, the economist didn’t even think his
remarks were particularly provocative. “I was stunned by that,” said
Montague. “I might still be stunned by that.”9

Gradually, though, the idea of  merging neuroscience and eco-
nomics caught on, though perhaps more rapidly in neuroscience
than economics. A special issue of  Neuron, published in October
2002, included a passel of  papers on human decision making,
many of  them exploring the new insights offered by neural eco-
nomic studies.

Montague and Berns’s paper in that issue argued that the
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chemical dopamine was the brain’s currency for gauging the rela-
tive payoffs of  potential behaviors. The paper noted various lines
of  evidence supporting the idea that a circuit of  activity linking
two parts of  the brain—one at the front, behind the forehead, and
another deep in the brain’s middle—helps govern choice making
by producing more or less dopamine. Dopamine levels predict
the likely reward associated with different choices, the evidence
indicated.

Dopamine had long been known as the brain’s chief  pleasure
molecule, linked to behavior that produces pleasant feelings. But
it’s not merely pleasure that drives dopamine production. Actually,
the brain’s dopamine currency seems tuned to the expectation of
pleasure (or reward of  some sort). Some of  the brain’s dopamine-
producing nerve cells are programmed to monitor the difference
between expected and actual reward, Montague and Berns showed.
If  a choice produces precisely the predicted reward, the dopamine
cells maintain a constant level of  activity. When pleasure exceeds
expectations, the cells squirt out dopamine like crazy. If  the reward
disappoints, dopamine production is curtailed. This monitoring
system also takes timing into account—if  dinner is delayed,
dopamine is diminished. When the anticipated rewards aren’t real-
ized, the dopamine monitoring system tells the brain to change its
behavior. In this way the expectation of  reward can guide a brain’s
decisions.

A critical point, noted by Montague and Berns, is that all brains
are not alike. One person’s dream reward might be another’s hor-
rific nightmare. Some people make a risky choice only when ex-
pecting a huge reward; others gamble for the fun of  it. Part of  the
promise of  neuroeconomics is its ability to identify such individual
differences with brain scanning.

In one experiment described by Montague and Berns, people
chose either A or B on a computer screen and then watched a bar
on the screen to see whether their choice earned a reward. (The bar
recorded accumulated reward “points” as the game progressed.) As
the game went on, the computer adjusted the rewards, based on
the player’s choices. At first, choosing A raised the bar more, but
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choosing A too often made B a better bet. When A’s payoffs
dropped, some players noticed right away and quickly switched to
choosing B more often. But others stuck with A, gambling that it
would return to its previous high-payoff  rate. It appeared that some
brains are more inclined to take risks than others—some players
play conservatively; others are risk-takers. (Actually, Montague said,
more accurate labels for the two types of  players would be “match-
ers” and “optimizers.” “I call them conservative and risky because
you can make good jokes about that,” he said.)

To me, it sounds more like they should be called “switchers”
and “stickers.” But the labels don’t really matter. The most intrigu-
ing result from this experiment is the revelations from the brain
scans. Sure enough, patterns of  brain activity differed in the two
groups, particularly in a small clump of  brain cells called the
nucleus accumbens. It’s a brain region implicated in drug addic-
tion, and it’s more active in the “risk-taking” game players (the
stickers).

The neatest thing, though, is that you can tell who the risk
takers and play-it-safers are from their brain scans just after the
very beginning of  the game, even while their behaviors are still identi-
cal. This is the sort of  evidence that destroys the old behaviorist
position that behavior is the only thing that matters (or that you
can know). Early in the game, two players can behave identically,
making exactly the same choices. Yet by looking into their brains
you can see differences that allow you to predict how they will
play later, when the payoff  rate changes.

“The people that ended up on average being risky are different
from these people right away—nobody even jumps categories,”
Montague told me. Even more intriguing, there appears to be a
genetic difference between the two groups as well.

So neuroeconomics thus offers economists a tool they had not
possessed before, giving hope that by getting inside people’s heads,
science might really be on the road to finding the Code of  Nature
that governs human behavior.
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WHOM DO YOU TRUST?

An important advance along that road came in 2003 with the pub-
lication of  a paper in the journal Science by researchers at Princeton
University. In a study by Alan Sanfey and colleagues, participants
in an experiment played the ultimatum game, one of  the favorites
of  behavioral game theorists. It’s kind of  like a TV game show
contest in which you are given a lot of  money, but you have to
share your windfall with a stranger. Suppose you get $100. You
then offer the stranger part of  the money and keep the rest—
unless the stranger refuses your offer. Then you have to give all the
money back, and nobody wins anything.

In theory, the stranger should take any offer, no matter how
small, in order to get something rather than nothing. Therefore, a
game theorist might conclude, you should offer a low amount—
$10, say, or even $1—so that you will then walk away with the
most money possible. But in practice, most strangers reject low
offers. If  you offer $10, for instance, you’re much more likely to
walk away with zero than $90, as the stranger will probably reject
your offer just to punish you, even at personal expense. Conse-
quently people typically share more generously—offering 40 to
50 percent of  the prize, say—in anticipation of  an angry rejection
of  an unfair offer.

So this is another case where naive game theory, in assuming
that everybody will maximize their money, makes an incorrect pre-
diction, as many economic experiments had already established.
The Princeton study went further, though, by scanning the brains
of  the strangers who were considering whether to accept the offer
from the other participant. In this case, the prize was only $10—
science doesn’t have budgets like Who Wants to Be a Millionaire?—
but the principle was the same. If  the first player offered only $1
or $2, the offer was usually rejected. But not always. And you
could tell who was likely to accept or reject a low offer by watch-
ing what went on inside their brains.

Stronger brain activity in the front part of  a brain region
known as the insula (an area known to be associated with negative
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emotions, such as anger and disgust) was common in players who
were more likely to reject low offers. Another brain structure—the
anterior cingulate cortex—also showed increased activity in those
who rejected unfair offers. That region is known to be involved in
monitoring conflict—in this case, the conflict between the choice
of  punishing a cheapskate or turning away money. “Unfair treat-
ment . . . can lead people to sacrifice sometimes considerable finan-
cial gain in order to punish their partner for the slight,” Sanfey and
his collaborators reported in Science.10

In a commentary on that paper, Colin Camerer noted that it
showed how the tenets of  basic game theory do not always hold—
people do not always act totally in their own self-interest (that is,
maximizing their money), and all the players in a “game” therefore
are not always trying to do the best they can do, as assumed in the
underlying basis for a Nash equilibrium. But behavioral game
theory, Camerer noted, can relax these assumptions and still learn a
lot about human behavior. The neuroeconomics enterprise, in other
words, is a powerful tool for developing behavioral game theory
insights into how real people make choices.

Montague’s subjects at Baylor, for instance, play similar behav-
ioral games that reveal the quirks of  human economic behavior. In
one such game—a task for testing trust—Player 1 is given $20
and is allowed to keep some of  it and put the rest in a virtual pot,
where the amount is then tripled. If  Player 1 keeps $10 and do-
nates $10, the sum in the pot becomes $30. Player 2 then gets to
split the pot with Player 1—or take it all.

“If  you split it 15-15, then in a sense you’ve repaid the trust,”
said Montague. But if  you take $29 and leave $1, Player 1 is not
likely to offer much in the next round of  the game. At any point in
the game, one player or the other could decide to keep all the
money, so the logical move is to take it all as soon as possible,
before the other player does. But in fact, players typically trust
each other not to be so selfish—although some are more trusting,
and some more selfish, than others.

Traditional economists were not surprised at the results of  such
games. In the 1980s, game theory had fueled the rise of  “experi-
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mental economics” in which such deviations from pure self-interest
showed up regularly. What’s new in neuroeconomics is eavesdrop-
ping on the players’ brains via the MRI scanners while the games
are in progress. Montague’s lab is particularly well equipped for
this sort of  thing, with a pair of  scanners, one each in two rooms
separated by the scientists’ observing station. The scientists watch
as computers record the brain activity of  players deciding how
to move or how to react to another player’s move. “You can see
what went on in the behavior. You can back up and look at their
intent to act badly or their intent to invest more,” Montague
said. “It allows us to cross-correlate what’s going on in the two
brains. I think it’s cool. I think it’s an obvious way to study social
interactions.”11

Neuroeconomics does not always require scanning, though.
Paul Zak, director of  the Center for Neuroeconomics Studies at
Claremont Graduate University in California, sometimes uses blood
tests instead of  brain scans. He can relate variant economic behav-
iors to levels of  certain hormones. In one of  Zak’s versions of  the
trust game, players communicate via computer. One player, given
$10, offers some of  it to another player, who is paid triple the
amount offered. (So if  Player 1 offers $5, Player 2 gets $15).
Player 2 then can take it all, or give part of  it back to Player 1. But
in this version of  the experiment, the game ends after just one
round. There’s no incentive to earn trust so as to get more money
the next time around.

So standard game theory suggests that Player 2 would take all
the money, having nothing to gain by giving some back. But Player
1, anticipating that move, should therefore offer none of  the money
to begin with. Nevertheless, many players defy naive game theory
and show at least some trust that the other player will play fair.
About half  of  the first-movers offer some money (suggesting that
they are trusting souls), while three in four of  the responders give
some back (suggesting that they are trustworthy).

Once again, the intriguing thing about such games is finding
out what’s behind the differences in individual behavior. It turns
out that among the trustworthy players, blood tests revealed higher
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levels of  oxytocin, a hormone linked to pleasure and happiness.
Apparently the trusting gesture of  the first player, by offering some
money, elicits a positive hormonal response. “It tells us that people
are very much responsive to their environment,” Zak told me when
I visited him at Claremont. “People who got a positive signal had a
nice positive happy hormone response, and their behavior reflects
that.”12

Zak believes that the relationship between trust and oxytocin
is central to understanding many of  the world’s economic
ills. Oxytocin is linked to happiness, and the countries where
people report high levels of  happiness are also countries
where people report high degrees of  trust. Trust levels, in turn, are
a good indicator of  a country’s economic well-being. “Trust is
among the biggest things economists have ever found that are re-
lated to economic growth,” Zak said.

HOMO NEUROECONOMICUS

For all of  its intriguing findings, neuroeconomics doesn’t excite
everybody, like the economist who perplexed Montague by not
caring about the brain. From the perspective of  economists like
that one, neuroeconomics probably doesn’t have much to offer. To
them, it only matters what people do; it doesn’t matter which part
of  the brain is busy when they do it.

Neuoreconomists, though, want more than a mere description
of  economic decision making. They want the Code of  Nature, the
scientific understanding of  humanity sought by 18th-century
thinkers such as David Hume and Adam Smith. “The more ambi-
tious aim of  neuroeconomics,” writes neuroeconomist
Aldo Rustichini, “is going to be the attempt to complete the re-
search program that the early classics (in particular Hume and
Smith) set out in the first place: to provide a unified theory of
human behavior.”13

Rustichini, of  the University of  Minnesota, points out that
Adam Smith’s great works—Theory of  Moral Sentiments and Wealth
of  Nations—were part of  a grand plan to codify the nature of
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human civilization, to explain how selfish individuals manage to
cooperate sufficiently well to establish elaborate functioning soci-
eties. Smith’s basic answer was the existence of  sympathy—the
ability of  one human to understand what another is feeling. Mod-
ern neuroscience has begun to show how sympathy works, by iden-
tifying “mirror neurons,” nerve cells in the brain that fire their
signals both in performing an action and when viewing someone
else performing that same action.

Other neuroscientific studies have identified the neural basis
of  both individual behavioral propensities and collective and co-
operative human behavior. Scientists scanning the brains of  play-
ers participating in a repeated Prisoner’s Dilemma game, for
instance, have identified regions in the brain that are active in play-
ers who prefer cooperating rather than the “purely rational” choice
to defect.14

Another study used a version of  the trust game to examine the
brains of  people who punish those who play uncooperatively (by
keeping all the money instead of  returning a fair share). In this
game, players who feel cheated may assess a fine on the defector
(even though they must pay the price of  reducing their own earn-
ings by half  the amount of  the fine they impose). People who
choose to fine the defector display extra activity in a brain region
associated with the expectation of  reward. That suggests that some
people derive pleasure from punishing wrongdoers—the payoff  is
in personal satisfaction, not in money. In the early evolution of
human society, such “punishers” would serve a useful purpose to
the group by helping to ostracize the untrustworthy noncoopera-
tors, making life easier for the cooperators. (Since this punishment
is costly to the individual but beneficial to the group as a whole, it
is known as “altruistic punishment.”)15

Such studies highlight an essential aspect of  human behavior
that a universal Code of  Nature must accommodate—namely that
people do not all behave alike. Some players prefer to cooperate
while others choose to defect, and some players show a stronger
desire than others to inflict punishment. A Code of  Nature must
accommodate a mixture of  individually different behavioral ten-
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dencies. The human race plays a mixed strategy in the game of  life.
People are not molecules, all alike and behaving differently only
because of  random interactions. People just differ, dancing to their
own personal drummer. The merger of  economic game theory with
neuroscience promises more precise understanding of  those indi-
vidual differences and how they contribute to the totality of  hu-
man social interactions. It’s understanding those differences,
Camerer says, that will make such a break with old schools of
economic thought.

“A lot of  economic theory uses what is called the representa-
tive agent model,” Camerer told me. In an economy with millions
of  people, everybody is clearly not going to be completely alike in
behavior. Maybe 10 percent will be of  some type, 14 percent an-
other type, 6 percent something else. A real mix.

“It’s often really hard, mathematically, to add all that up,” he
said. “It’s much easier to say that there’s one kind of  person and
there’s a million of  them. And you can add things up rather easily.”
So for the sake of  computational simplicity, economists would op-
erate as though the world was populated by millions of  one ge-
neric type of  person, using assumptions about how that generic
person would behave.

“It’s not that we don’t think people are different—of  course
they are, but that wasn’t the focus of  analysis,” Camerer said. “It
was, well, let’s just stick to one type of  person. But I think the
brain evidence, as well as genetics, is just going to force us to think
about individual differences.”

And in a way, that is a very natural thing for economists to
want to do.

“One of  the most central and interesting things in economics
is specialization and division of  labor,” Camerer observed. “And so
loosely speaking, the more individual difference there is, the better
that might be for the economy—as long as you get people in the
right jobs. And so knowing more about individual differences
could be very important for areas like labor economics, where one
of  the central questions is are you matching the right workers to
the right jobs.”16
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Zak, who has also performed studies to localize the brain’s
computing of  utility, notes that such work revolutionizes the kinds
of  questions that economists can study.

“In economics we generally think of  this utility function as
pretty much uniform across individuals,” he said. “Now we can ask
all kinds of  questions about that. How stable is it, how different is
it across people, why do you prefer coffee and I prefer tea? What if
the price of  coffee went up twice as much, what if  you haven’t
drunk coffee in two weeks? Do you value it more, do you value it
less? These are really basic questions that may affect things like
how things are priced in the market and it may affect how we
design laws.”17

Yet while neuroeconomics may provide the foundation for
understanding individual behavior and differences, it cannot alone
provide the Code of  Nature, or a science of  human behavior
like Asimov’s psychohistory. History comprises the totality of  col-
lective human behavior in various forms of  social interaction—
politically, economically, and culturally. It’s in understanding
human culture that science must seek a Code of  Nature, and game
theory provides the best tool for that task.
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Seldon’s Solution
Game theory, culture, and human nature

Self-interest speaks all sorts of  languages and plays

all sorts of  roles.

—La Rochefoucauld

You don’t need to know about game theory to understand the
ultimatum game. You just need to be a movie fan.

Decades before economists invented the ultimatum game,1

something very much like it appeared in the 1941 movie The Mal-
tese Falcon. The scene is private detective Sam Spade’s apartment.
Spade (played by Humphrey Bogart) has just made a deal with the
criminal Kasper Gutman (Sydney Greenstreet). Spade will collect
$1,000 from Gutman and then presumably will share some of  it
with Brigid O’Shaughnessy (Mary Astor), the film’s femme fatale.

“I’d like to give you a word of  advice,” Gutman whispers to
Spade. “I daresay you’re going to give her some money, but if  you
don’t give her as much as she thinks she ought to have, my word
of  advice is, be careful.” Gutman knew that people react negatively
to the perception of  being treated unfairly. He could have pre-
dicted the outcome of  ultimatum games without game theory or
brain scanners, because he was an astute student of  human nature.

So why bother with game theory? If  you can figure out hu-
man nature just by observing how people behave, whether in the
real world or the lab, perhaps game theory is nothing more than
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superfluous mathematics. Besides, when game theory math incor-
porates the economists’ belief  in selfish rationality, it doesn’t even
predict human behavior correctly.

Actually, though, game theory provides a more sophisticated
and quantitative tool for describing human nature than the intu-
ition of  criminals. Looked at in the right way, the ultimatum game
does not disprove game theory, but expands it. Fairness, trust, and
other social conditions do affect how people play games and make
economic choices. But that just means that the standard economic
notion of  self-interest is too restrictive—life is more than money.
Game theory’s math doesn’t really tell you what people want, but
rather how people should behave in order to achieve what they
want.

As economist Jörgen Weibull observes, reports of  game
theory’s death have been exaggerated. “It has many times been
claimed that certain game-theoretic solutions—such as Nash equi-
librium . . . —have been violated in laboratory experiments,”
Weibull writes. “While it may well be true that human subjects do
not behave according to these solutions in many situations, few
experiments actually provide evidence for this.”2

Early experiments with tests such as the ultimatum game merely
assumed that people wanted to maximize their money—which they
often failed to do when playing the game. Such tests do not dis-
prove game theory, though; instead, they suggest that something is
wrong with the experimenter’s assumptions. Later versions of  the
ultimatum game attempted to include things like fairness, or, more
generally, test how a player’s social preferences (that is, concerns
for others) influence game decisions. Such factors as altruism and
spite, Weibull notes, affect the outcome that players prefer to reach,
and they make their choices accordingly.

“Indeed, several laboratory experiments have convincingly—
though perhaps not surprisingly for the non-economist—shown
that human subjects’ preferences are not driven only by the result-
ing material consequences to the subject.”3  In some cases, social
context (say, the norms of  a person’s peer group) dictates choices
that appear inconsistent with both personal self-interest and con-
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cern for the welfare of  others. “Further analysis of  preferences of
this type seems highly relevant for our understanding of  many
social behaviors,” Weibull observes.4

THE NATURE OF HUMAN NATURE

By getting a grip on the nuances of  social preferences, game theory
enhances its prospects for forging a science of  human behavior, a
Code of  Nature for predicting social phenomena. But there might
be a flaw in that plan. It presumes that there is such a thing as
“human nature” to begin with for game theory to describe.

At first glance, experiments such as those using the ultimatum
game do seem to provide evidence for a consistent human nature.
After all, when economists play the ultimatum game with college
students, the results come out pretty much the same, whether in
Los Angeles, Pittsburgh, or even Tokyo. And of  course, one well-
known battalion of  social scientists argues strongly that there most
definitely is a universal human nature. They are devotees of  a dis-
cipline known as evolutionary psychology, a widely publicized field
contending that human behavior today reflects the genetic selec-
tion imposed on the species during the early days of  human evolu-
tion. Human nature, this notion implies, is a common heritage of
the race, shaping the way people instinctively respond to situations
today, based on how they behaved in order to survive in hunter-
gatherer times.

A typical advocate of  this view is Harvard psychologist Steven
Pinker, who argued his beliefs with considerable passion in a book
called The Blank Slate. Viewing the brain as blank at birth, to be
shaped totally by experience, is nonsense, he insisted. General fea-
tures of  human nature have been programmed by evolution and
stored on a genetic hard drive that guides the brain’s development.
As a result, human nature today derives from the era of  early hu-
man evolution. “The study of  humans from an evolutionary per-
spective has shown that many psychological faculties (such as our
hunger for fatty food, for social status, and for risky sexual liaisons)
are better adapted to the evolutionary demands of  our ancestral
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environment than to the actual demands of  the current environ-
ment,” Pinker wrote.5

In other words, people today are just hunter-gatherers wearing
suits.

On the surface, it might seem that it would be a good thing for
game theory—and the rest of  the human sciences—if  this idea is
right. If  the Code of  Nature is inscribed into the human genetic
endowment, that should improve the prospects for deciphering the
rules governing human nature and then predicting human behav-
ior. After all, the concept that a Code of  Nature exists might be
interpreted to mean that there is some universal behavioral pro-
gram to which all members of  the human species conform.

Yet with all due respect to much of  the intelligent research that
has been done in the field of  evolutionary psychology, some of
the conclusions that have been drawn from it rest on rather shaky
ground. And it turns out that rather than bolstering evolutionary
psychology, game theory helps to show why it breaks down. Fur-
thermore, the way game theory does it has much in common with
the way that Asimov’s fictional hero Hari Seldon found the solu-
tion to formulating his physics of  society, or psychohistory.

COMPARING CULTURES

In Prelude to Foundation, the first prequel to Asimov’s Foundation
Trilogy, a young Hari Seldon delivers a talk at a mathematics con-
ference on the planet Trantor, capital world of  the Galactic Em-
pire. Seldon’s talk describes his idea of  predicting the future via
the math of  psychohistory, a science that he had just begun to
develop. Naturally the emperor receives word of  this talk (in the
galactic future, politicians pay more attention to science than they
do today) and invited Seldon to an audience.

“What I have done,” Seldon told the emperor, “is to show that,
in studying human society, it is possible . . . to predict the future,
not in full detail, of  course, but in broad sweeps; not with cer-
tainty, but with calculable probabilities.”6

But the emperor was dismayed to learn that Seldon couldn’t
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actually predict the future just yet, that he merely had the germ
of  an idea about how to do so if  the mathematics could be prop-
erly developed. Seldon, in fact, was skeptical that he would ever
succeed.

“In studying society, we put human beings in the place of
subatomic particles, but now there is the added factor of  the hu-
man mind,” Seldon explained. “To take into account the various
attitudes and impulses of  mind adds so much complexity that there
lacks time to take care of  all of  it.”7

In fact, Seldon pointed out, an effective psychohistory capable
of  predicting the galactic future would have to account for the
interacting human variables on 25 million planets, each containing
more than a billion free-thinking minds. “However theoretically
possible a psychohistorical analysis may be, it is not likely that it
can be done in any practical sense,” he admitted.8

By displeasing the emperor with such pessimism, Seldon soon
found himself  a fugitive, roaming from one sector to another on
the planet Trantor—the urban sector of  the Imperial capital, a
university town, a farming region, an impoverished mining center.
By the end of  the book Seldon realized that Trantor was a micro-
cosm of  the galaxy, home to hundreds of  societies each with their
own mores and customs. That was his solution to achieving a sci-
ence of  psychohistory! He didn’t have to analyze 25 million
worlds; he could understand the variations in human behavior by
using Trantor itself  as a laboratory.

Toward the end of  the 20th century, Earth-bound anthropolo-
gists independently arrived at a similar scheme for analyzing hu-
man social behavior. By playing the ultimatum game (and some
variants) in small, isolated societies around the planet, those scien-
tists have found that human nature isn’t so universal after all. Col-
lege students in postindustrial society, it turns out, are not perfectly
representative of  the entire human race.

This worldwide game-playing project began after anthropolo-
gist Joe Henrich, then a graduate student at UCLA, tried out the
ultimatum game with the Machiguenga farmers of  eastern Peru in
1996. The rules were the same as with college students: One player
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is given a sum of  money and must offer a share of  it to the second
player. The second player may either accept the offer (and the first
player keeps the rest) or the second player may reject the offer, in
which case all the money is returned and neither player gets any-
thing.

By the time Henrich tried the game in Peru, it had been widely
played with college students, who usually make offers averaging
more than 40 percent of  the pot. Such offers are routinely ac-
cepted. Sometimes lower amounts would be offered, but they
would usually be rejected. Among the Machiguenga, though,
Henrich observed that lower amounts were routinely offered—and
usually accepted.

“We both expected the Machiguenga to do the same as every-
body else,” UCLA anthropologist Robert Boyd told me. “It was so
surprisingly different that I didn’t know what to expect anymore.”9

Could it be that the Machiguenga actually understood the
rational-choice rules of  game theory, while everybody else in the
world let emotions diminish their payoffs? Or would other iso-
lated cultures behave in the same way? Soon Henrich, Boyd, and
others acquired funding from the MacArthur Foundation, and later
the National Science Foundation, to repeat the games in 15 small-
scale societies on four continents. The results were utterly baffling.
From Fiji to Kenya, Mongolia to New Guinea, people played the
ultimatum game not just the way college students did, or the way
economic theory dictated, but any way they darn well pleased.

In some cultures, like the Machiguenga, low offers were typi-
cal and were often accepted. But in other cultures, low offers were
frequently made but typically rejected. In a few cultures the offers
would sometimes be extra generous—even more than half. But in
some societies such generous offers were likely to be refused.
Among other groups, rejections almost never occurred, regardless
of  the size of  the offer.10

“It really makes you rethink the nature of  human sociality,”
Henrich, now at Emory University in Atlanta, told me. “There’s a
lot of  variation in human sociality. Whatever your theory is about
human behavior, you have to account for that variation.”11
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CULTURAL DIVERSITY

This cross-cultural game theory research clearly shows that people
in many cultures do not play economic games in the selfish way
that traditional economic textbooks envision. And it appears that
the differences in behavior are indeed rooted in culture-specific
aspects of  the group’s daily life. Individual differences among the
members of  a group—such as sex, age, education, and even per-
sonal wealth—did not affect the likelihood of  rejecting an offer
very much. Such choices apparently depend not so much on indi-
vidual idiosyncrasies as on the sorts of  economic activity a society
engages in. In particular, average offers seemed to reflect a society’s
amount of  commerce with other groups. More experience partici-
pating in markets, the research suggested, produces not cutthroat
competition, but a greater sense of  fairness.

The stingy Machiguenga, for instance, are economically de-
tached from most of  the world—in fact, they hardly ever interact
with anyone outside their own families. So their market-based eco-
nomic activity is very limited, and their behavior is selfish. In cul-
tures with more “market integration,” such as the cattle-trading
Orma in Kenya, ultimatum game offers are generally higher, aver-
aging 44 percent of  the pot and often are as much as half.

Orma average offers are similar to those found with American
college students. But sometimes students make low offers, and the
Orma rarely do. College students find their low offers are usually
rejected, but in some societies any offer is accepted, no matter how
low. Among the Torguud Mongols of  western Mongolia, for ex-
ample, a low offer is rarely refused. Even so, Torguud offers aver-
aged between 30 and 40 percent—despite the fact that the offerer
would surely get more by offering less. Apparently the local Mon-
golian culture values fairness more than money. At the same time,
inflicting punishment (by rejecting an offer) is not highly regarded
there, either.

