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FUZZY ORDERED SETS AND DUALITY FOR FINITE FUZZY
DISTRIBUTIVE LATTICES

A. AMROUNE AND B. DAVVAZ

ABSTRACT. The starting point of this paper is given by Priestley’s papers,
where a theory of representation of distributive lattices is presented. The pur-
pose of this paper is to develop a representation theory of fuzzy distributive
lattices in the finite case. In this way, some results of Priestley’s papers are
extended. In the main theorem, we show that the category of finite fuzzy
Priestley spaces is equivalent to the dual of the category of finite fuzzy dis-
tributive lattices. Several examples are also presented.

1. Introduction

The study of fuzzy relations was started by Zadeh [17] in 1971. In that celebrated
paper the author introduced the concept of fuzzy relation, defined the notion of
equivalence, and gave the concept of fuzzy orderings. The concept of fuzzy order was
introduced by generalizing the notion of reflexivity, antisymmetry and transitivity,
there by facilitating the derivation of known results in various areas and stimulating
the discovery of new ones. Fuzzy orderings have broad utility. They can be applied,
for example, when expressing our preferences with a set of alternatives.

Since then many notions and results from the theory of ordered sets have been
extended to the fuzzy ordered sets. In [16], Venugopalan introduced a definition
of fuzzy ordered set (foset) (P, ) and presented an example on the set of positive
integers. He extended this concept to obtain a fuzzy lattice in which he defined a
(fuzzy) relation as a generalization of equivalence. The notion of a multichain in
a fuzzy ordered set is defined in [1]. In [14], Seselja and Tepavéevié presented a
survey on representations of ordered structures by fuzzy sets. An order relation and
a ranking method for type-2 fuzzy values are proposed in [10]. See also[3, 6, 8,9, 13].

In a series of papers, Priestley [11, 12] gave a theory of representation of dis-
tributive lattices. In this paper, we extend some results of [11, 12], more precisely
we give a representation theory of fuzzy distributive lattices in the finite case.

This paper is organized as follows: In the next section, basic definitions and
notions are presented. In the third section, we give and prove the main result using
a definition of fuzzy ordering admitting the minimum ¢-norm. The result can be
generalized to any ¢-norm as introduced in [3]. Using the previous result of Priestly
[12], this extension is obtained in a natural way.
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2. Preliminaries

There are two types of relations which often arise in mathematics: order relations
and equivalence relations. An order relation is a generalization of both set inclusion
and the order relation on the real line. In this section, we recall some definitions
and concepts that we shall need in the sequel.

Let X be a non-empty set. A fuzzy set Ron X x X (i.e., X x X — [0.1] mapping)
is called a fuzzy binary relation on X. A fuzzy binary relation R on X is called

(1) reflexive, if R(x,z) =1, for all x € X,
(2) antisymmetric, if R(x,y) A R(y,z) = 0 whenever x # y, for all z,y € X,
(3) transitive, if R(z,y) A R(y, z) < R(z, 2), for all z,y,2 € X.

A reflexive and transitive fuzzy relation is called a fuzzy preordering. Moreover,
a fuzzy preordering which is antisymmetric, is called a fuzzy ordering relation.

A set equipped with a fuzzy order relation is called a fuzzy ordered set (foset).
Let R be a fuzzy binary relation on a set X. The domain of R is the fuzzy set on
X, denoted by DomR, whose membership function is defined by:

DomR(x) = Vyz, {R(z,y) |y € X}.
Similarly, the range of R is denoted by RanR and is defined by:
RanR(y) = Vaxzy {R(z,y) | x € X}.
The height of R is denoted by h (R) and is defined by:
MER) = Vi@ylezyy {B(:y)}
Let X be a foset and « € X. The fuzzy set (| ) on X is defined by:
(lz)(y) =R(y,x),for all y € X.
On the other hand (T z) denotes the fuzzy set on X which is given by:
(Tx)(y) = R(z,y), forall y € X.
If A is a subset of X, then we define
TA=Ugea(Ta) and | A=Uzea(l ).

Now, we recall the definition of lower and upper bounds, respectively, from [16, 17].
Let A be a subset of a foset X. The upper bound U (A) of A is the fuzzy set on X
defined as follows:

0 if R(z,y)=0forallz € A,
NzeaR(x,y) otherwise.

v = {

The lower bound L (A) of A is the fuzzy set on X defined as follows:

0 if R(y,x) =0 for all z € A,
NzeaR(y,x) otherwise.

raw =

When U (A) (y) > 0 we write y € U (A). Similarly, for L (A).
Let E be a (crisp) subset of a non empty foset X.
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(1) An element z of X is the supremum of E (written z = sup E) if z € U (E)
and y € U (E) implies that y € U (2).

