adaptTo()

APACHE SLING & FRIENDS TECH MEETUP
2 - 4 SEPTEMBER 2019

Alexander Schmidt, TECLEAD

sass About me
adaptTo()
» Technology enthusiast
» Passionate developer
» Consultant with 9 years of experience
= Co-Founder of Teclead (https://teclead.de)
= Nature lover (hiking, mountain biking, traveling)

» Enjoy digital goods and of course coding

https://teclead.de

s Agenda
adaptTo()
1. Introduction to setup
2. SSRvs CSR
3. SSR approaches
a) Mozilla Rhino
b) Custom Node JS Service
c) Tessellate
d) NextJS

4. Take away

adaptTo()

222 1. Introduction to setup (1/3)

adaptTo()

» Greenfield with AEM 6.4 with Touch Ul

» Mostly React for AEM components

= Some components with default AEM tool stack
* Gradle - Cognifide for AEM packaging

2222 1. Introduction to setup (2/3)

adaptTo()

* Node JS, React, Less, Typescript
= E2E with Webmate

= Webpack to build chunks
= Jenkins for automation (build, deploy, release and delivery)

222 1. Introduction to setup (3/3)

adaptTo()

Why did we choose React?
= already in use and mostly known in company

= rich library of elements already implemented (checkbox,
label, accordion, icons, etc.)

= elements were used by other SPA’s

= reuse all of that components in AEM
* reduce time and effort

» fastdelivery

adaptTo()

PRO

CON

better for SEO (more consistent)
reduce load on client side

blank page flicker that happens with
CSR, doesn’t really happen with SSR

rendition on server increase load on
server

annoying page loads when server is on
heavy load

rendition on client side reduces load on
server

better user experience while navigating
through pages

load page only once and fetch new data as
needed

not optimal for SEO

load on client side may be dissatisfying
with low bandwidth

JavaScript may slow down the page
performance

nmese
adaptTo()

walmart.com rendered with SSR vs CSR

SSRvs CSR (2/4)

[e Ml s Ml s Ml e Ml ——

Category Page

B s R e s e

Search Page

1063 1128 M 2395 261s 2708 £:84 rs 764 g

https://medium.com/walmartlabs/the-benefits-of-server-side-rendering-over-client-side-rendering-5d07ff2cefe8

adaptTo()

SSRvs CSR (3/4)

Server Sending Ready
to be rendered HTML
Response to Browser

Browser Renders the
page, Now Viewable, and
Browser Downloads JS

Browser
executes React

Page Now
Interactable

11

https://medium.com/walmartlabs/the-benefits-of-server-side-rendering-over-client-side-rendering-5d07ff2cefe8

adaptTo()

SSRvs CSR (4/4)

Server Sending
Response to Browser

Browser
Downloads JS

Browser
executes React

Page Now Viewable
and Interactable

12

https://medium.com/walmartlabs/the-benefits-of-server-side-rendering-over-client-side-rendering-5d07ff2cefe8

adaptTo()

13

222 3.SSRapproaches - introduction (1/3)

adaptTo()

= AEM component with HTL template
» React template to render component

* Properties will be injected to React component
= \Web bundles stored in JCR

14

222 3.SSRapproaches - introduction (2/3)

adaptTo()

HTL template

<lS=Rsampiltifiedi==>

<sly data-sly-use.ssr="com.aem.sample.components.ServerSideRenderingComponent'">
<div class="aem-react-component SampleReactComponent" data-params="${ssr.allProperties}">

<!-- Rendered content -->
${ssr.renderedHtml}
</div>

Slis by

15

222 3.SSRapproaches - introduction (3/3)

adaptTo()

React template

import React from 'react';
import ReactDOMServer from 'react-dom/server';
import SampleReactComponent from './SampleReactComponent;

// properties is injected from AEM
let props= properties;

const json = JSON.parse(props);

renderedHtml = ReactDOMServer.renderToString(<SampleReactComponent{...json}></SampleReactComponent>);

16

adaptTo()

17

i3 3a. Mozilla Rhino (1/5)

adaptTo()

O internal view ‘
Publish
SSR Component

Client Dispatcher

Publish
Cold Standb

18

3a. Mozilla Rhino (2/5)

adaptTo()

Page already Load properties and Call renderToString
Get HTML cached prop with Rhino for
. JS bundle from CRX h
by Dispatcher rendering