In society after society, the anthropologists discovered differ-
ent ways in which cultural considerations dictated unselfish behav-
ior. Among the Aché of  Paraguay, for example, hunters often leave
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the day’s game on the outskirts of  their village. Members of  the
tribe then retrieve it for sharing among the villagers. When playing
the ultimatum game, the Aché typically make high offers, often
more than half. So do the whale-hunting Lamalera of  Indonesia,
who carefully and fairly divide up the meat from killed whales.

In other societies, though, the cultural influences play out dif-
ferently. In Tanzania, the Hadza share meat, but they complain
about it and try to get away without sharing when they can.
Nonsharers, though, risk ostracism, social scorn, and negative gos-
sip. It makes sense, then, that when playing the ultimatum game,
the Hadza make low offers, with high rejection rates.

On the other hand, high offers do not always signify a culture
imbued with altruism. The Au and Gnau of  Papua New Guinea
often offer more than half  the money, but such generosity is fre-
quently rebuffed. The reason, it seems, is that among the Au and
Gnau accepting a gift implies an obligation to reciprocate in the
future. And an excessively large offer may be interpreted as an
insult.

Colin Camerer, one of  the economists collaborating with the
anthropologists in the cross-cultural games, observes that this re-
sult is just another twist in the cultural influence on economic be-
havior. “Offering too much money, rather than being extremely
generous, is actually being kind of  mean—it’s demeaning,”
Camerer explained to me. “So the money is turned down because
they don’t want to be insulted, and they don’t want to be in
debt.”12

The surprising results of  the cross-cultural game theory ex-
periments showed that the games were not necessarily measuring
what the scientists thought they were. Rather than purely testing
economic behavior, the games actually tapped into patterns of  cul-
tural practice. Players apparently tried to figure out how the game
related to their real-world life and then behaved accordingly.

For instance, the Orma quickly recognized a similarity between
real life and a variant of  the ultimatum experiment, the public
goods game (which we encountered in Chapters 3 and 4). In that
game the experimenter (Jean Ensminger of  Caltech) offered each
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of  four Orma some money from which they could contribute to a
community pot and keep the rest. Ensminger would then double
the pot and divide it equally among the four players. When she
described the game to her Kenyan assistants, they quickly replied
that it was just like harambee—a practice of  soliciting contribu-
tions for community projects.

“That really changed our thinking a lot about what was going
on when people are in an experiment,” Camerer told me in one of
our conversations at Caltech. “In game theory, the bias we inher-
ited was the mathematician’s bias.” In other words, the initial be-
lief  was that “when you present the game, it’s like a smart kid
sitting down to play Monopoly or poker. . . . They read the rules,
figure out what to do—they treat it as like a logic problem. But
these subjects treat it as like analogical reasoning—what is this like
in my life?”13

So what the game theory experiments have shown is that life
differs in different cultures, and economic behavior reflects those
differences in cultural life. Game theory has consequently illumi-
nated the interplay of  culture and economic behavior, showing
that humankind does not subscribe to a one-size-fits-all mentality.
Human culture is not monolithic—it’s like a mixed strategy in game
theory.

In an intriguing way, this diversity in cultural behavior around
the world parallels the multiplicity of  versions of  “human nature”
found within various academic disciplines. When I visited Boyd
in his office—on the third floor of  Haines Hall on the UCLA
campus—our discussion turned to that problem in pursuing the
general notion of  human nature and the basic principles of  human
behavior. Boyd lamented the academic world’s fragmented and in-
consistent view of  how people tick.

“We have this weird, I think untenable, situation in the social
sciences,” he said. “You go over to Bunch Hall and the economists
tell the students one thing. And the students come over here to
sociology, one floor down, and they get told no, that’s all wrong,
this is right. And they come up here, and we anthropologists tell
them all kinds of  different things. . . . And then they go to the
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psychology department and they get told something different
again. This is not OK. It’s not acceptable that the economists are
happy with their world and the sociologists are happy with their
world, and this persists in an institution which is supposed to be
about getting at the truth.”14

Perhaps the rise of  game theory as a social science tool,
though, will help change that situation. In particular, merging the
abstract math of  game theory with the real-world immersion of
anthropologists and other social scientists has begun to show how
disparate views of  human nature may be drawn closer to how life
really works.

“Somehow in the last 20 years there’s been this emergence,”
Boyd said, “of  people who are interested in doing mathematical
theory like game theory, but building it on psychologically real
people.”

GAMES, GENES, AND HUMAN NATURE

The fairness displayed in many societies and the variety of  behav-
iors among them are hard to reconcile with the view that human
psychology is universally programmed by the evolutionary past. A
hard-line interpretation of  evolutionary psychology would predict
similar behavior everywhere. The game experiment project argues
otherwise, posing a conundrum for evolutionary psychologists.

“I think that if  it had turned out that everywhere in the world
people were . . . ruthlessly selfish, they would have said, ‘See, I told
you so,’” said Boyd. “And when it didn’t turn out that way . . . that’s
not a comfortable fact for them. It’s some fairly strong evidence on
the other side of  the scale.” He pointed out, though, that evolution
remains important to human psychology. “No educated person
should doubt that our psychology is the product of  evolution—
that’s a given,” Boyd said. “The question is, how did it work?”

And as Camerer pointed out, evolutionary psychologists can
always retreat to the fallback position that the ancestral environ-
ment programmed people to be different. But in that case the origi-
nal claim about a single “human nature” is substantially softened. “I
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think the hard story about cultural universality, you can reject,”
Camerer said.15

It’s important to perceive, I think, that these are not the knee-
jerk reactions against “genetic determinism” expressed by some en-
emies of  evolutionary psychology and its intellectual predecessor,
sociobiology. These are evidence-driven conclusions about evolu-
tionary psychology’s limitations. While evolutionary psychology
has benefited from a surge of  often favorable publicity over the last
decade or so, more and more thoughtful critiques (as opposed to
vitriolic polemics) have begun to appear.

One of  the more interesting critiques comes from philosopher
David Buller, of  Northern Illinois University in Dekalb, who criti-
cally assessed the methodological rigor underlying several of  evo-
lutionary psychology’s claimed “successes” and found that the
evidence for them was actually ambiguous. In a book published in
2005 and in a paper published the same year in Trends in Cognitive
Sciences, Buller distinguished the mere study of  evolution’s
relationship to psychology—evolutionary psychology with a
lowercase e and p—from Evolutionary Psychology, the paradigm
based on the “doctrine of  a universal human nature” and the “as-
sumption that the adaptational architecture of  the mind is mas-
sively modular.”

“Evolutionary Psychologists argue that our psychological ad-
aptations are ‘modules,’ or special-purpose ‘minicomputers,’ each
of  which evolved during the Pleistocene to solve a problem of
survival or reproduction faced by our hunter-gatherer ancestors,”
Buller wrote.16

He contends that many of  the “discoveries” claimed by evolu-
tionary psychologists crumble under critical analysis. Evolutionary
psychologists say their work explains sex differences in jealousy,
an innate ability to detect “cheating” (as when someone fails to
perform an obligation incurred in return for receiving some ben-
efit), and a tendency of  parents to abuse stepchildren more than
their own genetic offspring. But however plausible the Evolution-
ary Psychology explanations might be, Buller says, the actual evi-
dence underlying them suffers from a number of  defects. In some
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cases the data on which the claims are based may be biased or
incomplete, and sometimes the research methods are not rigorous
enough to exclude alternative explanations for the findings. Buller
argues, for example, how results of  a card-choosing task, designed
to illustrate the brain’s “cheating detector” module, could also be
explained by a nonmodular brain just acting logically. “Although
the Evolutionary Psychology paradigm is a bold and innovative
explanatory framework, I believe it has failed to provide an accu-
rate understanding of  human psychology from an evolutionary
perspective,” he wrote.17

Buller’s criticisms reflect the latest stage of  a long-running con-
troversy about the role of  genes and evolution in shaping human
culture and patterns of  behavior, an issue commonly framed as a
battle of  nature versus nurture—genes versus environment. The
Evolutionary Psychology view ascribes enormous power to the role
of  genetic endowment in directing human behavior; many scien-
tists, philosophers, and scholars of  other stripes find the belief  in
the dictatorial determinism of  genetic power to be particularly
distasteful.

In any case, objections such as Buller’s—whether they turn out
to be well founded or not—should not be regarded as support for
the extreme view (sometimes still expressed, surprisingly) that re-
jects any role for genes in behavior—or more precisely, in differ-
ences among humans in their behavior. Without genes, of  course,
there is no behavior—because there would be no brain, and no
body, to begin with. The real question is whether variations in
individual genetic makeup contribute to the wide variety of  be-
havioral tendencies found among people and cultures. In recent
years, the most thoughtful investigators of  this issue have tended
to agree that genes do matter, to some degree or another. Anyone
who says that genes don’t matter at all has clearly not been paying
attention to modern molecular genetics research, particularly in
neuroscience. And modern neuroscience does even provide some
evidence for modularity in many brain functions, as Evolutionary
Psychologists argue. But the latest neuroscience also undercuts the
Evolutionary Psychology paradigm in a major way by showing
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how flexible the brain is. A brain hardwired for certain behaviors
ought to be, in fact, hardwired. But the human brain actually ex-
hibits remarkable flexibility (the technical term is plasticity) for
adapting its tendencies in the wake of  experience.

“One of  the surprises of  the last few years is the fact that we’re
learning that the brain is hardwired for change,” says Ira Black, of
the Robert Wood Johnson Medical School in New Jersey. “We’ve
learned that the environment is capable of  accessing genes and
altering their activity within the brain.”18

Heredity does wire some predispositions into the brain, to be
sure, but it’s a mistake to believe that experience must somehow
defy the brain’s genetic hardwiring. It is actually the brain’s ge-
netic wiring that creates the capacity to change with experience.
“You are flexible because of  your genes, not in spite of  them,”
declare neuroscientists Terrence Sejnowski and Steven Quartz in
their book Liars, Lovers, and Heroes. “Your experiences with the world
alter your brain’s structure, chemistry, and genetic expression, of-
ten profoundly, throughout your life.”19

So most experts would agree that genes are important, and
genetic variation can influence propensities toward different kinds
of  behavior. On the other hand, genes are not so all-powerfully
important as some gene-power dogmatists contend. Even animals,
often portrayed as mere “gene machines” responding to stimuli with
programmed responses, actually exhibit a lot of  variability in their
behavior that cannot be ascribed to genetic variations.

A few years back I ran across a study that put this issue in
particularly sharp perspective, having to do with an especially
simple behavioral response in mice. For years, scientists have an-
noyed mice by dipping their tails into a cup of  hot water (typically
about 120 degrees Fahrenheit). The idea is to test a mouse’s reac-
tion to pain. Sure enough, the mice do not like having their tails
dipped into hot water; as soon as you put the tail in, the mouse will
jerk it out.

But not all mice behave in exactly the same way—at least, not
all pull their tails out as rapidly as others. Experimenters have found
that some mice react, on average, in a second or less; others might
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take three or four. Some mice are simply more sensitive to pain
than others. Since the environmental conditions are apparently just
the same, it is tempting to conclude that differences in this simple
behavior reflect some difference in the mice’s genes. It’s an easy
enough question to check: Since the experiments are performed on
different genetic strains of  mice, all you need to do is compare the
results for the different strains to see if  some genetic profiles corre-
sponded with slower (or faster) tail-jerk reactions than others.

As it turns out, Jeffrey Mogil of  McGill University in Montreal
and collaborators at the University of  Illinois had been dipping
mouse tails in hot water for more than a decade and had accumu-
lated plenty of  data with which to perform such an analysis. And
that analysis did confirm the relevance of  genetic differences. Keep
the environmental conditions constant (the water temperature
should be precisely 49 degrees Celsius, for example) and some
genetic strains, on average, do flip their tails out of  the water faster
than others.

Upon further review, though, it became clear that genes were
not the only things that mattered, and a constant water tempera-
ture was not the only environmental factor to consider. After re-
viewing the scores of  more than 8,000 irritated mice, Mogil’s team
found that all sorts of  things influence reaction speed. Are the
mice kept in a crowded cage, or do they have room to roam? Was it
the first mouse out of  the cage, or the second? Is it morning,
afternoon, or night? Did anybody remember to measure the hu-
midity? And who was holding the mouse at the time? “A factor
even more important than the mouse genotype was the experi-
menter performing the test,” Mogil and colleagues wrote in their
paper.20  In other words, genes aren’t even as important as which
researcher is handling the mouse.

In fact, a computerized cross-check of  all the factors found
that genetic differences accounted for only 27 percent of  the varia-
tion in tail-test reaction speed. Environmental influences were re-
sponsible for 42 percent of  the performance differences, with 19
percent attributed to interactions between environment and genes.
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(That just means that certain conditions influenced some genetic
strains but not others.)

Mogil and collaborators concluded that the laboratory envi-
ronment plays an important role in the way mice behave, either
masking or exaggerating the effects under genetic control. And
since tail-flipping is such a simple behavior—basically a spinal
cord reflex—it’s unlikely that the environment’s influence in this
case is a fluke. More complicated behaviors would probably be
even more susceptible to environmental effects, the researchers
observed.

Results such as these strike me as similar to findings about how
humans play economic games in different ways. Genes, environ-
ment, and culture interact to produce a multiplicity of  behaviors in
mice, and in people. The human race has adopted a mixed strategy
for surviving in the world, with a diverse blend of  behavioral types.
It shouldn’t be surprising that cultures differ around the world as
well, that the planet is populated by a “mixed strategy” of  cultures,
rooted in a mixture of  influences on how behavior evolves.

A MIXED HUMAN NATURE

So what of  human nature, and game theory’s ability to describe it?
There is a human nature, but it is not the simplistic consistent
human nature described by extreme evolutionary psychologists. It
is the mixed human nature that, on reflection, should be obvious in
a world ruled by game theory. Evolution, after all, is game theory’s
ultimate experiment, where the payoff  is survival. As we’ve seen,
evolutionary game theory does not predict that a single behavioral
strategy will win the game. That would be like a society populated
by all hawks or all doves—an unstable situation, far from Nash
equilibrium. Game theory’s rules induce instead a multiplicity of
strategies, leading to a diverse menagerie of  species practicing dif-
ferent sorts of  behaviors to survive and reproduce.

Seen through the lens of  game theory, evolution’s role in hu-
man psychology is still important, but it operates more subtly than
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hard-line evolutionary psychologists have suggested. Game theory
guarantees that evolution will produce a diversity of  species, a
mixture of  behaviors, and in the case of  the human race, a multi-
plicity of  cultures.

So it seems to me that game theory has itself  answered the
question about why it doesn’t seem to work, at least as it was
originally formulated. Nash’s original game theory math was con-
strued and interpreted a little too narrowly. Applied solely to eco-
nomics, it predicted behavior that was often at odds with what
people really did. But that was because the math originated and
operated in an abstract realm of  assumptions and calculations. Now,
by playing games around the world with real people enmeshed in
their own cultural milieus, scientists have shown how that purely
mathematical approach to economics and behavior can be modi-
fied by real-world considerations.

“My goal is to get the mathematicians to loosen their grip on
game theory and get away from thinking about a game . . . that’s
purely of  mathematical interest,” Camerer told me. Instead, he said,
playing games can be thought of  as something “like an X-ray about
a thing that’s happening in the world.”21

Viewed in this way, game theory becomes even more powerful.
It becomes a tool for grappling with the complexity of  human
behavior and understanding the innumerable interactions that drive
human history. It’s just the sort of  thing Hari Seldon was looking
for to produce a science of  society.

Of  course, Asimov’s character had many real-life predecessors
who sought a similar science of  society. In fact, the statistical phys-
ics that Asimov cited as the inspiration for psychohistory owed its
own inspiration to the pioneers who applied statistics to people—
especially an astronomer turned sociologist named Adolphe
Quetelet.
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Quetelet’s Statistics and
Maxwell’s Molecules

Statistics and society, statistics and physics

The mob has many heads but no brains.

—English proverb

The actions of  men . . . are in reality never inconsis-

tent, but however capricious they may appear only

form part of  one vast system of  universal order.

—Henry Thomas Buckle

When creating the fictional science of  psychohistory, more than
half  a century ago, Isaac Asimov didn’t bother to give the details
of  how the math worked. He simply said you could describe
masses of  people in the same way you describe masses of  mol-
ecules. Trained as a chemist, Asimov knew well that the behavior
of  gases under different conditions could be calculated with preci-
sion, even though nobody could possibly know what any one of
that gas’s atoms or molecules was doing. And so he reasoned that a
sufficiently advanced science could do the same thing with people.

“Psychohistory dealt not with man, but man-masses,” Asimov
wrote.1 “It was the science of  mobs; mobs in their billions. . . . The
reaction of  one man could be forecast by no known mathematics;
the reaction of  a billion is something else again.” So while any one
person could do his or her own thing, society might collectively
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exhibit patterns of  behavior that equations could capture.
Psychohistory might not be quite as accurate as the laws governing
gases, but that’s only because there are many more molecules than
people. As one of  Asimov’s characters explained, “The laws of
history are as absolute as the laws of  physics, and if  the probabili-
ties of  error are greater, it is only because history does not deal
with as many humans as physics does atoms, so that individual
variations count for more.”2

Still, psychohistory was fiction, and using math to describe
something as complex as society still strikes many people as an
overly ambitious goal for real life. On the other hand, in the mid-
19th century math seemed similarly useless for physicists ponder-
ing the complexities of  molecular motion in gases. Gross properties
of  gases could be observed but not understood without a way to
quantify the apparent anarchy of  molecular interactions. How
could anyone grasp the inner workings of  a mass of  molecules
too numerous to count and too small to be seen? Yet the Scottish
physicist James Clerk Maxwell found a way, by using statistics—
mathematical descriptions of  the average behavior of  large groups
of  molecules.

Calculating such averages provided amazing predictive power.
Although you couldn’t say exactly what any one molecule was up
to, you could predict precisely what a sufficiently large group of
molecules would do in certain circumstances. Measuring the tem-
perature of  a gas, for instance, tells you something about the aver-
age speed of  its molecules, and you can calculate the effect of
altering the temperature on the gas’s pressure. Similar methods were
developed to deal with matter in all sorts of  situations. Knowing
the average amount of  energy possessed by molecules of  various
substances, for instance, allows you to predict whether a chemical
reaction will proceed or not—and if  so, how far. You can use the
statistical approach to describe a substance’s magnetic or electric
properties, or whether it will snap or stretch when under tension.
In Asimov’s psychohistory, features of  society corresponded to vari-
ables like the temperature and pressure of  a gas or the ebb and
flow of  chemical reactions or the fracture of  a beam in a building.
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While Asimov’s vision remains a science fiction dream, it is
now closer to reality than probably even he would have thought
possible. The statistical approach inaugurated by Maxwell has to-
day become physicists’ favorite weapon for invading the social sci-
ences and describing human actions with math. Physicists have
applied the statistical approach to analyzing the economy, voting
behavior, traffic flow, the spread of  disease, the transmission of
opinions, and the paths people take when fleeing in panic after
somebody shouts Fire! in a crowded theater.

But here’s the thing. This isn’t a new idea, and physicists didn’t
have it first. In fact, Maxwell, who was the first to devise the statis-
tical description of  molecules, got the idea to use statistics in phys-
ics from social scientists applying math to society! So before
statistical physicists congratulate themselves for showing the way
to explaining the social sciences, they should pause to reflect on
the history of  their field. As the science journalist Philip Ball has
observed, “by seeking to uncover the rules of  collective human
activities, statistical physicists are aiming to return to their roots.”3

In fact, efforts to apply science and math to society have a rich
history, extending back several centuries. And that history contains
hints of  ideas that can, in retrospect, be seen as similar to key
aspects of  game theory—foreshadowing an eventual convergence
of  all these fields in the quest for a Code of  Nature.

STATISTICS AND SOCIETY

The idea of  finding a science of  society long predates Asimov. In a
sense it goes back to ancient times, of  course, resembling at least
partially the old notion of  a “natural law” of  human behavior or a
Code of  Nature. In early modern times, the idea received renewed
impetus from the success of  Newtonian physics, stimulating the
efforts of  Adam Smith and others as described in Chapter 1. Even
before Newton, though, the rise of  mechanistic physical science
inspired several philosophers to consider a similarly rigorous ap-
proach to society.

In medieval times, the importance of  the mechanical clock to
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society conditioned scientists to think of  the universe in mechani-
cal terms. Descartes, Galileo, and other pioneers of  modern science
advocated a mechanical, cause-and-effect view of  the cosmos that
ultimately led to Newton’s definitive system of  physics, published
in his Principia in 1687. It was only natural that the implications
of  mechanism for life and society attracted the attention of  other
17th-century thinkers. One was Thomas Hobbes, whose famous
work Leviathan described the state of  society that (Hobbes be-
lieved) maximized the well-being of  all its members. Conveniently
for Hobbes, a supporter of  the British monarchy, his conclusion
was that the people should turn over control of  society to an abso-
lute monarch. Otherwise, he argued, a dog-eat-dog mentality of
unrestrained human nature would guarantee life to be “nasty, brut-
ish, and short.”

In an intriguing paper, though (published in Physica A), Philip
Ball points out that Hobbes’s questionable conclusion was not as
important as the methods he used to reach it. The Hobbes ap-
proach was to assess the interacting preferences of  various indi-
viduals and figure out how best to achieve the best deal for
everybody. The resulting theoretical framework, Ball says, “could
be recast without too much effort” as a Nash equilibrium maximiz-
ing the power of  each individual. As such, Hobbes’s Leviathan could
be seen as an early effort to understand society mathematically,
with the prescient indication that something like game theory
would be a good mathematical instrument for the task.

Real math entered the story a little later, as the science of
statistics was invented—for the very purpose of  quantifying vari-
ous aspects of  society. The scientist and politician Sir William Petty,
a student of  Hobbes, advocated the scientific study of  society in a
quantitative way. His friend John Graunt began compiling tables
of  social data, such as mortality figures, in the 1660s. Graunt and
others began to keep track of  births and deaths and analyzed the
data much like the way that baseball fans pore over batting aver-
ages today. By a century later, in the times leading up to the French
Revolution, gathering social statistics had become a widespread
practice, usually undertaken in the belief  that studying such social
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numbers might reveal laws of  social nature the same way astrono-
mers had revealed the regularities of  the heavens. “The idea that
there were laws that stood in relation to society as Newton’s me-
chanics stood in relation to the motion of  the planets was shared
by many,” writes Ball.4

Gathering numbers was not enough, of  course, to make
the study of  society a science in the Newtonian mold. Physics, as
Newton had sculpted it, was the science of  certainty, his dictatorial
laws of  motion determining how things happened. Statistics dealt
not with such certainty, but rather displayed considerable variabil-
ity. Much about human behavior seemed to depend on chance—
the luck of  the draw (as in games!). Dealing with people called for
quantifying luck—leading to the mathematical analysis of  prob-
ability.

Early studies of  probability theory predated Newton, starting
with the mid-17th-century work of  Blaise Pascal and Pierre
Fermat—their idea being to figure out how to win at dice or card
games. An economic use of  probability theory soon arose from
insurance companies, which used statistical tables to gauge the risk
of  people dying at certain ages or the likelihood of  fires or ship-
wrecks destroying insured property.

Probability became more useful to physics (and the rest of
science) with the development of  the theory of  measurement er-
rors during the 18th century, particularly in astronomy. Ironically,
one of  the key investigators in that statistical field was Pierre
Simon, Marquis de Laplace, the French mathematician famous for
his articulation of  Newtonian determinism. For a being with intel-
ligence capable of  analyzing the circumstances of  all the bodies in
the universe, and the forces operating on them, all movements great
and small could be foreseen by applying Newton’s laws, Laplace
declared. “For it, nothing would be uncertain and the future, as the
past, would be present to its eyes.”5

Laplace recognized full well, though, that no human intelli-
gence possessed such grand ability. So statistical methods were
needed to deal with the unavoidable uncertainties afflicting human
knowledge. Laplace wrote extensively on the issue of  probability
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and uncertainties, focusing especially on the inevitable errors that
occurred whenever measurements were made.

Suppose, for instance, that you’re trying to measure the posi-
tions of  the planets visible in the night sky. No matter how good
your instruments, uncontrollable factors will prevent you from mea-
suring positions with arbitrary precision. Each time you measure a
planet’s position, the answer will be at least a little bit off  from
whatever the true position might be. But such random errors do
not render your measurements hopelessly inaccurate. While indi-
vidual errors might be random, the sum of  all errors could be
subjected to mathematical analysis in a way that revealed some-
thing about the planetary position’s true coordinates. If  the mea-
surements are careful enough, for example, small errors will be
more common than somewhat larger errors, and huge errors would
be even rarer.

Laplace was one among several mathematicians who devel-
oped the math for calculating the range of  such errors. Another
was Carl Friedrich Gauss, the German mathematician whose name
was given to the now familiar bell-shaped curve that depicts how
random measurement errors are distributed around the average
value (the “Gaussian distribution”).6  For repeated measurements,
the most likely true value would simply be the value at the peak of
the curve—the average (or mean) of  all the measurements (assum-
ing the “errors” are all due to random, uncontrollable factors, rather
than some problem with the instrument itself ). The math describ-
ing the curve tells you how to estimate the likelihood that the true
value differs from the mean by any given amount.

While Gauss got his name on the curve, Laplace’s work in this
arena turned out to be more important for the human side of  sta-
tistics. Like others of  his era, Laplace recognized the relevance of
statistics to human affairs, and applied the error curve to such is-
sues as the ratio of  male to female births. Laplace’s interest in the
social side of  his math led to a much broader appreciation of  its
potential uses—thanks to the Belgian mathematician and astrono-
mer Adolphe Quetelet.
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SOCIAL PHYSICS

Quetelet, who was born in Ghent in 1796, made a major math-
ematical contribution to society that most Americans today are un-
comfortably familiar with, although few people know to blame
Quetelet. He invented the Quetelet index for assessing obesity, a
measure better known now as the Body Mass Index, or BMI. But
he had much greater vision for applying science to society than
merely telling people how to know when they were overweight.

As a youth, Quetelet dabbled in painting, poetry, and opera,
but his special talent was math, and he earned a math doctorate in
1819 at the University of  Ghent. He got a job teaching math in
Brussels, where he was soon elected to the Belgian academy of
sciences. During the 1820s, Quetelet expanded his interest from
math into physics, and in 1823 he traveled to Paris to study as-
tronomy, part of  a plan to establish an observatory in Brussels.

