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Hardy's Uncertainty Principle on 1p+=[0ro)

CHET RAJ BHATTA

Abstract: Hardy's uncertainty principle states that ifthe function lfis "very rapidly decreasing'

then the Fourieitransform can not also be "very rapidly decreasing" unless / is identically zero.

In this paper we discuss some variants of Hardy's theorem on [t'=[ 0, o).

Keywords: Uncertainty principle, Fourier transfotm pair, Laplace transform, very

rapidly decreasing.

l.Introduction

It is well-known simple fact that if a function/on lR is compactly supported,

drco its Fouris tansform fot not also be compactly supported, unless 1f:0. More

fcrally, *c havc thc blloying principle in classical Fourier analysis: If the function

.Fb 
.".ry rapilry dccrcasiry'6to 6c Fouri€f transform can not also be "very rapidly

decreasing- unless/is idcntically zro. An important result making 0ris precise is the_

following treorem. There alt several ways of measuring "ConcanFation". One way of

measuring concenfiation is by considering the decay of the function at infinity and

another natural way of measuring 'concentation' is in terms of the supports of the

function,fand its Fourier ransform 7.

Hardy Theorem 1.1 tll : Let a, B and C be positive real numbers and suppose thatf

is measurable function on R. strch that

(i) l,f(x) | < C exp (-arx2) for all.re IR

(ii) | i@l < C exp (-F r €2\ for all f e lR

If q0> I then/= 0 almost everywhere. If aB < I then there are infinitely many

linearly independent functions satisffing (D and (ii) and if ap= l, thcn

f(x)= C exp (-anx2) for some constant c'

?tyl : fi ,/(r) exn t-z ilxv\ dx, v er'.

Dcfinition 1.2: A function / is said to be "exponential type" ir l,f(y) | < constant , 
"rlrl

for some T< co.
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Definition 1.3: For a measurable frrnction/on R* = [0, o) the L4lace transformXf of f is defined by

-  - t .  -  r ' @  . :
&J V) = 

I o fG) exp (-nty) dt

If Re y > 0 and/e rt (n) then t/is we[defined. If in addition/satisfies
l,f(r) < c exp (-ax2) for all.re R 

* 
tErr x121is defined for all y eo and is holo-

morphic function on (D .
The following is a simpre deduction from Hardy's theorem on IR-.

t.- ! , 
,' ,.f ;l , : ', ,TlWfefrr lJ. Letf be a measwablefunaion onR- satisfiing

(i) lf (x)l < C exp (-ax2) for all x e rR*
; ,(ii).ltl(l)f <Cery GF(rm}2) for all 7e i R

,If 
ag>% tb,gr.r/;oa.o ,

;, : proof: nxiena Tto i rin Rby defiiiing o on {x : .r a o} then f is a measurabre
functions on R and satisfy Ii(") |< C r"p (:aiz) for alt xe R

For 7e rR, 
l?Orl=l l]'ir,l*nt _z,ixD dxl

l r -  |=l 
Jo /(')"*P(-2ti$el

sCexp (<fr2)
Snce 4ap>l so by Hardy's theorem on R I = o ae. Thus ./ = o a-e.

(i) l,f(x)l = 
" 

r*O (a,rxz)for all.r e rf
(ii) lxl(y) ls Cexp (-9ry2) foraily eR

f af > I ttren /:o aq

Proof: Suppose that a= f = I and t/(7) is a wen function i.e. 4f(f) : Z Cn frn.
Since the function a(7) = 7k, te Ris a holomorphic function in the cut plane
{y : R exp (i0) ; R> O,Pl < r} where rk = Rk exp gk01, wecan define a function

h(i= t-f (J7) =Z c, rn.

I w)t=f I n l.*(-,.,!7 )atl
=t 

l' "*p(-ot2)"*p(-o,[n 
cor$t)*

( l )
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IIARDYS UNCERTAINTY PRINCIPLE ON(R= [0'o)

: c 
"*p\tRco"'$) ;*of '6* !",t-n c*$f)*

<c'exp (icosz $ n) :: ' : : .

( c'exp (til for some c' > o 
' l

Which is independent of d. Thus h is a exponential tyBe , 
'

For} < 5< x

l"*ogll ' :t )arrrl = oo l'Rtu(0:L))la (n.,,)l
lu^Y\ S.ny- lr ' \ r  

t l  ^,  
v-f i*- l  , " .^ ' -  ' l

ff e- 1then Reig- R > 0 so

I  l r i u n - ' % \  t  
' ,  

^ ' , , ^ . , '

| "^pVfu)h(nl 
= exp (aR) | ,(R) |

s exp(zR) lrl(#-)l

SC exP(zR\exP(-nR)<C

t  I  ; * u o . % \  |

If 0 = 6 then, l!*p##)n<nl= exp(-zR) lft6e'd;;
I ' slnu/^ |

< C'exp(-rR)exP(/oR) using (1)

< c '

Now rrc app[ mranar - Lindekifs theorem to the sector 0 < e < d to get

trRsin(d*4)\
I h'7)F K ery(lff), K = Max 1c, c';

/z

Now taking df n, we have

I /l(y) | < Kexp (-rR Cos d) for 0 S dS n

+ | exp (n't) h(y)l< K, f 
= Re'a, 0 3 0 < n

A similar argument will hold for the lower half plane so

I exp (xy) h(y)J s K for -n< 0 30, y * prie'

Therefore g(y) = exp (tty\ h(y) is bounded and holomorphic in CI. Hence by

Liouville's theorem there is a consturt M > 0 such that

h(y)- M exp (-n r)

Thus Y-f!)-MexP (-trYz)

Suppose now tlmt Y-f Q is an odd function i'e'

xf(D:z c^ y2"*1, Kf(o) = 0. Fo1 y+0, y-t K f{D =l cn r2n.

Thus by even case T-\Y-f(l)= Ittr exp (-nf2). But for 7e R, we have



CHET RA' BI{ATTA

rhererore, ,vl:{:?],=rir?rff?,r,,
i 'e '  Mrrr<cforai lTeRndichispossibrcontyi fM=e.

HenceX.f(f) =0.

In general, we break t f intoeven and odd pct i.e-
xf(D = 

l{xf{n + xf(-il) * * <xfol _ efGi)

sr (z) is an even **,"="",lll# :;n,[?i= c q (_t7z) fc arr
/e R. So the function hre) = S{JVI is ofexpocntiel tnc as

and 
lh?)l<* (xttJVt+ryt4t)

I x x-JVtl=[-frrl tf .,w @ Jl ) a I
=" lo'"*t- ,t\qQ JT co'gidt

=cexp bX"orrg)[ ,*f ,(,-$cn1il"

s C'exp (#)
Hence, 

lhr7)l <C,opg)
Thus, gr0) = Kery (r7\aA gz0)=0 and so

If 
xf(D= KexP (-rrz)

d = p >  l . T b c n

lf(x)l s C exp (-a x2) s Cerql (_.r2)
and lxf(D)lSCexp (- fr2)sCq (_r2)
So, Xf(y\= r(exp (-oy2)by the above case.
Forx * 0.

f (x)= M ,)Tr* 
f- "xp(-o 1o+tbt2)w4bx)db

= M t);To+ 
f 

exp(-,r(az -b2 +ibba-*))at

= M,:yo exp (-z a\ $[ .f "*,", 
z 1 cos t (za - f) at

+ i fexp er qlsin r (zo _ *) ar
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Therefore, t]\o*.f(9=u.+ 
[ 

expQrb2)db >S x forattX]0

Hence we must have M= 0 and therefore Y-f (y): 0 for all"y i.e.f = o a.e
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*frn*#u,,"#"trr*#ffi :ffi :,fftr#$*:i,ff"1};*ffiso_called probabilitv

u" *"il.i *Til;; ir#J$r,1,,,Town in rhis

I.Introduction

a-Lrr^ 
The set of double cosets of a grourorbits.of a group *itrt i".".lr'i::':_^g.1oup^with resped to a subp

fl11trre *.f,p #n[iiil;H::j"Jr:::T. f.::,:'"'pr,r,,,-r"ilf.i"uo 
and the set or

Pasch geo-meil";:l;'#f,fjij^11i.9 as'nurtig'ouli'ifti:"r;li"i:'-certain sructures

#ir:!E[F;i;kiffi ilTd$ jj,ffi ljf ii':'{i'}#?"ry:i*ffi dT
possess pr-obab i I istic
to belong to tt. ,.tTT1*1*frffi',i"",Irti"t- 

In addition,;;#: 
rnnerited shucture

aostracry studied 
"."1T:0,':.f 

;ifu;;::-a 
certain dil;;i"v ror 

these srructures

toporogicar sroups uf,..P.bubi1iv- e.""or"'i1","1 ffrfr:#tJ$:".'J".ifi:y'i'il:x'
trperg-.oups.";;;#.T,jonvolution oi' r"^Ji!r';"ffiH :tj:, 

and orbirs of

glxili:::l*#[":,il:l#.",tt1":ili::ilJi:[1-'*';i"r: ji:",*i:
aosract probabiriry 

".111 
9-t', 

*r,.i t.r iiitosets 
and orbits of sroups. so u n'utr.}

group? rt has beeri :"11 :: 
U. ,.utir.a'ui;;*":t* and sufficie-nt conditions f";;;

[T:Tg"*,*i:tHf:,,J:",'T1,[:lJ6Ti;l"l:n:#i"ru,il'llm:'.m.j,il
fi *fl iil1i;t$#*IililH'f."".ffi :ii.:'iill''^i*h'"il=u:#ri
ro trre probab,r ity spac# 

a im'n s il,io i;i r;.S :,br "pi* "?l' J'"pJit[,!lii";
structuie""il;j;:;;:i:.:TlT"',TT.r1tr1,fi,ii1if1iilUHffu 

,r"ffi untque. We wish to pom out that the
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study of projective geometry and rerated spaces in the framework of pasch geometryhas the convenience of 
.deating *iut ;orpr,isms and r,on,oro.pr,isms with theavailability ofhomomorphism theirem, ,irirui ro orr,", urgriJi."r*.,u.", (see [3].).

2. Preliminaries

In this section we-briefly present the basic concepts and preriminary resurts onPasch geometries and probab'ity lroups. ihe detairs iJ il ff;; in rhe references.particularly in [7J. 
v F-' rq" ut ruurr(

Definition 2'l Bya pasch geometry is meant a nipre (A, e, L) where Ais a set, e e l,and 46 : A c A x A x Asubject to tire following axioms:
l .  Va eA,J aunique b e Awith(a, b,  e)e A. Let b = at.
2. t: e and(d\* = aVq e A.
3. (a, b,c) e A + (b, c, o) e A,.
4. (au gz, az),(ar aa, a5) € A + 3au e ,{ with (a6,,ti,a),(au,a5,a!) eA,.

The identity element e and the inverse a# are unique. rn ougr,out this paper,geometry will mean pasch geometry.
A geometry is called abelian if (a, b,c) e A + (b, a,c) e A. A geometry iscatted sharp if (a, b, c), (a, b, d) e L =; = ;.Atso, a g";r.r,yi;i6ea proiective ifa* = aYa eA and(a, a, b)e A :+ b = e or b : o.

foltowinlow 
a structure shonger than the geometry defined above is given in the

Definition 2,2, Aprobability group is a pair (A, p) where Ais a set andp: A x Ax A -+ [0, l] is amap to ttre unii interval, denoted as(a, b, c) _+ p"(a, b),subject to the following axioms:

L Fora, b e A,p,(a,b)=0 forail but finitely manyx eA and

2 P*@,b)=t.

2. For a, b, c, d e A, 
teA

Z p,@, b) pa @,d = 
Enp 

a @,y) pr(b,c)

3. 3e e I such that po(e,a)= | = po(a,e)V a eA
4' For each a e r, there exists a unique b e A with p"(a,b)* 0. we denote D

bv o'.

5 .  p , (a ,b )=  p" r (b t ,dyv  a ,b ,c  e  A .

It shourd b *y thatpda,b) can be read as the probabirity for the erement c tobelong to the murtivarued producia.a. arro, *io,,, (l) describes probability
distribution, (2) gives associativity, the,identity e given by (3) is unique and the uniqueiwersef.gfa given by (a) satisfies (d)o = i! o .r. when dearing with more thanone probabitity group, we write them u (A, pA),(a, pi) ;;.;;;;"" ,*"o ro tet the

I

I

(
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I

I

I

I

I
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I
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context distinguish. we may simply nrite I is a probability group, the associated p
being understood. A probability group is called abelian if p"(a,b): pdb,a)V a,b,c e A.

The following useful relations are obtained as consequences of the axioms:

Lemma 2.3. For any probability group (A, p),wehave:

(i) pok!,$= po(c,a)Va,c e A.

(ii'1 p,@,a)*lVa e A*-{el

(iii) p p(a,b) p 
"(t, 

c) = p 
"(a,auS 

p 74t,c7. In particular, if b = d,we get

p o(a,b) p 
"(b,bu) 

: n 7od7 p s,1b,tu\ -

(iv) p"(a,b) * 0 if and only if p,*(b,c\ * 0.

For a probabilrty group A,.let Lt= {(a,b,c): p"*(a,b\ * 0}. Then

Proposition 2.4. (A, e, L1) is a Pasch Geometry.

Thus, when I is a probability group, we speak of the geome$ A to mean the
induced Pasch geometry structure as described above. Every probability,group is b
Pasch geometry but the example (4) below shows that the converse is not true.

A probability group is called sharp (projective) ifit is sharp (projective) as a
geometry.

Examples 2.5.

l. Let G be a group. Defnep by p" Q,c) 
= | if a: b.c and 0 otherwise. Then (G, p)

is a sharp probabilify group with d : a t. Note that the probabiliry for an element a to
be in the piroduct b.a is either I or 0. Conversely, every sharp probability group is a
group.