Read rendered W
HTML from JS J

o
-

Load HTML }{

Y

Render Page and
Lstore in Dispatcher

cache

i3t 3a. Mozilla Rhino (3/5)

adaptTo()

public String getRenderedHtml(String bundleContent, String properties) {
// start JS-Context for evaluation
Context context = Context.enter();
ScriptableObject globalScope = context.initSafeStandardObjects();

// pass props from AEM into the context as global variable
ScriptableObject.putProperty(globalScope, "properties", Context.javaToJS(properties, globalScope));

// execute the bundle and access the renderedHtml global variable which

// contains the html-string of the component

context.evaluateString(globalScope, bundleContent, JS_BUNDLE_FILE_NAME, 0, null);

return (String) Context.jsToJava(ScriptableObject.getProperty(globalScope, "renderedHtml"), String.class);

20

i3t 3a. Mozilla Rhino (4/5)

adaptTo()

Advantages

= Can be hosted internally in AEM
= Simple function call

» Everythingin one place

21

i3 3a. Mozilla Rhino (5/5)

adaptTo()

Disadvantages

* Mozilla Rhino is not well maintained

= Javascript functions unknown by Rhino

= Unknown functions have to be implemented
= Unexpected behaviorin AEM

22

adaptTo()

23

=s22 Custom Node JS Service (1/5)

adaptTo()

Custom Node JS Service (2/5)

adaptTo()

é
!

Get HTML

Load HTML

|

Page already
cached
by Dispatcher

Load properties and
JS bundle from CRX

J

o
)

(Render Page and

store in Dispatcher
L cache

Differences:
 Call a Service
 Read HTML

l disappears

Call external render
service

Custom Node JS Service (3/5)

adaptTo()

public render (bundleContent: string, props: string): string {
// init variables
const vars = {
properties: props,
renderedHtml: '',
window: dom.window,
document: dom.window.document,
navigator: dom.window.navigator,
console: dom.window.console

+;

// prepare node vm context
const context = vm.createContext(vars);
const script = new vm.Script(bundleContent);

// execute script
script.runInContext(context);
return vars.renderedHtml;

26

=s22 Custom Node JS Service (4/5)

adaptTo()

Advantages

*= Node JS engine is well maintained

* Load runs on external service

= Service can be reused for other applications
= Better scaling and failure-safety

* Implementation is simple, because of less polyfill

27

=:22 Custom Node JS Service (5/5)

adaptTo()

Disadvantages
= More expensive because of external hosting
= HTTP call takes longer than function call

28

adaptTo()

29

it Tessellate (1/2)

adaptTo()

» Developed by Zalando and is open source

= Creates static HTML and JS bundle from JSON
definitions

» Webpack bundler and rendering service

30

it Tessellate (2/2)

adaptTo()

= Works similar as our custom
implementation with Node JS

= Has more features (packages) if needed,
but could be unnecessary

31

adaptTo()

32

=2t NextJS(1/2)

adaptTo()

= A React framework for SSR apps and more
= Open source and can be found on Github
= Supports SSR with React out of the box

33

st NextJS(2/2)

adaptTo()

= Feature rich
« Dynamic SSR with service
 Static HTML generator
 Desktop, mobile, PWA

* Big community and under further
development

34

adaptTo()

35

528 Take away (1/5)

adaptTo()

Comparison

Rhino

Node JS
Service

Tessellate

Next JS

Reusability

Complexity

Costs

Flexibility

Maintenance

* | Okay |

36

i Take away (2/5)

adaptTo()

= SSR with Rhino can be very burdensome, because of
limited JS engine

= SSR with Node JS works better, because the engine is
better maintained

= External hosting of Service is more expensive

37

222 Take away (3/5)

adaptTo()

» Be aware of features which do not support SSR, e.g.
React Portals

* |ntroducing a whole new technology stack is time
consuming and not for the faint-hearted

= Add SSR to your definition of done

38

528 Take away (4/5)

adaptTo()

* Interdisciplinary teams
= AEM developers for integration
» React developers could implement components

39

adaptTo()

Take away (5/5)

What should you choose?

1.
2.

Simple components -> Rhino

Maximum setting "for yourself'-> custom Node JS
service

Convenience, support and community -> Tessellate,
Next JS

40

