
Hierarchical Models of Provenance

Peter Buneman, James Cheney, and Egor V. Kostylev
Unviersity of Edinburgh

Abstract
There is general agreement that we need to understand
provenance at various levels of granularity; however,
there appears, as yet, to be no general agreement on what
granularity means. It can refer both to the detail with
which we can view a process or the detail with which we
view the data. We describe a simple and straightforward
method for imposing a hierarchical structure on a prove-
nance graph and show how it can, if we want, be derived
from the program whose execution created that graph.

1 Introduction

There are numerous models of provenance [9, 7, 5] all of
which provide some account of how some piece of data
was derived. The reason for the variety may be partly
because we collect provenance for a number of purposes
(debugging, reproducibility, annotation, security etc.)
and that different models are needed for these. One par-
ticularly simple model of provenance is the Open Prove-
nance Model (OPM), which has been widely adopted for
scientific workflows and other systems [9]. An OPM
graph describes the causal relationships between pro-
cesses and artefacts. Artefacts are data values and pro-
cesses are records of some event (such as the evaluation
of a function) that takes data values as inputs and pro-
duces data values as outputs. In simple cases, an OPM
graph is simply a graph that describes the workflow em-
bellished with data values. Why is this simple model not
enough to capture other models or provenance? We be-
lieve that it is a reasonable starting point, but in order to
do this we need to add some further structure; in partic-
ular we need to formalize hierarchical decomposition of
provenance graphs.

There are several papers that have argued for the
need to view provenance at various levels of granular-
ity: OPM’s accounts [9] give examples of what this
might mean; ZOOM’s user views [6] and Muniswamy-
Reddy et al. [10] describe systems that collect or present

let f(x) = x+1

g(x,y) = h(x) + x*y

h(x) = x*x

in g(f(1),4)

(a)
let f(x) = x + 1

in mapf([3,4,5])

(b)

Figure 1: Programs in ProvL

provenance at “multiple layers of abstraction”; and [3, 2]
both contain proposals for combining data and workflow
provenance. What we sketch in this paper is first a for-
malism for imposing a hierarchical structure on an OPM-
like provenance model; we then show that this structure
can be derived from the execution of programs in a sim-
ple programming language that easily describes work-
flows; we show how, with the addition of one higher-
order map operation we can use the same hierarchical
structure to describe data granularity. We say “sketch”
because some of the lengthy details of the formalism are
omitted in order to focus on basic ideas. We finally spec-
ulate on what additional structure is needed to account
for other aspects of provenance such as program optimi-
sation, the provenance of provenance graphs and invari-
ants of provenance graphs such as semirings.

To illustrate these ideas we use a simple functional lan-
guage ProvL. This language can be used to express sim-
ple workflows, branching, user-defined functions, lists,
and the higher-order map f () function which maps the
function f to elements of a list. Two simple programs
in ProvL are given in Fig. 1.

1

2 Hierarchical OPM graphs

Syntax and semantics of OPM graphs We start with
basic OPM-style graphs without agents or accounts. Let
C be a set of names of constants and B be a set of names
of primitive (built-in) operators of fixed arities.

Definition 2.1 A OPM graph G= 〈A,P,S〉 is an ordered
labelled bipartite directed acyclic multigraph with the set
of artefact nodes A labelled with constant names from C,
the set of process nodes P labelled with operator names
from B, and set of edges S such that every artefact node
has one or zero outgoing “generated by” edges and ev-
ery process node labelled with a operator name of arity
n has exactly one ingoing edge and n outgoing “using”
edges labelled 1, . . . ,n.

This definition coincides with that in [9], except that
we omit agents and accounts, restrict the number of in-
going edges of a process node to one and require edge
labels to be numbers. These restrictions are minor and
are imposed for convenience of presentation.

Next we define a semantics of OPM graphs, i.e. assign
real objects to nodes of OPM graphs. For this we assume
(as in Cheney [4] or Moreau [8]) that constants from C
are interpreted as objects of arbitrary nature and opera-
tors from B are interpreted as functions on these objects
preserving arities. We do not distinguish between names
and their interpretations, and write v` for the (interpreta-
tion of the) label of a node v in an OPM graph, as well as
~v` for the tuple of labels on a tuple~v of such nodes.