2. Let P be the set of points of a furite projective plane of order m.Let
A= P v {el, e e P.OnA,define the mapp ai follows:

6"(c) if b=2,where dr(c) =l if a=c,0 otherwise

6" (b)  i f c=e

#au@) i f  a=e

#  i f  a = b = c + e

# i f  a,b,ce P anda,b,caredist inctandcol l inear

0 otherwise

Then (1, p) is a probability group, the induced geometry being that of the projective
plane. Note that if n = 2. po @, a) -^ 0 and A is sharp.

3.LetG be a fulite group and G: Uv f2,...4) be the set of ineducible complex

characters of G. For I s 1j< i,let 7,.Ii =Zior'ii Zr. Letpbedefined by

Po(b, c) =
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Then (G,p)

.  . : .

Pro(x;'x) = 'ir!(*
' 

xi0) x jQ)
is a probability group.

4' The murtiplicative group of positive rationars Q+ acts on the additive group ofrationars ewith *..:'":o::,"'n_ll, 
f f 

ij,_f_,', f'i). ;il;-"; ch geometry ororbits) (cf. 2.3). For elelenfl o-: Itl,a =i,t, we have c: [_tJ a unique etement suchthat ([l], [ll, [_l]) e 
.A. So_ if thir i*,n"rry *"T:]i-gr.il by a probability group, thenwe would havep1l1([r], IrD = r, r"ont uaiJting remma 2.3 (ii).

Now let @, f!!e a probability group and S c A,a finite subset. Set*:r'tes 
ffy' Note that pdr, r5;c 0 and s is finite, so n" is weil defined. Inparticurar, ry is defined if l is finite. If r is sharp and hence a group, then n,a: v4L the

;'fl;:i? 
sroup; ir^ is projective;;il#; ffi;ff#iJ; o,-, ororder rn.

2'l' subgeom"try ul-,r r:lprobabirity group. LetAbea geomery and B =A.Then,Bis calfed asubgeometry rti.e B ua(i,iior) e A, b1,b2 e B+x e b.LetLa: Le n (B x B x B).They (!, e,Ary i, u g;orn"t y.
Let (A' p)be a 

SlluauiJi' gr*p ia r c r. Then B is cated a subprobabirirygroup of A if e e B ya !a,78) i, i pr"UuCifiry g.oup on ir, o-* ," here po is the res-triction of p on B x R-xa we *iil #;t; rii"i n pE.il;;"t B is a subpro-babitity group of r if and onry iiI;;';geometry of r. so c is a subprobabiritygroup ofr if and onrv if the foirowing hord: eeBan dp,,(b&)+0, bsge B:+ d e B.we call B a normal ruuptouuuiriry grSro #;t;r normar as a subgeom etry of A.
2'2'Factor Geometry and_factor probabirity group. Let B be a subgeometry ofr.For a, b e t, define a - b ifJb1, t, i a iia r'1,112c! tlrat (a, b', /), (x, b*, b2) e a,.This defines an equivarenc" r"rution oi i.'lJ.' erc: {[ar : ae r] be the set of arlequivatence ctasses. Let ([a],[b],[c]l . irriil, e[a], g e[b], ze [c] with(x,9, z) e 47. Then A//B is;;r;;;l,y.

In particurar, tl! = G is a group and B: rl is a subgroup, then the set of doubrecosets G//H is a geometry.
Now suppose B is a finite subprobabirity group of a probabirity group,,{. Then

3"H;r"O**metry 
of A and so we getitre a.io, g.or. W A/lB.For X, y, Z e A//B

p z ( x , Y ) = l t t y ,' '  '= 
n, h L,L*Po@'b)P,(a,g)/ 

p"(b,b#)

where x e X, u ey ue arbirary erements. The.m?pp is independent of the choice ofxand g and makes A//B inro a probabirity gr;f inaucing the factor geome try of A//8. rnparticular, if A = G is a group and a:-H-is finite sub$oup orc, ;;;;" geometry of
[1f;:"::'"' 

G//H is iprobabiritv e,*p. l"',r'i' ;;;, ;h;';il ] simpriRes to trre

icr so

:J- G
:t tld

: d A

:!Er"

d, l

l e l

rtal,

f@

3?':E

tE

fr sqr
pf.cin

uphr

Erul
Tbc nnr

rbc crr

f : =

A casc t

l l . Ho

cellcd a

rlj:tio'n

arphrs

'-4 
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he
m,

n

p - ( x , Y ) - l x H ' U a Z l
l H l

f o r s o m e x e x , g e Y .

2.3. Geometry and probability groups of orbits. Let Abe a geometry. A group F

is said to act on I if there is a homomorphism from f to the geometry automorphisms

of A. Thus for a e I and a e A,weget oa e ,4 satisffing obvious properties. In such

cases, we callAaf-geometry. Fora e A,let(al= laa: a e f) denotethe orbitofl

and A/f= {(a): a e l} be the set of orbits. Let ((a), (b), (c)) e A,rr iff3r e (a),

y e(b)z e (c) with (x,A, z) e A7. This makes lff a geometry called the geometry of

orbits of I by f. In particular, if V is a(left) vector space ovgr a skewfield F, then the
geometry of orbits Vlf is the geometry of the classical projective space P(Iz).

Now, let I be a probability group. Suppose a finite group I acts on the

geometry L Then ,,4 is called a f- probability group if, in addition , p -(ab,ac)
= p,(b,c)Y a, b, c e A,a e f. Suppose I is a f- probability group. Since f acts on the

geometry A, we getthe geometry of orbits l/f as above. Define

pq,yKb),(c)')= ;;;[fl] l r; I I. p,(y,r)
l(b)ll(c)l fta> ".<,)

for some r e (a). The map is well defined and makes Alf into a probability group

inducing the geometry of orbis. Thus, if G is a group and f is a finite group of auto-

morphisrns. then the geometry of orbits Gff is a probability group.

A spccia.l important case is given by the following:

turplc 25. SApcc / is a vector space over a finite filed F containng m elements.

nc nr4fizrni erot+ f rts on tzand the set oforbits l4f isa probability group of

rhc conegonding projccrive sp{€.. If (u) e Ylf ,o + 0, then (Q= f u,so | (u ) | =

I f ol= f l= ^ -1. Hencc thc aboyc formula becomes

oa,)(u),(w)=* t  Z p,(Y,r)=j;  I  LP,@u,Fw)
f r  t ye (u ) z lw l  , aeF .peF .

A case by case consideration will givep-values exactly as defined in example 2.5(2).

2.4. Homomorphism. LetA andB be geometries and f : A -+ B be a map' Then/is

called amorphism itf(e,)= tu?rrd(x,A,z) e Le-U@),f@),f(z)) e Aa' If, in

addition, V@),f @),b) e Ln> b:f (t) for some z e Awith(x, A,z) e A, then the

morphism is called a homomorphism.

Let A, Bbe probability groups and f : A -+ Bbe a map. Then /is called a probability

homorphism if f (e)= es and

pt(f @),f(a))= | pr{or,or)Yo1,o2 e A,be B.

xeI-t@)

ry
s-
)-
ry
9.
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A.homomorphism ofprobability groups is naturally a homomorphism of
coresponding geometies. A bliective homomorphism is an isomorphism. So a bijective
/ isanisomorphismifandonry i f  p,(b,c)=pr<oi@),f(c))ya,b, i  e e.Notethatthe
context distinguishes p for A and B.

. A9 in geometry, the natural map A -+ A//B is a homomorphism if and only if B
is normal inl. There are isomorphism theorems for homomorpniirs orprouability
groups similar to those in geometry. A probability group I is said to be of discrete
probability typeif Ya e r, there is a finite set .Fo rtittrp, (a, b) e F,,y x, b e A.For
such we have:

Proposition2.T.LetAbeaprobabilitygroupofdiscreteprobabiliryrypeand 
B,cbe

subprobability groups ofl with c normal in A.Let B.C :'{x: 1b. c. r; e a, for some
b e B,c e c). TheB.cisasubprobabilitygroupofr andB.C C = B Bncas
probability groups.

In particular, the proposition is true ifl is fnite.

2.S.Geometry and Probability spaces over Geometric Sker,r fields. Let (A,0A, A)
be an abelian geomeby. Suppose, in addition, (1, .) is a semigroup u ith l such that
0.a: a.0 =0.It is called ageometric ring if (a, b,c) e S., e .f = (ar. bx, cx),
(xa, xb, rc) e a. It is called a geometrics sfield if l' = ..{ - { 0 i is a eroup. Suppose
(v,0w A) is an abelian geometry and the geometric sfield.J ac6 on I.compatibly as
scalars sat isfr ing: a(bu):(ab)a;}1.a= a.0y:0y; l .u =;. .  ( ! .  : . .  c. i )  e 5 =
(au ,ao ,aa)  e  L ; (a ,b ,c )  e  A+ (aa ,ba ,cz t )  e  L ; (ab ,k , .c : . )  €  l .
ay0+(a,b,c) e L;(aa,ht,a) e A+ o: c,u;where a. b.  c e . . {  and rr .  rr ,  u e V.Then
Z is- said-to be a geometric space over geometric sfield l. For such rhere is a basis and
well defined dimension (see[4], [5]). In case v and l hare sharp geomerries, the
geometric space Z is a vector space over the usual skewfield I .

t, , ,) . 
If zis a geometric space over a geometric sfield l, then rhe geomerry of orbits

r tA ts proJecnve and so.represents a projective space (including deeenerate ones).
Now suppose zis.a geometric space over r and in addirion.*1r , p) is a proba-

bility group inducing the given geometry. Then we call v aprobabilir! space over I if
VisA - probabilitygroup. Hence,y u,u, aeV andya eA'.rve have

p*(qa, aw) = pu(a,w)

Ifl is finite, then the projective space y /A' is a probability group.

2.6. semi-isomorphism. Let v and IZ be geometric spaces over geomerric sfields I
and 8 respectively. A pair of maps (o,6 ) : (v, A) --+ (w, B) is called a semi-isomorphism
if o : v -> ll is an isomorphism of geometries , 6 : A + B is an isomorphism of
geometric sfields and dw ) = 6 (a) o (u)Va e V,V a e A.

Suppose, in addition, vandllare probability spaces overl and B respectively.
Then (a <i ) is called a semi-isomorphism of probability spaces if p,(a,w) =

P o61(o (v), o (w)) V u,a,w e V.
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3. Elementary abelian probability groups

Let (A,p) be an abelian probability group. Recall thdt an abelian geometry I is
elementary if va e l, the subgeometry (a) generated by a is simple in the sense that
wheneverS is a subgeometry ofA and {e} +Sg (a), thens:(a) (see [2]). In such a
geometry, @) + (b) + (a) n (b) : le\.Now, since B is a subprobability group of A if
and only if B is a subgeometry ofl, we make the

Definition 3.1 An abelian probability group Ais called elementary if it is elementary as
a geomety.

Also, the length of the probability group I will mean the length of the
corresponding geometry [2].

L,emma 3.2. Let Abe a finite elementary abelian probability group of length greater
than one. Then

(i) p,(a,d)= p"@,t)Ya,b e A*. (ii)p"(b, c)= pt* (c,a#1Va,b,c e A*.

Proof: (i) Let a,6 e l*. Suppose (a) * (bl. Let I e I such that p,(a,b) ra 0, so
(a, b, tn) . A. Since (a) * (b), we have t e (al, t e(b). So (a) n (r) = {e} and
(o.t) = (b, r). By proposition (2.7), we get

(a) = (a) / / (a) n (r) = (4).(r) / / (tl = (b).(t) I | (tl = (b).

lf the composite map is o, then o(a): b, so a (a#) = b#. Hence,
pA* ot1 = pttct @@), o(a') = p,(b, n\.rc <a> = (b), then the length being greater

6.. c. * e A'$ch 6.. (c) * (a). T\en, p"(a,a#): pr(c,"#) = pr(b,b#y, (i) tt
h&rrfru(i)rd l@23 (iii).

Le }l tcrrl bc a fub damnay $clian probabitity group of length greater

h Z $gaAJftrJ * 0, d p{bz,e) * 0, where D1,D2,c 1,c2 € A*, (b1) * (ci),
(h) * (oJ. ltca,p.(fi,c)= pq/ihc).

Prmf: In coresponding geomelry, we have (4,h, q),(4, h, cz) e L- Note that a1 *

e, othenvise it would give (01): (cr). Similrly a2* e.

Case (1): oz: ar. Suppose first, 62 e (bsc).Then, (af,h,q), (a{,4,c) e A, so

3t e A such that (t,bl,b) , (t,c2,c() eA. Note that t c (at b),otherwise 1t,b!,b; en

would givebj and hence b2 e (a1,by)= (br, cr). So being elementary, we get

(t) a (a1,b) : {el = (t) n (a1,b21. So by proposition Q.7), we get

(asb) = (aybfll(t) n (arbrl = @1,byllt) ll (tl = (a1,9).lt) // (t) = (atbzl.

Suppose a is the composite map. Ifx e kybrl,then x e (ar,br).(r)
= (ab b2>.<t>, so 39 e (asbz),l1 e (r) with (x,y', t1) e A. Since (ajlfr r (r) = {e}, the
elements go and tr are unique. Chasing the above isomorphi-sn, it easily verifies that
o(x): g.In particular, we have o(a)= ot= oz,o (b)= bz, o(cr) = c2. So,

Po,(bv cr)= Po@,)(4b), o(c))= po2(bz, cz).
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, Now suppose 
) 

e (\c1). Then (b1,c1) : (bz,cz). Since.the length of I > 2,1b3
such that h e (b1,c1). Choose ca e I such that p,r(fu,ca) * 0. Then, (h) + ("r),
otherwise (h) =,(ar) G (6r,cr). So from the first part, we get

. po1(b*r) = po1(bt,ct): po1(bz,cz): p,, (h,c).