Quetelet later wrote some widely read popularizations of  as-
tronomy and physics for the general reader. And he often delivered
public lectures on science attended by all segments of  the public.
Quetelet was highly regarded as a teacher and as a person by those
who knew him—he was described as amiable and considerate, tact-
ful and modest, but still a rigorous thinker who expressed his views
strongly.7

During his stay in Paris, Quetelet took in more than just as-
tronomy. He also learned probability theory from Laplace and met
his colleagues Poisson and Fourier, who also had an interest in the
statistics of  society. Quetelet was himself  strongly attracted to the
social sciences, and he soon realized that Laplace’s uses of  the bell
curve to describe social numbers could be dramatically expanded.

Quetelet began to publish papers on the statistical description
of  society, and in 1835 authored a detailed treatise on what he
called social physics8 (or social mechanics), introducing the idea of
an “average man” for analyzing social issues. He knew that there is
no one average man, but by averaging various aspects of  a great
many men, much could be learned about society. “In giving to my
work the title of  Social Physics, I have had no other aim than to
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collect, in a uniform order, the phenomena affecting man, nearly as
physical science brings together the phenomena appertaining to
the material world,” Quetelet commented.9

Quetelet’s key point was that the diversity of  behaviors among
men, seemingly too complex to comprehend, would coalesce into
regular patterns when assessed for vast numbers. “In a given state
of  society, resting under the influence of  certain causes, regular
effects are produced, which oscillate, as it were, around a fixed
mean point, without undergoing any sensible alterations,” he
wrote.10 The same statistical laws governing measurement errors
could be enlisted to disclose predictable patterns underlying the
apparent chaos of  historical trends and events, he believed.

Understanding the “average man,” Quetelet contended, was es-
sential for sound government based on an intelligent understand-
ing of  human nature. No single set of  attributes regarded as the
defining features of  human nature would apply in all respects to
any given individual, of  course. Yet certain tendencies would show
up in society more often than others, so statistical methods could
be used to construct an abstract “average” representation of  the
typical mix of  human characteristics.

Quetelet illustrated his point with the analogy of  an archery
target. After many shots by many archers, the arrows lodged in the
target form a distinct pattern, some close to the bull’s-eye, some
farther away. But suppose for some reason that the outline defining
the bull’s-eye was obscured. Even if  no arrow had actually hit it,
you could infer the bull’s-eye’s location from the pattern made by
the arrows. “If  they be sufficiently numerous, one may learn from
them the real position of  the point they surround,” Quetelet
pointed out.11

Quetelet collected all the data he could find on such social
variables as birth and death rates, analyzing how such rates dif-
fered by location, season, and even time of  day. He cataloged and
assessed evidence of  the influences of  moral, political, and reli-
gious factors on crime rates. He was struck by the constancy of
crime reports in various sorts of  categories from year to year. In
any given locale, for instance, the number of  murders remained
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pretty much the same from one year to the next, and even the
murderer’s methods showed a similar distribution.

“The actions which society stamps as crimes,” Quetelet wrote,
“are reproduced every year, in almost exactly the same numbers;
examined more closely, they are found to divide themselves into
almost exactly the same categories; and if  their numbers were suf-
ficiently large, we might carry farther our distinctions and subdivi-
sions, and should always find there the same regularity.”12  Similarly,
the rate of  crimes for different ages displayed a constant distribu-
tion, with the 21–25 age group always topping the list. “Crime
pursues its path with even more constancy than death,” Quetelet
observed.13

He warned, though, of  the dangers posed by interpreting such
statistics without sufficiently careful thought. Another researcher,
for instance, had shown that property crime in France was higher
in provinces where more children were sent to schools, and
concluded that education caused crime. It’s the sort of  reasoning
you hear today on talk radio. Quetelet correctly chastised such
stupidity.

Quetelet also repeatedly emphasized that the statistical ap-
proach could not be used to draw conclusions about any given
individual (another obvious principle that is often forgotten by
today’s media philosophers). The insurance company’s mortality
tables cannot forecast the time of  any one person’s death, for in-
stance. Nor can any single case, however odd, invalidate the gen-
eral conclusions drawn from a statistical regularity.

Quetelet’s exposition of  social statistics attracted a great deal
of  attention among scientists and philosophers. Many of  them
were aghast that he seemed to have little regard for the supposed
free will that humans exercised as they pleased. Quetelet responded
not by denying free will, but by observing that it had its limits, and
that human choice was always influenced by conditions and cir-
cumstances, including laws and moral strictures. In making the sim-
plest of  choices, Quetelet noted, our habits, needs, relationships,
and a hundred other factors buffet us from all sides. This “empire
of  causes” typically overwhelms free will, which is why, with
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knowledge of  all the factors affecting someone’s choice, it is usu-
ally possible to predict what it will be.

In any event, the controversy over Quetelet’s views served sci-
ence well, for it guaranteed that his work was to become widely
known. Fortunately for physics, some of  the commentaries on it
reached the hands of  James Clerk Maxwell.

MAXWELL AND MOLECULES

Maxwell was one of  those once-in-a-century geniuses who per-
ceived the physical world with sharper senses than those around
him. He saw deeply into almost every corner of  physics, forever
alert to the hidden principles governing the complexities of  physi-
cal phenomena. He mastered electricity and magnetism, light and
heat, pretty much mopping up all the major areas of  physics be-
yond those that Newton had already taken care of—gravitation
and the laws of  motion. And in fact, Maxwell detected an essential
shortcoming in Newton’s laws of  motion, too. They worked fine
for macroscopic objects, like cannonballs and rocks. But what about
the submicroscopic molecules from which such objects were made?
Presumably, Newton’s laws would still apply. But they did you no
good, because you could not possibly trace the motion of  an indi-
vidual molecule anyway. And if  you couldn’t describe the motion
of  an object’s parts, how could you expect to predict the behavior
of the object?

For a cannonball dropped from the leaning tower of  Pisa, the
internal motion of  the metal’s atoms made no difference to the rate
at which it fell. But other forms of  matter did not cooperate so
willingly. Suppose you wanted to know how changes in pressure
affected the temperature of  the steam in a steam engine, for in-
stance. You could not even begin to calculate the motions of  the
individual H2O molecules.

Physicists were not helpless in the face of  this question—they
had devised some pretty good formulas for describing how gases
behaved. Maxwell, though, wanted to know how those rules
worked—why gases behaved the way they did. If  he could show
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how molecular motions produced the observed gross behavior, he
would have achieved both a deeper understanding of  the phe-
nomena and have provided strong new evidence for the very exist-
ence of  atoms and molecules, which was at the time—in the
mid-19th century—a contentious conviction in some circles.

The idea that a gas’s properties depended on the motion of  its
constituent molecules was not new, though. It was known as the
kinetic theory of  gases, originally articulated in 1738 by our old
friend Daniel Bernoulli, who explained the gas laws with a crude
picture of  molecules modeled as billiard balls. But as the science
historian Stephen Brush has noted, Bernoulli’s theory “was a cen-
tury ahead of  its time.”14 Bernoulli’s idea was based on the (cor-
rect) notion that heat is merely the motion of  molecules, but in his
day most physicists believed heat to be some sort of  fluid
substance (called caloric). By the 1850s, though, the kinetic
theory was a ripe topic for physicists to study, as the laws of
thermodynamics—constituting the correct theory of  heat—were
arriving on the scene.

One of  the major pioneers of  thermodynamics was the Ger-
man physicist Rudolf  Clausius. In an 1857 paper, Clausius pre-
sented a comprehensive view on the nature of  heat as molecular
motion. He described how the pressure of  a gas was related to the
motion of  molecules as they impinged on the walls of  their con-
tainer. And any given molecule was constantly battered by colli-
sions with other molecules, so its behavior reflected the influences
of  such impacts (just as a person’s choices reflect the influences of
the countless social pressures that Quetelet had described). In his
approach, Clausius emphasized the importance of  the average ve-
locity of  the molecules, and in an 1858 paper introduced the im-
portant notion of  the average distance that molecules traveled
between collisions (a distance labeled the “mean free path”).

In 1859, Maxwell entered the molecular motion arena, explor-
ing the interplay of  gas molecules and their resulting velocities a
little more deeply. In his approach, Maxwell applied the sort of
statistical thinking that Quetelet had promoted.

Maxwell had probably first encountered Quetelet in an article
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by the astronomer John Herschel. (Herschel, of  course, was famil-
iar with Quetelet as a fellow astronomer.) Later, in 1857, Maxwell
read a newly published book by the historian Henry Thomas
Buckle. Buckle, himself  clearly influenced by Quetelet, believed
that science could discover the “laws of  the human mind” and that
human actions are part of  “one vast system of  universal order.”15 (I
encountered one Web page where Buckle is referred to as the Hari
Seldon of  the 19th century.)

Buckle was another of  the 19th century’s most curious charac-
ters. Born near London in 1821, he was a slow learner as a child.
When he was 18 his father, a maritime merchant, died, leaving the
son sufficient funds to tour Europe and pursue his hobbies of  his-
tory and chess. (Buckle became a formidable chess player and
learned several foreign languages, becoming fluent in seven and
conversant in a dozen others. He also became a prolific bibliophile,
amassing a library exceeding 20,000 books.)

From 1842 on, Buckle began compiling the data and evidence
for a comprehensive treatise on history. Originally planned to fo-
cus on the Middle Ages, the work eventually took on broader aims
and became the History of  Civilization in England (by which Buckle
actually meant the history of  civilization, period). While presum-
ably a work of  history, Buckle’s book was really more a sociologi-
cal attempt to subject the nature of  human behavior to the methods
of  science. He criticized the “metaphysical” (or philosopher’s) ap-
proach to the issue, advocating instead the “historical” method (by
which he basically meant the scientific method).

“The metaphysical method . . . is, in its origin, always the same,
and consists in each observer studying the operations of  his own
mind,” Buckle wrote. “This is the direct opposite of  the historical
method; the metaphysician studying one mind, the historian study-
ing many minds.”16 Buckle could not resist remarking that the
metaphysical method “is one by which no discovery has ever been
made in any branch of  knowledge.” He then emphasized the need
for observing great numbers of  cases so as to escape the effects of
“disturbances” obscuring the underlying law. “Every thing we at
present know,” Buckle asserted, “has been ascertained by studying
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phenomena, from which all causal disturbances having been
removed, the law remains as a conspicuous residue. And this
can only be done by observations so numerous as to eliminate the
disturbances.”17

Much of  Buckle’s philosophy echoes Quetelet, including simi-
lar slams against the idea of  unfettered free will. Occasionally
someone makes what appears to be a free and even surprising
choice, but only because you don’t know enough about the
person’s circumstances, Buckle observed. “If, however, I were ca-
pable of  correct reasoning, and if, at the same time, I had a com-
plete knowledge both of  his disposition and of  all the events by
which he was surrounded, I should be able to foresee the line of
conduct which, in consequence of  those events, he would adopt,”
Buckle pointed out.18 Read retrospectively, Buckle’s comment
sounds very much like what a game theorist would say today. Game
theory is, in fact, all about understanding what choice would (or
should) be made if  all the relevant information influencing the
outcome of the decision is known.

Buckle realized that choices emerge not merely from external
factors, though, but from the inner workings of  the mind as well.
Since sorting out the nuances of  all the influences exceeds science’s
powers, the nature of  human behavior must be described instead
by the mathematics of  statistics. “All the changes of  which history
is full, all the vicissitudes of  the human race, their progress or their
decay, their happiness or their misery, must be the fruit of  a double
action; an action of external phenomena upon the mind, and an-
other action of  the mind upon the phenomena,” wrote Buckle.
“The most comprehensive inferences respecting the actions of  men
are derived from this or from analogous sources: they rest on statis-
tical evidence, and are expressed in mathematical language.”19

It’s not hard to imagine Maxwell reading these words and see-
ing in them a solution to the complexities confounding the de-
scription of  gases. Though Maxwell found Buckle’s book
“bumptious,” he recognized it as a source of  original ideas, and the
statistical reasoning that Buckle applied to society seemed just the
thing that Maxwell needed to deal with molecular motion. “The
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smallest portion of  matter which we can subject to experiment
consists of  millions of  molecules,” Maxwell later noted. “We can-
not, therefore, ascertain the actual motion of  any one of  these
molecules; so that we are obliged to . . . adopt the statistical method
of  dealing with large groups of  molecules.”20 That statistical
method, he showed, could indeed reveal “uniformities” in molecu-
lar behavior. “Those uniformities which we observe in our experi-
ments with quantities of  matter containing millions of  millions of
molecules are uniformities of  the same kind as those explained by
Laplace and wondered at by Buckle,” Maxwell declared.21

The essential feature of  Maxwell’s work was showing that the
properties of  gases made sense not if  gas molecules all flew around
at a similar “average” velocity, as Clausius had surmised, but only if
they moved at all sorts of  speeds, most near the average, but some
substantially faster or slower, and a few very fast or slow. As the
molecules bounced off  one another, some gained velocity; others
slowed down. In subsequent collisions, a fast molecule might be
either slowed down or speeded up. A few would enjoy consecutive
runs of  very good (or very bad) luck and end up moving extremely
rapidly (or slowly), while most would get a mix of  bounces and
tend toward the overall average velocity of  all the molecules in the
box.

Just as Quetelet’s average man was fictitious, and key insights
into society came from analyzing the spread of  features around the
average, understanding gases meant figuring out the range and
distribution of  molecular velocities around the average. And that
distribution, Maxwell calculated, matched the bell-shaped curve
describing the range of  measurement errors.

As Maxwell refined his ideas during the 1860s, he showed
that when the velocities reached the bell-shaped distribution, no
further net change was likely. (The Austrian physicist Ludwig
Boltzmann further elaborated on and strengthened Maxwell’s re-
sults.) Any specific molecule might speed up or slow down, but the
odds were strong that other molecules would change in speed to
compensate. Thus the overall range and distribution of  velocities
would stay the same. When a gas reached that state—in which
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further collisions would cause no net change in its overall condi-
tion—the gas was at equilibrium.

Of  course, this notion of  equilibrium is precisely analogous to
the Nash equilibrium in game theory. And it’s an analogy that has
more than merely lexical significance. In a Nash equilibrium, the
sets of  strategies used by the participants in a game attain a stable
set of  payoffs, with no incentive for any player to change strate-
gies. And just as the Nash equilibrium is typically a mixed set of
strategies, a gas seeks an equilibrium state with a mixed distribu-
tion of  molecular velocities.

PROBABILITY DISTRIBUTIONS

Nash’s mixed strategies, and Maxwell’s mixed-up molecules, are
both examples of  what mathematicians call probability distribu-
tions. It’s such an important concept for game theory (and for sci-
ence generally) that it’s worth a brief  interlude to mercilessly
pound the idea into your brain (possibly with a silver hammer).
Consider Maxwell’s problem. How do the molecules in a gas share
the total amount of  energy that the gas possesses? One possibility
is that all the molecules move at something close to the average, as
Clausius suspected. Or the velocities could be distributed broadly,
some molecules leisurely floating about, others zipping around at
superspeed. Clearly, there are lots of  possible combinations. And
all of  these allocations of  molecular velocities are in principle pos-
sible. It’s just that some combinations of  velocities are more likely
than others.

For a simpler example, imagine what happens when you re-
peatedly flip a coin 10 times and record the number of  heads. It’s
easy to calculate the probability distribution for pennies, because
you know that the odds of  heads versus tails are 50-50. (More
technically, the probability of  heads for any toss is 0.5, or one-
half. That’s because there are two possibilities—equally likely, and
the sum of  all the probabilities must equal 1—1 signifying 100
percent of  the cases.) In the long run, therefore, you’ll find that the
average number of  heads per trial is something close to 5 (if  you’re
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using a fair coin). But there are many conceivable combinations of
totals that would give that average. Half  the trials could turn up 10
heads, for instance, while the other half  turned up zero every time.
Or you could imagine getting precisely 5 heads in every 10-flip
trial.

What actually happens is that the number of  trials with differ-
ent numbers of  heads is distributed all across the board, but with
differing probabilities—about 25 percent of  the time you’ll get 5
heads, 20 percent of  the time 4 (same for 6), 12 percent of  the
time 3 (also for 7). You would expect to get 1 head 1 percent of
the time (and no heads at all out of  a 10-flip run about 0.1 percent
of  the time, or once in a thousand). Coin tossing, in other words,
produces a probability distribution of  outcomes, not merely some
average outcome. Maxwell’s insight was that the same kind of
probability distribution governs the possible allocations of  energy
among a mess of  molecules. And game theory’s triumph was in
showing that a probability distribution of  pure strategies—a mixed
strategy—is usually the way to maximize your payoff  (or mini-
mize your losses) when your opponents are playing wisely (which
means they, too, are using mixed strategies).

Imagine you are repeatedly playing a simple game like match-
ing pennies, in which you guess whether your opponent’s penny
shows heads or tails. Your best mixed strategy is to choose heads
half  the time (and tails half  the time), but it’s not good enough
just to average out at 50-50. Your choices need to be made ran-
domly, so that they will reflect the proper probability distribution
for equally likely alternatives. If  you merely alternate the choice of
heads or tails, your opponent will soon see a pattern and exploit it;
your 50-50 split of  the two choices does you no good. If  you are
choosing with true randomness, 1 percent of  the time you’ll choose
heads 9 times out of  10, for instance.

In his book on behavioral game theory, Colin Camerer dis-
cusses studies of  this principle in a real game—tennis—where a
similar 50-50 choice arises: whether to serve to your opponent’s
right or left side. To keep your opponent guessing, you should
serve one way or the other at random.22 Amateur players tend to
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alternate serve directions too often, and consequently do not
achieve the proper probability distribution. Professionals, on the
other hand, do approach the ideal distribution more nearly, sug-
gesting that game theory does indeed capture something about
optimal behavior, and that humans do have the capability of  learn-
ing how to play games with game-theoretic rationality.

And that, in turn, makes a point that I think is relevant to the
prospects of  game theory as a mathematical method of  quantify-
ing human behavior. In many situations, over time, people do learn
how to play games in a way so that the results coincide with Nash
equilibrium. There are lots of  nuances and complications to cope
with, but at least there’s hope.

STATISTICS RETURNS TO SOCIETY

Of  course, real-life situations, the rise of  civilization, and the evo-
lution of  culture and society are much more complicated than flip-
ping coins and playing tennis. But that is also true of  the inanimate
world. In most realms of  physics and chemistry, the phenomena in
need of  explanation are rarely split between two equally likely
outcomes, so computing probability distributions is much more
complicated than the simple 50-50 version you can use with
pennies. Maxwell, and then Boltzmann, and then the American
physicist J. Willard Gibbs consequently expended enormous
intellectual effort in devising the more elaborate formulas that
today are known as statistical mechanics, or sometimes simply
statistical physics. The uses of  statistical mechanics extend far
beyond gases, encompassing all the various states of  matter and its
behavior in all possible circumstances, describing electric and mag-
netic interactions, chemical reactions, phase transitions (such as
melting, boiling, freezing), and all other manner of  exchanges of
matter and energy.

The success of  statistical mechanics in physics has driven the
belief  among many physicists that it could be applied with similar
success to society. Nowadays, using statistical physics to study hu-
man social interactions has become a favorite pastime of  a whole
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cadre of  scientists seeking new worlds for physics to conquer. Ev-
erything from the flow of  funds in the stock market to the flow of
traffic on interstate highways has been the subject of  statistical-
physics study.

So the use of  statistical physics to describe society is not an
entirely new endeavor. But the closing years of  the 20th century
saw an explosion of  new research in that arena, and as the 21st
century opened, that trend turned into a tidal wave. Behind it all
was a surprising burst of  new insight into the mathematics de-
scribing complex networks. The use of  statistical physics to
describe such networks has propelled an obscure branch of  math
called “graph theory” into the forefront of  social physics research.
And it has all come about because of  a game, starring an actor
named Kevin Bacon.
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Bacon’s Links
Networks, society, and games

Unlike the physics of  subatomic particles or the large-

scale structure of  the universe, the science of  net-

works is the science of  the real world—the world of

people, friendships, rumors, disease, fads, firms, and

financial crises.

—Duncan Watts, Six Degrees

Modern science owes a lot to a guy named Bacon.
If  you had said so four centuries ago, you would have meant

Francis Bacon, the English philosopher who stressed the impor-
tance of  the experimental method for investigating nature. Bacon’s
influence was so substantial that modern science’s birth is some-
times referred to as the Baconian revolution.

Nowadays, though, when you mention Bacon and science in
the same breath you’re probably talking not about Francis, but
Kevin, the Hollywood actor. Some observers might even say that a
second Baconian revolution is now in progress.

After all, everybody has heard by now that Kevin Bacon is the
most connected actor in the movie business. He has been in so
many films that you can link almost any two actors via the net-
work of  movies that he has appeared in. John Belushi and Demi
Moore, for instance, are linked via Bacon through his roles in Ani-
mal House (with Belushi) and A Few Good Men (with Moore). Actors
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who never appeared with Bacon can be linked indirectly: Penelope
Cruz has no common films with Bacon, but she was in Vanilla Sky
with Tom Cruise, who appeared with Bacon in A Few Good Men.
By mid-2005, Bacon had appeared in films with nearly 2,000
other actors, and he could be linked in six steps or fewer to more
than 99.9 percent of  all the linked actors in a database dating back
to 1892. Bacon’s notoriety in this regard has become legendary,
even earning him a starring role in a TV commercial shown during
the Super Bowl.

Bacon’s fame inspired the renaissance of  a branch of  math-
ematics known as graph theory—in common parlance, the
math of  networks. Bacon’s role in the network of  actors motivated
mathematicians to discover new properties about all sorts of  net-
works that could be described with the tools of  statistical physics.
In particular, modern Baconian science has turned the attention of
statistical physicists to social networks, providing a new mode of
attack on the problem of  forecasting collective human behavior.

In fact, the new network math has begun to resemble a blue-
print for a science of  human social interaction, a Code of  Nature.
So far, though, the statistical physics approach to quantifying so-
cial networks has mostly paid little attention to game theory. Many
researchers believe, however, that there is—or will be—a connec-
tion. For game theory is not merely the math for analyzing indi-
vidual behavior, as you’ll recall—it also proscribes the rules by
which many complex networks form. What started out as a game
about Kevin Bacon’s network may end up as a convergence of  the
science of  networks and game theory.

SIX DEGREES

In the early 1990s, Kevin Bacon’s ubiquity in popular films caught
the attention of  some college students in Pennsylvania. They de-
vised a party game in which players tried to find the shortest path
of  movies linking Bacon to some other actor. When a TV talk
show publicized the game in 1994, some clever computer science
students at the University of  Virginia were watching. They soon
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launched a research project that spawned a Web page providing
instant calculations of  how closely Bacon was linked to any other
actor. (You should try it—go to oracleofbacon.org.) The 1,952 actors
directly linked by a common film appearance with Bacon each
have a “Bacon number” of  1. Another 169,274 can be linked to
Bacon through one intermediary, giving them a Bacon number of
2. More than 470,000 actors have a Bacon number of  3. On aver-
age, Bacon can be linked to the 770,269 linkable actors in the
movie database1  in about 2.95 steps. And out of  those 770,269 in
the database, 770,187 (almost 99.99 percent) are linked to Bacon
in six steps or fewer—nearly all, in other words, are less than six
degrees of  separation from Bacon.

So studies of  the Kevin Bacon game seemed to verify an old
sociological finding from the 1960s, when social psychologist
Stanley Milgram conducted a famous mail experiment. Some
people in Nebraska were instructed to send a parcel to someone
they knew personally who in turn could forward it to another
acquaintance with the eventual goal of  reaching a Boston-area
stockbroker. On average, it took a little more than five mailings to
reach the stockbroker, suggesting the notion that any two people
could be connected, via acquaintances, by less than “six degrees of
separation.” That idea received considerable publicity in the early
1990s from a play (and later a movie) of  that title by John Guare.

From a scientific standpoint, the Bacon game and Guare’s play
came along at a propitious time for the study of  networks. The six-
degrees notion generated an awareness that networks could be in-
teresting things to study, just when the tools for studying networks
fell into scientists’ laps, in the form of  powerful computers that, it
just so happened, were themselves linked into a network of  plan-
etary proportions—the Internet.

NETWORKS ARE US

When I was growing up, “network” meant NBC, ABC, or CBS.
Later came PBS, CNN, and ESPN, among others, but the basic
idea stayed the same. As the world’s cultural focus shifted from TV
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to computers, though, the notion of  network expanded far be-
yond its origins. Nowadays it seems that networks are everywhere,
and everything is a network. Networks permeate government, the
environment, and the economy. Society depends on energy net-
works, communication networks, and transportation networks.
Businesses engage networks of  buyers and sellers, producers and
consumers, and even networks of  insider traders. You can find net-
works of  good ol’ boys—in politics, industry, and academia.
Atlases depict networks of  rivers and roads. Food chains have be-
come food webs, just another word for networks. Bodies contain
networks of  organs, blood vessels, muscles, and nerves. Networks
are us.

Of  all these networks, though, one stands out from the
crowd—the Internet and the World Wide Web. (OK, that’s actu-
ally two networks; the Internet comprising the physical network
of  computers and routers, while the World Wide Web is techni-
cally the software part, consisting of  information on “pages” con-
nected by URL hyperlinks.) During the early 1990s, awareness of
the Internet and Web spread rapidly through the population, bring-
ing nearly everybody in contact with a real live example of  a net-
work in action. People in various walks of  life began thinking
about their world in network terms. True, the word “network” al-
ready had its informal uses, for such things as groups of  friends or
business associates. But during the closing years of  the 20th cen-
tury, the notion of  network became more precise and came to be
applied to all sorts of  systems of  interest in biology, technology,
and society.

Throughout the scientific world, networks inspired a new
viewpoint for assessing some of  society’s most perplexing prob-
lems. Understanding how networks grow and evolve, survive or
fail, may help prevent e-mail crashes, improve cell phone coverage,
and even provide clues to curing cancer. Discovering the laws gov-
erning networks could provide critical clues for how to protect—
or attack—everything from power grids and ecosystems to Web
sites and terrorist organizations. Physicists specializing in network
math have infiltrated disciplines studying computer systems, inter-
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national trade, protein chemistry, airline routes, and the spread of
disease.

Using math to study networks is not entirely new, though. In
fact, network math goes back at least to the 18th century, when the
Swiss mathematician Leonhard Euler gave intellectual birth to the
field with his analysis of  a network of  bridges in Königsberg, in
eastern Prussia. In the mid-20th century, Paul Erdös and Alfréd
Rényi developed the math to describe networks in their most ab-
stract representation—essentially dots on paper connected by lines.
The dots are known as nodes (or sometimes vertices); the lines are
officially called edges, but are more popularly referred to as links.
Such drawings of  dots and lines are technically known as graphs,
so traditional network math is known as graph theory.2

A graph’s dots and edges can represent almost anything in real
life. The nodes may be any of  various objects or entities, such as
people, or companies, or computers, or nations; the links may be
wires connecting machines, friendships connecting people, com-
mon film appearances connecting movie actors, or any other
common property or experience. People, of  course, belong to many
different kinds of  networks, such as networks of  family, networks
of  friends, networks of  professional collaborators. There are net-
works of  people who share common investments, political views,
or sexual partners.