Definition 2.2 An OPM graph G is valid if for each pro-
cess node p with successors ~a and the predecessor a we
have that p`(~a`) = a`.

Fig. 2(a) shows an OPM graph, which can be obtained
by a run of the program in ProvL from Fig. 1(a) (we give
the formal account of ProvL in Sec. 3). Edge labels are
omitted for clarity. It is valid if we interpret numbers and
arithmetic operations as usual.

Hierarchical OPM graphs We would like to extend
OPM graphs to be able to look at them at different lev-
els of granularity, i.e. “collapse” some parts of the graphs
into single nodes when we are not interested in their de-
tails. For this we assume a set of function names F,
which are the names of functions defined in the program
and which also include a top-level main function.

Intuitively, we enrich an OPM graph by a call tree of a
run of the program (workflow) under investigation and a
binding for each call in this tree of a body, input artefacts
and result artefact in the graph. Formally, we have the
following definition.

1 1

+

2

* *

4

4 8

+

12

1 1

+

2

*

4

4

+

1

2 4

1

12

Ω(f)

*

8

Ω(h)

Ω(g)

2

*

4

4 8

+

main

h

f g f g

h

main main

h

f g

(c) (d)

f f

g h

(a) (b)

12

12

Figure 2: Hierarchical OPM graph and views

4

+

5

+

6

+

1 1 1
(f)Ω (f)Ω(f)Ω

map
f

map
f

ff f

main

map
f

mapfΩ()

3 4 5 3 54

4 5 6

(a) (b)

ff f

main

Figure 3: HOPM graph with map, and view

Definition 2.3 An hierarchical OPM graph, or HOPM
graph, is a triple H = 〈G,T,M〉, where

1. G= 〈A,P,S〉 is an OPM graph;
2. the call tree T = 〈V,E〉 is a directed rooted tree

whose vertices V (referred as calls) are labeled with
function names from F such that the root is labeled with
main (we use s` for the label of a call s);

3. the call mapping M= 〈Ω, in,out〉, where

• Ω : V→ 2A∪P is a function that associates each call
in T with its body, i.e. a set of nodes of G, such that:

- P⊆Ω(main),
- if (s, t) ∈ E then Ω(s)⊇Ω(t),

- if (s, t1),(s, t2) ∈ E for t1 6= t2, then Ω(t1)∩
Ω(t2) = /0,

- each set Ω(s) is convex,1 all its ingoing edges
1I.e. there is no directed path in G between nodes of Ω(s) which

contains a node not from Ω(s).

2

in G are “generated by” edges, and all outgo-
ing edges are “using” edges;

• in is a function assigning to each call s in T a tu-
ple of input artefacts (maybe with repetitions) of the
size of the arity of s`;

• out is a function assigning to each call s in T an
output artefact.

Again, we would like to give semantics to HOPM
graphs. We will do it in parallel with an extension of
our data model to lists. We assume that the set of con-
stants C is typed, i.e. it consists of the set of primitive
constants C0 as well as all possible nested lists over this
set, including the empty list []. The set of artefacts A
is also nested and the nesting agrees with the nesting of
C. The last means that if for a,a1, . . . ,an ∈ A it holds
that a = [a1, . . . ,an] then a` = [a`1, . . . ,a

`
n]. Further, some

unary function names f in F have corresponding map-
ping names map f () in F, also of arity 1.

Assume that every function name from F is interpreted
as a function of the corresponding arity over constants
from C, and the mapping functions work as element-
wise applications of the corresponding functions to lists.
Again we do not distinguish a name with its interpreta-
tion.

Definition 2.4 An HOPM graph H = 〈G,T,M〉 is valid
if the underlying OPM graph G is valid and for each call
s in T we have that

• if s` is a first-order function, then in(s) consists
of the second components of all the outgoing “us-
ing” edges from Ω(s), in(s) is the first component
of the ingoing “generated by” edge of Ω(s), and
s`(in(s)`) = out(s)`;

• if s` is map f (), then

– in(s) consists of a single element which is a
list [a1, . . . ,an],

– out(s) is a list [b1, . . . ,bm],

– successors of s in T are s1, . . . ,sk such that
s`i = f for every i, and Ω(s) = ∪1≤i≤kΩ(si),

– n = m = k and for every i it holds that in(si)
has a single node ai, and out(si) = bi.