Case (2): Let a2be arbitrary. Since (01) * (c1), either (a2l * g), or (a2) *(c1). We may
assume (a2) * (b). Now, 3d e ,{ with n4@$,a1 + 0. By temma 3.2 (ii), we get

Po,(h,cr) = p61@t,ai). Now using case (l), we get

o4@r,a() = 
f4@$,d1 :p,2(d,b)= p,r(h,cz).

Thus in every caseprl (Dr,cl) = po2(bz,cz).
Now, suppose (Ap) is a probability group of rengrh greater than two such that

me coresponding geometry is projective.'ihin ne g*riry"l 
"*rrpona, 

to a projec-
tive space. suppose the pro.iective space is of order r so thai each line contains z + I
poinf' The following theorem s!9wg that the probabitity ,*.,u.r on u projective space
is unique. This result was proved in [7] by using dualiry.

Theorem 3.4 Let (A,p) be afinite probability group such that the induced geometry on
A is projective of order m with length (A) > 2. Then,

po(b, c) =

6,(c) i f  b=e

6,(b) i f  c=e

# 4 @ )  i f  a = e

#  i f  a = b = c * e

# if a, b, c e P and a, b, c aredistinct and collinear

0 otherwise

xet*-la,el

a

G

P,
L

.t

I

r.

Tr

i r

I

a,

a

tl
(

J

h
r l
I

fro9fl 
Sincel isprojectivc, it is abelian and(a,a,b) e A + b: eorb: a. This implies

that (a) = {e, al ,Y a e A. So A is elementary abelian.
Now if 6 = e, lhen po(e,c) = 6o(c) and if c : e, then po(b,e) : 6"(c) are clear. So

suppose b,c e A . We consider two cases.

case (1): b + c. Then po(b,c) * 0 if and only if (a,b,c) e A. Since r is elementarv
Abelian, lemma 3.3 gives that p"(b,c) = p,(b,,c)yx e r* such that (x,6,c) e a. nut 1a6,c;
e A if and only ifx e Lu - {D,c}, where 26" is the line determined by the points b and c.
Since the line L6" has zr + I points, thb number of x e L6" - {b,c} wiit Ue {m + \A :
lrl -1. So

l = l  p r (b , c )=
teA

Z p"@,c) = (m -l) po(b,c).

Hence, pr(b,c)= 
*.

Case (2): b: c.\\enpo(b,c)*0 only if a = b= c or a: e. Suppose first

S.
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a = b = c and po(a, a) * O.Since length (A) > 2, 19 e A' such that A * a. Let z e I such

that (a, y, z) e A. Cleuly z * e, q, A. So po(y,4 = 
;-i.Now consider the equation:

2, P'(v, 4 Po(a,x) = 2 Po(a,x) P'(z,a)

On the left side,po(a, r) = 0 except for r: a or e.But if x = e, then

ply, z) = p"(/,2) = 0, sincey + z. So the only nonzero term in the sum is for x: a. So

Left side = po(A, z) po(a, a)= # pfta, a).

Also on the right a,U , z are distinct and collinear , so po(g, x) = p,(2, a):;! or 0. The

numberof elementsxsuchthatp,(y,r)*0 is m-l and includesz, but if.r=2, then

p,(2, a) = 0. So the number of elements for which both factors are not zero is m -2. So

Rightside =(m-a(*X*)= @-2) (#f

Thus, fr po(a, a) = @ a) (;!f giving p"(a, a) = 
#

Final ly, suppose a = e. Then', w e hav e p u(b,b)+ p t(b, b,) : l, so p 
"(b,b) 

= |

and the proof is complete.

4. Probability spaces over geometric sfields as orbits of vector spaces

The following theorem establishes uniqueness of the probability structure

which induces a given geometric space over a geometric sfield.

Theorem: 4.1 Let V be alinite geometric space over o geometric sfield

A, diml (n > 2. suppose (v, p) and (v, q) are probability spaces over A inducing the

given geometric space over A. Then, p = q'

Proof: Since Z is a geometric space over the geometric sfield l, the orbit space VIA* is

a projective'space of length greater than 2. Since (l/,p) it -ll -probability group, it

gives a probability structure on the orbits VIA* as follows (cf. 2.3):

rqry ((uz),(ur))=* I. I- P^(auz,Fut)'  
l A  l o . A * p . A '

Similarly, the l*-probability group (V,q) gives

qq1 ((u2,(o3))=# t- t. Qu,(roz' 'ot)'  
l A  l y . A * d . A ,

But by (3.4), the two probability structures on the projective space vlA* must

bc the same. So

I y 
Z p^(aor,B4)=* I^ I- Q,r(roz,l4)

lA* l te .p .e  t . t r l - , f i ,  
- '

rc I  t  p,r(dDz,\u)=I-  l_eu,( /ur ,6u.)
aeA'PeAt fs1' 

ieA|

_ m - 2  =  |
n-l m-l
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Now let Dy,D2,lJJ€ I/ be arbitrary. Thenp,,(r4,u3) * 0 if and only if (ur,ur,uf )
e A if and only if g,, (uz,ui) * 0. So let (ur,4,u() e A. We show

Pq(uz,u:):P,1 (Dz,u:). We consider the following cases.

Case (1). u2,D3 8r€ independent overl. Then for any D e span (uz,ur), 3 unique
a, B e A such that (u, cu2, pug) e A. So, sinceprl(Dz, Dr) re 0, we getp,,(au2, f v):0

except for a - p= 1. So on the left side of the above equation we get only one nonzero
termp,,(u2,u3). Similarly, the right side gives ?,,(uz,ur). So,p,,(u1,u3) = g,1(uz,ur).

Case (2). u2,D3 8r€ dependent. If u2 = 0 or u3 = 0, it is obvious. So let u1 * 0, u3 * 0.

Supposef irst  u1 *0. ThenSuel/suchthatul :D, D2 =crD, u3 = 0u.So we show
p,{,^), fu)= qJ,ao,fu). Since dim (Z) }2,1u,we Vindependent such that
(u,at,aoil) e A. So by case (l), po,Iu,w): qolu,w) * 0. Also, palu.ut) = q6lu,w) = 0
for d * a.ln(V,p), we have:

I rsfu,w)n,(a, 0u) = | n,@,i n,(u,. Pul
AeV teV

Butplg,pu) * 0 implies A: yu for some ye A andplu,u,) * 0 only when 7= cr.
Hence the above equality gives

po,(u,w) p,lau, 0o): 2 p,@,x)p,(u,.\ul
teV

Similarly we get for q:

q o,Iu,w) q Jau, pq : Z q u(u, x) q,(w, pu)
xeV

Since z, u are independent p, lus) + 0 implies u, arc also indepe ndent. So by
case(l),pu(ux): q"(ul)Y x e V. Similarly,p,(zl,9u)= q,(u,.$u) Vr e Z. Sothe
right sides of the above equalities are equal giving the equality of the left sides:

p 
""(u,w) 

p,la u, P u) : q o,!u,w) q lau, p u)

But again,plu;w): q",Iulo) + 0. So we eventually get plau,pu) = q,(au,pu).

Finally, let u1: 0. Then, | =2, pr(oz,vt) =2, qr(az,ot). Since p{ r2,ur) = g(uz,ur)

Vx * 0, we must havepe(u2, u3): qo(u2,u3). Thusp: g.
Now suppose Zis a vector space over a finite field 4 dim (Z) > 3 and f is a

subgroup of F*. Then the orbit spaces Vlf and Fll are probability groups in a natural

way (cf. 2.3).lt can easily be seen that the probability group Ylf so defined is

F lf - probability group. So the theorem gives:

Corollary 4.2, Let l/be a finite dimensional vector space over a finite field F and f be

a subgroup of F*. Then the space Vlf is a probability space over F/f in a unique
(natural) way.
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Definition 4.3. We call a geometric space V over a geometric sfield I to be of finite
order type if the corresponding projective space P(V) is of finite order'

The following theorem gives the representation of a probability space over a

geometric space as orbits of a vector space.

Theorem 4.4. Suppose (V, p) k a probability space offinite dimension over a

geometric sfield A with dimAv> 4. Suppose V is offinite order type. Then there is o

finite dimensional vector space l/' over afinite F, a subgroupl of F and a semi-

is omorphism of probability spaces'.

@,0): (Wlf , F/f) -+ (V, A)

The same is true if dimT V : 3 and the geometry of Z is D-geometry'

Proof : Since I/ is a geometric space over the geometric sfield I with proper dimension,

there is a vector space lfz over a skewfield F, a normal subgroup f of F and a semi-

isomorphism of geometric spaces (1r, ry): (lYlf ,F lf) -+ (Vl) (see [5]). We show that

it is a semi-isomorphism of probability spaces. Since I/ is of finite order type, the

projective space P(II) is of furite order and so F is a finite field. So ll andhence V is

finite. We use the isomorphism r4to make ll4f into a probability space as follows:

pi (6,fi) = pwol(v @\v(fi\ vt,6,fi e w t r.

We have for d e F' lf , pvv(d6dfi)= pO@\y@@(d)V@),0G)Vi))

= p,y@(y (6), ry (fi)) = pv (6, ilt),

as Zis l*-probability group. So this makes WT into F'lf -probability group. But by

corollary 4.2, such probabilitv structure is uniquely the natural probability structure

of IV/T.

Hence the theorem is proved.

5. Elementary abelian probability groups as orbits of groups

The following theorem gives orbit space representation of probability groups,

which are elementary abelian.

Theorem 5.1 Suppose A is o f;nite elementary abelian probability group, length

(A)>4.Then there exists ayector spoce V over afinitefield F and a subgroypt ofF

such that A =Vff as probability groups.

If length (A) = 3, then the same is true if I is a D-geometry'

Proof: Since I is elementary abelian geometry of proper length, there is a vector space

I.'overaskewfieldFand asubgoupf of F-suchthat o: Vlf -+l is an isomorphism

of geometries which induces isomorphism of projective spaces P(V) nd P(l) (see [2D.
\\'e show that ois an isomorphism of probability groups.
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since I is finite, the projective space p (l) and hence p(y)has fmite order. so
F is finite and hence a held. T\en, vff is a geometric space over F lf . we make z/F a
probability group by definingp as follows:

P"(A, z) = Po61(o(g), o (z))Vx, g, z e YI.

The probability group (v/f , p) so defined is isomorphic to (A.o). To show that it is rhe
natural probability group, it is sufficient to show that vlT is F',T'-probability group. So,
let a e F / l, a * 0. We showp * (aU, e) = p, (g, z)V x,g, : € t.T-. Ir is obvious 

- 
if

x:0, or g :0, or z:0. So letx, g, z e (v/l)'. Suppose hrst y, : are independent. This
meansin P(y),@)*(z),so :r l 'P(A),(o(g))*(o(z)) .Simi lar l1.  to(qg))*(o(az)).  So
by lemma 3.3, p aa (o (g), o (4) = p o 61 (o (ag1, o (e)). shou in g rhar p, (g, z) =
p*(sA, az). Nowsuppose A"zarcdependent. They V= b.: = rr. Choose t e Vtl
with x, t independent. Then, as in lemma 3.2, (x) = (t) = (a x . rhe composite isomor-
phism being given by x + d x. So for px, y .r e (x), we get p, (F x. .1 x1 =
p^(aQx, ay x)= p*(ag, m\

. -Tut,(V,p)isthenaturalprobabilitygroup and o.. t'T--+..t isthe required
isomorphism.

Now since a vector space over a finite field of charrrcrisric. sayp, is a vector
space over zo, and hence is a finite elementary abelian pg:orp. sr may restate

Theorem 5'2. Afinite elementary abelian probability group of tength greater than three
is is_omorphic to the probabiltty group af orbits of a finue ele^eita4, abeliqn p-group
with respect to afinite group of automorphisms.
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The Schrddinger equation associated to 2nd

order linear differential equation

J. H. CALTENCO, J. L. LOPEZ_BONILLA, R. PENE-RIVPNO

.{bstract: We determine the Schr0dinger equations associated to Hermite and Laguerre
differential equations, hoping that the process here exhibited rnay be useful in quantum mechanics,

l. Introduction:

It is known [,2] that the 2nd order linear differential equation :

can be written as an Schr0dinger-like equation:

( l )

(2)

via the following change of variable:

*.rro4+Qg)y=s
ax- ca

{+t@)w =o
dx'

y=wexp(-! I- ,urr,)' 2 '

J(x)=Q(x)-!  
dP - P2

2 d x  1

(3)

such that:

(4)

We here shall apply this procedure to Laguere and Hermite equations, which has
didactic value in lhe teaching of the elementary quantum mechanics

2. The Schrodinger type equations associate{ to Hermite and Laguerre
equations.

The Hermite equation is given by [,21:

! ' - 2 x y ' + 2 r r y = 0  ,  f l = 0 ,  1 , 2 , . .r 5 )



- - I  /  ' 2 t

ry n(x) =(2n nl^l n) 2 H n1x1 exp(-;r.

The associated Laguene equation has the stnrcture [], 2]:

k + l - x  l {
y ' + :  ! ' 1 -  y = o

x x

and the polynomials 4G) represent their respective solutions. From (l) and (8) it is

k + l - x  N
clearthat p =! ' ! " '  wi th p=1,then(2),  (3)and (4) give usthe expressions :

x x

w ,  * L t - K , ,  *  
K + t + 2 N  _ t  )  

" = o'  
4x2 2x 4'

w *x'*e-t L{tt>.