Traditional graph theory math does not do a very good job of
describing such networks, though. Its dots and lines resemble real
networks about as much as a scorecard resembles a baseball field.
The scorecard does record all the players and their positions, but
you won’t get much of  an idea of  what baseball is like from read-
ing the scorecard. Same with graphs. Standard graph math de-
scribes fixed networks with nodes connected at random, whereas
in the real world, networks usually grow, adding new parts and
new connections, while perhaps losing others—and not always at
random. In a random network, every node is an equal among many,
and few nodes get much more or less than a fair share of  links. But
in many real-world networks, some nodes possess an unusually
high number of  links. (In a network of  sexual partners, for ex-



BACON’S LINKS 149

ample, some people have many more “links” than average—an im-
portant issue in understanding the spread of  HIV.) And real net-
works form clusters, like cliques of  close friends.

Erdös and Rényi knew full well that their dots and lines did
not capture the complexities of  real-world networks. As mathema-
ticians, they didn’t care about reality—they developed their model
to help understand the mathematical properties of  random con-
nections. Describing random connections was a mathematically fea-
sible thing to do; describing all the complexities of  real-world
networks was not. Nobody knew how to go about doing it.

But then a paper appearing in the British journal Nature began
to change all that. Looking back, the birth of  network mania can
be dated to June 4, 1998, when Duncan Watts and Steven Strogatz
published a brief  paper (taking up only two and a half  Nature
pages) called “Collective Dynamics of  ‘Small-World’ Networks.”3

NETWORK MANIA

A few years later, when I met Strogatz at a complexity conference,
I asked him why networks had become one of  math’s hottest top-
ics in the late 1990s. “I think our paper started it,” he said. “If  you
ask me when did this really start, I think it started in 1998 when
our paper appeared in Nature on what we called small-world net-
works.”

So I quizzed Strogatz about that paper’s origins. It really was a
case of  culture preparing the conditions for the advance of
science.

“When Watts and I started our work in 1995 or so, we were
very aware of  the whole Kevin Bacon thing, and we had heard of
six degrees of  separation, and the movie had come out of  that
play,” said Strogatz. “So it was in the air.”4

Of  course, Kevin Bacon didn’t revolutionize science totally on
his own. The Bacon game became famous just about the time that
the public became aware of  the Internet, thanks to the arrival of
the World Wide Web.

“I think the Web got us thinking about networks,” Strogatz
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said. Not only was the Web a high-profile example of  a vast, elabo-
rate network, it made many other networks accessible for research.
Web crawlers and search engines made it possible to map out the
links of  the Web itself, of  course, and the Web also made it pos-
sible to catalog other large networks and store them for easy access
(the database of  movie actors being one prime example). Data on
the metabolic reactions in nematode worms or the gene interac-
tions in fruit flies could similarly be collected and transmitted.

“Big databases became available, and researchers could get their
hands on them,” Strogatz observed. “People started to think about
things as networks.” Before that, he said, even actual networks
weren’t usually viewed in network terms—the electric power net-
work was known as a grid, and you were just as likely to hear the
term telephone “system” as telephone network. “We didn’t think
of  them so much as networks,” Strogatz said. “I don’t think we had
the visceral sensation of  moving through a network from link to
link.”

With the Web it was different. It was almost impossible to
think of  it as a whole. You had to browse, link by link. And the
Web touched all realms of  science, linking specialists of  all sorts
with network ideas. “In many different branches of  science,”
Strogatz observed, “the kind of  thinking that we call network
thinking started to take hold.”

Still, the revolution in network math did not begin until after
the Watts-Strogatz paper appeared in 1998. They showed how to
make a model of  a “small-world” network, in which it takes only a
few steps on average to get from any one node of  the network to
any other. Their model produced some surprises that led to a flurry
of  media coverage and the subsequent network mania. But Strogatz
thinks some of  those surprises have been misrepresented as being
responsible for network math’s revival. Some experts would say,
for example, that the Watts-Strogatz paper’s major impact stemmed
from identifying the small-world nature of  some particular real-
world networks. Others have suggested that “clustering” of  links
(small groups of  nodes connected more than randomness would
suggest) was the key discovery. “This is to me the bogus view of
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what was important about our paper,” Strogatz said. “The reason it
caught on, I think, is because we were the first to compare net-
works from different fields and find that there were similar proper-
ties across fields.”

In other words, diverse as networks are, many share common
features that can be described in a mathematically precise way.
Such commonalities gave people hope that network math could be
more than a tedious chore of  sorting out links in one kind of
network and then moving on to the next. Instead, it seemed, gen-
eral laws of  networks might be possible, enabling accurate fore-
casts of  how different kinds of  networks would grow, evolve, and
behave—chemical networks like proteins in cells, neural networks
like nerve cells in brains, or social networks, such as actors in mov-
ies or stock traders in the economy.

SMALL WORLDS

One of  the key common features of  different networks is that
many of  them do in fact exhibit the small-world property. When a
network’s nodes are people, for instance, small worlds are the rule.
So discovering the rules governing small-world networks may be
the key to forecasting the social future.

Watts and Strogatz uncovered the small-world nature of  cer-
tain networks by focusing on networks intermediate between those
that were totally regular or to-
tally random. In a regular net-
work (what is often called a
regular lattice), the nodes are
connected only to their nearby
neighbors. For an ultra-simple
example, think of  a series of
nodes arranged in a circle. The
dots representing the nodes are
connected to their immediate
neighbors on either side by the
line representing the circle. Regular network
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For a more elaborate (but still regular) network, you could con-
nect the dots to their second-nearest neighbors as well. Each node
would then be connected to four others—two neighbors on each
side.

In a random network, on the other hand, some nodes would
be connected to many others, some maybe connected to only one.
Some nodes would be linked only to other nodes nearby; some
would be connected to nodes on the other side of  the circle;
some would be connected both to neighbors and to distant nodes.
It would look like a mess. That’s what it means to be random.

In a random network, it is
usually easy to find a relatively
short path from one node to any
other, thanks to the random
long-range links making connec-
tions across the circle. Regular
networks, though, are not so
easy to navigate. To get from one
side of  the circle to the other,
you have to take the long way
around, via linked neighbors.

But what happens, Watts
and Strogatz wondered, with an

“in-between” network—neither completely regular nor completely
random? In other words, suppose you started with a regular net-
work and then added just a few links at random between other
nodes. It turned out that if  even just a tiny percentage of  the links
created shortcuts between distant nodes, the new intermediate net-
work would be a small world (that is, you could get anywhere in
the network in a small number of  steps). But that intermediate
network retains an important feature of  the regular network—its
nearby nodes are still more highly connected than average (that is,
they are “clustered”), unlike random networks where clustering is
mostly absent.

The mathematical existence of  graphs combining these prop-
erties of  random and regular networks was nice, if  not necessarily

Random network
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important. But the fact that you
needed very few shortcuts to
make the network world small
implied that small-world net-
works might be common in na-
ture. Watts and Strogatz tested
that possibility on three real-
world examples: the film actors’
network starring Kevin Bacon,
the electrical power grid in the
western United States, and
the network of  nerve cells in the
tiny roundworm C. elegans.5  In all
three cases, these networks exhibited the small-world property, just
like the models of  hypothetical networks that were intermediate
between regular and random.

“Thus,” Watts and Strogatz concluded, “the small-world phe-
nomenon is not merely a curiosity of  social networks nor an arti-
fact of  an idealized model—it is probably generic for many large,
sparse networks found in nature.”6

If  so (and it was), Watts and Strogatz had opened a new fron-
tier for mathematicians and physicists to explore, where all sorts of
important networks could be analyzed with a common set of  tools.
In just the way that statistical physics made it possible to tame the
complexities of  a jumble of  gas molecules, mathematicians could
use similar math to compute a network’s defining properties. And
just as all gases, no matter what kinds of  molecules they contained,
obeyed the same gas laws, many networks observed similar math-
ematical regularities. “Everybody pointed out, isn’t this remarkable
that these totally different networks have these properties in com-
mon—how would you have ever thought that?” Strogatz said.

Several network features can be quantified by numbers analo-
gous to the temperature and pressure of  a gas, what scientists call
the parameters describing a system. The average number of  steps
to get from any one node to any other—the “path length”—is one
such parameter. Another is the “clustering coefficient”—how likely

Intermediate (small-world) network
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two nodes are to be directly linked if  they are both linked to a
third. A relatively high clustering rate is one of  the counterintuitive
features of  small-world networks. The short path length in small-
world networks is similar to the situation in random networks. On
the other hand, the high clustering coefficient is completely unlike
that in random networks, but is more similar to that in regular
networks.

This clustering property (you could call it the measure of
“cliquishness”) is especially of  interest in social networks. Since my
sister Sue, for instance, has a friend Debby and a friend Janet, it is
more likely than average that Debby and Janet also know each
other. (They do.) “There is a tendency to form triangles, and you
wouldn’t see that in random networks,” Strogatz pointed out.

Besides clustering coefficient and path length, another critical
number is the average number of  links connecting one node to
another, known as the degree coefficient. (The “degree” of  a node
is the number of  other nodes it is linked to.) As a node in the actor
network, Kevin Bacon would be ranked very high in degree, being
connected to so many others. Being well connected, after all, is
what makes the average path length between Bacon and other ac-
tors so short. But in a shocking development, it turned out that
Bacon is far from the most connected of  actors. Taking the average
number of  steps to link to another actor as the gauge, he doesn’t
even rank in the top 1,000!

It turns out, in fact, that Bacon’s true importance for networks
had nothing to do with how special he is, but rather how typical
he is. Many actors, like Bacon, serve as “hubs” connecting lots of
other members of  the acting community. And the existence of
such hubs turns out to be a critical common feature of  many real-
world networks.

THE POWER OF SCALE FREEDOM

As of mid-2004, the actor leading the list as “most connected”
(based on the average number of  steps to link him with all the
other actors) was Rod Steiger, at 2.679 steps. Bacon, at 2.95,
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ranked 1,049th. (Still, as Bacon is more connected than 99 percent
of  all actors, he does qualify as an important hub.) In second place
was Christopher Lee (2.684), followed by Dennis Hopper (2.698).
Donald Sutherland ranked 4th. Among women, the most con-
nected was Karen Black, in 21st place.

It’s such highly connected actors, or hubs, that make it easy to
get from any actor to any other in just a few steps. Choose any two
actors at random. You can probably connect them in three steps or
less. And it would be unusual to need more than four. If  you search
and search, you can find a few who would require more steps, but
that is likely only if  you deliberately choose actors who would not
be very connected, like someone who appeared in only one film.
(And remember, I said you need to choose two at random.)

So for example, just off  the top of  my head I’ll say Basil
Rathbone (because I saw a Sherlock Holmes movie last night) and
Lindsay Lohan (no reason—I will not admit to having seen Herbie:
Fully Loaded). These two actors are from entirely different eras, and
Lohan is young and has been in relatively few films. But you can
link them in only three steps. An aging Rathbone appeared in
Queen of  Blood (1966) with the pre–Easy Rider Dennis Hopper.
Hopper was in Knockaround Guys with Bruce McFee, who appeared
in Confessions of  a Teenage Drama Queen (2004) with Lohan. The
short path between Rathbone and Lohan was made possible by the
hub provided by Hopper, who is, in fact, much more connected
then Bacon.7  (Hopper is connected directly to 3,503 other actors,
about 1,500 more than Bacon.)

Hubs like Hopper make the actor network a small world. They
make getting from one node to another easy, in much the way that
major airport hubs like Chicago’s O’Hare or Dallas–Fort Worth
unite the smaller airports in airline networks so you can get from
one town to another without too many plane changes.

Such large hubs generally do not exist, though, in either ran-
dom or regular networks. In a regular network, every node has the
same number of  links, so there are no hubs. In a random network,
shortcuts exist, but they might be very hard to find because promi-
nent hubs would be very rare. In random networks, any one node
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(actor or airport) is as likely to be linked as much as any other, so
most of  them are linked to about the same degree. Only a few
would have a lot more links than average, or a lot less. If  actors
were linked randomly, their rankings by number of  links would
form a bell curve, with most of  them close to the middle. But in
many small-world networks, there is no such “typical scale” of  the
number of  links.

Such distributions—with no typical common size—are known
as “scale free.” In scale-free networks, many lonely nodes will have
hardly any connections at all, some nodes will be moderately well
connected, and a few will be superconnected hubs. To mathemati-
cians and physicists, such a scale-free distribution is a sure sign of
a “power law.”

In a groundbreaking paper published in Science in 1999, Réka
Albert and Albert-László Barabási of  Notre Dame University noted
the scale-free nature of  many kinds of  networks, and consequently
the usefulness of  power laws for describing them. The revelation
that networks could be described by power laws struck a respon-
sive chord among physicists. (They “salivate over power laws,”
Strogatz says—apparently because power law discoveries in other
realms of  physics have won some Nobel Prizes.)

Power laws describe systems that include a very few big things
and lots of  little things. Cities, for example. There are a handful of
U.S. cities with populations in the millions, a larger number of
medium-sized cities in the 100,000 to a million range, and many,
many more small towns. Same with earthquakes. There are lots of
little earthquakes, too weak to notice; a fewer number of  middling
ones that rattle the dishes; and a very few devastating shocks that
crumble bridges and buildings.

In their Science paper, Barabási and Albert showed how the
probability that a node in a scale-free network is linked to a given
number of  other nodes diminishes as the number of  links increases.
That is to say, scale-free networks possess many weakly linked
nodes, fewer with a moderate number of  links, and a handful of
monsters—like Google, Yahoo, and Amazon on the World Wide
Web. Nodes with few links are common, like small earthquakes;
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nodes with huge numbers of  links are relatively rare, like huge
earthquakes. And the rate at which the probability of  links goes
down is quantified by a power law, just like the math describing
the distribution of  city or earthquake sizes. In other words, a good
theory of  networks should explain not only how Kevin Bacon (or
Dennis Hopper) can be so connected, but also why networks are
analogous to earthquakes.

Barabási and Albert proposed an explanation based on the rec-
ognition that networks are rarely static arrangements of  nodes with
fixed numbers of  links, but rather are usually growing and evolv-
ing structures. As networks grow by adding new nodes, Barabási
and Albert hypothesized, new links do not form at random. Rather
each new node prefers to link to nodes that already have a lot of
links. In other words, the rich get richer, and the result of  such a
growth process is a scale-free network with very rich hubs. The
dynamics of  the process indicated that “the development of  large
networks is governed by robust self-organizing phenomena that go
beyond the particulars of  the individual systems,” Barabási and
Albert noted.8

While their “preferential attachment” scheme did indeed pre-
dict the formation of  hubs, it did not explain many other aspects
of  real-world networks, including clustering. And it turned out
that not all small-world networks are scale-free. Barabási and
Albert’s original work, for instance, suggested that the networks
explored by Watts and Strogatz were scale-free as well as being
small worlds. But they aren’t. The power grid is a small world but
isn’t scale-free, and neither is the neural network of  C. elegans,
Strogatz said. Still, there are many examples of  networks that are
both small-world and scale-free, with the World Wide Web being
one spectacular example. And social networks are typically both
small-world and scale-free, so understanding networks in terms of
power laws would seem a good strategy for using networks to
study human interactions.

Following Barabási and Albert’s pioneering efforts to quantify
network evolution, many other groups have joined the hunt to
identify all the important qualities of  networks and devise math-
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ematical models to explain them. Among the organizations tuned
into this issue is Microsoft, which obviously has a great interest in
the Internet and World Wide Web. So their top scientists are busy
investigating network math themselves. Leaders of  this pack are a
husband-wife team, mathematician Jennifer Tour Chayes and her
husband/collaborator Christian Borgs. When I visited the
Microsoft research labs outside Seattle, they outlined to me their
efforts to identify the features that network math needs in order to
capture the essence of  the Web’s structure.

“The Internet and the World Wide Web are grown, they’re not
engineered,” Chayes pointed out. “No one really planned the
Internet, and certainly no one planned the structure of  the World
Wide Web.” Consequently the Web embodies many of  the nuances
of  natural networks that a good mathematical model will need to
capture, such as the small-world property (the ability to get from
one page to any other in a relatively few number of  steps) and the
clustering phenomenon (if  a Web page links to 10 others, there’s a
good chance that many of  those 10 will link to one another as
well). A further important feature is the preferential attachment
identified by Barabási that conditions how a network grows, or
ages. As the Web grows, and pages are added to the network, the
older pages do tend to acquire more links than newcomers. But it’s
not always true that the oldest pages are the most connected. “It’s
not just a function of  aging,” Chayes explained. AltaVista, for ex-
ample, once was the Cadillac of  Web search engines. But the
younger Google now has many more links. So different sites must
earn links not only by virtue of  age, but also beauty—or “fitness.”

“AltaVista has been around longer but more people tend to link
to Google—it’s in some sense a better page,” said Chayes. “All
other things equal, the older sites will on average have more links,
but if  one site is more fit than another, that compensates for age.
. . . If  I’m twice as fit and I’m half  as old, I should tend to have
about the same number of  connections.”9

Another important feature of  the Web, shared by many (but
not all) networks, is that the links are “directed.” Unlike the Internet,
where wires run both ways, Web page hyperlinks go in only one
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direction. “Just because I link to CNN, that doesn’t mean that CNN
links to me,” Chayes said. (Although, of  course, it should.)

Naturally, good network math also needs to show that the Web
is scale-free. A few sites have a huge number of  links, more have a
medium number, and most have very few links at all. Chayes and
Borgs emphasized that equations describing the Web should pre-
dict not only such a distribution of  links, but also the presence of
a “strongly connected component” of  Web pages. In the strongly
connected component, or SCC, you can move from any page to
another by following hyperlinks one page at a time. If  her page is
in the SCC, says Chayes, she can find a path to any other SCC
page. “I can follow a series of  hyperlinks and get to that person’s
page, and that person can follow a series of  hyperlinks and get
back to my page.”

Borgs pointed out that some Web pages can link into the SCC
even though no path links back to them. Some pages get linked to
from a page in the SCC but don’t link back to an SCC page. Know-
ing which pages are within the SCC, or connected to it in which
way, would be important information for Web advertisers, he noted.

Building mathematical models that reproduce all these features
of  the Web is still a work in progress. But the models of  the Web
and other networks devised so far suggest that mathematicians of
the future may someday be able to explain the behavior of  many
networks encountered in human affairs—such as economic, politi-
cal and social networks; ecosystems; protein networks inside cells;
and networks of  contact that spread diseases. “I think there is go-
ing to be a mathematics of  networks,” said Chayes. “This is a very
exciting new science.”

BACK TO THE GAMES

Since game theory also claims dominion over describing human
behavior, I asked Chayes whether it had any role to play in the
new math of  social networks. Fortunately, she said yes. “We are
trying to explain why these network structures have evolved the
way they have evolved, and that’s really a game theory problem,”
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Chayes said. “So there’s a lot of  work on game theory models for
the growth of  the Internet and the World Wide Web.”

In fact, Chayes, Borgs, and collaborators have shown how math
that is similar at least in spirit to a game theory approach can
explain the emergence of  preferential attachment in an evolving
network (rather than merely assuming it, as Barabási and Albert
did). It’s a matter of  minimizing the costs of  competing consider-
ations—the cost of  making a connection, and the cost of  operat-
ing it once it has been made. (It’s kind of  like buying a car—you
can get a cheap one that will cost you more to keep running, or
shell out more up front for high performance with low mainte-
nance.) That trade-off  can be viewed as a competition between
different network structures, and the math that forecasts minimum
cost also predicts that something like preferential attachment will
describe the network’s evolution.

More explicit uses of  game theory have been called on to ex-
plain the evolution of  other kinds of  networks. A popular use of
network models, for instance, is in making sense of  the mess of
chemicals interacting inside living cells. The interplay of  thou-
sands of  proteins ends up determining how cells behave, which is
often a matter of  life and death. Game theory can help explain
how those biochemical networks evolved into their current com-
plex form.

Biologists would, of  course, naturally assume that cellular me-
tabolism should evolve to reach some “optimal” condition for fuel-
ing cell activity most efficiently. But what’s most efficient? That
depends on the environment, and the environment includes other
species evolving toward optimality. “Thus, by evolving towards
optimal properties, organisms change their environment, which in
turn alters the optimum,” note computational biologist Thomas
Pfeiffer and biophysicist Stefan Schuster.10  And that is just the sort
of  dynamic for which game theory—particularly evolutionary
game theory—is optimal. For example, a key molecule in the net-
work of  cellular chemistry is ATP, which provides the energy
needed to drive important metabolic processes. ATP is the product
of  a chain of  chemical reactions. To stay alive, a cell needs a
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constant source of  ATP, so the reaction “assembly” line has to op-
erate 24/7.

There are, of  course, different possible arrangements of  the
assembly line—that is, different combinations of  reactions that
could produce ATP (as with many networks, there being multiple
pathways to get to a hub). An important question in cellular biol-
ogy is whether cells should prefer to produce ATP as rapidly as
possible, or as efficiently as possible (that is, with pathways that
produce greater quantities of  ATP from the same amount of  raw
material, getting more ATP bang for the buck). Some reaction path-
ways are faster but more wasteful than others, posing a trade-off
for cells desiring to achieve an optimum metabolism.

The best strategy, a game-theoretic analysis shows, depends on
the various other organisms in the vicinity competing for resources.
Where competition is present, game theory recommends fast but
wasteful ATP production, a prediction that contradicts straightfor-
ward notions of  optimizing resource allocation. After all, if  a popu-
lation of  microbial cells are competing for food, it would seem
best for the group for each microbe to make the most efficient use
of  the available food supply, so there will be enough to go around.
But game theory says otherwise—it’s another example of  the
Prisoner’s Dilemma in action. What’s best for the individuals
doesn’t compute to be the overall best deal for the group.

“This paradoxically implies that the tendency of  the users to
maximize their fitness actually results in a decrease in their fit-
ness—a result that cannot be obtained from traditional optimiza-
tion,” Pfeiffer and Schuster point out. “In the framework of
evolutionary game theory, slow and efficient ATP production can
be seen as altruistic cooperative behavior, whereas fast and ineffi-
cient ATP production can be seen as selfish behavior.”11

But it’s also a mistake to assume that cells will always act self-
ishly to enhance their survival odds. Game theory math suggests
that in scenarios where a microbe’s neighbors eat a different kind
of  food (so there is no competition for a single resource), more
efficient production of  ATP at the expense of  speed would be a
better survival strategy. Actual observations confirm that cells typi-
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cally consuming resources shared by others (such as certain yeast
cells) have evolved metabolisms that use the fast-but-wasteful ap-
proach to producing ATP. In multicellular organisms, though, cells
behave more cooperatively with their neighbors, evolving reaction
pathways that produce ATP more efficiently.

Intriguingly, cancer cells seem to violate the cooperation strat-
egy and behave more selfishly (in terms of  using inefficient ATP-
producing processes). Game theory hasn’t exactly cured cancer yet,
but insights into such properties of  cancer cells may contribute to
progress in fighting it.

On a higher evolutionary level, a combination of  network
math and game theory may be able to explain more advanced forms
of  human cooperative behavior. Evolutionary game theory’s as-
sault on the cooperation problem—how altruistic behavior can
evolve in societies of  seemingly selfish individuals—has relied
mainly on playing the Prisoner’s Dilemma game under a variety of
circumstances. In some versions of  the game, the players (or agents)
may encounter anybody else in the population and then decide
whether to defect or cooperate. In one version, though, the agents
face such decisions only in interactions with their immediate neigh-
bors (the game, in other words, is “spatially structured”). It appears
that cooperation is more likely to evolve in games with spatial
constraints, at least when the game is the Prisoner’s Dilemma.

But perhaps the Prisoner’s Dilemma does not always capture
the essence of  real life very accurately. Life might sometimes more
closely resemble a different kind of  game. One candidate is the
“snowdrift” game, in which the best strategic choice differs from
the classic Prisoner’s Dilemma. In a Prisoner’s Dilemma, each player
earns the highest payoff  by defecting, regardless of  what the other
player does. In the snowdrift game, your best move is to defect
only if  your opponent cooperates. If  the opponent defects, you are
better off  cooperating.12  As it turns out, spatial constraints also
influence the evolution of  cooperation in the snowdrift game, but
in a different way—inhibiting cooperation rather than enhancing
it. That is a perplexing finding, calling into question game theory’s
validity for studying the cooperation issue.
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However, as physicists Francisco Santos and Jorge Pacheco have
pointed out, the “spatial constraint” of  agents interacting only with
their neighbors is not realistic, either. A more realistic spatial de-
scription of  the agents, or players, is likely to be a scale-free net-
work of  the agent ’s relationships, simulating actual social
connections. Merging the math of  scale-free networks with game
theory, the physicists found that cooperation ought to emerge with
either the Prisoner’s Dilemma or snowdrift games. “Contrary to pre-
vious results, cooperation becomes the dominating trait on both
the Prisoner’s Dilemma and the snowdrift game, for all values of
the relevant parameters of  both games, whenever the network of
connections correspond to scale-free graphs generated via the
mechanisms of  growth and preferential attachment,” the physicists re-
ported in 2005 in Physical Review Letters.13

Numerous other papers have explored links between game
theory and network math. It strikes me as a sensible trend that is
bound to bear ever more mathematical fruit. Networks are, after
all, complex systems that have grown and evolved over time. And
game theory, as evolutionary biologists have discovered, is a pow-
erful tool for describing the evolution of  such complexity. (One
paper specifically models a version of  the Prisoner’s Dilemma game
showing how repeated play can lead to a complex network in a
state that the authors refer to as a “network Nash equilibrium.”)14

Game theory’s importance to society thus cannot help but expand
dramatically as the critical nature of  social networks becomes ever
more clear.

In fact, physicists building their version of  a Code of  Nature
with the tools of  statistical mechanics (as did Asimov’s Hari Seldon)
have turned increasingly to using those tools on a network-based
foundation. This alliance of  statistical physics and network math,
coupled with game theory’s intimate links to networks, argues that
game theory and statistical physics may together nourish the new
science of  collective human behavior that physicists have already
begun to call sociophysics.
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Asimov’s Vision
Psychohistory, or sociophysics?

“Humans are not numbers.” Wrong; we just do not

want to be treated like numbers.

