
APACHE SLING & FRIENDS TECH MEETUP
2 - 4 SEPTEMBER 2019

New ways of Server Side Rendering with 
AEM, React and Node JS

Alexander Schmidt, TECLEAD



About me

2

▪ Technology enthusiast
▪ Passionate developer
▪ Consultant with 9 years of experience
▪ Co-Founder of Teclead (https://teclead.de)
▪ Nature lover (hiking, mountain biking, traveling)
▪ Enjoy digital goods and of course coding

https://teclead.de


Agenda

3

1. Introduction to setup
2. SSR vs CSR
3. SSR approaches

a) Mozilla Rhino
b) Custom Node JS Service
c) Tessellate
d) Next JS

4. Take away



4

1. Introduction to setup



1. Introduction to setup (1/3)

5

▪ Greenfield with AEM 6.4 with Touch UI
▪ Mostly React for AEM components
▪ Some components with default AEM tool stack
▪ Gradle - Cognifide for AEM packaging



1. Introduction to setup (2/3)

6

▪ Node JS, React, Less, Typescript
▪ E2E with Webmate
▪ Webpack to build chunks
▪ Jenkins for automation (build, deploy, release and delivery)



1. Introduction to setup (3/3)

7

Why did we choose React?
▪ already in use and mostly known in company
▪ rich library of elements already implemented (checkbox, 

label, accordion, icons, etc.)
▪ elements were used by other SPA’s
▪ reuse all of that components in AEM
▪ reduce time and effort
▪ fast delivery



8

2. SSR vs CSR



SSR vs CSR (1/4)

9

SSR CSR

PRO • better for SEO (more consistent)
• reduce load on client side
• blank page flicker that happens with 

CSR, doesn’t really happen with SSR

• rendition on client side reduces load on 
server

• better user experience while navigating 
through pages

• load page only once and fetch new data as 
needed

CON • rendition on server increase load on 
server

• annoying page loads when server is on 
heavy load

• not optimal for SEO
• load on client side may be dissatisfying 

with low bandwidth
• JavaScript may slow down the page 

performance



SSR vs CSR (2/4)

10

walmart.com rendered with SSR vs CSR

*https://medium.com/walmartlabs/the-benefits-of-server-side-rendering-over-client-side-rendering-5d07ff2cefe8

https://medium.com/walmartlabs/the-benefits-of-server-side-rendering-over-client-side-rendering-5d07ff2cefe8


SSR vs CSR (3/4)

11*https://medium.com/walmartlabs/the-benefits-of-server-side-rendering-over-client-side-rendering-5d07ff2cefe8

https://medium.com/walmartlabs/the-benefits-of-server-side-rendering-over-client-side-rendering-5d07ff2cefe8


SSR vs CSR (4/4)

12*https://medium.com/walmartlabs/the-benefits-of-server-side-rendering-over-client-side-rendering-5d07ff2cefe8

https://medium.com/walmartlabs/the-benefits-of-server-side-rendering-over-client-side-rendering-5d07ff2cefe8


13

3. SSR approaches



3. SSR approaches – introduction (1/3)

14

▪ AEM component with HTL template
▪ React template to render component
▪ Properties will be injected to React component
▪ Web bundles stored in JCR



3. SSR approaches – introduction (2/3)

15

HTL template



3. SSR approaches – introduction (3/3)

16

React template



17

3a. SSR approaches - Mozilla Rhino



3a. Mozilla Rhino (1/5)

18



3a. Mozilla Rhino (2/5)

19



3a. Mozilla Rhino (3/5)

20



3a. Mozilla Rhino (4/5)

21

Advantages
▪ Can be hosted internally in AEM
▪ Simple function call
▪ Everything in one place



3a. Mozilla Rhino (5/5)

22

Disadvantages
▪ Mozilla Rhino is not well maintained
▪ Javascript functions unknown by Rhino
▪ Unknown functions have to be implemented
▪ Unexpected behavior in AEM



23

3b. SSR approaches - Custom Node JS Service



Custom Node JS Service (1/5)

24



Custom Node JS Service (2/5)

25

Differences:

• Call a Service

• Read HTML 

disappears



Custom Node JS Service (3/5)

26



Custom Node JS Service (4/5)

27

Advantages
▪ Node JS engine is well maintained
▪ Load runs on external service
▪ Service can be reused for other applications
▪ Better scaling and failure-safety
▪ Implementation is simple, because of less polyfill



Custom Node JS Service (5/5)

28

Disadvantages
▪ More expensive because of external hosting
▪ HTTP call takes longer than function call



29

3c. SSR approaches - Tessellate



Tessellate (1/2)

30

▪ Developed by Zalando and is open source
▪ Creates static HTML and JS bundle from JSON 

definitions
▪ Webpack bundler and rendering service



Tessellate (2/2)

31

▪ Works similar as our custom 
implementation with Node JS

▪ Has more features (packages) if needed, 
but could be unnecessary



32

3d. SSR approaches - Next JS



Next JS (1/2)

33

▪ A React framework for SSR apps and more
▪ Open source and can be found on Github
▪ Supports SSR with React out of the box



Next JS (2/2)

34

▪ Feature rich
• Dynamic SSR with service
• Static HTML generator
• Desktop, mobile, PWA

▪ Big community and under further 
development



35

4. Take away



Take away (1/5)

36

Comparison Rhino Node JS 
Service

Tessellate Next JS

Reusability

Complexity

Costs

Flexibility

Maintenance

* Good | Okay | Bad



Take away (2/5)

37

▪ SSR with Rhino can be very burdensome, because of 
limited JS engine

▪ SSR with Node JS works better, because the engine is 
better maintained

▪ External hosting of Service is more expensive



Take away (3/5)

38

▪ Be aware of features which do not support SSR, e.g. 
React Portals

▪ Introducing a whole new technology stack is time 
consuming and not for the faint-hearted

▪ Add SSR to your definition of done



Take away (4/5)

39

▪ Interdisciplinary teams
▪ AEM developers for integration
▪ React developers could implement components



Take away (5/5)

40

What should you choose?
1. Simple components –> Rhino
2. Maximum setting "for yourself"-> custom Node JS 

service
3. Convenience, support and community –> Tessellate, 

Next JS