(2) An element z of X is the infimum of E (written z = inf F) if z € L (F) and
y € L(E) implies that y € L (z).

It is known that: If E is a subset of a foset X and if sup E (resp. inf F) exists,
then it is unique.

Let (X, R) be a fuzzy ordered set. A subset E of X is called decreasing if x
belongs to E and R(y,x) > 0 (y is a lower bound of x) then y belongs to E (an
increasing set is defined in a similar way) [16].

A fuzzy ordered space is a triplet (X, 7, R), where X is a non empty set, 7 is a
topology on X and R is a fuzzy order on X.

A fuzzy lattice is a fuzzy order (A, R), where A is a non-empty crisp set, such that
any two elements have a supremum and an infimum, it is denoted by (4, V, A, R),
where the symbols V and A stand for supremum and infimum, respectively. For
a,b € A, aV b is the supremum of a and b with respect to the fuzzy order R, and
a Ab is the infimum of @ and b with respect to the fuzzy order R. A fuzzy lattice A
is called complete if every subset of A have a supremum and an infimum.

A fuzzy lattice A is called fuzzy distributive lattice (shortly, F'-D-lattice) if for
every 2,9,z € A, xV (yAz)=(xVy) AlzVz)orzAyVz)=(xAy)V(xAz).

A fuzzy ordered space (X, 7, R) is called totally order disconnected if for x,y € X
and R (z,y) = 0, there exists an increasing 7—clopen U and a decreasing 7—clopen
V such that UNV = () with € U and y € V. We recall that a clopen set
in a topological space is a set which is both open and closed. A fuzzy ordered
space (X, T, R) is called a fuzzy Priestley space if it is compact and totally order
disconnected.

3. Priestley Duality for Finite Fuzzy Distributive Lattices

Throughout this section, all fuzzy distributive lattices (F-D-lattices) are finite
and homomorphisms preserve first (0) and last (1) elements. If (A,V,A,R) is a
F-D-lattice, then its dual space is defined by: T (4) = (X, 7, R1), where X is the
set of 0 — 1 homomorphisms from A onto {0, 1}, 7 is the product topology induced
by {0, 1}A and R; is the fuzzy order on X. Indeed, R; is defined on R, see Lemma
3.1.

If § = (X, 7, r) is a finite fuzzy Priestley space, then its dual is defined by:
(L(8),V,A,r,), where

L(§)={Y C X |Y is increasing and 7-clopen}
and 7 is a fuzzy order adequately chosen.

Lemma 3.1. If (A,V,A,R) is an F-D-lattice, then there exists two fuzzy orders
R1, Ry such that:

(1) T(A) = (X,7,Ry) is a fuzzy Priestley space,

(2) (L(T (A)),V,N, Ry) is an F-D-lattice.
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Proof. (1) Let R; be such that:

Ry (f,g) = { R(AgH1), AFTHA) i FTH) C o)

0 otherwise,

where the symbol A stands for an infimum with respect to the fuzzy relation R.
We show that R is a fuzzy order. We have Ry (f, f) = R(Af71(1),Af71(1)) =
R(a,a) =1 for all f € X (R-reflexivity).

For all f,g € X such that f #£g¢g

R(f,9) NR(g,f) =R (Ag~ (1), AfTHD)) AR (AFTHL), Ag™H(1)))
= R(a,b) A R(b,a) =0

(because a # b otherwise, f = g) (R-antisymmetry).
Now, for all f,g,h € X, we show that

Rl(fvg) /\Rl(g7 h) < Rl(f7 h’)
The only case for investigating is
S Cgi) and (1) € AL,

By the transitivity of R, for every a, b, ¢ in A, we have R(a,b) AR(b,c) < R(a,c).
This yields

R(Ag7' (1), Af7H1)) AR(ARTH1), AgTH(1)) < R(ARTH(L), AfTH(D)) .

The last inequality is true for every b € A. Then for all f,g,h € X, Ri(f,g9) A
Ri(g,h) < Ry(f,h) holds, and R; is transitive. So, R; is a fuzzy order and by [11],
T(A) = (X, 7, Ry) is a Priestley space.