—Dietrich Stauffer

In 1951—the same year that John Nash published his famous pa-
per on equilibrium in game theory—Isaac Asimov published the
novel Foundation. It was the first in a series of  three books (initially)
telling the story of  a decaying galactic empire and a new science
of  social behavior called psychohistory. Asimov’s books eventually
became the most famous science fiction trilogy to appear between
Lord of  the Rings and Star Wars. His psychohistory became the model
for the modern search for a Code of  Nature, a science enabling a
quantitative description and accurate predictions of  collective hu-
man behavior.1

Mixing psychology with math, psychohistory hijacked the
methods of  physics to forecast—and influence—the future course
of  social and political events. Today, dozens of  physicists and
mathematicians around the world are following Asimov’s lead,
seeking the equations that capture telling patterns in social behav-
ior, trying to show that the madness of  crowds has a method.

As a result, Asimov’s vision is no longer wholly fiction. His
psychohistory exists in a loose confederation of  research enter-
prises that go by different names and treat different aspects of  the
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issue. At various schools and institutes around the world, collabo-
rators from diverse departments are creating new hybrid disciplines,
with names like econophysics, socionomics, evolutionary econom-
ics, social cognitive neuroscience, and experimental economic an-
thropology. At the Santa Fe Institute, a new behavioral sciences
program focuses on economic behavior and cultural evolution. The
National Science Foundation has identified “human and social dy-
namics” as a special funding initiative.

Almost daily, research papers in this genre appear in scientific
journals or on the Internet. Some examine voting patterns in di-
verse populations, how crowds behave when fleeing in panic, or
why societies rise and fall. Others describe ways to forecast trends
in the stock market or the likely effect of  antiterrorist actions. Still
others analyze how rumors, fads, or new technologies spread.

Diverse as they are, all these enterprises share a common goal
of  better understanding the present in order to foresee the future,
and possibly help shape it. Put them all together, and Asimov’s
idea for a predictive science of  human history no longer seems
unthinkable. It may be inevitable.

Among the newest of  these enterprises—and closest to the
spirit of  Asimov’s psychohistory—is a field called sociophysics.
The name has been around for decades, but only in the 21st cen-
tury has it become more science than slogan. Like Asimov’s
psychohistory, sociophysics is rooted in statistical mechanics, the
math used by physicists to describe systems too complex to expose
the intimate interactions of  their smallest pieces. Just as physicists
use statistical mechanics to show how the temperature of  two
chemicals influences how they react, sociophysicists believe they
can use statistical mechanics to take the temperature of  society,
thereby quantifying and predicting social behavior.

Taking society’s temperature isn’t quite as straightforward as it
is with, say, gas molecules in a room. People usually don’t behave
the same way as molecules bouncing off  the walls, except during
some major sporting events. To use statistical physics to take
society’s temperature, physicists first have to figure out where to
stick the thermometer.
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Fortunately, the collisions of  molecules have their counterpart
in human interaction. While molecules collide, people connect, in
various sorts of  social networks. So while the basic idea behind
sociophysics has been around for a while, it really didn’t take off
until the new understanding of  networks started grabbing head-
lines.

Social networks have now provided physicists with the perfect
playground for trying out their statistical math. Much of  this work
has paid little heed to game theory, but papers have begun to ap-
pear exploring the way that variants on Nash’s math become im-
portant in social network contexts. After all, von Neumann and
Morgenstern themselves pointed out that statistical physics pro-
vided a model giving hope that game theory could describe large
social groups. Nash saw his concept of  game theory equilibrium in
the same terms as equilibrium in chemical reactions, which is also
described by statistical mechanics. And game theory provides the
proper mathematical framework for describing how competitive
interactions produce complex networks to begin with. So if  the
offspring of  the marriage between statistical physics and networks
is something like Asimov’s psychohistory, game theory could be
the midwife.

SOCIOCONDEMNATION

Network math offers many obvious social uses. It’s just what the
doctor ordered for tracking the spread of  an infectious disease, for
instance, or plotting vaccination strategies. And because ideas can
spread like epidemics, similar math may govern the spread of  opin-
ions and social trends, or even voting behavior.

This is not an entirely new idea, even within physics. Early
attempts to apply statistical physics to such problems met with
severe resistance, though, as Serge Galam has testified. Galam was
a student at Tel-Aviv University during the 1970s, when statistical
mechanics was the hottest topic in physics, thanks largely to some
Nobel Prize–winning work by Kenneth Wilson at Cornell Univer-
sity. Galam pursued his education in statistical physics but with a
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concern—its methods were so powerful that all the important
problems of  inert matter might soon be solved! So he began to
advocate the use of  statistical physics outside physics, especially
for analyzing human phenomena, and published several papers
along those lines. He even published one with “sociophysics” in
the title in 1982. The response from other physicists was not
enthusiastic.

“Such an approach was strongly rejected by almost everyone,”
he wrote, “leading and non-leading physicists, young and old. To
suggest humans could behave like atoms was looked upon as a
blasphemy to both hard science and human complexity, a total
non-sense, something to be condemned.”2

My impression is that most physicists nowadays are not so
hostile to such efforts (although some are) but are just mostly in-
different. There are some enthusiasts, though, and international
conferences have been devoted to sociophysics and related topics.
And thanks to the rapid advances in network math, the study of
social networks has gained a certain respectability, diminishing the
danger of  instant condemnation for anyone pursuing it (although
acceptance is clearly greater in Europe than in the United States).

Part of  this acceptance probably stems from the growing popu-
larity of  an analogous discipline known as econophysics, a much
more developed field of  study. Econophysics3  studies the interact-
ing agents in an economy using statistical physics, and some promi-
nent physicists have been attracted to it. Many young physicists
have taken their skills in this field to Wall Street, where they can
make money without the constant fear of  government budget cuts.

Sociophysics is much more ambitious. It should ultimately en-
compass econophysics within it, along with everything else in the
realm of  human interactions. Of  course, it has a way to go. But
whatever anybody thinks of  this research, there is certainly now a
lot of  it. Galam himself  remains a constant contributor to the field.
Now working in France, he has studied such social topics as the
spread of  terrorism, for instance, trying to identify what drives the
growth of  terrorism networks. In other work, he has analyzed
opinion transmission and voting behaviors, concluding that “hung
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election scenarios,” like the 2000 U.S. presidential contest, “are
predicted to become both inevitable and a common occurrence.”4

Other researchers have produced opinion-spreading papers that
try to explain whether an extreme minority view can eventually
split a society into two polarized opposite camps, or even eventu-
ally become an overwhelming majority.

Most of  this work is based on simple mathematical models
that try to represent people and their opinions in a way that can be
easily dealt with mathematically. There is no point in trying to be
completely realistic—no amount of  math could capture all the
nuances in the process by which even a single individual formed
his or her opinions, let alone an entire population. The idea is to
find a simple way to represent opinions at their most basic and to
identify a few factors that influence how opinions change—in a
way that lends itself  to mathematical manipulation. If  the math
then reproduces something recognizable about human behavior, it
can be further refined in an attempt to inch closer to reality.

It’s not hard to find people who think the whole enterprise is
preposterous. Human beings are not particles—they bear not the
slightest similarity to atoms or molecules. Why should you expect
to learn anything about people from the math that describes mo-
lecular interactions?

On the other hand, molecules are not billiard balls—yet
Maxwell made spectacular progress for physics by analyzing them
as though they were. In his paper introducing statistical consider-
ations to the study of  gases, Maxwell applied his math to a system
containing “small, hard and perfectly elastic spheres acting on one
another only during impact.” Molecules are small, to be sure,
but otherwise that description is not very complete or accurate, as
Maxwell knew full well. But he believed that insights into the
behavior of  real molecules might emerge by analyzing a simplified
system.

“If  the properties of  such a system of  bodies are found to
correspond to those of  gases,” Maxwell wrote, “an important physi-
cal analogy will be established, which may lead to more accurate
knowledge of  the properties of  matter.”5  Today, physicists hope
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to find a similar analogy between particles and people that will
lead to an improved knowledge of  the functioning of  society.

SOCIOMAGNETISM

One popular example of  such an approach appeared in 2000 from
Katarzyna Sznajd-Weron of  the University of  Wroclaw in Poland.
She was interested in how opinions form and change among mem-
bers of  a society. She reasoned that the global distribution of  opin-
ions in a society must reflect the behavior and interactions of
individuals—in physics terms, the macrostate of  the system must
reflect its microstate (like the overall temperature or pressure of  a
container of  gas reflects the speed and collisions of  individual
molecules).6  “The question is if  the laws on the microscopic scale
of  a social system can explain phenomena on the macroscopic
scale, phenomena that sociologists deal with,” she wrote.7

Sznajd-Weron was well aware that people recoil when told
they are just like atoms or electrons rather than individuals with
feelings and free will. “Indeed, we are individuals,” she wrote, “but
in many situations we behave like particles.” And one of  those
common properties that people share with particles is a tendency
to be influenced by their neighbors. Sometimes what one person
does or thinks depends on what someone else is doing, just as one
particle’s behavior can be affected by other particles in its vicinity.

Sznajd-Weron related an anecdote about a New Yorker staring
upward at the sky one morning while other New Yorkers pass by,
paying no attention. Then, the next morning, four people stare
skyward, and soon others stop as well, all looking up for no reason
other than to join in the behavior of  the crowd. Such pack behav-
ior suggested to Sznajd-Weron an analogy for crowd behavior as
described by the statistical mechanics of  phase transitions, the sud-
den changes in condition such as the freezing of  water into ice.
Another sort of  phase transition, of  the type that attracted her
attention, is the sudden appearance of  magnetism in some materi-
als cooled below a certain temperature.
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It makes sense to relate society to magnetism, since society
reflects the collective behavior of  people, and magnetism reflects
the collective behavior of  atoms. A material like iron can be mag-
netic because its atoms possess magnetic properties, thanks to the
arrangement of  their electrons, the electrically charged fuzzballs
that shield each atom’s nucleus. Magnetism is related to the direc-
tion in which electrons spin. (You can view the spins as around an
axis either pointing up or pointing down, corresponding to
whether the electron spin is clockwise or counterclockwise.)

Ordinarily a bar of  iron is not magnetic, because its atoms are
directing their magnetism in random directions, so they cancel out.
If  enough atoms align themselves in one particular direction,
though, others will follow—kind of  like the way if  enough people
look up to the sky, everybody else will, too. When all the atoms
line up, the iron bar becomes a magnet. It’s as though each atom
checks to see how its neighbor’s electrons are spinning. When two
atoms are sitting next to each other, their partnerless electrons want
to spin in the same direction—that confers a slightly lower energy
on the system, and all physical systems seek the state of  lowest
possible energy. Consequently the spin of  one iron electron can
influence the spin of  its neighbor, inducing it to take on the same
orientation. (In most materials an atom’s electrons are mostly paired
off  with opposite spins. But iron and a few other materials possess
some properly positioned electrons without partners. Magnetism is
a little more complicated than this crude picture, of  course, but the
basic idea is good enough.)

As scientists began to understand this aspect of  magnetism,
they wondered if  such local interactions between neighbors could
explain the global phase transition from the nonmagnetic to mag-
netic state. In the 1920s, the German physicist Ernst Ising tried to
show how neighboring spins could induce a spontaneous phase
transition in a system, but failed. The problem was not in the basic
idea, though—it was that Ising analyzed only a one-dimensional
system, like a string of  spinning beads on a necklace. Soon other
researchers showed that Ising’s approach did turn out to work when
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applied to two-dimensional systems, like spinning balls arranged
in a grid.

Magnetism could thus be understood as a collective phenom-
enon stemming from the interactions of  individuals—sort of  like
pack journalism. When one newspaper makes a big deal about a
major story, all the other media jump in and beat the story to
death—all the news is taken over by something like O.J. or Michael
Jackson or some Runaway Bride. Similarly, rapid large-scale
changes mimicking phase transitions occur in biology or the
economy, such as mass extinctions or stock market crashes. In re-
cent years it has occurred to physicists like Galam, Sznajd-Weron,
and many others that the same principle could apply to social phe-
nomena, such as the rapid spread of  popular fads.

Sznajd-Weron set out to devise an Ising-like model of  social
opinions, trying out a very simplified approach that would be easy
to handle mathematically. Instead of  up or down spins, people
could take a yes or no stance with respect to some issue. If  you
start out with opinions at random, how would the system change
over time? Sznajd-Weron proposed a model based on the idea
of  “social validation.” Just as the behavior of  the New York
skywatcher spread when others did the same, identical opinions
between neighbors could cause their same opinion to spread so-
cially, in a way similar to the way magnetism develops through
Ising interactions.

Sznajd-Weron’s model of  society was pretty simple—
something like one long street with houses on only one side. Each
house is identified by a number (OK, that’s realistic), and each
house gets one opinion (or spin): either yes (mathematically repre-
sented as +1), or no (–1).

To start out, the houses all have opinions at random. Then,
every day each house checks its neighbors and modifies its opin-
ions based on some simple mathematical rules. Based on neighbor-
ing opinions, each house may (or may not) modify its own. In
Sznajd-Weron’s model, you start by considering two neighbors—
let’s say House 10 and House 11. Each of  that pair has another
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neighbor (House 9 and House 12). Sznajd-Weron’s rules say that
if  houses 11 and 12 have the same opinion, then houses 9 and 12
will adjust their opinions to match the common opinion of  10 and
11. If  houses 10 and 11 disagree, though, House 9 will adjust its
opinion to agree with House 11, and House 12 will change to
agree with House 10.

Mathematically, the rules look like this, with S representing a
house and the subscript i representing the house number (in the
above example, Si is House 10, Si+1 is House 11, etc.):

If Si = Si+1 then Si–1 = Si and Si+2 = Si
If Si = -Si+1 then Si–1 = Si+1 and Si+2 = Si

In other words, when the two neighbors (10 and 11) agree, the
two outside neighbors will share that opinion. If  the first two
neighbors disagree, then the one on the left will agree with the
second and the one on the right will agree with the first. Why
should that be? No reason, it’s just a model. In a variant on Sznajd-
Weron’s original proposal, the second rule is switched:

If Si = -Si+1 then Si–1 = Si and Si+2 = Si+1

In the original model, Sznajd-Weron performed computer
simulations on a street with 1,000 houses and watched as opinions
changed over 10,000 days or so. No matter how the opin-
ions started out, the neighborhood eventually reached one of  three
stable situations—either all the houses voting yes, all no, or a 50-
50 split. (These conditions correspond, in Sznajd-Weron’s words,
to either “dictatorship” or “stalemate.”)

Since not all societies are dictatorships or stalemates, the model
does not reflect the true complexity of  the real world. But that
doesn’t mean the model is dumb—it means that the model has
told us something, namely that more than just local interaction
between neighbors is involved in opinion formation. And you don’t
need to know what all those other factors are to improve the
model—you just need to know that they exist. In her 2000 paper,
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Sznajd-Weron showed that such unknown factors (in technical
terms, noise) could be described as a “social temperature” raising
the probability that an individual would ignore the neighbor rules
and choose an opinion apparently at random. With a sufficiently
high social temperature, the system can stay in some disordered
state, more like a democracy, rather than becoming a stalemate or
dictatorship.

Even so, as Sznajd-Weron pointed out, her one-dimensional
model is not likely to be very useful for social systems, just as
Ising’s one-dimensional model did not get the magnetism picture
right, either. So in the years since her proposal, she and others have
worked on extensions of  the model. A similar model in two di-
mensions (with the “houses” occupying points on a grid) was de-
veloped by Dietrich Stauffer of  the University of  Cologne,
probably today’s most prominent sociophysicist. With the people
aligned on a grid, everybody has four neighbors, a pair has six
neighbors, and a block of  four has eight neighbors. In this case,
one rule might be that a block of  four changes its eight neighbors
only if  all four in the block have the same spin (or opinion). Or
two neighbors paired with the same spin can change the spins of
their six neighbors. A grid model can accommodate more compli-
cations and thus reproduce more of  the real properties of  society.

SOCIONETWORKS

Clearly, though, the way to get more social realism is to apply such
rules not to simple strings or grids but to the complex social net-
works discovered in the real world. And much interesting work has
begun to appear along these lines. One approach examines the
general idea of  “contagion”—the spread of  anything through a
population, whether infectious disease or ideas, fads, technological
innovations, or social unrest. As it turns out, fads need not always
spread the same way as a disease, as different scenarios may guide
the course of  different contagions.

In some cases, a small starting “seed” (a literal virus, perhaps, or
just a new idea) can eventually grow into an epidemic. In other
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cases a seed infects too few people and the disease or idea dies out.
Peter Dodds and Duncan Watts (of  the Watts-Strogatz network
paper) of  Columbia University have shown that what happens can
depend on how much more likely a second exposure is to infect an
individual than a first exposure. Their analysis suggests that the
spread of  diseases or ideas depends less on “superspreaders” or
opinion leaders than on how susceptible people are—how resis-
tant they are to disease or how adamantly they hold their current
opinion. Such results imply that the best way to hamper or ad-
vance contagion would be strategies that increase or reduce the
odds of  infection. Better health procedures, for instance, or finan-
cial incentives to change voting preferences, could tip the future
one way or another.

“Our results suggest that relatively minor manipulations . . .
can have a dramatic impact on the ability of  a small initial seed to
trigger a global contagion event,” Dodds and Watts declared in
their paper.8  It sounds like just the sort of  thing that Hari Seldon
incorporated into psychohistory, so that his followers could subtly
alter the course of  future political events.

In real life, of  course, people don’t necessarily transmit opin-
ions or viruses in the simple ways that such analyses assume. So
some experts question how useful the statistical mechanics ap-
proach to society will ultimately be. “I think in some limited do-
mains it might be pretty powerful,” says Cornell’s Steven Strogatz.
“It really is the right language for discussing enormous systems of
whatever it is, whether it’s people or neurons or spins in a magnet.
. . . But I worry that a lot of  these physicist-style models of  social
dynamics are based on a real dopey view of  human psychology.”9

Of  course, that is precisely where game theory comes into
play. Game theory has given economists and other social scientists
the tool for quantifying human psychology in ways that Freud
could only dream of. Neuroeconomics and behavioral game theory
have already sculpted a much more realistic model of  human psy-
chology than the naive Homo economicus that lived only to maxi-
mize money. And once you have a better picture of  human
psychology—in particular, a picture that depicts the psychological
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variations among individuals—you need game theory to tell you
what happens when those individuals interact.

SOCIOPHYSICS AND GAME THEORY

After all, when you get to really complex social behaviors—not
just yes or no votes, but the whole spectrum of  human cultural
behavior and all its variations—the complex interactions between
individuals really do matter. It is yet again similar to the situation
with molecules in a gas. In his original math describing gas mol-
ecules, Maxwell considered their only interaction to be bouncing
off  of  each other (or the container’s walls), altering their direction
and velocity. But atoms and molecules can interact in more compli-
cated ways. Electrical forces can exert an attractive or repulsive
force between molecules, and including those forces in the calcula-
tions can make statistical mechanical predictions more accurate.

Similarly, the behavior of  people depends on how they are
affected by what other people are doing, and that’s what game
theory is supposed to be able to describe. “Game theory was cre-
ated,” Colin Camerer points out, “to provide a mathematical lan-
guage for describing social interaction.”10  Numerous efforts have
been made to apply game theory in just that way. One particularly
popular game for analyzing social interaction is the minority game,
based on an economist’s observations about a Santa Fe bar.

Keep in mind that in game theory, a player’s choices should
depend on what the other players are choosing. So the game as a
whole reflects collective behavior, possibly described by a Nash
equilibrium. In simple sociophysics models based on neighbors
interacting, the global collective behavior results from purely local
influences. But the Nash equilibrium idea suggests that individual
behavior should be influenced by the totality of  all the other be-
haviors. It may be, for instance, that the average choices of  all the
other players is the most important influence on any one
individual’s choice (in physics terms, that would correspond to a
“mean-field theory” version of  statistical mechanics).

In traditional game theory, each player supposedly is 100 per-
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cent rational with total information and unlimited mental power to
figure out what everybody else will do and then calculate the best
move. But sometimes (actually, almost all the time) those condi-
tions are not satisfied. People have limited calculating power and
limited information. There are situations where the game is too
complex and too many people are involved to choose a foolproof
decision using game theory.

And in fact, many simple situations can prove too complicated
to calculate completely, even something as innocent as deciding
whether to go to a bar on Friday night or stay home instead. This
problem was made famous by Brian Arthur, an economist at the
Santa Fe Institute, in the early 1990s. A Santa Fe bar called El
Farol had become so popular that it was no longer always a pleas-
ant place to go because of  the crowds. (It was reminiscent of  base-
ball player Yogi Berra’s famous comment about the New York City
restaurant Toots Shor’s. “Toots Shor’s is so crowded,” said Yogi,
“nobody goes there anymore.”)

Arthur saw in the El Farol situation a problem of  decision
making with limited information. You don’t know in advance how
many people will go to the bar, but you assume that everybody
would like to go unless too many other people are going also.
Above some level of  attendance, it’s no fun. This situation can be
framed as a game where the winners are those in the minority—
you choose to go or stay home and hope that the majority of
people make the opposite choice.

In 1997, Damien Challet and Yi-Cheng Zhang developed the
mathematics of  the El Farol problem in detail, in the form of  what
they called the minority game. Since then it has been a favorite
framework of  many physicists for dealing with economic and so-
cial issues.11

In the basic version of  the game, each would-be bar patron (in
mathematical models, such customers are called “agents”) possesses
a memory of  how his or her last few bar-going decisions have
turned out. (Players find out after every trial whether the stay-at-
home or bar-going choices were the winners.) Suppose that Friday
is your regular drinking night, and you can remember what hap-
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pened three weeks back. Say, for instance, that on each of  the last
three Friday nights, a majority of  people went to the bar. They
were therefore the losers, as the minority of  players avoided the
crowd by staying at home. Your strategy for next Friday might be
to go to the bar, figuring that after three loser trips in a row most
people will decide to stay home and the bar will be less crowded.
On the other hand, your strategy might be to go based only on the
results of  the past week, regardless of  what happened the two
weeks before.

At the start of  the game, each agent gets a set of  possible
strategies like these, and then keeps track of  which strategies work
better than others. Over time, the agents will learn to use the strat-
egies that work the best most often. As a result, the behavior of  all
the players becomes coordinated, and eventually attendance at the
bar will fluctuate around the 50-50 point—on some Fridays a
minority will go to the bar, and on some a slight majority, but
attendance will never be too far off  from the 50-50 split.

You don’t have to be a drinker to appreciate the usefulness of
the minority game for describing social situations. It’s not just about
going to bars—the same principles apply to all sorts of  situations
where people would prefer to be in a minority. You can imagine
many such scenarios in economics, for instance, such as when it’s
better to be a buyer or a seller. If  there are more sellers than buy-
ers, you have the advantage if  you’re a buyer—in the minority.

Further work on the minority game has shown that in some
circumstances it is possible to predict which choice is likely to be
in the minority on next Friday night. It depends on how many
players there are and how good their memory is. As the number of
players goes down (or their memory capacity goes up), at some
point the outcome is no longer random and can be predicted with
some degree of  statistical confidence.

MIXED CULTURES

While the minority game provides a good example of  using (modi-
fied) game theory to model group behaviors, it still leaves a lot to
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be desired. And it certainly is a far cry from Asimov’s psychohistory.
Psychohistory quantified not only the interactions between
individuals in groups, but also the interactions among groups, ex-
hibiting bewildering cultural diversity. Today’s nonfictional anthro-
pologists have used game theory to demonstrate such cultural
diversity, but it’s something else again to ask game theory to ex-
plain it. Yet if  sociophysics is to become psychohistory, it must be
able to cope with the global potpourri of  human cultural behav-
iors, and achieving that goal will no doubt require game theory.

At first glance, the prospects for game theory encompassing
the totality of  cultural diversity seem rather bleak. Especially in its
most basic form, the ingredients for a science of  human sociality
seem to be missing. People are not totally rational beings acting
purely out of  self-interest as traditional game theory presumes, for
example. Individuals playing games against other individuals make
choices colored by emotion. And societies develop radically differ-
ent cultural patterns of  collective behavior. No Code of  Nature
dictates a universal psychology that guides civilizations along simi-
lar cultural paths.

As Jenna Bednar and Scott Page of  the University of  Michigan
have described it, game theory would seem hopeless as a way to
account for the defining hallmarks of  cultural behavior. “Game
theory,” they write, “assumes isolated, context-free strategic envi-
ronments and optimal behavior within them.”12  But human cul-
tures aren’t like that. Within a culture, people behave in similar,
fairly consistent ways. But behavior differs dramatically from one
culture to the next. And whatever the culture, behavior is typically
not optimal, in the sense of  maximizing self-interest. When incen-
tives change, behavior often remains stubbornly stuck to cultural
norms. All these features of  culture run counter to some basic no-
tions of  game theory.

“Cultural differences—the rich fabric of  religions, languages,
art, law, morals, customs, and beliefs that diversifies societies—and
their impact would seem to be at odds with the traditional game
theoretic assumption of  optimizing behavior,” say Bednar and
Page. “Thus, game theory would seem to be at a loss to explain the
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patterned, contextual, and sometimes suboptimal behavior we think
of  as culture.”13

But game theory has a remarkable resilience against charges of
irrelevance. It’s explanatory power has not yet been exhausted,
even by the demands of  explaining the many versions of  human
culture. “Surprisingly,” Bednar and Page declare, “game theory is
up to the task.”14

The individuals, or agents, within a society may very well pos-
sess rational impulses driving them to seek optimum behaviors,
Bednar and Page note. But the effort to figure out optimal behav-
iors in a complicated situation is often considerable. In any given
game, a player has to consider not only the payoff  of  the “best”
strategy, but also the cost of  calculating the best moves to achieve
that payoff. With limited brain power (and everybody’s is), you
can’t always afford the cost of  calculating the most profitable
response.

Even more important, in real life you are never playing only
one game. You are in fact engaging in an ensemble of  many differ-
ent games simultaneously, imposing an even greater drain on your
brain power. “As a result,” write Bednar and Page, “an agent’s strat-
egy in one game will be dependent upon the full ensemble of
games it faces.”

So Alice and Bob (remember them?) may be participating in a
whole bunch of  other games, requiring more complicated calcula-
tions than they needed back in Chapter 2. If  they have only one
game in common, the overall demand on their calculating powers
could be very different. Even if  they face identical situations in the
one game they play together, their choices might differ, depending
on the difficulty of  all the other games they are playing at the
same time. As Bednar and Page point out, “two agents facing dif-
ferent ensembles of  games may choose distinct strategies on games
that are common to both ensembles.”