In (9) is not evident the corresponding potential, thus we make dte changes :

( l  l ) K = 2 1 + l  ,  N =  n - l  - t  , r = *  ,  U = T

then (9) takes the known form for the C,rulomb potential ( h = rn = l) :

(r2)

where n and / denote the principal and orbital quantum numbers,

respectively.Therefore, (10) and (l l) imply the normaliied radial wave functions [3,4,61:

l22l J. H. cALTENco. r. L. rdprz-soNILI-A. R. PEfrIA-RIVERo

and its corresponding polynomial solution is denoted by H^(x). By comparison of (l)

with (5) we see that P = -?:c and Q = 2n, then "/ 
= 2n + l- x2 and thus the Schr0dinger

equation (2) adopts the form

I  x 2  l  l t
(6 )  - -Y [ / ' *T r= \n+1 lw

x2
for the potential : of the harmonic oscillator in natural unis ( fi = m = 0) : l),

resulting tr,us tne lnergy spectrum (,. +) for the stationary status. The equation (3)
'  \  7 ,

dta (9)

dirDcnsi

l l t a

Sc"srri-
Bah
hr.n
E T L

E-ci I

I  x2 \
implies W x H, .*p (-;1, then the normalization of the waves functions leads to

(e)

with

(10)

-Llo' -r(l+r)' l  wr- tu' n= z' I w
2Ldrz rz ) 4nesr J2r2ezs n2

,, vt = (L)' I 
ti; Itil'' ]' # ".i, 

(?)

final result [3-5] :

(7)

(  l3)

G(
Fk
t-6
t.o
t

1,.
al
Jd
I
Y.

. : :

-.i
n

(8)



THE SCHRODINGER EQUATION ASSOCIATED TO 2ND ORDER LINEAR l23l

If in (9) we use changes of variables different to (l l), then it is easy to show
dnt (9) reproduces the radial part of the Schrodinger equation for the Morse and two-
dirncnsional harmonic oscillator potentials [7].
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Just-in-Time Sequencing Algorithms for

Mixed-Model Production Systems

TANKA NATH DHAMALA

.{bstract: Obtaining an optimal sequence in a mixed-model production system under the just-in-

rime philosophy is a challenging problem. The problems in a multi-level facility are strongly NP-
hard, however, the single-level problems are pseudo.polynomial solvable. In this paper, we
consider more practical just-in-time sequencing problem with given set of sequences as
precedence constraints. We propose an effrcient algorithm which obtains an optimal solution for
the maximum deviation objective in the single-level.

Keywords: nonlinear integer programming, just-in-time scheduling, mixed-model

systems, level s0hedules, balanced words, efficient algorithms, precedence constraints.

l. Introduction

The main goal of mixed-model production systems is to increase profit by reducing

costs. The just-inlime (JIT) systems, which require producing only the necessary

product in the necessary quantities at the necessary time, have been used for controlling

systems. Thdse methods satisfr the consumer demands for a variety of products without

incuning large shortages or holding large inventories. We consider flexible transfer

lines, where negligible switch over costs from one model to another make possible for

diversified small-lot production avoiding production of each model in large-lots. One of

the most important optimization problems have been considered is to determine the

sequence in which different models are scheduled on the line. The sequences refereed as

balanced, fair or level always keep the actual production level and thb desired

production one as close to each other as possible all the times. The objectives may vary.

There has been growing research in JIT sequencing since MoNneN [13]. Mn-reNeunc

[2], formulates the singleJevel JIT sequencing problem as a nonlinear integer

programming. SrpNeR/YroMANs [15], give an efficient algorithm for minimizing the

marimum deviation. KusrArdSnrHr [9] reduce the minimization of more general sum

deviation to an assignment problem and give efficient algorithm. These algorithms are

also applicable for multi-level problems under the pegging assumption [la]. The

erisrence of cyclic schedules have reduced computational time [14], Kunm [10].
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Bneur'ren/cncrrl,r [l]present an argebraic approach to [15] and formurate the smarldeviation conjecture- Kry* IJ r1 qi""r 
" 

c"omehic proof and BneurvavJosr/ KusrAr16] exploit the concept of ba'ianced 
-words 

to p.ou.- thJ .ony..tr.". Arso,Kovalvov/I(unrer/Yloptarstst"onrid". 
the computational time issues and conovnes/tr4onrNo[3] estabrish 

"p,iririry 

--."r"ii"", 

berween difrerent objectives. Theminimization of maximurndeviati'on i, ."_Np, but Jhe .";;i;ri; of these problemsremains open for the binarl encodingtlj.-w. refer ro o"^-i^r^,Kusr.Ar 
[4] for arecent surv€y ofJIT sequencing and ttri re6ren"es.

In this paper, we siudJ^thl^tl r::":lc1n* probtem wirh different senings. Given a serof non-overrapping sequences as chain--constra.ints, 
.rve 

gire a pseudo_porynomiaralgorithm which obtaini an optimal ror"ri"" to the whore insrun..'rhut preserves thecustomers orders, onayrlL,rufuererc[5]. By doing rhis rre r,.r.'ln,roou ced the first_or d er fi rs t-s e rve concept in m ixed_moi"i rvir"r r.

The paper is organized as foilows. A brief review of rhe existing JIT sequencingalgorithms for mixed-moder systems ;r pr.r.""a in s..tron'i.l;';;"" 3, we give anextension of the existing formulation 6r ,rr.-nr sequencing probrem with additionalconstraints' Section 4 contains our optimization argoriirrm r"r ,rri .""rliered sequencingproblem. The finar section incrudes .oi"r;sio", wirh some possibre directions forfurther research.

2. Just-in-Time Sequencing problem

For i = 1,2, '" , n, given n products (moders) i, n positive inregers (demands) d, and nconvex-symmehic functions f of a single variable, called der.iarion, all assumingminimum 0 at 0, the following optimization problem have been considered in thefiterature [9, 12, rs]' Find a sequenco $ = s1 r: . . . sD with totar demand D: z,:d; of
products where product i occurs exactly d, times that minimizes one of the followingobjective function (s)

TANKA NATH DHAMAI.A

Funb) = max f;(r;1,-r;k)
, i,k

where r;1 represents the number or product i occurrences (copies) in the prefix
sl  $r '  .  .  s* '  /c = 1,2, .  . . ,  D, and n = 

+, i  :  l ,  2, ,  .  . ,  n.Associated to each funct ion
FtuD, Fsn, there have been studied two type of objective functions in the riterature:

f;(x;y - rik)= { It'* 
- rtk)2 the squared - deviation,

t  lx l  -r ;&l  theabsolute-deviat ion.

ru
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A solution of this problem always keeps the actual production level q1 and the desired
pvoduction level r;lt, as close to each other as possible all the times. The problem is one
of the most fundamental problems in flexible JIT mixed-model production systems.
f{ere. the sequencing problems maximum-deviqtion JIT and sum-deviqtion jIT ur"
::presented by min-mae and min-sum problems,respectively.

a'th min-max and min-sum problems have been formulated as integer programming
xoblem subject to the following cardinality, monotonicity and integratity .onrtruinti' v  

l 1  l { I '- . , " 1 ,

Z',,=1 *;,1,=k Ie = r, ' ' ', D

x i , n = d r  i = I , . . , , n

x i , 6 3 x ; , p 1 1  i = I r . , , , n ,  h = I o . . . , D - l
x i r k e . A l  i = I , , . . , n ,  k = L , . . . , D ,

$here yy denotes the set of all nonnegative integers. The whole solution region is
denoted by I,: tXlX 

= (*i*)o,r). Thus, the JIT sequencing problem is equivalent to
the following optimization problem

min {F(s) | X eX}, where F e tFnqn, Fsnl.

A solution s = s1 s2 . , . sp of the min-max problem of n models is called B-feasible if
ma*i,r.[ @i1,- r;k) < B holds for the n x D matrix variablesX= (r;6) The set of all
B-feasible solutions is denoted by Xn.

SrenqenrYeoMANs [15] study min-max problem reducing to a single machine
scheduling decision problem with release times and due dates. They rCpresent the
problem as a perfect matching in a h-convex bipartite graph G : (VtvVyE) where
Ir  :  {1,2,.  .  . ,D} represents posit ions and Vz= {( t j  )  l  t :  l ,  .  .  . ,  n i  j  = I , .  .  . ,  d i l
represents ihe copies of the products. There exists an edge {tc, (i, j)}eE if and only if ,t
lies in the permissible interval [E(i, j), L(i, j )l c Vr of release time and due date for the
7-th copy of the product i. They prove the following (see also [t]).

Lemma I Let ih,ilz, . . . , d, be arry instance of min-mac-absolute problem. A sequence
s : sr s: . . . $D, is B-feasible ifand only iffor alli : l, . . ., n and j = f, . . . ili this
sequence assigns the copy (i, j) to the interval [4(i, i ), L(i, j )], where

E ( i , i ) = f  i - " 1 a n d  r , ( i , j )  = L i - I * B  * t l
n ' ' r i

denote the release dote and the due date of the copy (i, j ) for given upper bound B.

Derivation of similar closed formulas for other measures of deviations remains open.
{mongst various versions of the earliest due date algorithms for scheduling unit time
-obs with release times and due dates on a single machine, they apply a modified
rersion of Glovnn's l6)O(lEl) Earliest Due Date algorithm for finding a maxirmrm

I27l
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matching in a Zt-convex bipartite gaph G = (Vt vVz,E) such that each ascending
k evr is matched to the unmatched copy (i, 7) with smallest due date value of r(i, j).
They prove the following result.

Theorem I The min-mm-absolute sequence s is l-feasible if and onty if the graph G
with bound B: I has a perfect matching. Moreover, an optimal solution can be cleter-
nined by a exact pseudo-po$tnomial algorithm wilh compluity O (D log D).

However, l-r.u* is the tight lower bound for the min-max-absorute problem.

A binary search finds an optimal solution for the weighted min-max-absolute problem in
o(D log(D$G^ax)) time, where { is a positive integer constant depending upon problern
data [4]. They show in this case that the maximum weight G-"*= max;G;(l-4) gives
an upper bound and LBw= miul,t Gr(l-t;) gives a lower bound for the optimal objective
value.

Note that both release dates and due dates are nondecreasing functions of j for a fxed
i. But, they are non-increasing functions of d; for a fixed j, on the other hand. As
rh= rilfor any models ra and ir with equal product rates dio: di1, the equal quantity

products i with densities $ always do competition for their release times and due dates.
Mor€over, the correspolding positions t for the copy (r, r) are interchangeable in any
feasible sequences s.

For any instance il;,i = 1,2, . . . , n(n z 2) of the min-ma,r-absolute problem, the optimal

value B* satisfies the inequality Br s l-max {+,u5}, tl, 16l. For n } 3, an insrance

witlr gcd (ihr, ilz, . . . , iln) =l of this problem has optimal value B. =ff< j if anO

onlyi f  i l ;=! i - i  for i= 1,2,.  .  . ,n, f l ,2, l l ] . Inthe case of two products,^B*<f i f  ana
only if one ofthe demands is even and the other is odd [l,l l].

The existence of cyclic sequences reduces the computational time. The set of optimal
sequences for min-sum problem includes qyclic sequences [0]. Similar result holds for
min-ma,r-absolute problem [4]. We refer to [4] for more discussion on this issue.

For the sake of completenoss we mention that the min-sum problem has been efficiently
solved by reducing it to the well-known assignment problem [9]. The results in [3,8]
either refurc or establish rclations between different objective functions (see also [4J).

3. JIT Sequencing with Input Sequences

Here we extcnd the formulation of singleJevel JIT sequencing problem under a number
of chain constraints as follows. We denote tho following problem by JIT-Chain, (see
flse Ppry6,s1 / KusrAK [5D. Irt

- 8 . 8

: :  i : r cn

. . ,  -  : |

-  , , -  )  . . : 3 :  t

' ;  -- .  . - . . )  [
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u(npD1)p,

u(n2, D2) p,

I2el

u ( n p D r )  =

u(n2,D)  =

, (n ,Dr )  =

u(n1,D1)y  u (q ,D1)z

u(n2,D2)1u(n2,D2)2

;

u(npD1)1u(n ,D)2  .1 .  u (n , ,D)p ,

l :

u(n ,o ,D,n)  =  u (n^ ,D^)1  u(n^ ,D^)2  .  . .  u (n^ ,D*)p , , "

beBl ,B l , . . . ,B_- feas ib lesequencesof  leng ths  Dt ,Dz , . . . ,D^ ,whereD,  =E i rJ rd i ,

of given any model sets r?,, t = r, z, . . . , nt, respectively. These sequences represent as
;ha in1 ,cha in2 , . . . , cha in r , .  . , cha in* respec t ive ly .  More thanas ing lecha inmay
contain the same type of product models. we call itby overlapping system. Here, we
consider the problem with non-overlapping system.

In this paper we extend the previous results and obtain a B-feasible sequence
s : sr sl . . . sD, where n =LLtDt for min-max-absolute problem such that the

res t r i c ted  mapp ings5s t is$s lqn l ,Dr :  s - )  u (n1 ,D, )  fo ra l l l  = l ,2 , . . .mandhasthe

least maximum deviation, i.e., ]I(s) <f(s)for any sequence f : s1 ,o . . . sD satisrying
i lr(r,,o,): T -+ u(n,,D,)

The restriction sfu@pD1) of the super sequence s to any given subsequence u(n,,D,),
t = 1,2, . . . , n, yields the sequence u(n,,D,). Therefore, the super sequence s that
contains u(n,,D,) as its subsequence is order preserving with respect to the z-chain
constraints uQtoD,) as its subsequence is order preserving with respect to the z-chain
c o n s t r a i n t s  u ( n 6 D 1 ) 1 u ( n 1 , D s ) , ,  , i f  l <  l , f o r a l l  I : 1 , 2 , . . . , D , a n d r : 1 , 2 , . . . r n .
We call such a sequence by order-persevering super sequence. By construction each
subsequence represents a chain and there exist at most D constraints all together in these
chains.