Fig. 2(b) shows the HOPM graph version of the run
of the program from Fig. 1(a), where the dotted lines en-
close the sets Ω(f),Ω(g), Ω(h),2 and the input and out-
put functions are obvious. Fig. 3(a) does the same for the
program in Fig. 1(b).

2Here f ,g and h are labels of tree calls, so, strictly speaking, they
should be replaced by the calls themselves.

Views of HOPM graphs Having HOPM graphs, it is
possible to look on the underlying OPM with different
granularity.

Intuitively, given a HOPM graph H= 〈G,T,M〉 and a
view subtree V of the tree T, containing the root (labeled
with main), we can define a view GV to be an ordinary
OPM graph obtained from G = 〈A,P,S〉 by expanding
all of the calls in V and leaving the remaining calls unex-
panded as new process nodes.

Formally, denote Succ(V) the set of calls of T which
are not in V, but have the incoming edge starting in a call
from V. We extend the set B of built-in operators to BV

with all the functions F that are labels of calls in the set
Succ(V). For every call s of arity n from Succ(V) in the
following construction we will use a new process node
ps with the same label as the call s. It will be connected
to the rest of the OPM graph by input used edges ini

s for
each 1 ≤ i ≤ n, coming from ps to the i-th element of
in(s) and labeled by i, and by the output generated-by
edge outs coming from out(s) to ps.

Definition 2.5 Given an HOPM graph H =
〈〈A,P,S〉 ,T,〈Ω, in,out〉〉 and a view tree V, a view over
V is an OPM graph GV = 〈AV,PV,SV〉 over built-in
operators BV, such that

- AV = A\{a | a ∈Ω(s),s ∈ Succ(V)}

- PV = (P\{p | p ∈Ω(s),s ∈ Succ(V)})∪
{ps | s ∈ Succ(V)},

- SV =(S\{(v1,v2) | v1 or v2 ∈Ω(s),s∈ Succ(V)})∪
{in1

s , . . . , in
n
s ,outs | s ∈ Succ(V),s` is of arity n}.

Fig. 2(c-d) and 3(b) illustrate different views over the
programs from Fig. 1. Note that it makes no sense to ex-
pand a function call unless all of its ancestors in the call
tree have been expanded; this is why a view is defined
over a subtree of T rather than over an arbitrary subset.

3 Outline of ProvL language

We have defined a small core functional language ProvL
that can be used to express simple workflows as well as
more complex constructions like branching, user-defined
functions, lists and high-order map f () function. The syn-
tax of ProvL is given in Fig. 4. The strength of ProvL
semantics is that its evaluation produces not only the re-
sult of computation, but also the corresponding HOPM
graph. Due to space limitations, the formal account of
the semantics is omitted in this paper. Instead, we de-
scribe it informally enriching it step by step by construc-
tions from Fig. 4(a–d), resulting in sublanguages ProvL0,
ProvLb, ProvL f , and, finally, full ProvL.

3

expression e ::= c | x | �(~e) | let x = e1 in e2 (a)
| if e1 then e2 else e3 (b)
| f (~e) (c)
| map f (e) (d)

program def f1(~x1) = e1, . . . , fm(~xm) = em in e′

Figure 4: Syntax of ProvL

(a) ProvL0 handles simple workflows involving con-
stant values, primitive operations, variables, and
let-binding (expressing sharing). We may take the
primitive operations to be the atomic “black boxes”
of any conventional workflow language (e.g. Ke-
pler, VisTrails, Taverna, ZOOM [5]) and represent
any straight-line, DAG-shaped computation using
these operations as a ProvL0 expression. The cor-
responding (H)OPM graph is essentially the same
DAG with inverted edges.

(b) ProvLb extends ProvL0 with conditionals (if–then–
else). The generated provenance graphs include
process nodes to indicate that a conditional was
evaluated, and which branch was taken. (This is
similar to the approach taken in the model of [2].)