In other words, with limited brain power, and many games to
play, the “rational” thing to do is not to calculate pure, ideal game
theory predictions for your choices, but to adopt a system of  gen-
eral guidelines for behavior, like the Pirate’s Code in the Johnny
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Depp movie Pirates of  the Caribbean. And that’s what it means to
behave culturally. Cultural patterns of  behavior emerge as indi-
viduals tailor a toolkit of  strategies to apply in various situations,
without the need to calculate payoffs in detail. “Diverse cultures
emerge not in spite of  optimizing motivation,” Bednar and Page
write, “but because of  how those motivations are affected by
incentives, cognitive constraints, and institutional precedents.
Thus agents in different environments may play the same game
differently.”15

The Michigan scientists tested this idea with computer simula-
tions on a variety of  games, giving the agents/players enough
brain power to compute optimal strategies for any given game. In
the various games, incentives for the self-interested agents differed,
to simulate different environmental conditions. These multiple-
game simulations show that game theory itself  drives self-
interested rational agents to adopt “cultural” patterns of  behavior.
This approach doesn’t explain everything about culture, of  course,
but it shows how playing games can illuminate aspects of  society
that at first glance seem utterly beyond game theory’s scope.
And it suggests that the scope of  sociophysics can be grandly
expanded by incorporating game theory into its statistical physics
formulations.

In any event, recent developments in the use of  statistical phys-
ics in describing networks and society—and game theory’s inti-
mate relationship with both—instill a suspicion that game theory
and physics are somehow related in more than a superficial way. As
game theory has become a unifying language for the social sci-
ences, attempts by physicists to shed light on social science inevi-
tably must encounter game theory. In fact, that’s exactly what has
already happened in economics. Just yesterday, the latest issue of
Physics Today arrived in my mail, with an article suggesting that
economics may be “the next physical science.”

“The substantial contribution of  physics to economics is still in
an early stage, and we think it fanciful to predict what will ulti-
mately be accomplished,” wrote the authors, Doyne Farner and
Eric Smith of  the Santa Fe Institute and Yale economist Martin



ASIMOV’S VISION 181

Shubik. “Almost certainly, ‘physical’ aspects of  theories of  social
order will not simply recapitulate existing theories in physics.”16

Yet there are areas of  overlap, they note, and “striking empiri-
cal regularities suggest that at least some social order . . . is perhaps
predictable from first principles.” The role of  markets in setting
prices, allocating resources, and creating social institutions involves
“concepts of  efficiency or optimality in satisfying human desires.”
In economics, the tool for gauging efficiency and optimality in
satisfying human desires is game theory. In physics, analogous con-
cepts correspond to physical systems treated with statistical me-
chanical math. The question now is whether that analogy is
powerful enough to produce something like Asimov’s psycho-
history, a statistical physics approach to forecasting human social
interaction, a true Code of  Nature.

One possible weakness in the analogy between physics and
game theory, though, is that physics is more than just statistical
mechanics. Physics is supposed to be the science of  physical real-
ity, and physical reality is described by the weird (yet wonderful)
mathematics of  quantum mechanics. If  the physics–game theory
connection runs deep, there should be a quantum connection as
well. And there is.
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Meyer’s Penny
Quantum fun and games

Do games have anything deeper to say about physics,

or vice versa? Maybe. Most surprisingly, the connec-

tion might arise at the most fundamental level of  all:

quantum physics.

—Chiu Fan Lee and Neil F. Johnson, Physics World

It’s the 24th century, aboard the starship Enterprise.
Captain Jean-Luc Picard places a penny heads up in a box, so

that it can be touched but not seen. His nemesis Q, an alien with
mysterious powers, then chooses whether to flip the coin over or
not. Without knowing what Q has done, Picard then must decide
to flip, or not flip, the coin as well. Q then gets the last turn. He
either flips the penny or leaves it alone. If  the penny shows heads
when the box is removed, Q wins; tails wins for Picard.

They play the game 10 times, and Q wins them all.
It’s not a scene from any actual episode of  Star Trek: The Next

Generation, but rather a scenario from a physics journal introducing
an entirely new way of  thinking about game theory.

The penny-flipping game is an old game theory favorite. It
appears in various disguises, such as the game of  chicken. (Whether
you flip the coin or leave it alone corresponds to veering out of  the
path of  the oncoming car or continuing straight on.) If  they were
playing the original version of  the penny game, Q and Picard
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should, in the long run, break even, no one player winning more
often than the other. Ten wins in a row for one player defies any
reasonable definition of  luck.

So if  this had really happened on the show, Commander Riker
would have immediately accused Q of  cheating. But the wiser
Picard would have pondered the situation a little longer and even-
tually would have realized that Q’s name must be short for quan-
tum. Only someone possessing quantum powers can always win
the penny game.

As it turns out, Earth’s physicists did not need an alien to teach
them about quantum games. They emerged three centuries early,
on the eve of  the 21st century, out of  an interest in using the
powers of  quantum mechanics to perform difficult computations.
It was an unexpected twist in the story of  game theory, as quantum
games disrupted the understanding of  traditional “classical” games
in much the way that quantum mechanics disturbed the compla-
cency of  classical physics. The invention of  quantum game theory
suggested that the bizarre world of  quantum physics, once re-
stricted to explaining atoms and molecules, might someday invade
economics, biology, and psychology. And it may even be (though
perhaps not until the 24th century) that quantum games will ce-
ment the merger of  game theory and physics. In fact, if  physics
ever finds the recipe for forecasting and influencing the social fu-
ture, it might be that quantum game theory will provide the essen-
tial ingredient.

Now, if  you’ve been reading carefully all this time, it might
seem a little unfair that, after coming to grips with the complexi-
ties of  game theory, network math, and statistical mechanics, you
must now face the bewildering weirdness of  quantum physics on
top of  it. Fortunately, the space available here does not permit the
presentation of  a course in quantum mechanics. Besides, you don’t
need to know everything there is to know about quantum physics
to see how quantum game theory works. But you do have to be
willing to suspend your disbelief  about some of  quantum theory’s
strangest features—most importantly, the concept of  multiple
realities.
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QUANTUM TV

I’ve described this quantum confusion before (in my book The Bit
and the Pendulum) by relating it to television. In the old days, TV
signals traveled through the air, all the possible channels passing
through your living room at the same time. (Nowadays they usu-
ally arrive via cable.) By turning the dial on your TV set (or punch-
ing a button on the remote control), you can make one of  those
shows—one of  many possible realities—come to life on your
screen. The realm of  atoms, molecules, and particles even smaller
works in a similar way. Left to themselves, particles buzz about like
waves, and their properties are not sharply defined. In particular,
you cannot say that a particle occupies any specific location. An
atom can literally be in two places at once—until you look at it.
An observation will find it located in one of  the many possible
positions that the quantum equations allow.

An important issue here, one that has occupied physicists for
decades, involves defining just what constitutes an “observation.”
In recent years, it has become generally agreed that humans are not
necessary to perform an observation or measurement on a particle.
Other particles bouncing off  it can accomplish the same effect.
That is to say, an atom, on its own, cannot be said to occupy a
specific location. But once other atoms start hitting it, the atom
will become localized in a position consistent with the altered paths
of  the other atoms. This phenomenon is known as decoherence.
As long as decoherence can be avoided (for example, by isolating a
particle from other influences, maintained at very low tempera-
tures), the weird multiplicity of  quantum realities can be sustained.

This feature of  quantum physics has been an endless source of
controversy and consternation for physicists and nonphysicists
alike. But experimental tests have left no room for doubt on this
point. In the subatomic world, reality is fuzzy, encompassing a
multiplicity of  possibilities. And those possibilities all have a claim
to being real. It’s not just that you don’t know where an atom is—
it occupies no definite location, but rather occupies many locations
simultaneously.
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From a game theory point of  view, there is a simple enough
way of  looking at this—reality itself  is a mixed strategy.

Personally, I find this to be an uncanny analogy. In game theory,
your best strategy typically is not one predetermined move or set
of  moves, but a mix of  several strategies chosen with some par-
ticular probability—say, Strategy A 70 percent of  the time and
Strategy B 30 percent of  the time. In the math of  quantum phys-
ics, the location of  a particle cannot be definitively determined,
but only described probabilistically—perhaps you will find it in
Region A 70 percent of  the time, and in Region B 30 percent of
the time. Still, at first glance, you wouldn’t expect this analogy to
be very meaningful. There’s no reason to believe that the math of
molecules would be relevant to making choices in economic games.
But it turns out that applying quantum math to game theory does
allow new decision-making strategies, adding a whole extra di-
mension to game theory’s powers.

To be sure, some experts have doubted that quantum games
offer any real benefits that could not be obtained in other ways.
But other researchers have suggested that understanding quantum
games could have ramifications for managing auctions, choosing
better stock portfolios, and even improving the principles underly-
ing democratic voting. And new technologies have begun to make
experimental demonstrations of  quantum games possible.

VON NEUMANN RETURNS

When you think about it, marrying quantum math to game theory
is natural enough. In a way, the surprise is that nobody did it
sooner. After all, John von Neumann, the originator of  modern
game theory, was also a pioneer in quantum mechanics. And the
initial impetus for quantum games stemmed from the fact that von
Neumann was also a pioneer in developing digital computers.

When David Meyer, a physicist-turned-mathematician at the
University of  California, San Diego, was invited to give a talk
about quantum computing at Microsoft in January 1998, his
thoughts turned to von Neumann. “I was giving a talk to the whole



186 A BEAUTIFUL MATH

research division and I wanted to come up with something new to
talk about,” Meyer told me when I visited him at his office on the
UCSD campus in La Jolla. “So I was thinking, what could I talk
about at Microsoft that they’ll be interested in?”1

Meyer’s research had been focusing on quantum versions of
computing, and he was naturally familiar with the fact that the
standard version of  quantum physics math had been developed by
von Neumann. “And of  course von Neumann is also responsible
for the architecture of  modern computers to a large extent, so
that’s relevant to Microsoft also,” Meyer noted. “But then there’s a
third thing that von Neumann is known for—his invention of
game theory, which is a big part of  economics, and of  course
that’s relevant to Microsoft also. So I thought, OK, how can I put
these things together?” It seemed obvious that the thing to do was
explore the possibility of  a quantum version of  game theory.

Meyer found a place to begin simply by considering game
theory terminology. Von Neumann had shown that in two-player
zero-sum games each player could always have a “best” strategy,
but that it was not always a pure strategy—making the same play
(for given circumstances) every time. In some cases the best strat-
egy is to choose from various pure strategies with a certain prob-
ability for each—that is, a probability distribution of  strategies, or
“mixed” strategy.

“Now the fact that it’s called a mixed strategy versus a pure
strategy is not an accident,” Meyer pointed out. “Von Neumann’s
responsible, as far as I can tell, for that vocabulary, and that vo-
cabulary is the same vocabulary as in quantum mechanics. You have
pure states and you have mixed states—mixed states are probabil-
ity distributions over pure states. It has the same meaning.”

So Meyer’s talk at Microsoft explored a way of  bringing quan-
tum theory’s multiple “mixed state” realities to game theory.
He wisely chose one of  the simplest games possible, the penny-
flipping game. It’s a simple game where the idea is simply to out-
guess your opponent, since there is no particular logic involved in
deciding whether to flip the penny or not. If, however, one player
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discerns a pattern in the choices of  the other, that knowledge could
be exploited in repeated sessions of  the game.

In a nonquantum or “classical” version of  the game, Picard’s
best strategy would be to flip the coin half  the time (in other
words, he should flip a coin to decide whether to flip the coin),
thereby making sure there will be no pattern to detect. Q , who
gets two moves, should choose each of  his four possible strategies
one-fourth of  the time (flip on both moves, flip on neither move,
flip on the first move only, or flip only on the second move). If
both players observe those strategies, they should each win half
the time. Neither could do better by changing strategies, so it rep-
resents a Nash equilibrium.

In Meyer’s quantum scenario, Picard still must play classically.
But Q is allowed to play a quantum strategy—that is, he can flip
the coin not from heads to tails but into a quantum combination of
both possibilities, a coin that is half-heads and half-tails, like an
electron that is simultaneously here and there.

In the lingo of  quantum information physics, such a dual-
valued head-tail combination is known as a qubit—short for a
“quantum bit” of  information. In traditional computing, bits are
units of  information corresponding to one of  two possibilities—
yes or no, heads or tails, 1 or 0. A classical coin must fall either
heads or tails, but a quantum coin is permitted multiple possibili-
ties, a mix of  heads and tails at the same time. (I like to think of  a
qubit as a tossed coin while still spinning—it is neither heads nor
tails until it is observed, sort of  the way you don’t know what a
coin will show until it is caught or hits the ground.)

In actual quantum information experiments, the “coin” is usu-
ally a particle of  light—a photon—and heads or tails might corre-
spond to how the photon is spinning (the direction in which its
axis of  spin is pointing). For practical reasons, such experiments
more often rely on measuring the photon’s polarization, the orien-
tation of  the light wave (or more technically, of  the electric field
component of  the light wave). Filters (like the polarized lenses of
sunglasses) can block or transmit polarized light depending on its
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orientation, usually designated as horizontal or vertical. If  you
imagine the filter as something like a picket fence, a vertically po-
larized photon would pass through; a horizontally polarized pho-
ton would be blocked. (Of  course, you could also transmit a photon
oriented in between vertical and horizontal—that is, tilted. In that
case, the recipient of  the photon could tilt the detector, too, and
block a photon tilted to the left by tilting the detector to the right.)

For Meyer’s penny, turning it to heads or tails corresponds to
setting the orientation of  a polarizing filter—showing the head,
say, but hiding the tail side of  the coin.

Meyer’s math showed how quantum manipulation of  the
penny can always guarantee that it will end up heads—a win for
Q. Since Q plays first, he can use his quantum magic to flip the
coin into a 50-50 mix of  heads and tails. (In this case, rather than
thinking of  it as a spinning coin, you could imagine the penny
standing on edge.) Therefore it doesn’t matter what Picard does on
his next move. Whether he flips or not, the penny remains on its
edge (mathematically speaking). Q can then perform a reverse
quantum move that will return the coin to its original condition—
heads up.

If  you’d like a more rigorous explanation, the coin-flipping
game can be described in terms of  the direction of  the quantum
coin’s spin in a three-dimensional coordinate system (with the co-
ordinate axes labeled x, y, and z). If  you define heads as a spin
pointing north on the z axis (in the “+z” direction), then tails would
be pointing the opposite way (south, or the -z direction). A classi-
cal flip (the only move allowed to Picard) merely switches the di-
rection of  the spin, from +z to -z. Q, however, can perform a
quantum twist to the spin, pointing it “east” (along the +x axis). If
Picard then flips the coin from north to south, the spin still points
east, so it doesn’t matter what Picard does—Q’s next move returns
the spin to north, or heads, and Picard loses.2  Picard’s strategy of
flipping the coin half  the time—guaranteed by classical game
theory to be the best strategy he can play—turns out to be a worth-
less strategy against a quantum player.

There’s a significance to this point that is easy to miss. Game
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theory supposedly tells you the best strategy you can play in a
game. Meyer’s discovery applies a huge asterisk to that statement.
The footnote reads, in bold type, that game theory tells you the
best strategy only if  you are able to ignore the multiple possibilities
of  quantum physics. And since the world is, in fact, governed by
quantum physics, it’s more than possible that, in some circum-
stances at least, quantum games may someday be relevant to real-
life situations.

QUANTUM DILEMMAS

Meyer’s paper reporting the substance of  his Microsoft talk was
published in Physical Review Letters in 1999.3  Soon thereafter, a
second version of  a quantum game (focusing on the famous
Prisoner’s Dilemma) appeared independently of  Meyer’s work. And
in the next few years, dozens of  other papers began to explore a
whole gamut of  quantum games. Most suggested that the out-
comes in standard games, such as the Prisoner’s Dilemma, might
be improved with quantum strategies. Some papers applied quan-
tum game principles to economics, suggesting, for instance, that
the multiple possibilities of  quantum physics might be applied to
selecting the best mix of  stocks in a portfolio, or in making deci-
sions about when and whether to buy or sell.

It seems, though, that the original arguments that quantum
strategies permit better outcomes in many games were not airtight.
In some cases, merely allowing a “referee” to mediate between play-
ers, without any quantum magic, can achieve the same effects. If
that were so, there would be nothing really inherently “quantum”
about the games—they would just be different games, still classi-
cal, but with new rules. After thinking this through, however,
Meyer concluded that there are still ways to make games truly
quantum in character. “It’s true that there are some aspects of
quantum games which you can simulate by adding classical com-
munication to what the players do,” he told me. “But once you start
thinking about adding classical communication . . . then for a fair
comparison the quantum game should really be thought of  as add-
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ing quantum communication to what the players do, and then there
can be a difference.” In other words, if  the mediators or players are
allowed to use quantum communication systems, quantum benefits
may indeed be achieved.

“It’s not that hard now to send quantum bits from one place to
another,” Meyer said. “So it’s not implausible that you could . . .
have players in some sort of  game-theoretic setting, and you have
the referee, rather than classical information, sending them quan-
tum information—the advantage being that the outcome is differ-
ent and possibly better.”4

If  so, he said, various real-life problems might be addressed
with quantum game theory. Ways to make online voting both
anonymous but verifiable, for example, might be possible with
quantum information. Combinatorial auctions, such as the bidding
by many companies for various licenses to be issued by the govern-
ment, could perhaps be managed more efficiently by using quan-
tum information to coordinate the bids.

“It’s quite conceivable to me that some of  these things may be
doable in a better way or at least a different way by exchanging
quantum information,” Meyer said. “There’s a huge realm to play
in here. It’s something that should be explored . . . and it might
even be practical at some point.”

QUANTUM COMMUNICATION

Quantum communication is, in fact, already feasible on a small
scale, using optical fibers to transmit particles of  light carrying
qubits, the quantum bits of  information. Qubits can be used to
transmit secret codes with uncrackable quantum protection from
eavesdroppers, guaranteeing that the code cannot be intercepted
without detection. Quantum signaling of  this nature has been dem-
onstrated through several miles of  optical cable and even through
open air. Quantum-coded signaling to military satellites is well
within the realm of  technological possibility within the future
timeframe of  Pentagon budget planning.

To be practical, though, the more grandiose quantum game
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schemes would probably need a tool that is today only in the in-
fancy of  its development—a quantum computer. In fact, one of
the neatest things about quantum games is that they could give
quantum computers something to do.

At the moment, quantum computers don’t exist in any mean-
ingful sense, although laboratory demonstrations of  rudimentary
quantum computation have been accomplished. If  they can be
scaled up to a useful size, quantum computers could exploit the
multiple quantum realities to do many calculations simultaneously,
thereby drastically shortening the time it takes to solve some very
hard problems. So in theory, quantum computers could be enor-
mously more powerful than today’s supercomputers, but only for
those special sorts of  problems that lend themselves to quantum
treatment. Massive database searching could be faster with a quan-
tum computer, for example, and breaking secret codes is certainly
something you wouldn’t want to try without one.

Today’s secret codes, used in military, financial, and other sorts
of  confidential communications, rely on the difficulty of  breaking
large numbers down into their prime factors. For small numbers,
that’s easy to do: 15, for instance, is obviously the product of  the
two prime numbers 5 and 3; 35 is the product of  the primes 5 and
7. But for a number, say, 200 digits long, the world’s fastest
supercomputer might churn for a billion years without discovering
the two primes that were multiplied to produce it. The way secret
coding systems are set up, you can encode a message if  you know
the long number, but decode it only if  you know its two prime
factors.

This system seemed pretty secure, as it’s unlikely anybody will
care if  your code gets broken a billion years from now. But in
1994, the mathematician Peter Shor showed that the primes could
be discovered quickly—if  you had a quantum computer at your
disposal. The quantum computer could be programmed to explore
all the prime possibilities at once; all the wrong answers would
cancel themselves out, leaving a number that could be used to
compute the primes easily. Designing and building a quantum com-
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puter is much simpler on paper than in practice, though, and it will
doubtless be decades before you’ll be able to buy one at Best Buy.

Nevertheless, simple quantum computations can be performed
now. In fact, factoring 15 has been achieved with a quantum com-
puter based on the same technology used in MRI medical imaging.
And in 2002 Chinese physicists reported an experimental demon-
stration of  the quantum Prisoner’s Dilemma game, using a simple
quantum computer. In the following year, Chinese physicists Lan
Zhou and Le-Man Kuang outlined how to set up a quantum game
communication system using lasers and mirrors and other optical
devices in a paper published in Physics Letters A.5

QUANTUM ENTANGLEMENT

The Zhou-Kuang design exploits one of  the most mysterious fea-
tures of  quantum physics, a ghostly bond between particles that
have emerged from a mutual interaction. When two particles of
light (photons) are emitted simultaneously from the same atom, for
example, they retain an ethereal connection—measuring one seems
to affect the other even if  it is meters, miles, or light-years away.
This connection is called “entanglement,” and it’s one of  the things
about quantum mechanics that really bothered Einstein (he called
it “spooky action at a distance”).

When two photons are entangled, they share quantum infor-
mation in a peculiar way. If  you think of  them as spinning coins,
they both keep spinning—becoming neither heads nor tails—until
one of  them is observed. And then the other one stops spinning,
too! So suppose I possess two pennies, spinning within opaque
boxes, entangled in such a way that if  one is observed to be heads,
the other will turn up tails. I send one box via FedEx to my sister in
Ohio. She can’t resist opening the package right away and discov-
ers the penny on the bottom of  the box, showing heads. The
instant she sees it, the penny in my remaining box stops spinning
and shows tails—whether I’m in Texas or California or on the
International Space Station. Even if  I don’t look in my box, I know
damn well that the penny shows tails (once my sister has called to
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tell me that hers is heads).6  Somehow, my sister’s observation of
her penny influenced the state of  my penny, no matter how far
away we are. The same thing happens for real with actual photons
of  light, when you measure not heads or tails but how the photon
is spinning or the orientation of  its polarization.

This shared information between entangled particles can be
exploited for many kinds of  quantum communication purposes. In
a quantum game, entangled particles can carry information about a
player’s choice in such a way that one choice will influence an-
other. Take the Prisoner’s Dilemma game. In the classical game, the
players typically choose to defect because they cannot be sure that
their partner will cooperate. Overall, the pair’s best strategy is for
both to remain silent—that way they’ll serve the least amount of
time. But each individual prisoner’s best strategy is to rat out the
other (to avoid the risk of  a much longer sentence). So the best
choice for the individual turns out not to be the wisest choice for
the team.“We have a dilemma,” write quantum game theorists
Adrian Flitney and Derek Abbott, “some form of  which is respon-
sible for much of  the misery and conflict throughout the world.”7

But suppose there was a way that both players could make
their decision hinge on the decision of  the other. That’s what play-
ing with entangled photons offers. As Zhou and Kuang showed,
you can set up an apparatus that allows the choice of  “defect” (rat
out your partner) or cooperate (keep mum) to be transmitted by
photons, passing through a maze of  mirrors and other optical de-
vices, ultimately to reach a detector signifying either defect or co-
operate. You can shoot your photon into the maze in different
ways—so that it would end up in the “defect” detector, for in-
stance, or in the “cooperate” detector. There’s nothing tricky about
that. But the maze can be set up so that the photons from the two
players become entangled, with the result that both will end up
cooperating. That is, you can send your choice in such a way that
your photon will send a signal to cooperate only if  the other one
does, too.

This work shows that quantum game theory, at least in prin-
ciple, could be used to alter in a deep and profound way the choices
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people make given the choices of  others. Imagine, for instance, a
quantum version of  the “public goods” game discussed in earlier
chapters. The idea is that a neighborhood group proposes building
a project of  public benefit, such as a park, to be paid for by volun-
tary contributions. Presumably people who want the park will con-
tribute the most money to the fund drive. But standard game theory
suggests that many people who want the park will contribute little
or no money, reasoning that others will fork over enough to pay
for it. Therefore it’s hard to get donations, even for a park every-
body desires, without the intervention of  some outside agency (say,
a tax collector).

In 2003, scientists from HP Labs in Palo Alto, California,
posted a paper on the Internet showing how a quantum public
goods game provides strategies that reduce the temptation to free-
load. When people make economic or social decisions, they don’t
always choose based on self-interest alone, but may be influenced
by social norms and expectations—sort of  the way properties of  a
photon are influenced by distant measurements. So if  you send
your pledge via a quantum information channel, its message can
depend on the messages from the other contributors. Therefore,
the HP scientists suggested, entangled photons transmitted by
laser beams through optical fibers could in theory be used for
pledging donations in real-life community projects. Using quan-
tum-entangled photons to communicate their intentions could al-
low a coordination of  commitments that otherwise couldn’t be
guaranteed.

“Quantum mechanics offers the ability to solve the free-rider
problem in the absence of  a third-party enforcer,” wrote Kay-Yut
Chen, Tad Hogg, and Raymond Beausoleil in their paper.8

QUANTUM VOTING

The same principle could be applied to other sorts of  community
communication issues, including voting, especially in elections with
multiple candidates. You wouldn’t need runoffs, since the multiple
possible outcomes could be encoded in quantum information.
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Here, I think, is a real potential for coping with some of  the
mathematical problems inherent in today’s democratic system of
voting. For instance, when three candidates are running for office,
the ultimate winner may not reflect the desire of  the majority of
the voters. Here’s how it can work:

In a primary election, Candidate A gets 37 percent of  the votes,
Candidate B gets 33 percent, and Candidate C gets 30 percent. So
candidate A and B get into a runoff. But for most of  candidate B’s
voters, C was the second choice. And for most of  Candidate A’s
voters, C was also the second choice. So if  C were running against
A alone, C would win. If  C were running against B alone, C would
win. But in the primary, C finished third so the ultimate winner
will be A or B. Since a majority of  the voters prefer C to either A
or B, the winner is clearly not the electorate’s optimal choice. A
quantum voting scheme could, by incorporating multiple possibili-
ties in the voting, reach a more “democratic” election result.

It sounds far-fetched, but its mere possibility affirms the po-
tentially dramatic value of  invoking quantum weirdness to cope
with the complexities of  the ordinary world. And it may even be
possible that quantum game theory underlies much deeper aspects
of  nature and of  life. In the mushrooming literature on quantum
games are papers suggesting that quantum strategies at the molecu-
lar level may mimic aspects of  evolutionary game-theoretic de-
scriptions of  the competition between organisms. In particular,
Azhar Iqbal of  the University of  Hull in England argues that quan-
tum entanglement could influence the interactions of  molecules
leading to a more stable mix of  ingredients than would otherwise
occur (in analogy to an evolutionary stable strategy for organisms
in an ecosystem). A quantum entanglement “strategy,” he suggests,
could determine whether a population of  molecules can “with-
stand invasion” from a small number of  new molecules (corre-
sponding to mutants in evolutionary biology).9  If  there’s anything
to this—and it would seem to be far too early to say—then you
could imagine something like quantum game theory playing a role
in the origin of  stable sets of  self-replicating molecules—in other
words, life itself. (In which case the Code of  Nature might turn out
to be solvable only with quantum cryptography.)
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In any case, quantum game theory offers a new perspective on
both games and physics, with implications awaiting further explo-
ration. At the very least, quantum physics and games share one
obvious similarity—probability distributions, as with the mixed
strategies of  games and the mixed realities of  quantum mechanics.
Life and physics, it seems, are all mixed up. Sorting it all out will
require a closer look at the power of  probability.
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Pascal’s Wager
Games, probability, information, and ignorance

Although this may seem a paradox, all exact science is

dominated by the idea of  approximation.