{. An Efficient Scheduling Algorithm

To study the singleJevel min-max problem with chain constraints, let us consider the
collective demand rates of all together n =Ll'.tnt models with total demand

n=Li\D, in the union of all chains. Then for given bound B, we calculate the

permissible intervalsoft ime-windows [E(i , j ) ,  L( i ,  j ) l ,where i  =l ,2, . . . ,n;  j : l ,2,
. . . , di, (see Lemma 1) using the known algorithm of Srsn-reR / yrounus 

[15]. But our
chain constraints imposed in min-max-absolute sequencing problem are not included for
calculating these time windows yet. Therefore, it is straight forward that these time
u indows must be feasible without chin constraints (see Theorem l) for this data set.
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To ensure that the given bound B which is a target variable value for the objective
function is feasible for the super sequence to be delivered, a further test is required. We
reduce min-max-absolute-chain sequencing problem to a single machine scheduling
decision problem with release times, due dates and chain constraints. Given any bound
B for min-max-absolute-chain problem, we ask does there exists a feasible solution of
the single processor scheduling problern ll r;, chairyl L-o* with L,,". < 0?

Here considered the problem Llr;, chain lLo,u* , the time windows are represented by

the intervals fri,,I;l 
: 

IE(i, j), L(i, j)l calculated as a function of the given bound B. The

chain constraints are given by the subsequences Up1 lu(n, , D)Pr| that may be repre-

sented by the following graph. Defure a directed graph g: (V, a rt'ith the vertex set

V=Up., lu(n,Dr)!!r).There exists an arc in € from u(n,,D,)1 to u(n,,D,;6, if the

precedence relation u(n,Dr)61 u (n,,D2)1r, is satisfied.

Honu[7] formulated O(nlogn) time algorithm to the single machine scheduling problem

Il r;, chainl l',o*. His rule, also called earliest due date (EDD), at any time schedules

an available job with the smallest due date. For implementing this rule to ll r;, chainl

Lrnax on€ needs to modify the due dates. In this modification, if job lc is the immediate

predecessor of job / n any chain and di : ih -l < d*, denoted by /r -+ ,, then the due

date il6 has to be replaced by the modified due date d[ . A proof on the validity of

optimality on 2,,,o* objective makes the use of interchange arguments.

Following algorithm is proposed for the mim-max-absolute+hain sequencing problem,
(see also DHnMeldKuste [5]).

Algorithm I min-m ax-abs olute-chain- algorithm

G i v e n :  d l  f o r i = 1 , 2 , .  , . , t u t a n d t ' = \ , 2 , . . .  , n i

an upper bound B for min - mu - absolute - chain-problem;

Chairy, Chain2, . . ., Chain,, . . .,-Chain^;

Update:

number of demands n =Ll!r\i

demand rates di for i j l, 2, . . ., rr i

total demand o =Liitd;.

Step l. Calctlatewindows[E(t,j), L(i,j\lfor i= 1,. . ., d; and i= 1,. . .,n by

. SreNen / YEotunNs [5].

Step 2. Modify the due dates L(i, j\;

If (i, il + (i', j'), then L(i, j ) z : min {L(i, i),L(i',i' )-U.

Step 3. Schedule the jobs by EDD-Algorithm of HonN [7].
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O4.t z Efeasiblefor ("'D\ f L,nu. S 0'

fulhcf i rst twostepsrequireo(D)t imeandtheStep3costso(/) logD),theoveral l
re canplexity of tn" rin-*uoabsolute-chain-algorithm t:.o(D..lo.g D)''An EDD

4sid,m in Step : upprirJ-to iooJin"a due dares by Step 2 is called modified EDD

dgoriiltm.

Fotlowing theorem proves the correctness of Algorithm l' (see also DrnuRu"/

KushK [5]).

Theorem2LetBbeatargetvaluefortheobjectivefunction.ofmin-max.absolute.
chain sequen"irg proi";."rn'i, din' modi/ied EDb algorith! finds an optimal

solution with L^o30, then min-max-absolute-chain'algorithm finds a B'feasible solu-

tion to min-mac'absolute-chain sequencing problem'

Proof :Suppose$=$1$2. . .$Dbeasequenceobta inedbymin-max.abso lu te .cha in .

afgorithm such that L*r,O' That is, each job k=L' 2' ' ' ' ' D is scheduled in the proper

window and none of fre job is delayed. If s is infeasible to min-max-absolute-chain

sequencing problem, tn."'i"*-",k[>B for some product copy (i' j)with lc=I'2' ' ' ' ' D

and i = |,2, . .. , n. But this is impossible by the constriction of time windows. 0

I f the f r rs tcopy( i , l )o f theproduc t ihas tobecomple tedatpos i t ion lc . then i tho |ds

|x;6_tt ' r ; |=l-r i . 'Therefore,thesharplowerboundl- /maxonatargetvalueBisst i l l
valid.Anoptirnalsolutiontothemin-max-absolute-chainproblemhastobedetermined

UV uppfying binary search of the target value B in the interval [l- r'*' B]'

o n e w a y t o g i v e a n u p p e r b o u n d t o t h e o b t a i n e d s u p e r s e q u e n c e i s t o p u t g i v e n

sequences l)l=r {u(nr , D) fl, } one after anQther and then calculate

B =  
T ,?*  

l l *a ,  
-h r ; l t  i=  l ' 2 " "  o  n  and k=  ! '2 "  "  '  D \ '

TocalculateanupperboundonthetargetvalueBofthesupersequences,westudyalso
the propertie, of Uutrfii'q*ntt'' n iatchw,isa factor of t"qu"n"e s consisting of the

same product copies *friJf, lunnot be extenr1ed either to the left or to the right by the

same produc, ,yp" .opy.- ihe cardinality lu, I is the batch size of the batch w in s'

Clearly, longer batche' 
"au"' 

the number oi setups provided sufficiently long buffer

size.Given un inrtun.. (;r',-di *. .onrio.r a batch ,.qu.n.. s with exactly n-batches,

s3) s = oir oiz . . . oiowhere o;, represents a batclr with respect to the product type

r i ,  t  =  1 , 2 , . .  , , n ,

lrmma Z.Let s= 6it 6iz .. .6i,, beo sequencewithbotches oiufort= l'2"' 'n rl '

T|wn an vpper bound, on the torget, ualue of s is d,'.o* (1_ ',no*).

Proof: For any product model i = l'2' " " 
ttwith demand itiand j = l'2''' " 

ili'
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(  j  _kr;  i f  j  >kr i
wehave I i -k ' ; l= l i , r - ' i  

' ; ' j ; ; : ; '  
As  d ;  -d ; r ;2 i t ; - (d ;  + /c ' ) r ;  fo rany  mode l i

and anypositive integer k', wehave li - k i l < di- d ;r ; foralt i andj. As li -/c4 
l <

il;(l- r;) for each (i, i), it follovs that the deviation with respect to product j is not
more than it i$ - r; ) . Then the statement follows by considering the batch of maximum
length d,nu*. tr

corollary I An upper bound on the torget volue of rhe super seguence s obtained by
min-mu,-absolute-chain-algorithm is d^*(l - r."* ). Moreover, the tight lower bound
t s l - r n , * .

T h e b o u n d m a x ; , 6 { . 1  x ; , 1 , - k r ;  f  : i = l , . . . , n a n d l c = 1 . . . . . D } o b t a i n e d m a k i n g u s e

of the super sequence improves the bound dr* (r-r,,,"*) obtained by batch sequences.
However, the latter yields an explicit bound of the sup€r sequence. Dseveu,/ KusrArc
[5] prove the following result.

Theorem 3 An optimal solution to the min-ms-absolute-chain problem can be
determined testing at most o (D dm*(l- rn,J) sequences each v,ith time complacity
o(DtogD).

Proof: An optimal solution to the min-max-absolute+hain problem can be determined
by applying binary search in the interval [l-r,n"*, d-o.(l-r-..)]. But a feasibility test
requires O(D log D) time. !

As the HORN's [7] algorithm works for the problem llrj. preclL,n"., our approach is
applicable to the min-max-absolute problem with precedence constraints as well. The
time complexity of the algorithm does not increase.

Given two sequences u(3,11) = bcbbcebcbbc and u(2:)) = aadaaaada, the super
sequence s: abcabdabcaebacbadDca preservers the orders of the subsequences:
r14r,rr1 : bcbbcebcbbc and $;u(?,e) = aadaaaada. Moreover, the obtained super

sequence s is optimal as B = l- 
".*= 

t-*:0.65 is tight. Nore that first subsequence

of the input subsequences is not optimal: l3-4 x+|:+r* for the 3rd copy of product

6. But the sequence z (3,1 l) = bcbcbebcbbc is optimal with upper bound B :S.

Consider an example, on the other hand, to illustrate that not each optimal sequence
necessarily preserves the order of the input subsequences. Given two EDD-optimal
subsequences u(2,3) = bab and u(2,3) = dcd, the super sequence s : dabcbd is EDD-
optimal but does not preserve the order ofthe subsequence as s1,1:,3) = abb + bab.The

tight lower bound of the super sequence s is B :l- ,,,o* = l-Z:+ . Th. EDD-optimal

super sequence s = dbacbdis order preserving.
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i:: ''l rng nlo lemmas illustrate some properties.

Lcame 3. .4ny EDD-optimal sequence s = s1 s2 . . . sp with total demand u satisfies
: - i .'bllov'ing properties for a target value in [l- r,,"*, l]

e ,)nll thefirst (last) copy of aproiluctmay start at q= 0 (q: D -l)

r, t-'r i.7) < E(i, j +l) anil L(i, j) < L(i, j +I) for euery j and i.

Lemma 4, Let D, be total demqnd of any subsequence u of a super sequence s of total
ientand D for anyfloor or ceilingfunction H on nonnegative numbers, it holds H(rD,)

: III\ D) if and only if H(xD) < HUD).

Because of which we conjecture that given any number of optimal sequences for min-
ma.x-absolute problem with B : l, there exists an optimal super sequence with B = I
*hich preserves the order ofthe subsequences.

5. Concluding Remarks

In this paper, we assumed a number of non-overlapping sequences in the mixed-model
production systems. With respect to those input sequences as constraints, we presented
rn efficient algorithm which finds an optimum solution (sequence) to the maximum
l*'iation JIT sequencing problem. Our result is carried out based on the reduction of
.rlT sequencing problem to a single machine scheduling problem. Earlier results of
;l n:r [7] and Sranen/YeoN4er.{s [5] were applicable for solving our problem. It is
":en rvhether the min-sum problem with such constraints and./or min-max problem with
r erlapping sequences as constraints are efficiently solvable.
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Invariant and non invariant hypersurfaces

of almost Lorentzian para contact manifolds

HARSIMRAN GILL AND K. K. DUBE

Goldberg, S. L and Yano studied and defined Noninvariant Hypersurfaces of almost
r-ontoct manifolds and has become subject of sufficient interest and Sato (1976) studied
3bout a structure sirnilar to almost contact structure. In present paper our airn is to study
Inrariant and Noninvariant Hypersurfaces of almost Lorentzian Para contact manifolds.

lntroductio n, Let V,be an n-dimensional differentiable manifold endowed with a

:crsor field ( oftype (1,1) avector field U and a l-form z such that

, i  l )  Q 2 : l + u @ U , u ( U ) - - - 1 , 0  U : 0

u O ( : 0 ,  r a n k Q : n - 1 .

l\en V, is said to have an almost Lorentzian Para contact structure. lf in V,, there exist a

R emannian metric g such that

: l )  u ( X ) = g ( X , ( D ,

c (0 X, d v) = s 6,D + u(X) u (Y),

Then l',, is said to have an almost Lorentzian Para contact metric structure [4]. We say

::lt the almost Lorentzian Para contact structure is nonnal if

.  . ' 1  , 10 ,01 -U@ du-0 .

\\here [/ ,/ ] is the Nijenhuis torsion of Q. -

.{n almost Lorentzian Para contact metric slructure is said to be Lorentzian Para-

Sasakian,
: i

i  { , (D- 0)(n = u(Y)X + 2 u (x)u(v) U + g (X,Y)U,

uhere D denotes the Riemannian connexion of g([l],[2]). An almost Lorentzian Para

.-rrnrsct metric manifold is said to be a closed almost Loientzian Para contact metric

:-enifold if u is closed. Further if,

.  j r  O x U = 6 X .
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Then it is called a Lorentzian Para contact metric manifold ([2], t4l). It is observed that
a Lorentzian Para-Sasakian manifold is a Lorentzian Para contact metric manifold.

An almost product manifold is a differentiable manifold which has a (l,l) tensor field J
satisfying the cond ition,
(1 .5 ) J 2  = I .

Moreover if there exist a Riemannian metric g such that,

(r.7) g(JX,JY)= g(X,Y),

then it is called an almost product metric manifold. Let D be the Riemannian connexion
of g. then the manifold is said to be an almost product almost decomposable manifold if,

( 1 . 8 ) (D*,4 (D = 0
Consider an almost Lorentzian Para contact manifotd V, and let V. be an orientable
hypersurface of vn, and.B the differential of the immersion I of v.into v, Let x,y and Z
be tangent to V^and C a unit normal vector.
Then we have
(l.e) 0BX: BFX+ a(X) C.

Where F is a (l,l) tensor field, and a a 1 - form on V,, lf o* 0. then Zo, is called a non-
invariant hypersurface of V,. rf a is identically zero, rhen 1,, is said to be an invariant
hypersurface, that is, the tangent space of 2,, is invariant under d [3].
The metric g of an almost Lorentzian Para contacr metric manifold induces a
Riemannian metric G on the Hypersurface V, givenby.

( 1 . 1 0 ) G(X,n= g@X,BY).