(2) Let mg =Nz Ay {r(z,y) | 2 #y and r(z,y) > 0 }. We define Ry by:

1 if H=D

R|A L), A ¢! if HC D and H#0
Ro(H.D) — fDHf (1) ng (1) #

0 otherwise,

where the symbol A stands for an infimum with respect to the fuzzy relation R.
First, we show that Ry is a fuzzy order. We have Ro(A, A) =1 (R-reflexivity) and
Ry(A, B) A Re(B, A)) = 0 whenever A # B, i.e., Ry is antisymmetric. In order to
show the transitivity, we use the following truth table, where the proposition D is

Ro(A, B) A Ro(B,C) < Ra(A,C).
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ACC|ACB|BLCC D
0 0 0 1
0 0 1 1
0 1 0 1
0 1 1 Impossible case
1 0 0 1
1 0 1 1
1 1 0 1
1 1 1 1

Then Rs is transitive.

Finally, the upper and lower bounds of A and B are denoted by AV B and AA B,
respectively, and they are equal to AU B and AN B, respectively. This shows that
(L(9),V,A, Ry) is an F-D-lattice. O

Note that in order to see the role of the topology in the proof of Lemma 3.1, it
is sufficient to see that the dual of the Priestley space, L(T(A)) is defined by this
topology, i.e., L(T (A)) ={Y € X : Y is increasing and 7—clopen}.

Lemma 3.2. If § = (X, 7, r) is a fuzzy finite Priestley space, then there exists
two fuzzy orders r1 and ro such that:

(1) (L(5),V,A,r1) is a F-D-lattice,
(2) (T(L(0)),7,72) is a fuzzy Priestley space.

Proof. (1) If h(r) =0, then X is an antichain and we can write r; as follows:

1 if A= DB,
r(A,B)=¢ 1—<rdd it 4 C B,
0 otherwise.

It is easy to show that ry is a fuzzy order and AV B=AUB and AAB=ANB
for every A and B from L (), where (L (8),V,A,r,) is a fuzzy distributive lattice.
If h(r) # 0, then X is not an antichain, we choose

mo = Ng Ay {ptr(z,y) | @ # y and p.(z,y) = 0}

Then mg # 0 and we can take r; such that

1 if A= B,

r1(A,B) = Mazx (mg, VacA, beB r(a,b)) if AC B,
a#tb

0 othewise.

Similar to the previous lemma, r is a fuzzy order and we can assume that AV B =
AUB and AA B = AN B for every A and B from L (), where (L (8),V,A,r,) is
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a fuzzy distributive lattice. For the second assertion, let

1 if f=g,

r AN A, AN B if f7Y1) cgi(D),
(Aef—l(l) Beg~1(1) ) f ( ) g ( )

0 otherwise,

TQ(fv g) -

where the first infimum A is in the sense of the fuzzy relation r and the second
infimum A is in the sense of the fuzzy relation r;. Note that ro is well defined:
A1 = Aaes-1(1)A, where the symbol A stands for an infimum with respect to the
fuzzy relation 71, it exists because L (0) is a lattice and a = AA;, where the symbol
A stands for an infimum with respect to the fuzzy relation r, is unique , otherwise
Aj cannot be the minimal element of f~! (1) [11]. Furthermore, (T (L (§)),,72)
is a fuzzy Priestley space. O

The following theorem, shows that the category of finite fuzzy Priestley spaces
is equivalent to the dual of the category of finite fuzzy distributive lattices.

In [11], Priestley remarked that the basis can be characterized by the fact that
they are increasing according to inclusion of prime filters from A by taking the sets
{F, :a € A} as basis, where F4 is the set of all lattice homomorphisms from A
onto the chain {0, 1}, non-identical nulls (taking 1 in a).

Theorem 3.3. (1) Let A be an F-D-lattice. The map Fy : A — L (T (4))
defined by Fa (a) ={f € X | f(a) =1} is a fuzzy lattice isomorphism.
(2) If 6 = (X, 7,7) is a finite Priestley space, then the map G5 : 6 — T (L (9))
defined by

Gy ={ g §27
for allY € L (6 ) is an isomorphism of fuzzy Priestley space, i.e., a bijec-
tion and increasing map.

(3) If f : Ay — Ay is a fuzzy lattice homomorphism, then the map T (f) :
T (As) — T (As) defined by T (f) (9) = gof is a homomorphism of fuzzy
Priestley space, i.e., a continuous and increasing map.