(c) ProvL f extends ProvLb with user-defined functions,
achieving a Turing-complete language (assuming
the underlying set of operators includes at least ba-
sic arithmetic). The HOPM graph can have non-
trivial call trees as described above.

(d) ProvL, finally, extends ProvL f with support for lists
and the map function. The HOPM graph generated
for map f () consists of the graphs generated for the
calls f1, . . . , fn to f on the elements of the list, plus
an edge to the input list from a process node for
map f () itself, plus an edge to this process node from
the output list node. Also, the map f () process node
contains all of the calls to f , that is, Ω(map f ()) =
Ω(f1)∪·· ·∪Ω(fn).

4 Discussion

Some questions for further work:
1. What is the relationship between our notion of

views and accounts in OPM? It seems that accounts
can be used to represent views, but not all accounts
correspond to views (for example, accounts can pro-
vide conflicting information). How are views of
HOPM graphs related to, for example, the traces
and trace slicing of Acar et al. [1]?

2. How can we translate provenance queries on the full
graph to queries on views? Can we identify a “best”
view to answer a given query? (Similar concerns
arise in ZOOM system [6], which uses user prefer-
ences to induce a clustering of basic workflow steps

into groups to hide details irrelevant to the user.)
3. Our notion of validity for HOPM graphs is basic:

it does not, for example, require that different calls
to the same function have compatible expansions.
(That is, it would be legal for one call to f to ex-
pand to +1 and for another to expand to ∗2.) How
should validity be made more precise? Can we ex-
actly capture the provenance expressiveness of dif-
ferent workflow languages?

4. Our language uses conventional abstract syntax,
whereas most workflows employ a graphical nota-
tion and many have features such as concurrency or
streaming that are not handled by ProvL. How is
our workflow model related to existing ones [5]?

References

[1] U. A. Acar, A. Ahmed, J. Cheney, and R. Perera. A
core calculus for provenance. In POST, number 7215 in
LNCS, pages 410–429. Springer, 2012.

[2] U. A. Acar, P. Buneman, J. Cheney, N. Kwasnikowska,
S. Vansummeren, and J. van den Bussche. A graph model
for data and workflow provenance. In Workshop on the
Theory and Practice of Provenance, 2010.

[3] Y. Amsterdamer, S. B. Davidson, D. Deutch, T. Milo,
J. Stoyanovich, and V. Tannen. Putting lipstick on pig:
Enabling database-style workflow provenance. In VLDB,
2012.

[4] J. Cheney. Causality and the semantics of provenance. In
Proceedings of the 2010 Workshop on Developments in
Computational Models, 2010.

[5] S. Davidson, S. Cohen-Boulakia, A. Eyal, B. Ludaescher,
T. McPhillips, S. Bowers, M. Anand, and J. Freire. Prove-
nance in scientific workflow systems. IEEE Data Engi-
neering Bulletin, 30(4):44–50, 2007.

[6] Z. Liu, S. B. Davidson, and Y. Chen. Generating sound
workflow views for correct provenance analysis. ACM
Trans. Database Syst., 36(1):6, 2011.

[7] L. Moreau. The foundations for provenance on the web.
Foundations and Trends in Web Science, 2(2-3):99–241,
2010.

[8] L. Moreau. Provenance-based reproducibility in the se-
mantic web. J. Web Sem., 9(2):202–221, 2011.

[9] L. Moreau, B. Clifford, J. Freire, J. Futrelle, Y. Gil, P. T.
Groth, N. Kwasnikowska, S. Miles, P. Missier, J. My-
ers, B. Plale, Y. Simmhan, E. G. Stephan, and J. V. den
Bussche. The open provenance model core specification
(v1.1). Future Generation Comp. Syst., 27(6):743–756,
2011.

[10] K.-K. Muniswamy-Reddy, U. Braun, D. A. Holland,
P. Macko, D. Maclean, D. Margo, M. Seltzer, and
R. Smogor. Layering in provenance systems. In Proceed-
ings of the 2009 conference on USENIX Annual techni-
cal conference, USENIX’09, pages 10–10, Berkeley, CA,
USA, 2009. USENIX Association.

4