Further the symmetric affine connexion D on v, induces a symmetric affine connexion
D on the hypersurface Z,,such that,

( l . r  l ) DaxC=B(DxY)+ h(X,Y)C,

where h is a symmetric tensor of type (0,2) called the second fundamental form of the
hypersurface V,,,. W e hav e,

(1.12) DaxC= -BHX+ rY(nC,

where I/ is a I - form on 2,, defining the connexion an affine normal bundle ano H is a
(l,l) tensor field on 4, such thatg(HX,Y)= h(X,y).

2. Noninvariant Hypersurfaces of Almost Lorentzian Para Contact
Manifolds.

Let V,, be an almost Lorentzian Para Contact Manifold with the sfructure
tensors (d ,U, u), and V,,, a non-invariant hypersurface of V,. In what follows we

assunre tlrat U is nowhere tangent to V, and so we can take C: U, then (1.9) takes the
form,
(2.1) 0 BX= BFX+ a(nu.
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I.\iYARIANT AND NON INVARIANT HYPERSURFACES OF ALMOST.

Tlcorto l. If V,, is a nonitwariant lrypersurface of an almost Lorentzian Para Contact
n.r:.'ati l',v'ith U nowhere tangent to Vo,, thenV, admits an almost product structure.

Froof : Applying / to both sides of (2.1), we get

0'ax= 0 BFX+ Q@$1up1.
i :cnr  1 l . l )  & (2.1)  we have

BX+u(BX)U=BFX+a@nu.

\!r\r equating the co-effrcient of above equation we have,

Fx= x,
u(BX) = a,(FX).

Thus F acts as an almost product structure on ,'o,.

Theorem 2. If V,, is a noninvariant hypersurface of an almost Lorentzian Parq contqct
otetric manifold V, (0,U, u, g), then Vn, is an almost product metric manifold.

Proof : From Theorem (1) it follows that V,,has an alrnost product structure F. Let G
:e the induced metric in Vr,,that is,

g(BX,BY) = G6,n
\ orr rve define i metric on Zo, by

G*(x,Y): G6,n - a(nag.
l:ien rve have,

G*(FX,FY) = G(FX,Fn -{Fn *Fv)
{pplf ing the condition of equation (1.10), (2.1) & (2.3) in above equation we have,

G*(FX,FD = g(BFX, BFY) - u(BX) u(BY),
: d0 BX -a{nu,$ BY -a(Y)u) - u(BX) u(BY),
= s@ BX,Q BD -{ndn- u(BX) u(BY)

{ppli ing the condition of equation (1.2) in above equation

- g (BX, By) + u (BX) u (BI) - a (X) u (Y) - u (Bx) u (BY),

= g(BX,BY)-a(X)a(Y),
: G* (X,Y).

:i:nce G* is the metric which makes %,an almost product metric manifold.

Tbeorem 3. Let V,,be a noninvariant lrypersurface of Lorentzian Para contact metric
* -- 

"ld 
I,', then,

(a) F = -H, (b) a= W

Trurf : Since Z, is a Lorentzian Para contact metric manifold, we have,

DaxUp: dBX.
r:r.E I ll) and (2.1) we have

.BHX+w(nu=BFX+ a(nU.

t37l
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&  a  = W .

Theorem 4. lI V, is a nonirwqtittt lrypersarface of a I'orentzian Para-Sasakian

maniftld vn then' 

1Dv ryvy-ou.v)x -a(r)ix,

g(BX,BY\=1(x,Fn+(Dxa)(Y)+a(X)a(Y)-2a(FX)a(FY)

Proof : We know that

(DBX/I\@Y)= DBSO BY -O(DBrBY]''

Using equation (1.4), (1.9) & (l'l l) in the above equation we get'

(^B$BX+2(snu{lP.na + g|BX;BY)U =Ds((BFr +{nI,
-p@dxY+ tdx,Y)q

. i i  
'  

i= Dbx BFY + Dsxo,(W -Q BD xY,

= B (D x FY) + h(X, FY)U + (D sv a(Y)) + a(Y, D BxU - B F D * f - @ *y)U'

= B (D x n(n + {h(X, F Y) + D ax a(Y ) - a(D x nlu + a(Y ) D uP'

In consequence ofequation (l'5) we have,

= B (D x n(Y \ + {h(X, F Y) + D B v a(Y \ - a(D x Dlu + a(n O BX,

= B(D x F\(Y) + {h(X, FY) + D H$(Y) - a(D xD + a(Y)a(X)lU + a(Y) B FX,

equating &e cornponents we got

(6 x F)(Y) = -a(Y) FX + u(BY) X,

and

h(X, FY\ + (5 2sal(Y) + a(X)a(Y\ =2u(BX\u(BY\+ g(BX' BY)'

From equation (2.3) we have

(6x il(Y)=a(FY)x 
-a(Y)FX '

h(X, FD + (D x d(Y) + a(X)a(Y) =Za(FX)a(FY) + s@X' BY)'

As an immediate gonsequence we have the following:

COROLLARY : Let V,be a nbnirrvariant hypersurface of Lorentzian Para-sasakian

;;if"ld % *i&ttre induc.ed alrnost pro&rot stuoture F. Then /, is an almost product

atmost decomposable manifold if and only if

a(Y\FX=a(FnX.

3. Invariant hypersirface of almost Lorentzian paracontact manifolds.

Let Vr{Q ,IJ,z) be an almost Lorentzian Para contact manifold and let Vrbe an invariant

hypersurface of %. Then, equation (l'9) becomes

W,hic& giveq
: .  ,  " . : - i :  

.
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Q BX = BFX,
- riat follows we study the invariant hypersurface with the following conditions:

r \'\hen U is nowhere tangentto V,.
: \\tren U is everywhere tangent to 2,,.

\\-hen U is nowhere tangent to V^.

Theorem 5. Let V, be an invariant hypersurface ofan almost Lorentzian Para contact
nanifold Vn. Then V. is an almost product manifoldwith u(BX)= 0.

Proof : The proof follows from theorem (l), for invariant hypersurface a = 0, then we
tr il l get
r 3 . l )  u ( B X ) = O .

Theorem 6. Let V^ be qn irvariont hypersurface of an almost Lorentzian Para contact
nanifuld V,. UVn is normql then the almost product structure induced on V,, is
.,:tegr6[ls.

Proof : We know that,

t0,01@.x, B y) = 02 IBX, B y 7+[o B x, o B yl - o to B x, Byl- o tBX,o B y].

;rng equation (3.1) and BIX,\= [BX, BYf in above equation we have

IO,il@X,BY)= BFZIX,Y]+ BIFX,FYI_ BFI FX,Y]_ BF IX,FY],
BIF,n(X,n,

:urther we have

du (BX,BY) : BX. u(BY) - BYU (Bx) -u(BW,n)

: 0 .

Itrus we can write,

lO, 0l (BX,BY) 4u (BX, BY)u = BlF, n 6,Y) .

l{ence the theorem is proved.

Theorem 7. An invariqnt lrypersurface V^ of a Lorentzian Para-Sasakisn manifold V,

s .tn almost product almost decomposable manifold.

Proof : From theorem (5) it follows that V. is an almost product manifold. Further,
:corem -3 gives that it is metric also. Now from (l.l l) we have,

DDy BFY = BDr rY + n1X,FY)U ,
= B[(D x F)(D+ r Dv4+ n(X,FY)U ,

Dax BFY = B(Dx D(Y)+ BFDyY + h(k,FY)U,

: I I Dnx BFY - BF OyY = AlDx nV)+ h (X,FY) U,

i :orn equation (l.a) we have

(Dxt)g)=u(Y)X +2u(X) u(Y)+ g(X,Y) U,

[3e]
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(Wfi @n =u(BnBX,+.&4BlQ a(BY) + g(BX, By)U,
(DNtr(Bn= gtffi,B{) (J, . .

Dax i BY -iDu( O Br = g(BX,BYNI,

DExl BFy -{fB6 xy + h(x ,y)u'l: g(BX , By)U ,
DEx i BFY -Q nlD*f = g(B,Y,BnU,

Pnx I &ru,- BFdaY = g(BX, By)U.

From equation (3r) u/e have,' l

r. ' . g(Bx,Bnu= E{{DxF)(y))+tdx,Fy)u. :

Hence

(DxFNn=0

g(E.f,, BY)- ftX,Fy1
Which ccrryIetes ttrc proof.

TVhen U is eve*yrvhere tangentto Vn

Theorem & I'e|Ir,be an iwuiwxfupenwfaee of an dncr Lueneianpara.contact
nanitold-Il* l'ten-y, is slnost lbrinciot- Psa contd nnifotd- Further, if v, is
twrnal thq Y^is rtwtttd", ' '

Prmf : Since u is waywhere angent to I/. then in a rmi<1rc rrector field I/+ such that

B{/+: U. Set

;: u* (B'Y|:I{N(1

Then z* is a l-form on Zr. Fur&er, we haye,

BFX= S BX,
Which implies

BF X=,02'BX= BX+ u+ (X) BLF,

That is

Also

and

Which gives drag

F X='X+u*(X)Ur.

"rt(FX)'- 
z(B F{) - td| BE = O,

,, f(QF)- &BU*) : u(u) : -r,

^gf.'(fn) ='dBW: QU:O.

.fr,(If) = 0.

Thus I/", be is an aln ost l.oferrtzian Pam contact manifold with fie sfiucture tensors (I',
u*,u*).
F ina l l y r vehave ,  

1 i '  ; "

N (W BY)=I(,07{BX,B\-Ar(BX, BY)U, 
:
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= 62BtX,Y1+10 BX,0 BYI-OIBX,O BYI-I\I BX,BYI

^ 
-lBX.u(Bn+BY.(BX[u(B[,X,Yf\Ul,

= B F rX'Yt+ 
"-'#ii,Xi!#ff,i Xff;|",'*,

= B {!F,F1(X,Y) -du* (X,Y)W \ .

Hence, if 4 normal, then Vo,. is also normal.

Theorem 9. If V^ is an irwariant hypersurfoce af a Lorentzian Para contact metric
nonifold Vn. Then V, is also Lorentzion Para contact metric manifold.

Proof : From theorem 8 it follows that V,, is an almost Lorentzian Para contact

manifold with structure tensors (F,U*, u*).Let g* be the induced metric on Z-. Then

we have,
g*(FX, Fn: g@FX, BFY): gU BX, QBY)

Further we easily show that z* is closed. Finally, since I/n is a Lorentzian Para contact

metric manifold, we have-

DaxU= tBX,
that is

DBXBA = BFX,

Which is in consequence of (1.1 l) becomes,

BDxU*+h(X,U*)C =BFX,

Where C is normal to 4.
Equating the components of above equation we have,

DyU*= FX,

& h(x,a)=o
\lhich completes the proof.

Theorem 10. Let V^ is an irwariant hypersurface of a Lorentzian Pata Sasakian

nanifold V,. Then V, is a Lorentziqn Para Sasakian manifuld.

Proof : we have proved that V, is a Lorentzian Para contact manifold, Now we have,

n1Drr11v1= nDrrv'- BF (Dxn'
\lhich is in consequence of equation (l.l l) and (3.1) becomes,

B(Dx n(D= DBX BFY -h(X,FnC -O@DrD,

= Daxt BY - $(Dax BY - h(X,Y)C) - h(X'FY)C,

: (D ax Q) BY + $(h(X,Y)C) - h(X, FY).C.

Usrng equation (1.4) in above equation we have,

B (D x ng ) = u (B Y) B X + 2u(BX )u(BY )U

+ g(BX ,BY)U + Q(h(X ,Y)C)- h(X,FY\C ,

[4t]
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= Bfui (Y)X+2u* (X)u* (nU*

Since C and U are linearly independent unit vectols, C can be thought ofas eigen vector
of l  conespondingtoeigen+or-and 0C:*C. ' . .  

'  .

Equating the tangential and normal components we have'

(Dx D (Y)=u*(Y) X +2u*(x) i*(Y.)u* + g*(X ,Y\u*.
h (X,n|C = h (X,FY) C.

Hence V,, is Lorentzian Para Sasakian manifold, Now we have.
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Submanifold of Codimension p of a

Hsu-Structure Manifold
'

RAM NIVAS AND DHARMENDRA SINGH

Abstract : Hsu-structure manifolds have been defined and studied by Prof. Mishra [2]. Islam and

others. The purpose of the present paper is to study the submanifolds of such'a manifold. It has
been shown that a submanifold of condimension p of such a manifold admits a para p-contact

Hsu-metric structure. Certain other interesting results have also been proved.

l. Preliminaries

Let Vn be an n-dimensional differentiable manifold of class C-. Suppose

there exists on Vn a tensor field F(* 0) of type ( I ,l ) satisf ing

( l . l ) F2=atl

where 'a' is any non-zero complex number and r a positive integer. Suppose further

that Vn admits a hermite metric G satisffing

(1 .2) G(FX, FY) + arG(X,Y):0

for arbitrary vector fields X and Y on Vn . Thus, in view of the equations (l.l) and

( 1.2) % will be said to possess a Hsu-metic structure.

Let'F(X,Y) is the tensor freld of type (1.2) given by

(1.3) h1X,9 = G(FX,Y).

The following results can be proved easily

(r) h6x,9 = -'r1x,r9 = arG(x,Y)
(1 .4 )

(iD F6rx,rv1+ a' 
'F1x,Y;: 

o and
'r(x,y) + h1Y,x1= o
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t,et D be the-Rienrannian connection on Vn ; then

(1.5) D*Y-D"Y= [x,Y] 6nG =o

Let N be the Nijenhuis tensor formed with F ; then

(1.6) fr1X,V; = [FX,FY] - FlFX,Yl - FlX,FYl +121X,Y1

A Hsu-sfucture manifold V" will be called a HK-manifold if the structure

will be said to poss€ss a pafq p-contact Hsu-structure if there exisB a tensor field

f of tlpe ( I , I ) p(cr) contavariant vector fie lds u p(c.) l -forms u (p some finite

inrgger) iat{{frfi-ng

(1.8)

Also,

Ior*  i  e] f i :  o
X=l

y P

, ipy*2 a i  e i  =a '61
\ z=l

where X, Y =,L,2,. . . p, 6+ denotes thcKroqecker deltaand 6{ are scalar fietds.