(4) If h : 61 — 02 is a homomorphism of fuzzy Priestley space, then the map
L(h): L(62) — L (1) defined by L (h) (y) = h=' (y) for every y € L (52)
s a fuzzy lattice homomorphism.

(5) If f and h are as in (3) and (4), then the following diagrams are commu-

tative.
Ay L Az
| |
FA1 | |FA2
! !
L(T(A) ——————~— — L(T'(A2))
L(T(f))

and
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51 ———————— — (52
| |
Gél‘ ‘G52
i !
(L) ———————— — T (L(61))
T(L(h2))
Proof. (1) Let us show that the map Fa (a) = {f € X | f(a) = 1} is a fuzzy lattice
isomorphism. We have R (z,y) < Ra (Fa(x), Fa(y)), where
1 if Fa(x) = Fal(y)
Ry(Fa(z),Fa(y))=<¢ R (/\ﬂf—l(l), /\ﬂg_l(l)> if Fa(z)C Faly)
feEFa(x) g€ Fa(y)
otherwise,

and the symbol A stands for an infimum with respect to the fuzzy relation R. Note
that if R (z,y) > 0, then Fy(x) C Fa(y) which implies that Rs (Fa(z), Fa(y)) =
R (x,y). This shows that R (z,y) < Ry (Fa(x),Fa(y)) and then the map Fy is a
fuzzy lattice isomorphism.

(2) According to [11], it suffices to show that r (z,y) < ro(Gs (2),Gs (y)). If
xr =1y, then

Zo = ﬂ A= ﬂ B=27,

A€G (@) (1) BeGy(z)(1)
and so r (z,y) < re (G5 (z),Gs (y)). If & # y, then there are two cases as follows:

Case 1: if r (z,y) = 0, then we have r (z,y) < r2 (G5 (z),Gs (v));
Case 2: if r (z,y) > 0, then y belongs to each 7—clopen which contains z, so,
Zy C Z1, and then we have

r2 (Gs (z),Gs5 (y) = r2 (NZo, N Z1) =7 (,y)

where the symbol A stands for an infimum with respect to the fuzzy relation
r. The remaining assertions are obtained by the same reasoning. O

Remark 3.4. We know that the minimum ¢-norm Tys (Zadeh’s norm) [4] domi-
nates any other t-norm. Then according to Lemma 2.4 (3) in [3], T is stronger
than any other t-norm. Consequently, the results can be extended to any other
t-norm.

Example 3.5. Let (4, V, A, R) be a fuzzy distributive lattice, where A = {a,b,c,d, ¢, f}
and R is a fuzzy relation defined by:
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b c | d| e | f
0.1/03]0.3]05|0.7

R|a

a |1

b|10] 1 102]|02]04]0.6
c|0] 0 1 0 0203
d|0| 0 0 1 10.2]0.3
e 0] O 0 0 1 10.2
f10] 0 0 0 1

Then its dual is:

T (A) = The set of 0 — 1 homomorphisms from A onto {0,1} = {f1, fa, f3, f4, } »

such that
Alfi(x) | fo(@) | f3(=) | fa(z)
a 0 0 0 0
b 0 0 0 1
c 0 1 0 1
d 0 0 1 1
e 0 1 1 1
f 1 1 1 1

and its bidual is:

L(T(A) =10, {fa}, {fo, fa}, {fa.fa}, {fo, fs.fa}, X},

where Ry is given by:

Ry 01 {fa} | {fo, fa} [ {Sfs, fu} [ {fo, fa, fa} | X

0 1] 01 0.3 0.3 0.5 0.7
{fa} 0] 1 0.2 0.2 0.4 0.7
{fo, fa} O] O 1 0 0.2 0.6
{fs, fa} [O] O 0 1 0.2 0.3
{fo, fs, fa} 0] O 0 0 1 0.3
X 0] 0 0 0 0 1

Finally, F4 : A — L (T (A)) is given by:

A FA(ai)izltOG
a 0

b {fa}

c {f2, fa}

d {fs, fa}

€ {f27f3,f4}

f X
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Example 3.6. Let (X, 7,r) be a Priestley space, where X = {x,y,z} and r is
given by:

riz|ylz
x| 1|0]0
y|0[1]0
z|0]0]1

Then L (X) = {0, {z}, {y}, {z}, {z,y}, {z,2}, {y,2}, X} and 7y is given by:

1 it A=1B
r(A,B)=¢ 1—<rdd if ACB
0 otherwise.
Then r; will be given by:
ri |0 {=) [ {ub [ {2} [ {=u) [ {z 2} [{y2} | X
0 1] 1 1 1 1 1 1 1
{zy (0] 1T [0 |0 | 1/2 [ 1/2 0 [1/3
{y} (0| O 1 0 1/2 0 1/2 11/3
{zx Jo[ 001 0 12 | 1/2 | 1/3
{z,y} |0] O 0 0 1 0 0 2/3
{z,z} |0] O 0 0 0 1 0 2/3
{y,z} |0| O 0 0 0 0 1 2/3
X [0 O 0 0 0 0 0 1

and the set of 0 — 1 homomorphisms from L(X) onto {0, 1}, i.e., T (L (X)) is equal
to {fl7f27.f3}

L(X) | f1(Xi) | f2(Xe) | f5(Xi)
0 0 0 0
{2} 1 0 0
{y} 0 1 0
{z} 0 0 1
{z,y} 1 1 0
{z,z} 1 0 1
{y,2} | 0 1 1
X 1 1 1

And ry will be given by:

ro | fi|fol| f3
Ali1lolo
Hlo[1]o0
10101
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and the isomorphism Gx is defined by Gx : X — T (L (X)), where

X | Gx(Xy), X;€X
z f1
Yy Jo
Z f3

Example 3.7. Let (X, 7, r) be a Priestley space, where X = {x, y, z, t} and r is
given by:

rixly|z| t
z|[1]0|0]03
y|0]1]0]|04
z|0]0]1]0.7
t10]0]0] 1

a‘nd L(X) = {®7 {t}’{x’t}7{y7t}7{Z7t}7{x7y’t}’{Z’Z7t}7{y7z?t} 7X}7 Where T.l
is given by:

1 0 {t} {{E,t} {yvt} {th} {{,C,y7t} {xﬂzvt} {ywzat} X
[ 1103] 03 0.3 0.3 0.3 0.3 0.3 0.3
{t} 0] 1 0.3 0.3 0.3 0.3 0.3 0.3 0.3
i 0] o 1T | 0 [0 0.3 0.3 03 (03
{y, t} 0] 0 0 1 0.4 0 0.4 0.7 0.7
Gy oo 0o [ 0 | 1 0 0.7 0.7 07
{l‘, Y, t} 0] 0 0 0 0 1 0 0 0.7
(0,20} 0] 0] 0 | 0 | 0 0 1 0 07
{y, z, t} 0] 0 0 0 0 0 0 1 0.7
X 01 0 0 0 0 0 0 0 1

and T (L (X)) ={f1, f2, f3,fa} such that

L(X) | f
0
{t}
{z,t}
{y.t}
{z t}
{z,y,t}
{z, z,t}
{y,2,t}
X

f2

»—~o>—w~oo>—loo/:;:
<
Nl
»-n»-no»—o»—ooo’:;:‘
<
N
»—A»—\»—lO»—lOOOOQ
&
N
HH»—‘HHH)—‘HOQ
<.
N
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The isomorphism Gx is defined as follows: Gx : X — T (L (X))

X GX (Xi),Xi e X
T f1
Y P
Z f3
t fa

4. Conclusions and Open Problems

The Priestley duality comes from the classical Stone representation of distribu-
tive lattices.

Stone in [15], developed a representation theory for distributive lattices gener-
alizing that for Boolean algebras. This he achieved by topologizing the set X of
prime ideals of a closed distributive lattice A (with a first and last elements) by
taking {I,: a € A} as a base (where I, denotes the set of prime ideals of A not
containing a).

In 1970, H. A. Priestley developed a new duality for a closed distributive lattices
by replacing (I,: a € A) of prime ideals by (F, : a € A) where Fy, is the set of all
0 — 1 lattice homomorphisms from A onto the chain {0,1} and taking 1 in a.

The purpose of this paper is to establish a duality for closed finite fuzzy distribu-
tive lattices type Priestley extending the classical case. In this way, some results of
[11, 12] are extended. The main theorem (Theorem 3.3) shows that the category of
finite fuzzy Priestley spaces is equivalent to the dual of the category of finite fuzzy
distributive lattices.

Now, we give two open problems:

(1) Is it possible to obtain such representation for an infinite fuzzy distributive
lattice?

(2) Is it possible to obtain such representation if we change the definition of
fuzzy set? In other words, what happens if we replace the unite interval
[0,1] by any closed distributive lattice L?

Acknowledgements. The authors are grateful to the four anonymous referees for
their constructive comments and questions.
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