—Bertrand Russell

As a teenager in 17th-century France, Blaise Pascal seemed des-
tined for mathematical greatness. He wrote a genius-caliber treatise
on geometry at age 16 and invented a rudimentary computer to
assist the calculations of  his tax-collector father. But as an adult,
Pascal was seduced by religion, forgoing math to produce a series
of  philosophical musings assembled (after his death) into a book
called Pensées. He died at 39, leaving a legacy, in the words of  the
mathematician E. T. Bell, as “perhaps the greatest might-have-been
in history.”1

Still, Pascal remains a familiar name in today’s mathematics
textbooks, thanks to a favor he did for a French aristocrat who
desired assistance with his gambling habit. What Pascal offered
was not religious counseling on the evils of  gambling, but math-
ematical advice on how to win. In his correspondence on this ques-
tion with Pierre Fermat, Pascal essentially invented probability
theory. What’s more, out of  Pascal’s religious ruminations came an
idea about probability that was to emerge centuries later as a criti-
cal concept in mathematics, with particular implications for game
theory.
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When it comes to making bets, Pascal observed, it is not
enough to know the odds of  winning or losing. You need to know
what’s at stake. You might want to take unfavorable odds if  the
payoff  for winning would be really huge, for example. Or you
might consider playing it safe by betting on a sure thing even if
the payoff  was small. But it wouldn’t seem wise to bet on a long
shot if  the payoff  was going to be meager.

Pascal framed this issue in his religious writings, specifically in
the context of  making a wager about the existence of  God. Choos-
ing to believe in God was like making a bet, he said. If  you believe
in God, and that belief  turns out to be wrong, you haven’t lost
much. But if  God does exist, believing wins you an eternity of
heavenly happiness. Even if  God is a low-probability deity, the
payoff  is so great (basically, infinite) that He’s a good bet anyway.
“Let us weigh the gain and the loss in wagering that God is,” Pascal
wrote. “Let us estimate these two chances. If  you gain, you gain all;
if  you lose, you lose nothing. Wager, then, without hesitation that
He is.”2

Pascal’s reasoning may have been theologically simplistic, but
it certainly was mathematically intriguing.3  It illustrated the kind
of  reasoning that goes into calculating the “mathematical expecta-
tion” of  an economic decision—you multiply the probability of
an outcome by the value of  that outcome. The rational choice is
the decision that computes to give the highest expected value.
Pascal’s wager is often cited as the earliest example of  a math-
based approach to decision theory.

In real life, of  course, people don’t always make their decisions
simply by performing such calculations. And when your best deci-
sion depends on what other people are deciding, simple decision
theory no longer applies—making the best bets becomes a prob-
lem in game theory. (Some experts would say decision theory is
just a special case of  game theory, in which one player plays the
game against nature.) Still, probabilities and expected payoffs re-
main intertwined with game theory in a profound and complicated
way.

For that matter, all of  science is intertwined with probability
theory in a profound way—it’s essential for the entire process of
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observation, experiment, and measurement, and then comparing
those numbers with theory. And probability arises not only in mak-
ing measurements and testing hypotheses, but also in the very de-
scription of  physical phenomena, particularly in the realm of
statistical physics. In the social sciences, of  course, probability
theory is also indispensable, as Adolphe Quetelet argued almost
two centuries ago. So game theory’s intimate relationship with
probabilities, I’d wager, is one of  the reasons why it finds such
widespread applicability in so many different scientific contexts.
And no doubt it’s this aspect of  game theory that has positioned it
so strategically as an agent for merging social and physical statis-
tics into a physics of  society—something like Asimov’s psycho-
history or a Code of  Nature.

So far, attempts to devise a sociophysics for describing society
have mostly been based not on game theory, but on statistical me-
chanics (as was Asimov’s fictional psychohistory). But game
theory’s mixed strategy/probabilistic formulas exhibit striking
similarities to the probability distributions of  statistical physics. In
fact, the mixed strategies used by game players to achieve a Nash
equilibrium are probability distributions, precisely like the distri-
butions of  molecules in a gas that statistical physics quantifies.

This realization prompts a remarkable conclusion—that, in a
certain sense, game theory and statistical mechanics are alter egos.
That is to say, they can be expressed using the same mathematical
language. To be more precise, you’d have to say that certain ver-
sions of  game theory share math identical to particular formula-
tions of  statistical mechanics, but the deep underlying connection
remains. It’s just that few people have noticed it.

STATISTICS AND GAMES

If  you search the research literature thoroughly, though, you will
find several papers from the handful of  scientists who have begun
to exploit the game theory–statistical physics connection. Among
them is David Wolpert, a physicist-mathematician at NASA’s Ames
Research Center in California.
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Wolpert is one of  those creative thinkers who refuse to be
straitjacketed by normal scientific stereotypes. He pursues his own
intuitions and interests along the amorphous edges separating (or
connecting) physics, math, computer science, and complexity
theory. I first encountered him in the early 1990s while he was
exploring the frontiers of  interdisciplinary science at the Santa Fe
Institute, discussing such issues as the limits of  computability and
the nature of  memory.

In early 2004, Wolpert’s name caught my eye when I noticed a
paper he posted on the World Wide Web’s physics preprint page.4

His paper showed how to build a bridge between game theory and
statistical physics using information theory (providing, incidentally,
one of  the key inspirations for writing this book). In fact, as
Wolpert showed in the paper that attracted my attention to this
issue in the first place, a particular approach to statistical mechan-
ics turns out to use math that is equivalent to the math for non-
cooperative games.

Wolpert’s paper noted that the particles described by statistical
physics are trying to minimize their collective energy, like the way
people in a game try to reach the Nash equilibrium that maximizes
their utility. The mixed strategies used by players to achieve a Nash
equilibrium are probability distributions, just like the distribution
of  energy among particles described by statistical physics.

After reading Wolpert’s paper, I wrote him about it and then a
few months later discussed it with him at a complexity conference
outside Boston where he was presenting some related work. I asked
what had motivated him to forge a link between game theory and
statistical physics. His answer: rejection.

Wolpert had been working on collective machine learning sys-
tems, situations in which individual computers, or robots, or other
autonomous devices with their own individual goals could be co-
ordinated to achieve an objective for the entire system. The idea is
to find a way to establish relationships between the individual
“agents” so that their collective behavior would serve the global
goal. He noticed similarities in his work to a paper published in
Physical Review Letters about nanosized computers. So Wolpert sent
off  one of  his papers to that journal.
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“The editor actually came back and said ‘Well, . . . what you’re
doing just plain isn’t physics,’” Wolpert said. “And I was annoyed.”
So he started thinking about physics and game theory. After all, a
bunch of  agents with their own agendas, yet pursuing a common
goal, is entirely analogous to players in a game seeking a Nash
equilibrium. “And then I said, OK, I’m going to try to take that and
completely translate it into a physics system,” he recalled.5

Games deal with players; physics deals with molecules. So
Wolpert worked on the math that would represent a player’s strat-
egy like a molecule’s state of  motion. The mix of  all the players’
strategies would then be like the combined set of  motion states of
all the molecules, as ordinarily described by statistical physics. The
formulas he came up with would allow you to calculate a good
approximation to the actual set of  any individual player’s strategies
in a game, given some limited knowledge about them. You could
then do exactly the same sort of  calculation for the combined
strategies of  all the players in a game. Basically, Wolpert showed
how the math of  statistical physics turns out to be the same as the
math for games where players have limited rationality.

“Those topics are fundamentally one and the same,” he wrote
in his paper. “This identification raises the potential of  transferring
some of  the powerful mathematical techniques that have been de-
veloped in the statistical physics community to the analysis of  non-
cooperative game theory.”6

Wolpert’s mathematical machinations were rooted in the idea
of  “maximum entropy,” a principle relating standard statistical
physics to information theory, the math designed to quantify the
sending and receiving of  messages. The maximum entropy (or
“maxent”) idea was promoted by the maverick physicist Edwin
Jaynes in a 1957 paper that was embraced by a number of  physi-
cists but ignored by many others. Wolpert, for one, calls Jaynes’s
work “gloriously beautiful” and thinks that it’s just what scientists
need in order “to bring game theory into the 21st century.”

Jaynes’s principle is simultaneously intriguing and frustrating.
It seems essentially simple but nevertheless poses tricky complica-
tions. It is intimately related to the physical concept of  entropy,
but is still subtly different. In any event, its explanation requires a
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brief  excursion into the nature of  probability theory and informa-
tion theory, the essential threads tying game theory and statistical
physics together.

PROBABILITY AND INFORMATION

For centuries, scientists and mathematicians have argued about the
meaning of  probability. Even today there exist separate schools of
probabilistic thought, generally referred to by the shorthand labels
of  “objective” and “subjective.” But those labels conceal a tangle of
subarguments and technical subtleties that make probability theory
one of  the most contentious and confusing realms of  math and
science.

In a way, that’s a bit surprising, since probability theory really
lies at the very foundation of  science, playing the central role in
the process of  analyzing experimental data and testing theories.
It’s what doing science is all about. You’d think they’d have it all
worked out by now. But establishing rules for science is a little like
framing a constitution for Iraq. There are different philosophies
and approaches to science. The truth is that science (unlike math-
ematics) is not built on a rock-solid foundation of  irreducible rules.
Science is like grammar. Grammar arises from regularities that
evolve in the way native speakers of  a language form their words
and string them together. A true grammarian does not tell people
how they should speak, but codifies the way that people actually
do speak. Science does not emanate from a cookbook that pro-
vides recipes for revealing nature’s secrets, but from a mix of  meth-
ods that somehow succeed in rendering nature comprehensible.
That’s why science is not all experiment, and not all theory, but a
complex interplay of  both.

Ultimately, though, theory and experiment must mesh if  the
scientist’s picture of  nature is to be meaningful and useful. And in
most realms of  science, you need math to test the mesh. Probabil-
ity theory is the tool for performing that test. (Different ideas about
how to perform the test, then, lead to different conceptions of
probability.)
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Before Maxwell, probability theory in science was mostly lim-
ited to quantifying things like measurement errors. Laplace and
others showed the way to estimate how far off  your measurement
was likely to be from the true value for a particular degree of
confidence. Laplace himself  applied this approach to measuring
the mass of  Saturn. He concluded that there was only one chance
in 11,000 that the true mass of  Saturn would deviate from the
then-current measurement by more than 1 percent. (As it turned
out, today’s best measurement indeed differs from the one in
Laplace’s day by only 0.6 percent.) Probability theory has devel-
oped into an amazingly precise way of  making such estimates.

But what does probability itself  really mean? If  you ask people
who ought to know, you’ll get different answers. The “objective”
school of  thought insists that the probability of  an event is a prop-
erty of  the event. You observe in what fraction of  all cases that
event happens and thereby measure its objective probability. The
subjective view, on the other hand, argues that probability is a
belief about how likely something is to happen. Measuring how
often something happens gives you a frequency, not a probability,
the subjectivists maintain.

There is no point here delving into the debates about the rela-
tive merits of  these two views. Dozens of  books have been de-
voted to that controversy, which is largely irrelevant to game theory.
The fact is that the prevailing view today, among physicists at
least, is that the subjectivist approach contains elements that are
essential for a sound assessment of  scientific data.

Subjective statistics often goes under the label of  Bayesian,
after Thomas Bayes, the English clergyman who discussed an ap-
proach of  that nature in a paper published in 1763 (two years after
his death). Today a formula known as Bayes’ theorem is at the
heart of  practicing the subjective statistics approach (although that
precise theorem was actually worked out by Laplace). In any case,
the Bayesian viewpoint today comes in a variety of  flavors, and
there is much disagreement about how it should be interpreted and
applied (perhaps because it is, after all, subjective).

From a practical point of  view, though, the math of  objective
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and subjective probability theory does not really differ in any fun-
damental respect other than its interpretation. It’s just that in some
cases it seems more convenient, or more appropriate, to use one
rather than another, as Jaynes pointed out half  a century ago.

INFORMATION AND IGNORANCE

In his 1957 paper,7  Jaynes championed the subjectivity side of  the
probability debate. He noted that both views, subjectivist and ob-
jectivist, were needed in physics, but that for some types of  prob-
lems only the subjective approach would do.

He argued that the subjective approach can be useful even when
you know nothing about the system you are interested in to begin
with. If  you are given a box full of  particles but know nothing
about them—not their mass, not their composition, not their inter-
nal structure—there’s not much you can say about their behavior.
You know the laws of  physics, but you don’t have any knowledge
about the system to apply the laws to. In other words, your igno-
rance about the behavior of  the particles is at a maximum.

Early pioneers of  probability theory, such as Jacob Bernoulli
and Laplace, said that in such circumstances you must simply as-
sume that all the possibilities are equally likely—until you have
some reason to assume otherwise. Well, that helps in doing the
calculations, perhaps, but is there any real basis for assuming the
probabilities are equal? Except for certain cases where an obvious
symmetry is at play (say, a perfectly balanced two-sided coin),
Jaynes said, many other assumptions might be equally well justi-
fied (or the way he phrased it, any other assumption would be
equally arbitrary).8

Jaynes saw a way of  coping with this situation, though, with
the help of  the then fairly new theory of  information devised by
Claude Shannon of  Bell Labs. Shannon was interested in quantify-
ing communication, the sending of  messages, in a way that would
help engineers find ways to communicate more efficiently (he
worked for the telephone company, after all). He found math that
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could quantify information quite nicely if  you viewed communica-
tion as the reduction of  uncertainty. Before communication begins,
all messages are possible, so uncertainty is high; as messages are
actually received, that uncertainty is reduced.

Shannon’s math applied generally to any system of  signaling,
from Morse Code to smoke signals. But suppose, for example, that
all you wanted to do was send someone a single English word
(from among all the words in a standard unabridged dictionary,
about half  a million). If  you tell the recipient of  the message that
the word is in the first half  of  the dictionary, you’ve reduced the
number of  possibilities from 500,000 to 250,000. In other words,
you have reduced the uncertainty by half  (which so happens to
correspond to one bit of  information).

Shannon elaborated on this idea to show how all communica-
tion could be quantified based on the idea that messages reduce
uncertainty. He found a formula for a quantity that measures that
uncertainty precisely—the greater the uncertainty, the greater the
quantity. Shannon called the quantity entropy, a conscious analogy
to the entropy term used by physicists in statistical mechanics and
thermodynamics.

Physicists’ entropy is a measure of  the disorder in a physical
system. Suppose you have a chamber containing separate compart-
ments, and you place a zillion molecules of  oxygen in the left-side
compartment and 4 zillion molecules of  nitrogen in the right-
side compartment. Then you remove the partition between the
compartments. The molecules soon get all mixed up—more disor-
dered—and so the entropy of  the system has increased. But some-
thing else has happened—you no longer know where the
molecules are. Your ignorance of  their location has increased just
as the entropy has increased. Shannon showed that his formula for
entropy in communication—as a measure of  ignorance or uncer-
tainty—is precisely the same equation that is used in statistical
mechanics to describe the increasing entropy of  a collection of
particles.

Entropy, in other words, is the same thing as ignorance. En-
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tropy is synonymous with uncertainty. Information theory there-
fore provides a precise new way of  measuring uncertainty in a
probability distribution.

So here’s a clue about what to do when you know nothing
about the probabilities in the system you want to study. Choose a
probability distribution that maximizes the entropy! Maximum en-
tropy means maximum ignorance, and if  you know nothing, igno-
rance is by definition at a maximum. Assuming maximum entropy/
ignorance, then, is not just an assumption; it’s a factual statement
about your situation.

Jaynes proposed that this notion of  maximum ignorance
should be elevated to the status of  a basic principle for describing
anything scientifically. In his view, statistical mechanics itself  just
became a system of  statistical inference about a system. By taking
the maxent approach, you still get all the computational rules that
statistical mechanics provides, without the need to assume any-
thing at all about the underlying physics.

In particular, you now can justify the notion that all the possi-
bilities are equally possible. The whole idea is that no possibility
(allowed by the laws of  physics) gets left out. Everything not ex-
plicitly excluded by the information you’ve got has to be viewed as
having some probability of  occurring. (In standard statistical me-
chanics, that feature was simply assumed without evidence—prob-
ability distributions were based on the idea that molecules would
explore all their possible behaviors.) And if  you know nothing,
you cannot say that any one possibility is more likely than any
other—that would be knowledge.

Of  course, if  you know something about the probabilities, you
can factor that in to the probability distribution you use to make
your predictions about what’s going to happen. But if  you know
nothing at all, there’s only one probability distribution that you
can identify for making your bets: the one that has the maximum en-
tropy, the maximum uncertainty, the maximum ignorance. It makes sense,
after all, because knowing nothing is, in fact, being maximally
ignorant.

This is the magic that makes it possible to make a prediction
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even when knowing nothing about the particles or people you’re
making the prediction about. Of  course, your prediction might
not turn out to be right. But it’s still the best possible prediction
you can make, the likeliest answer you can identify, when you know
nothing to begin with.

“The fact that a probability distribution maximizes the entropy
subject to certain constraints becomes the essential fact which jus-
tifies use of  that distribution for inference,” Jaynes wrote. “Whether
or not the results agree with experiment, they still represent the
best estimates that could have been made on the basis of  the infor-
mation available.”9

But what, exactly, does it mean to “maximize the entropy”? It
simply means choosing the probability distribution that would re-
sult from adding up all the possibilities permitted by the laws of
nature (since you know nothing, you cannot leave out anything
that’s possible). Here’s a simple example. Suppose that you want to
predict the average grade for a class of  100 students. All you know
are the rules (that is, the laws of  nature)—everybody gets a grade,
and the grade has to be A, B, C, D, or F (no incompletes allowed).
You don’t know anything about the caliber of  the students or how
hard the class is. What is your best prediction of  the average grade
for the kids in the class? In other words, how do you find a prob-
ability distribution for the grades that tells you which grade aver-
age is the most probable?

Applying the maxent or maximum ignorance principle, you
simply assume that the grades can be distributed in all possible
ways—all possible combinations equally likely. For instance, one
possible distribution is 100 A’s and nothing else. Another would
be all F’s. There could be 20 students with each grade. You could
have 50 C’s, 20 B’s and 20 D’s, 5 A’s and 5 F’s. All the combina-
tions sum to an ensemble of  possibilities that constitutes the prob-
ability distribution corresponding to no knowledge—maximum
ignorance—about the class and the kids and their grades.

In statistical physics, this sort of  thing is called the “canonical
ensemble”—the set of  possible states for the molecules in a system.
Each possible combination is a microstate. Many different possible
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microstates (distributions of  grades) can correspond to the same
average (the macrostate).

Don’t try to list all the possible combinations; it would take
you a very long time. (You’re talking something close to 10 to the
70th power.) But you can calculate, or even see intuitively, that the
most likely average grade will be C. Of  all the possible microstate
combinations, many more work out to a C average than to any
other grade. There is only one way, for instance, to have a perfect
A average—all 100 students getting A’s. But you can get a C aver-
age in many different ways—100 C’s, 50 A’s and 50 F’s, 20 stu-
dents getting each of  the five grades, and so on.10

It’s just like flipping pennies, four flips at a time, with the
grade corresponding to the number of  heads that turn up (0 = F,
4 = A). In 100 trials, many combinations give an average of  2, but
only a few will give an average of  0 or 4. So your prediction,
based on knowing nothing, will be an average grade of  C.

BACK TO THE GAME

In game theory, a player’s mixed strategy is also a probability dis-
tribution, much like grades or penny flips. Game theory is all about
how to figure out what each player’s best mixed strategy would be
(for maximizing utility, or the payoff, of  the game). In a multiplayer
game, there is at least one mix of  all players’ mixed strategies for
which no one player could do any better by changing strategies—
the Nash equilibrium, game theory’s most important foundational
principle.

But Nash’s foundation of  modern game theory has its cracks.
While it’s true that, as Nash showed, all games (with certain quali-
fications) have at least one Nash equilibrium, many games can have
more than one. In those cases, game theory cannot predict which
equilibrium point will be reached—you can’t say what sets of
mixed strategies the players will actually adopt in a real-world
situation. And even if  there is only one Nash equilibrium in a
complicated game, it is typically beyond the capability of  a com-
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mittee of  supercomputers to calculate what all the players’ mixed
strategies would have to be.

In turn, that crack is exacerbated by a weakness in the cardinal
assumption underlying traditional game theory—that the players
are rational payoff  maximizers with access to all the necessary
information to calculate their payoffs. In a world where most people
can’t calculate the sales tax on a cheeseburger, that’s a tall order. In
real life, people are not “perfectly rational,” capable of  figuring out
the best money-maximizing strategy for any strategy combination
used by all the other competitors. So game theory appears to as-
sume that each player can do what supercomputers can’t. And in
fact, almost everybody recognizes that such total rationality is
unachievable. Modern approaches to game theory often assume,
therefore, that rationality is limited or “bounded.”

Game theorists have devised various ways to deal with these
limitations on Nash’s original math. An enormous amount of  re-
search, of  the highest caliber, has modified and elaborated game
theory’s original formulations into a system that corrects many of
these initial “flaws.” Much work has been done on understanding
the limits of  rationality, for instance. Nevertheless, many game
theorists often cling to the idea that “solving a game” means find-
ing an equilibrium—an outcome where all players achieve their
maximum utility. Instead of  thinking about what will happen when
the players actually play a game, game theorists have been asking
what the individual players should do to maximize their payoff.

When I visited Wolpert at NASA Ames, a year after our conver-
sation in Boston, he pointed out that the search for equilibrium
amounts to viewing a game from the inside, from the viewpoint of
one of  the participants, instead of  from the vantage point of  an
external scientist assessing the whole system. From the inside, there
may be an optimal solution, but a scientist on the outside looking
in should merely be predicting what will happen (not trying to
win the game). If  you look at it that way, you know you can never
be sure how a game will end up. A science of  game theory should
therefore not be seeking a single answer, but a probability distribu-
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tion of  answers from which to make the best possible prediction
of  how the game will turn out, Wolpert insists. “It’s going to be
the case that whenever you are given partial information about a
system, what must pop out at the other end is a distribution over
possibilities, not a single answer.”11

In other words, scientists in the past were not really thinking
about the game players as particles, at least not in the right way. If
you think about it, you realize that no physicist computing the
thermodynamic properties of  a gas worries about what an indi-
vidual molecule is doing. The idea is to figure out the bulk features
of  the whole collection of  molecules. You can’t know what each
molecule is up to, but you can calculate, statistically, the macro-
scopic behavior of  all the molecules combined. The parallel be-
tween games and gases should be clear. Statistical physicists
studying gases don’t know what individual molecules are doing,
and game theorists don’t know what individual players are think-
ing. But physicists do know how collections of  molecules are likely
to behave—statistically—and can make good predictions about
the bulk properties of  a gas. Similarly, game theorists ought to be
able to make statistical predictions about what will happen in a
game.

This is, as Wolpert repeatedly emphasizes, the way science usu-
ally works. Scientists have limited information about the systems
they are studying and try to make the best prediction possible
given the information they have. And just as a player in a game has
incomplete information about all the game’s possible strategy com-
binations, the scientist studying the game has incomplete informa-
tion about what the player knows and how the player thinks
(remember that different individuals play games in different ways).

All sciences face this sort of  problem—knowing something
about a system and then, based on that limited knowledge, trying
to predict what’s going to happen, Wolpert pointed out. “So how
does science go about answering these questions? In every single
scientific field of  endeavor, what will come out of  such an exercise
is a probability distribution.”12

From this point of  view, another sort of  mixed strategy enters
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game theory. It’s not just that the player has a mixed strategy, a
probability distribution of  possible moves from which to choose.
The scientist describing the game also has a kind of  “mixed strat-
egy” of  possible predictions about how the game will turn out.

“When you think about it, it’s obvious,” Wolpert said. “If  I
give you a game of  real human beings, no, you’re not going to
always have the same outcome. You’re going to have more than
one possible outcome. . . . It’s not going to be the case they are
always going to come up with the exact same set of  mixed strate-
gies. There’s going to be a distribution over their mixed strategies,
just like in any other scientific scenario.”

This is clearly taking game theory to another level. While each
player has a mixed strategy, a probability distribution of  pure strat-
egies, the scientist describing the game should compute a probabil-
ity distribution of  all the players’ mixed strategies. And how do
you find those probability distributions of  mixed strategies? By
maximizing your ignorance, of  course. If  you want to treat game
theory as though the people were particles, the best approach is to
assume a probability distribution for their strategies that maximizes
the uncertainty (or the entropy, in information theory terms). Us-
ing this approach, you don’t need to assume that the players in a
game have limits on their rationality; such limits naturally appear
in the formulas that information theory provides. Given a probabil-
ity distribution of  possible outcomes for the game, then, you can
choose which outcome to bet on using the principles of  decision
theory.

“When you need a prediction, a probability distribution won’t
do,” said Wolpert. “You have to decide to fire the missile or don’t
fire; turn left or right.” The underlying axioms for the mathemati-
cal basis for making such a decision were worked out in the 1950s
by Leonard Savage13  in some detail, but they boil down to some-
thing like Pascal’s Wager. If  you have a probability distribution of
possible outcomes, but don’t know enough to distill the possibili-
ties down to a single prediction, you need to consider how much
you have to lose (or to gain) if  your decision is wrong (or right).

“If  you predict X, but the truth is Y, how much are you hurt?
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Or conversely, how much do you benefit?” Wolpert explained.
“Certain kinds of  mispredictions aren’t going to hurt you very
much, depending on what the truth is. But in other instances . . .
your prediction of  truth might cause all sorts of  problems—you’ve
now launched World War III.”

Decision theory dictates that you should make the prediction
that minimizes your expected loss (“expected” signifying that the
relative probabilities of  the choices are taken into account—you
average the magnitudes of  loss over all the possibilities). Conse-
quently, Wolpert observes, different individual observers would
make different predictions about the outcome of  a game, even if
the probability distribution of  possible outcomes is the same, be-
cause some people would have more to lose than others for certain
incorrect predictions.