If in add,ition, the submanifold V;-o admie a Riemannian metic g satisSing

s(fx;'fY) +'arg (x;Y). i I (D il CD = o
. . .  r . ,  X = l

we say that Vo-, admits a.Fam.p.9ootrat.Hsu'metric strufire'

2. Submantfolds of Codimehsiiin P

Let Vn-o be the submanifold o{codimension p of a Hsu-structure menifold

Vn If B denotes ttre dif;letEtltial of tne immersion t : Vn-o+ Vn a vector field X in

ttre tangent space of %-p detenuineoE vecfof field BX,iu that of Vo . *, 
I 

,
' : ' :r i,

X= 1,2,. . . , pffip mutually orthogonalfiofi*ofunitnqnsal vectors defined on

Vn-p. Thuq-wehave

,2 :;u':tt 
f, I t V

t Y.i, eI v =o

(l.e)

(1 .10)



ST,'BMANIFOLD OF.CODMENSIONP OF A TISU.STRUCTTJRE MANIFOLD

Crl) c(Bx,BY)=s(X,y) G(BX,N)= 0 o(),Y)= ST

The vector fields FBX and F N can be expressed by

. P r '
( i )  FBX=Bfx- I  i i rx l ry

X=l x

(22)
p

( i D  F N  = - B U +  f  6 ]  y
x  x  Y =  

" x

X
where f is a (1,1) tensor field, u l-forms and u vector fields on the submanifold

x
Vn-o.operat ingbyFonboththesides of(2.2)( i )andmakinguseofequat ion( l , l )

mdQ.2),we obtain

arBX=Br2x- i  J(  rx)L{ -  i  I  (x l  i -su. i  r lU }
Ei Y i:r | 

* i:r t)

Comparison of tangential and normal vectors gives

P T v P

f2=a ' r -  I  "oV 
uof  +  I  e I f r  :  o

X=l ^ 
X=l

Multiplying both the sides of equation (2.2)(ii) by F and using again equation (l.l) and
(2.2),we get

u,U: { - " 'V- i  n1y lU} . i  r l  { - ' v . iu ; r , }x  I  x  7 t  
' x - ' Y J  

Y = l  t  z = t ' , z )

Comparison of tangential and normal vectors gives

( 2 . 4 )  r u + 3  
-  x  p

, F=, 
ul V 

=o ii rP * 
"I" 

t+ oI :a'6xz

Further in view of the equations (l.l), (2.1) and (2.2), if g is the induced metric
m Vn-p then we have

g(f X, f Y) +arg(X,Y). i il txl il tvl: o
X=l

(2.3)

(2.s)

In view of the equation (2.3), Q.4) and(2.5), we have

Theorem 2.1. The submaniftld Yn-o of codimension p of a Hsu-structure manifold

Y. odnits a para p-contact Hsu-metric structure.

L
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Supp& ffflbr'"ffi D k ftqnfi@tian'conrrection on Vn and D the

induced connection on tlii ryhfudfb$ Yo-p-. Their the equations ofGauss and

Weingarten can be expressed as

x
where h,(X,Y)'sre selond ft,n&mcnal forms, and

(2.E), . r ;

$uppose ftet the onveloping manifold Vo is a HK-manifold. HCnce we have

( Fgx r)@$ i O or,equivalcirtly

Dr* raY = F-DB* BY.

I;r vicw of the equations (2.2), (2.6) and (z.1),trrelas eqrntion akes the form

Q.6)

(2.7)

, r y !
or cquivalently

Dr* N =-afi6x;*i eI N- " x  "  
E  

^  Y

p x

D'*BY= BillgY*I. f,6,r0U
X=l 

A

o". = 
{rr'-_l 

ilmy 
} 
='{Bp1Y+i tc.,ny 

}
or equivalcntly

- ( v hL x  P  a  I  x  p

BDxry *X f, (x,ry) I 
-I ; a.l-nn1x1+X elN

x . t r x - r t z - l

i  I ,o-rU.i i lc*,rr{-rv. i  r lu}
X.t  ^  X- l  [  

^  y=l  ' t

the comparison ofthe @gpntiEl reobrs gives

DxY +i il 19ft(x)= rp*Y -i
x
h (x,Y)u

x

(2.e) (D*Dc"l*i'+{tclfir*l.iltx,rxr}-o
x; l .  xJ

If N(X,Y) is tdb Nijenh'riis tiniior br fia stibmanifoltl Vn-p we can qrite

N(X,Y) = @x fXY) (Dry flp() + f(Dv fXx) - f(Dx fXY)
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' ,  , .  .  
-  

,  
'  

: i ; r  
' l ' r  : ' , : r ' -  i '  1

t47l

A rey and sufficient condition drat the submanifold %-o gt totaRy geodesic is

f  
'  : ' l ' ' . : , 1 . ' . ! . " . , ' .  

' .  I  , " ' :  i t ' : " :  :

h h (X,Y): 0 (X = 1,2,,,. ;.; p). Thul,,in view of the egualig1ts (2.8) and Q.9) it ,-

follows that Dxf .= 0. Hence from (2.1) we have N(X,Y) = 0.

But Vn-o is said to be intqgrable 
iland 

e1rly ifN(X,Y) = 0. Thus, we have

Theorem 2.2. A totally geodesic submanifuld Yn-, wilh a para p:cQntact Hsu-

structure of a Hsu+truciure manifotld is intti|grable'' 
::

3. Curvature Tensor

Suppose that W, X,,Y,Z are arbitrary vector fi€lds oh an openset A in the

neighbourhood of a point of the sub maqrifold Vn. n ; If L and L arg ttre Riemann

Chrostoffel curvature,tensors of Vn and Vn-o respqctively, we hav.e

(3.1) t (Bw, Bx, BY, BZi = L(W,X,Y;Z) 
', '

P v x x x
* I { ii(x,z)ii(w,y) -ii (x,v)ii (w,z)}.

X=l

If the manifold Vn admits constant holomorphic sectional curvature C, we have

(3'2) L 6w' 
": 

tt";"rr, 

Bz)c(Bx,By) -c(BX, Bz)c(Bw,By)
4

+'r1nx,ez;h@x,sD-h (BX,BY) h1nW,eZl

+ 2'r1nw,nx)h@Y,BZ)].

From equation (1.3) and (2.2), it can be proved that

'r1nx,ev1= f(X,Y) S! s(fx,Y)

Hence in view of the equations (2.1), (3.1) and (3.3) the equations (3.2) takes the

(3.4) L(W,X,Y,Z)

= 9 1g1W,Z)g(X,Y) -g(X,Z)g(W,Y) +'f (X,Z)'f 1W,Y1
4

- 'r6,v; 'f 
1w,21+2 

'f(wx) 'f 
Ct,z)

P x x x x
* I { h (x,Y)h (wz) -h cx,z)h (rtr,Y)}l

X=l

Thrs, we have

D



Theorem3.l.Let %
s e ct i ona I carl atur e C.

equation (3.4).

RAM NryAS AND DHARMENDRA SINGH

be an Hsa-structure manifuld of constant holomorphic

Then'the carvature tensor of the submanfold yn_o satisJies the
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On the compact support of solutions to

a nonlinear long internal waves model

MAHENDRA prNrngg*

Abrtnc1; We use complex analysis techniques to prove that if a sufficiently regular solution to a

rmdel that govems the unidirectional propagation of long intemal waves in a rotating

homogencous incompressible fluid is supported compactly in a non trivial time interval then it

vanishes identically.

Key words: Dispersive equations; unique continuation propefty; smooth solution;

compact support.

20fl) Mathematics Subject Classification: 35Q35, 35Q53.

l.Introduction:

h thb urort wre ane intercsted in studying the following initial value problem (IVP):

( t . l ) [ (+ - fu:t+(uz)*\* - Yu =0, x,f e R

t{to)=rt(t),

tc r - JF,I) b e rcd nb| frmion u]dl'y, p are constants. This model was intro-

fud bt movsty h tl2l ltin dcscfibes the propagation of weakly nonlinear long

grfroc rd imcrrt werts of ntl mplitude in a rotating homogeneous incom-

Fssiblc ffui4 In liumrc, thb Eodcl b Ebo called as Ostnovsky equation. The

parameus 7 > 0 and Pffi thc cftct of rution and tlpe of dispersion respec-

tivety. The value p= -l describes neg4ive dispersion for surhce and internal waves in

the Ocean and Surface warres in c shallorr channel with uneven botlom: The value p=l

describes positive dispersion for capillary waves on the liquid surface or for magneto-

acoustic oblique waves in plasma'[l], [5], [6].

* 
This work was partially supported by cAMGSD,through FcT / PocTI / FEDER, IST,

Portugal.
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Several authors have studied this model in recent literature, see for example
[],[5],[6],[1],[17] and references tllere in. In particular, cauchy problem associaied
with (l.l) has been srudied in ItZ].

ln this work we are concemed about the unique continuation property (ucp)
forthe model (1.1). There are various forms of UCP in the literature, see for!*ampte
t4,[S] [l],ltOl,[15]and references there in. The following is the definition of UCp given
in [5], where the first result of UCp for a dispersive model is proved.

Definition [151. Let Lbe an evolution operator acting on functions defined on some
connected open set Cl of Ru x Ry. The operator L is said to have unique continuation
property if every solution u of Lu = 0 that vanishes on some nonemptv open set o c e
vanishes in the horizontal component of @ in O.

Much effort has been used in studying UCp for various models in recent
literature, for example [2],[3],[4],[7],[8],[9],[10],[13],tl4l.tl5l.[16]and [18] arejust few
to mention. Iir most cases Carleman type estimates are used to prove UCp. R.ecently
Bourgain in [2J introduced a new method based on complex anall'sis to prove UCp for
dispersive models. Although, by using paley-wiener rheorem. the UCp for linear
dispersive models, with this method, is almost immediate. rhe same rs not so simple
when one considers full nonlinear model. Some extra and technical efforts ire
necessary to address the case of nonlinear model. In this rr.ork \\'e use method in [2] to
prove that, if a sufficiently smooth solution to the IVp ( I . I ) it supported compactly in a
non trivial time interval then it vanishes identically. In some sense it is a weak version
of the UCP given in the above definition. Due to technical reason (see proof of
Theorem l.l, below) we consider the negative dispersion case i.e. p-- -1, in (l.l). The
main result of this work reads as follows:

Theorem 1.1: Let u e c (R,/f(R)) be a solution to the typ (t.l) with s> 0large
enough. If there exists a non trivial time interval I : [-7, Tf such that for some B ] 0,

supp z(t) g [- B, B ),V t e I,
then u=0.

To prove this theorem we write the IVp ( I . I ) as

( t .2)

Now, we use Duhamel's formula to write the IVp (1.2) in the equivalent integral form

(1 .3) u(t) = s111uo - 
[r, <, - 0@\rfidt' .

where u(t) is the unitary group describing the solution to the linear probrem

(

\ ; I l

I

"l-'-ri

; -r-i

I 
u, - pr**, + (u2)* - yD ,t u = o,

I a(x,0) =uo(x).

a a .

: 1 . s
'-::r.i

: ' €  !

: F

-'r;r:1

is:r:

: ( l

-a,'

t*r
.F

\il

lai

well
(1.4)

and is given by

I u, - pu*** - yD-]u =0

I z(x,0) = uo(x),
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_ ( q

r : 6 1

I l 7 )

(momentum)

(energy)

(J (t)uo@) = 
h [u ;@e<a et*t)'t Ao,(od€.

\tc iira following are the conserved quantities satisfied by the flow of (l.l):

lulr{*,Df a'.

lun "1 
*l(n;t"f +! u3 dx.

we organise this article as follows. we establish some preliminary estimates in
section 2 and in section 3 we supply the proof of the main result of this work, Theorem L I .

Now we introduce some notations that will be used throughout this article. The
Fourier transform of a function / denoted by y is defined as

i'@=+ L e-i'l f(x)d,c.
i  

- ' - . J z t t n

I

I we use .FF to denote l2-based Sobolev space with index s. The various consiants whose
I exact values are immaterial will be denoted by c. We use supp/to denote support of a

function f and f 
* g to denote the usual convolution product of f & g. Also, we use

the notation A s B, ifthere exists aconstant c> 0 such thatAScB.

2. Preliminarv estimates

In this ,r",ion we record some preliminary estimates that are essential in the
proof of our main result. The details of the proof of these estimates can be found in [2]
and the author's previous works [3] & |4| For the shake of clearness we just sketch
:he idea of the proofs.

Let.usltart by recording the following result.

Lcoma 2.1: Let u e C([-T,TI; IIt (R) be a sufficiently smooth solution to thelYP
. . !.;.fiy some B > 0, supp u(t) el-B, Bl, thenfor all (, 0 e R, we have

:  .  6OG + i l ) l s  ec lo tB  .

Frmf: Thc proof follows by using the Cauchy-Schwarz inequality and the conservation

"ru I ., Tlr argument is similar to the 2-dimensional case presented in t13l & [i4].
\or rr Jct'inc

(2 2) u* (€) = sup lz(t) (f)l .
t e I

and

(2.3) m(€) = 
:::, lu* 

(i 'Jl.