“In other words, for the exact same game, your decision as the
external person making the prediction is going to vary depending
on your loss function,” he says. That means the best prediction
about the outcome isn’t some equilibrium point established within
the game, but rather depends on “the person external to the game
who’s making the prediction about what’s going to come out of
it.” And so sometimes the likeliest outcome of  a game will not be a
Nash equilibrium.

But why not, if  a Nash equilibrium represents the stable out-
come where nobody has an incentive to change? It seems like
people would keep changing their strategy until they had no in-
centive not to. But when game theory is cast in the information-
theoretic equations of  maximum entropy, the answer becomes clear.
A term in the equations signifies the cost of  computing the best
strategy, and in a complicated game that cost is likely to be too
high. In other words, a player attempting to achieve a maximum
payoff  must factor in the cost of  computing what it takes to get
that payoff. The player’s utility is not just the expected payoff, but
the expected payoff  minus the cost of  computing it.

What’s more, individual differences can influence the calcula-
tions. The math of  the maximum ignorance approach (that is, maxi-
mizing the uncertainty) contains another term, one that can be
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interpreted as a player’s temperature. Temperature relates ignorance
(or uncertainty) to the cost of  computing a strategy—more uncer-
tainty about what to do means a higher cost of  figuring out what
to do. A low temperature signifies a player who focuses on finding
the best strategy without regard to the cost of  computing it;
a higher-temperature player will explore more of  the strategy
possibilities.

“So what that means,” Wolpert explained, “is that it is literally
true that somebody who is purely rational, who always does the
best possible thing, is cold—they are frozen. Whereas somebody
who is doing all kinds of  things all over the map, exploring, trying
all kinds of  possibilities, they are quite literally hot. That just falls
out of  the math. It’s not even a metaphor; it’s what it actually
amounts to.”14

Temperature, in other words, represents a quantification of  ir-
rationality. In a gas, higher temperatures mean there’s a higher
chance that the molecules are not in the arrangement that mini-
mizes their energy. With game players, higher temperature means a
greater chance that they won’t be maximizing their payoff.

“The analogy is that you have some probability of  being in a
nonpurely rational state,” Wolpert said. “It’s the exact same thing.
Lowering energy is raising utility.” You are still likely to play strat-
egies that would increase your payoff, but just how much more
likely depends on your temperature.15

Boiled down to the key point, the maximum entropy math
tells you that game players will have limited rationality—it’s not
something that you have to assume. It arises naturally from adopt-
ing the viewpoint of  somebody looking from outside the game
instead of  being inside the game.

“That is crucial,” Wolpert stressed. “Game theory has always
had probability theory inside of  it, because people play mixed
strategies, but game theory has never actually applied probability
theory to the game as a whole. That is the huge hole in conven-
tional game theory.”

Ultimately, the idea of  a player’s temperature should allow bet-
ter predictions of  how real players will play real games. In the
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probability distribution of  grades in a class, the maximum entropy
approach says all grade distributions are possible. But if  you know
something about the students—maybe all are honors students
who’ve never scored below a B—you can adjust the probability
distribution by adding that information into the equations. If  you
know something about a player’s temperature—the propensity to
explore different possible strategies—you can add that information
into the equations to improve your probability distribution. With
collaborators at Berkeley and Purdue, Wolpert is beginning to test
that idea on real people—or at least, college students.

“We’ve just run through some experiments on undergrads
where we’re actually looking at their temperatures, in a set of  re-
peated games—voting games in this case—and seeing things like
how does their temperature change with time. Do they actually get
more rational or less rational? What are the correlations between
different individuals’ temperatures? Do I get more rational as you
get less rational?”

If, for instance, one player is always playing the exact same
move, that makes it easier for opponents to learn what to expect.
“That suggests intuitively that if  you drop your temperature, mine
will go up,” Wolpert said. “So in these experiments our intention is
to actually look for those kinds of  effects.”

VISIONS OF PSYCHOHISTORY

Such experiments, it seemed to me, would add to the knowledge
that behavioral game theorists and experimental economists had
been accumulating (including inputs from psychology and
neuroeconomics) about human behavior. It sounded like Wolpert
was saying that all this knowledge could be fed into the probabil-
ity distribution formulas to improve game theory’s predictive
power. But before I could ask about what was really on my mind,
he launched into an elaboration that took me precisely where I
wanted to go.

“Let’s say that you know something from psychology, and
you’ve gotten some results from experiments,” he said. “Then you
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actually have other stuff  that goes in here [the equations] besides
the knowledge that all human beings have temperatures. You also
know something about their degree of  being risk averse, and this,
that, or the other. . . . You are not just a temperature; there are other
aspects to you.”

Adding such knowledge about real people into the equations
reduces the ignorance that went into the original probability dis-
tribution. So instead of  predictions based on all possible mixed
strategies, you’ll get predictions that better reflect real people. “It’s
a way of  actually integrating game theory with psychology, for-
mally,” Wolpert said. “You would have . . . quantification of  indi-
vidual human beings’ behavior integrated with an actual
mathematical structure that deals with incentives and utility func-
tions and payoffs.”

Wolpert began talking about probability distributions of  fu-
ture states of  the stock market and then, almost as an aside, dis-
closed a much grander vision. “This actually is a way of  trying to
get a mathematics of  psychohistory in Isaac Asimov’s sense,”
Wolpert said. “In other words, this is potentially—it’s not been
done—this is potentially the physics of  human behavior.”16

Just as I had suspected. The suggestive similarities between
Asimov’s psychohistory and game theory’s behavioral science do,
in fact, reflect a common underlying mathematics. It’s the math
that merges game theory with statistical physics. So in pondering
what Wolpert said, it occurred to me that there’s a better way to
refer to the science of  human behavior than psychohistory or
sociophysics or Code of  Nature. It should be called Game Physics.

Alas, “game physics” is already taken—it’s a term used by com-
puter programmers to describe how objects move and bounce
around in computerized video games. But it captures the idea of
psychohistory or sociophysics pretty well. Game theory combined
with statistical physics, the physics of  games, is the science of
society.
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Epilogue

Let the physical basis of  a social economy be given—

or, to take a broader view of  the matter, of  a society.

According to all tradition and experience human be-

ings have a characteristic way of  adjusting themselves

to such a background. This consists of  not setting up

one rigid system of  apportionment . . . but rather a

variety of  alternatives, which will probably all express

some general principles but nevertheless differ among

themselves in many particular respects. This system

. . . describes the ‘established order of  society’ or ‘ac-

cepted standard of  behavior.’

—Von Neumann and Morgenstern,

Theory of  Games and Economic Behavior

Despite its title, the science fiction cult classic Ender’s Game isn’t
really about game theory, at least not explicitly. But implicitly it is.
It’s all about choosing strategies to achieve goals—about adults
plotting methods for manipulating young Ender Wiggin, Ender
choosing among maneuvers to win on a simulated battlefield, and
Ender’s siblings’ devising tactics for influencing public opinion.
And two passages from Orson Scott Card’s novel sound like they
could have been quoted from a game theory textbook, as they
illustrate aspects of  human nature that game theory has evolved to
explain. Ender’s brother Peter, for instance, epitomizes the selfish
rational agent of  game theory’s original naive formulation:
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Peter could delay any desire as long as he needed to; he could conceal
any emotion. And so Valentine knew that he would never hurt her in
a fit of  rage. He would only do it if  the advantages outweighed the
risks. . . . He always, always acted out of  intelligent self-interest.1

Ender himself  represents the social actor who plays games with
a combination of  calculation and intuition, more in line with
the notion of  game theory embraced by today’s behavioral game
theorists:

“Every time, I’ve won because I could understand the way my enemy
thought. From what they did. I could tell what they thought I was
doing, how they wanted the battle to take shape. And I played off  of
that. I’m very good at that. Understanding how other people think.”2

That is, after all, what the modern science of  game theory is all
about—understanding how other people think. And consequently
being able to figure out what they will choose to do. It is also what
Isaac Asimov’s fictional psychohistory was all about, and what
the centuries-long quest by social scientists has been all about—
discerning the drumbeat to which society dances. Discovering the
Code of  Nature.

The modern search for a Code of  Nature began in the century
following Newton’s Principia, which established the laws of  mo-
tion and gravity as the rational underpinning of  physical reality.
Philosophers and political economists such as David Hume and
Adam Smith sought a science of  human behavior in the image of
Newtonian physics, pursuing the dream that people could be de-
scribed as precisely as planets. That dream persisted through the
19th century into the 20th, from Adolphe Quetelet’s desire to
describe society with numbers to Sigmund Freud’s quest for a de-
terministic physics of  the brain. Along the way, though, the phys-
ics model on which the dream was based itself  changed, morphing
from the rigid determinism of  Newton into the statistical descrip-
tions of  Maxwell—the same sorts of  statistics used, by Quetelet
and his followers, to quantify society. By the end of  the 20th cen-
tury, the quest for a Code of  Nature was taken up by physicists
who wanted to use those statistics to bring the sciences of  society
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and the natural world back together. Because after all, physics—
just ask any physicist—is the science of  everything.

PHYSICS AND EVERYTHING

Historically, the physicist’s notion of  everything has been a bit
limited, though. For most of  the past three centuries, physics con-
cerned itself  mostly with matter and the forces guiding its motion;
eventually, the study of  matter in motion incorporated energy and
its transformations. In the century just gone by, Einstein added
cosmic time and space to the mix. He even simplified reality’s recipe
by combining matter with energy and space with time. Through
the 20th-century physicist’s eyes, then, “everything” comprised
mass-energy and space-time.

Toward the end of  that century, a number of  physicists began
to realize that one ingredient was missing. Awakened by the meta-
phorical power of  the digital computer, astute observers realized
that information was the glue connecting the outside world to its
scientific description. From the second law of  thermodynamics to
the weirdness of  quantum mechanics to the murky milieu of  a
black hole’s interior, physicists found information to be an indis-
pensable element in codifying and quantifying their understanding
of  nature.

Information opened physicists’ eyes to the rest of  reality. Infor-
mation encompassed biology. Biology included people. People cre-
ated a new universe of  realities for physics to contemplate—vast
networks of  economic, social, and cultural systems and institu-
tions. So physicists began applying their favorite all-purpose tool—
statistical mechanics—to everything from the stock market to flu
epidemics. It was all very much in the spirit of  Isaac Asimov’s
fictional mathematician, Hari Seldon, who adopted the principles
of  statistical mechanics to forecast the future. By the dawn of  the
21st century, real-life physicists were trying to do almost exactly
the same thing that Seldon had done, using statistical mechanics to
build mathematical models of  society for the purpose of  making
predictions.
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From its beginnings, game theory had expressed similar ambi-
tions. Von Neumann and Morgenstern focused on economics, but
clearly viewed economics as simply one (albeit a major) example
of  social science in general. They believed that their theory of
games was a first step toward a mathematical representation of
collective behavior, indeed a Code of  Nature (their terms were
“standard of  behavior” or “order of  society”).

A few years later, John Nash took a second major step toward a
mathematics of  society by introducing the Nash equilibrium into
game theory’s arsenal of  ideas. If  all the competitors in a game
pursue their self-interest—attempting to maximize their expected
payoff—there is always some combination of  strategies that will
produce the best deal that everybody can get (given that every-
body plays their best). The existence of  a Nash equilibrium in any
game implied that societies could be stable—nobody having in-
centive to change their behavior, as any deviation would lower
their payoff  if  everybody else continued to play the same way.

In both von Neumann’s and Nash’s math, the essential feature
was the need for “mixed strategies” to achieve the maximum pay-
off. Only rarely is one single “pure” strategy consistently your best
bet. Your best strategy is typically to choose from among a range
of  possible choices, with specified probabilities for each choice.

This idea of  a mixed strategy is a recurring theme in game
theory and its applications to various aspects of  life and society. In
evolution, nature plays a mixed strategy, generating complex eco-
systems containing a wide range of  species. The human race plays
a mixed strategy, comprising cooperators, competitors, and pun-
ishers. Planet Earth’s populations represent a mixed strategy of
cultures, from the stingy and solitary Machiguenga in Peru to the
generous and gregarious Orma in Kenya. Even in the physical
realm, quantum physics shows that reality itself  is a mixed strategy
at the subatomic level, a feature that game theorists may be able to
exploit to solve their thorniest dilemmas.

Such a mixture of  choices, with specific probabilities of  each,
is known in mathspeak as a probability distribution. And probabil-
ity distributions, it just so happens, are what statistical physics deals
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with as well. Asimov’s basis for psychohistory was applying the
laws of  probability to large numbers of  individual humans to fore-
cast collective human behavior, just as statistical physicists calcu-
late probability distributions of  large numbers of  molecules to
predict the properties of  a gas or the course of  chemical reactions.
Like matter and energy, or space and time, game theory and phys-
ics are different sides of  a coin. As Pat Benatar would say, they
belong together. It’s a neat, tight fit, and it’s a mystery why it took
so long for game theory and physics to mutually realize this under-
lying relationship.

SEPARATED AT BIRTH

Of  course, game theory was conceived with fertilization from
physical science, as both von Neumann and Nash applied reason-
ing rooted in statistical physics. Von Neumann referred to the use-
fulness of  statistics in describing large numbers of  interacting
agents in an economy. Nash alluded to the statistical interactions
of  reacting molecules in his derivation of  the Nash equilibrium.
Nash, after all, studied chemical engineering and chemistry at
Carnegie Tech before becoming a math major, and his dissertation
at Princeton drew on the chemical concept of  “mass action” in
explaining the Nash equilibrium. Mass action refers to the way
that amounts of  reacting chemicals determine the reaction’s equi-
librium condition, a process described by the statistical mechanics
of  molecular energies. Borrowing the physical concept of  equilib-
rium in chemical systems of  molecules, Nash derived an analogous
concept of  equilibrium in social systems composed of  people.
Nash’s math was about people, but it was based on molecules, and
that math embodies the unification of  game theory and social sci-
ence with physics. The seed of  the physics-society link resided
within Nash’s beautiful mind.

That seed has sprouted and grown in unexpected ways, and its
fruits are multiplying, feeding progress in a vast range of  sciences,
from economics, psychology, and sociology to evolutionary biol-
ogy, anthropology, and neuroscience. Game theory provides the
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common mathematical language for unifying these sciences, sci-
ences that represent the puzzle pieces that fit together to generate
life, mind, and culture—the totality of  collective human behavior.
The fact that game theory math can also be translated into the
mathematics of  the physical sciences argues that it is the key to
unlocking the real theory of  everything, the science that unifies
physics with life.

After all, both physical and living systems seek stability, or
equilibrium. If  you want to predict the way a chemical reaction
will proceed or how people will behave, and how the future will
evolve, you need to know how to compute an equilibrium. Game
theory shows why reaching an equilibrium point requires mixed
strategies—and how this need for mixed strategies drives the cre-
ation of  complexity. In other words, evolution. Game theory de-
scribes the evolutionary process that produces mixtures of  different
species, mixtures of  different types of  people, mixtures of  differ-
ent strategies that people employ, mixtures of  different cultures
that arise in the mixture of  environments found around the planet.

Game theory describes the evolutionary process that produces
complex networks. The brains that choose from a mix of  strategies
are networks of  nerve cells; the societies that exhibit a mixture of
cultures are networks of  brains. Put it all together, and you get a
framework for quantifying nature that really does encompass ev-
erything, a framework merging the game theory of  the life and
social sciences with the statistical physics describing the material
world.

Game theory is not, however, the same as the popular “Theory
of  Everything” that theoretical physicists have long sought. That
quest is merely for the equations describing all of  nature’s basic
particles and forces, the math describing the building blocks. Once
you know how the pieces of  atoms are put together, this view
holds, you don’t need to worry about everything else. Game theory,
though, is precisely about everything else. It’s about the realm of
life that builds itself  upon the universe’s physical foundation. It’s
about how people carve civilization out of  that jungle, and it’s
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about the rules of  conduct, the established order of  society, the
“Code of  Nature” that results.

DANGER

There has always been a danger in seeking a Code of  Nature—a
risk that it would be regarded as a dogmatic deterministic view of
human behavior, denying the freedom of  the human spirit. Some
people react very negatively to that sort of  thing. The idea that a
Code of  Nature is inscribed into human genes, advanced in the
1970s under the label sociobiology, evoked a vitriolic response
demonstrating how invective often overwhelms intellect.
Sociobiology’s intellectual descendant, evolutionary psychology,
has produced a more elaborate web of  evolution-based explana-
tions for human behavior, but its implied prediction of  hardwired
brains that play pure strategies doesn’t mesh well with the findings
of  modern neurobiology and behavioral anthropology.

Game theory, on the other hand, offers a possible rapproche-
ment between the advocates of  genetic power and the defenders
of  human freedom. Game theory pursues a different sort of  path
toward the Code of  Nature. It acknowledges the power of  evolu-
tion—in fact, it helps to explain evolution’s ability to generate
life’s complexities. But game theory also explains why the belief
that human nature is rooted in biology, while trivially true, is
far from the whole story. Game theory poses no universal gene-
controlled determinant of  human social behavior, but rather re-
quires, as Nash’s math showed, a mixed strategy. It demands that
people make choices from multiple possible behaviors.

Game theory’s potential scientific power is so great, I think,
because it is so intellectually commodious—not narrow and con-
fining, but capable of  accommodating many seeming contradic-
tions. That’s why it can offer an explanatory structure for all the
diversity in the world—a mélange of  individual behaviors and
personalities, the wide assortment of  human cultures, the never-
ending list of  biological species. Game theory encompasses the
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coexistence of  selfishness and sympathy, competition and coop-
eration, war and peace. Game theory explains the interplay of
genes and environment, heredity and culture. Game theory con-
nects simplicity to complexity by reconciling the tension between
evolutionary change and stability. Game theory ties the choices of
individual people to the collective social behavior of  the human
race. Game theory bridges the sciences of  mind and mindless
matter.

Game theory is about putting it all together. It offers a math-
ematical recipe for making sense of  what seems to be a hopelessly
messy world, providing a tangible sign that the Code of  Nature is
not a meaningless or impossible goal for scientists to pursue. And
regardless what anyone thinks about the prospects for ultimate suc-
cess, scientists are certainly pursuing that goal.

“We want to understand human nature,” says Joshua Greene, a
neuroscientist and philosopher at Princeton. “That, I think, is a
goal in and of  itself.”3

Success may still be a long way off. But somewhere in the
vision of  Asimov’s psychohistory lies an undoubtable truth—that
all the world’s multiple networks, personal and social, interact in
multiple ways to generate a single future. From people to cities,
corporations to governments, all of  the elements of  society must
ultimately mesh. What appears to be the madness of  crowds must
have a method, and game theory’s successes suggest that it’s a
method that science can discover.

“The idea is really to have, in the end, a seamless understand-
ing of  the universe, from the most basic physical elements, the
chemistry, the biochemistry, the neurobiology, to individual human
behavior, to macroeconomic behavior—the whole gamut
seamlessly integrated,” says Greene. “Not in my lifetime, though.”
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Appendix

Calculating a Nash Equilibrium

Consider the simple game discussed in Chapter 2, where Alice and
Bob compete to see how much of  a debt to Alice that Bob will
have to pay back. This is a zero-sum game; Alice wins exactly what
Bob loses, and vice versa. The payoffs in the game matrix are the
amounts Bob pays to Alice, so Bob’s “payoff ” in each case is the
negative value of  the number indicated.

Bob

Bus Walk

Bus 3 6
Alice

Walk 5 4

To calculate the Nash equilibrium, you must find the mixed
strategies for each player that yield the best expected payoff  when
the other player is also choosing the best possible mixed strategy.
In this example, Alice chooses Bus with probability p, and
Walk with probability 1 – p (since the probabilities must add up to
1). Bob chooses Bus with probability q and Walk with probability
1 – q.

Alice can calculate her “expected payoff ” for choosing Bus or
Walk as follows. Her expected payoff  from Bus will be the sum of:
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Her payoff  from Bus when Bob plays Bus, multiplied by the
probability that Bob will play Bus, or 3 times q

plus
Her payoff  from Bus when Bob plays Walk times the prob-
ability that Bob plays Walk, or 6 times (1 – q)

Her expected payoff  from Walk is the sum of:

Her payoff  from Walk when Bob plays Bus times the prob-
ability that Bob plays Bus, or 5 times q

plus
Her payoff  from Walk when Bob plays Walk times the prob-
ability that Bob plays Walk, or 4 times (1 – q)

Summarizing,
Alice’s expected payoff  for Bus = 3q + 6(1 – q)
Alice’s expected payoff  for Walk = 5q +4(1 – q)

Applying similar reasoning to calculating Bob’s expected payoffs
yields:

Bob expected payoff  for Bus = –3p + –5(1 – p)
Bob expected payoff  for Walk =  –6p + –4(1 – p)

Now, Alice’s total expected payoff  for the game will be her
probability of  choosing Bus times her Bus expected payoff, plus
her probability of  choosing Walk times her Walk expected payoff.
Similarly for Bob. To achieve a Nash equilibrium, their probabili-
ties for the two choices must be such that neither would gain any
advantage by changing those probabilities. In other words, the ex-
pected payoff  for each choice (Bus or Walk) must be equal. (If  the
expected payoff  was greater for one than the other, then it would
be better to play that choice more often, that is, increasing the
probability of  playing it.)

For Bob, his strategy should not change if
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–3p + –5(1 – p) = –6p + –4(1 – p)

Applying some elementary algebra skills, that equation can be re-
cast as:

–3p –5 +5p = –6p –4 + 4p

or

2p = 1 – 2p

so

4p = 1

Which, solving for p, shows that Alice’s optimal probability for
playing Bus is

p = 1/4

So Alice should choose Bus one time out of  4, and Walk 3 times
out of 4.

Now, Alice will not want to change strategies when

3q + 6(1 – q) = 5q + 4(1 – q)

Which, solving for q, gives Bob’s optimal probability for choosing
Bus:

3q + 6 – 6q = 5q + 4 – 4q

6 = 4q + 4

2 = 4q

q = 1/2

So Bob should choose Bus half  the time and Walk half  the time.
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Now let’s say Alice and Bob decide to play the hawk-dove
game, in which the payoff  structure is a little more complicated
because what one player wins does not necessarily equal what the
other player loses. In this game matrix, the first number in the box
gives Alice’s payoff; the second number gives Bob’s payoff.

Bob

Hawk Dove

Hawk –2, –2 2, 0

Alice

Dove 0, 2 1, 1

Alice plays hawk with probability p and dove with probability
1 – p; Bob plays hawk with probability q and dove with probabil-
ity 1 – q. Alice’s expected payoff  from playing hawk is –2q +
2(1 – q). Her expected payoff  from dove is 0q + 1(1 – q). Bob’s
expected payoff  from hawk is –2p + 2(1 – p); his expected payoff
from dove is 0p + 1(1 – p).

Bob will not want to change strategies when

–2p + 2(1 – p) = 0p + 1(1 – p)

2 = 1 + 3p

3p = 1

p = 1/3

So p, Alice’s probability of  playing hawk, is 1/3.
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Alice will not want to change strategies if

–2q + 2(1 – q) = 0q + 1(1 – q)

4q – 2 = q – 1

3q = 1

q = 1/3

So q, Bob’s probability of  playing hawk, is also 1/3. Consequently
the Nash equilibrium in this payoff  structure is to play hawk one-
third of  the time and dove two-thirds of  the time.
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Further Reading

There are dozens and dozens of  books on game theory, of  which a
handful stand out as indispensable to grasping the theory’s essen-
tial features. Those that I found most useful and illuminating:

Camerer, Colin. Behavioral Game Theory. Princeton, N.J.: Princeton
University Press, 2003.

Gintis, Herbert. Game Theory Evolving. Princeton, N.J.: Princeton
University Press, 2000.

Kuhn, Harold W. and Sylvia Nasar, eds. The Essential John Nash.
Princeton, N.J.: Princeton University Press, 2002.

Luce, R. Duncan and Howard Raiffa. Games and Decisions. New
York: John Wiley & Sons, 1957.

Williams, J.D. The Compleat Strategyst: Being a Primer on the Theory of
Games of  Strategy. New York: McGraw-Hill, 1954.

Von Neumann, John and Oskar Morgenstern. Theory of  Games and
Economic Behavior. Sixtieth-anniversary Edition. Princeton, N.J.:
Princeton University Press, 2004.

Two other readable books were very helpful:

Davis, Morton D. Game Theory: A Nontechnical Introduction. Mineola,
NY: Dover, 1997 (1983).

Poundstone, William. Prisoner’s Dilemma. New York: Anchor Books,
1992.
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For the rich and complex historical context of  the social sci-
ences into which game theory fits, an excellent guide is:

Smith, Roger. The Norton History of  the Human Sciences. New York:
W.W. Norton, 1997.

And for a comprehensive account of  attempts to apply physics
to the social sciences:

Ball, Philip. Critical Mass: How One Thing Leads to Another. New York:
Farrar, Straus and Giroux, 2004.

A few additional books and articles of  relevance are listed here;
many others addressing specific points are mentioned in the notes.

Books

Harman, P.M. The Natural Philosophy of  James Clerk Maxwell.
Cambridge: Cambridge University Press, 1998.

Henrich, Joseph, et al., eds. Foundations of  Human Sociality: Economic
Experiments and Ethnographic Evidence from Fifteen Small-Scale
Societies. New York: Oxford University Press, 2004.

Macrae, Norman. John von Neumann. New York: Pantheon Books,
1991.

Nasar, Sylvia. A Beautiful Mind. New York: Simon & Schuster, 1998.
Watts, Duncan J. Six Degrees. New York: W.W. Norton, 2003.

Articles

Ashraf, Nava, Colin F. Camerer, and George Loewenstein. “Adam
Smith, Behavioral Economist.” Journal of  Economic Perspectives,
19 (Summer 2005): 131–145.

Ball, Philip. “The Physical Modelling of  Society: A Historical
Perspective.” Physica A, 314 (2002): 1–14.
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Holt, Charles and Alvin Roth. “The Nash Equilibrium: A
Perspective.” Proceedings of  the National Academy of  Sciences USA,
101 (March 23, 2004): 3999–4002.

Morgenstern, Oskar. “Game Theory.” Dictionary of  the History of
Ideas. Available online at http://etext.virginia.edu/DicHist/
dict.html.

Myerson, Roger. “Nash Equilibrium and the History of  Economic
Theory.” 1999. Available online at http://home.uchicago.edu/
~rmyerson/research/jelnash.pdf.

After the manuscript for this book was completed, a new
review article appeared exploring the game theory-statistical
mechanics relationship in depth:

Szabó, György and Gábor Fáth. “Evolutionary Games on Graphs,”
http://arxiv.org/abs/cond-mat/0607344, July 13, 2006.
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