Considcring the initial data (0) sufticiently smooth and taking into account the
well-posedness thcory for fte IVP(I.l) (see for e.g., [7] we have the following result.
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Lemma 2.22 Let u e c (l-T,T I ; ns(R)) be a sfficierxly smooth sorution to theryp
(l.l) with supp u(t) =[-8, Bl,V t e I thenfor some constant 81 , we have

d

e l

Q.4)

Proof: The proof follows by using cauchy-schwarz inequaliry, conservation law (1.6)
and well-posedness theory with the similar argument in the author's previous works

v"Ielr4'J.
Proposifion 2.3zl,etu(t)becompactly supported and suppose that there exists / e 1
with z(t) * 0. Then there exists a number c > 0 such that for any large number p > 0
there are arbirary large f-values such that

Q.s)
and

Q.6)

m ( O > C ( m + m ) ( { )

m(€)> e

Proof: The-main ingredient in the proof of this kmma is rhe estimate (2.4) in Lemma
2.2. The detail€rgum-ent is similar to the one given in the proof of lemma in page 440 in

[2], so we omit it.

Now, using the defurition of m({) and Proposition 2.3 we can choose { rarge
enough and /, e lsuch that

_t1l

Q . 7 )  l i t ( t , X € ) l = u * ( 0 = m ( O > C ( m * n ) ( Q +  s  a .

In what follows we prove some derivative estimates for entire function. We
start with the following result whose proof is given in [2].

I.,emma 2,4: Let { : (D + @ be an entirefunction which it bounded and integrable on
the real uis and satisfies

l 0 ( f +  i ? ) l s e P l B ,  ( , 0 e P . .

Then, for f r e R+ we have

m(€)s#fi

lO'G)lsl( qrpl/(f ')1) [r+ lrog ('up l/(f ') l)].
1',>6 €',>4r

tr

(2.8)

Corollary 2,5.Let d e R be such that

-

C-
fr
: 1 ,

I t

rcrr
G

th

t S
L (

_t€l
a

" l t

tr

CI

f,l

I

{

I

Ii

{

(2.e)

Then,

(2.10)

l0 l<s- t  [ r+ l tog(  .up l / ( f l t ) l ] - '
4'>4>0

l^G'+ip) ls2 l0G')1,sup
1'>4r

sup
|'.>€r
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{>4 1'.>4 e',z€r

?lo.ft Dctailed proof of this corollary can be found in Corollary 2.9 lunl2l. So we omit it.

Now we state the last result of this section whose proof can be found in the
a.ahor's previous works [3] &|41.

Corollary 2.6.Let t e I, $(z) = fr)Q), dbe as in Corollary 2.5 and z(fl be as in
dcfinition (2.3). Then for ld'l< ld | fixed, we have

(2.t2) | 0'(€ - €' + ie)| s B lmg) + m(€ - €)l[r + t log"'(fl | ]

3. Proof of the main result

Now we are in position to supply proof of the main result of this work. The
main idea in the proof is similar to the one employed in [2], [3] and [4], but the
sructure of the Fourier symbol associated with the linear part of the IVP ( I . I ) demands
special attention and some basic modifications.

Proof of Theorem 1.1: We prove this theorem by contradiction.

If possible, suppose that there is some t e 1 such that u(t) * 0. Now our goal is to use
the estimates derived in the previous section to arrive at a contradiction.

Let tt, t2 e /with /1 as in (2.7). Using Duhamel's formula, we have

rd

€ t t )

( 3  l )

(3.3)

sup l((( '+i0)ls B( sup l/(6)1)[r+1rog('up l/(f ') l) l].

analytic continuation in C ard we have

u(t r) = g 11, - t ) u(t 1) -, ! r,' 
tl 1t, - t' ) (u'z ) * (t' ) di

faking Fourier transform in the space variable in (3.1) we get

Gl Cl _ r-i 
(tz-t;@ F *t\ 

iV)G) dt _

i : '  ' "  f "  ^ - i ( t2 -1 ' ) (Br t+ / t  
'A

- t i€ 
Jr,  "  

"  " \ rr  € '  i 'Q')G)d/.

l-a sr = l2 - l, and make a change of variable s = t' - tr to obtain,

^ -tu(pf +l) 4
i r ; r j r = e  t  u ( t ) ( $ -

. -  tN _gzl_s)(B(+| ,  
f t ,+s)( f )a ls, r t l o  e  \

= c-'tt' :t 
J, 

[ft1t9 - rrt [^' ""<'oe*p 
74r+ r)(fl ] .

Since r(t), t e I b compactly supported, by Paley-Wiener theorem, u(t)(Ohas
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'  
l . : , . . j  I

-lf I lot ,-'bac'e-fiF)tft*r,xE +il)lds.

ftxg * p> = 
"-'*{F{E*"'3*fi61 IGIG *,r) -

(3.4)

Since,'

p(! +i0)3 a'', l i= B16t -rye.1*A*i(lpgrg-tt - .=70 ,=1.'  
( + i 0  € t + O '  

\ "  
€ 2 + e 2 "  '

using Lemma 2:l; we obtain frorn (3.4)

"r- 
* (t Pc' u - t"- 

7{!),1 ft;s g * iii q1 -

(3.s) -cil( +iel I* "-('o''*-i#) riQ.r+1xr+ iqlds.

Now,let us select f very large and 0= (9 such 6d I Al r 0. i.e.

fr<tel(3.6)

Also, let us choose srgtr of .d ln such a way that

Q.7) e\t<0.

Now using these choices we get from (3.5)

e

rt

-u(tPs2e- ft -l

ce €'*o'' >1ft1g *ie.11_

(3.8)

Now considering the negative dispersion casg i.e., f = -l and taking into account of
(3.6) and (3.7), wb obtain from (3.8).

,r-tut 
(t cz vt. #l z | ft) G + i elr -

nlatl -r(t€2tel tgi I

(3.e) -l €l I;- 
re-d\Je '"t-fut 

1ft,r*ry1E*iqle.

where'+'sigr corresponds to Ar> 0 and'-'sign to Ar < 0. From here onwards we

considgr the At > 0 cas€ only, thc other case follows similalJr. Since e-t < 0 for r > 0
wocan lwite the estimate (3.9) as,

I

a

n

CJ

T(
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-t€l 
I: "-'('€' 

.7ft)ra 
tatr + s)(€ + ie)tds.

Fmdty we write the estimate (3.10) in the following way

-(t<2vt*]\)pu1 ,tt  -,$;*={=)p1 2,
ce |z+ez '  :  l  u( t , ) (€) l - l f  I  J0 

e 42+ez '  l i r rG,  +s)( f ) lds_

-tfr,xe *iq-fr)@r-

(3.r0)

(3.r  l )

Therefore sr BGr,

(3.t2)

olx" ftlv 
ur,, 

t ftl rE + i o)l -

z€2 @l

I

-l 6l f' "-'Pe2*fu)ttt rftt, + s)(( + io) -

: =  I 5 - 1 2 - 1 3

In sequel we use the preliminary estimates from the ptevious section to get

appropriate estimates for I612 and /3 to arrive at a contradiction in (3.1 l).

Now we use definition of u*(S and the estimate (2.5) to obtain

-ub{* | ltet

< l € l ( m  * m ) ( 4 )  
l - e  - '  

1 2 + 0 2 '

(se, **lp)tet

l ( l (m  *m) ( { )

= 
m(€) 

.
3 lEe l

L2 mft\_ 
m(€) 

,  
m(€)

3 l€e l  3

To obtain estimate for /2 wc dcfine | 0Q)l=G)e),for z e (D. USing (2.7) we get,

-e,,+s)(f)lds.

,r, ro, o-'(tt' 
.fi7)wt 

rft,*.r)r* rft, +s)r(f)ds <l S l j o  e  '

<l€l(u* *u*)(4) 1o' ,-'bt"i#)"' o,
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(3.13)

(3.14)
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l0(z\ =lihltgl t = sup l0(€')l= n(€) .
El>t€l

Now, choose dsuch that

l0ls n-t [r + l log m(€)l]4 .

= l€ lm(€)

. J"f ,rG" )(€ - €' + i0) - G iG -ft rr ,,6") G)l d€'

<,lal I sup ldfifrs)g -(' +id)ln(€')d€'
"o E'lslil .

= fit*cl- m(€ -€')lm(€')d€'

s n(€) c2+(m * m)(€)

s m(€)(c2+ c-t)S m(il.

rzsr€r*c) I: ,-be'*fi;)t't ^

,_"-"b*fi;l'r

Using Corollary2.5 we obtain

Iz s ld I sup rcfr)G' + ir|l .
tg't>til

j  s  l0 lBm(€) [ l+ l log m(Ol ] - l

s m(€)s#r(€'t.
Finally to get estimate for 13 we use Proposition2.3, corollary 2.6 and das in (3.14) to
obtain 

z\ ,,^
lu' (4 + s)({ + i0) - u' (t1 + sXfl | <

c
I

o
I

oq

l l l

?:,

rt

" 1 .

F

;

br'*fip\et
. l € l Y ^ t ( € )

3€ 'p l

s !9s *n(€).
3 l€e l  ' I )

Now, using (3.12),(3.15) and (3.16) in (3.1l) and using the estimate (2.6) one gets.

-(lg2* -=- 
't 'rl

(3.17) e 6'frzlvt't, ̂ lo--'\€)--'!€)-=!m.\> 
r-F .

3  1 5  1 5  3 " '

t
I

I

i

lr

U

lr

l

t
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Ofu&ban4withthechoice of (and dwehave -: ,;

( 3  l t ) ,- 
(te'.fi) ra wr. 

e_t€,Nl

Now from (3.17) and (3.18) we obtain

(3.1e)
t 5 l

e-t€ltvt > 
"n 

,

which is false for l(llarge if we choose Q large enough such that 
f 

. I At l. l,it

contradiction completes the proof of the theorem.
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Wandering Domains of Meromorphic Functions

A.P. SINGH AND A. SINGH

Abstract: We show in this paper that there exists a function / e M which has a /r-connected
bounded and a /r-connected unbounded connected wandering domains and other properties.

Keywords: Transcendental Meromorphic function, bounded and unbounded
,t-connected wandering domains.

l.Introduction

Let M denote the set of all transcendental meromorphic functions with at lest

fwo polls or exactly one poll which is not omitted value. for n e N,f e M. Let fn
denotethenth i terat ionof / .Thus f ' :  f ,  f  :nf  n-t) ,  

n=2,3,4 . . . .

The set {, :.fn; is normal in some neighborhood of z} denoted by F(fl is the
Fatou set and its complement denoted by J(/) is the Julin set. clearly r(/) is open. Also
:r is known that F(f) is completely invariant: zeF(f) is and only if f (z) eF(f).
C,.:sequently if Uis a component of F(f)thenf ({I) is in a component V of F(/). In
:z;; l' .f (Q) contains at most one point 16l.It Un aUm: Q for n * m where, U, denotes
:. io::iponentof F(f) which containsf ((D then uis called awandering domain.lf

, I for some n, then U is called a periodic domain (of period n if Un: U and U * U
: : r  .  . : .  . n - l ) .

ll3 structure of periodic domain is well understood [6], and in contrastto it,
rc rs-.: ;orresponding to the wandering domain are still far from in 1976 by Baker
ill Soct tc: several examples of wandering domains with different properties have
bcrn grrc tr  ra. ' ious authors such as f2,3,5,8,9, 10, l l l .

For oi entire function f, it is known that a wandering component may be
simpll conneced or multiply connected. Also it is known that a multiply connected
wandering compoocnt is always bounded. Further that example of infurite connectivity
can occur [3]. Abo it is open whether the connectivity may be finite but different fiom
one. However this rred not be true for functions in class M. In fact, Baker, Kofus,
Yinian [4] have proved



t60l A.P. SINGH AND A. SINGH

Theorem lz Let k e N. Then there are meromorphicfunctionsf ;, l< i < 4 , in the

c/assM andaresuchthat
(D /f fi) has a k-connected bounded wandering component.

(ir) li (t) has a k-connected unbounded wandering component

(iiD lf 6) has a bounded wandering component of infinite connectivity
(iv) .ai ffi) has an unbounded wandering component of infurite connectivity.

In the constuction of the proof, the authors have exhibited meromorphic functions f
andl with one &-connected wandering domain U" satisling the condition (i) and (ii) of
the above Theorem. Later Singh [l] constructed a meromorphic, function which has
infinitely many wandering component whose paths do not intersect. He proved

Theorem 2z Let k eN. There exists meromorphicfunction f e ltl such that F(fl has

infinitely many k-connected boundedwandering domains each having distinct paths .

Theorem 3: Let k e N. These exist meromorphic function -f e ttl such thot F(f) has

infinitely many k-connected unbounded wandering domains, each hoving distinct paths.

Here the two functions of Theorem 2 and Theorem 3 may be different. In our
theorem we shall show the existence of one meromorphic function / which contains
both /c-connected bounded as well as ,t-connected unbounded wandering components
having distinct paths.

2 Lemmas

In this paper we shall require the following lemmas:

Lemma 2.1: (p.13 l) Suppose that K is a compact in Q and f is holomorphic on K, let

alsoe > 0. Let E be a set such that E meets every component of (- - K. Then there exists

a rationalfunction r with poles in E such that

l f  @ - r ( z ) l <  e , z  e K .

Suppose that E is a closed set in A and f is a function defined on E. Then f can be

unrformly approximated on E by meromorphicfunctions without poles in E if and only if

f can be uniformly approximated by rational functions on each compact subset of E.

Lemma 2.22 ([91,p.137): Suppose that E is a closed set in @ and that z1 z2lie in the

sqme component of@ - E. Thenfor eachfunction m meromorphic in Q with a pole at z1

and for each e > 0 there exists a function m* meromorphic in @ which is onalytic at z1

has a pole at 22, has no other poles except those ofm andfor which

l m ( z ) - m * ( z ) l < e , z e E

Lemma 2.3. ([9], p. 140): Suppose that E is s closed set in @ such that

i) .\ E is locally connected at @. If the meromorphic function m has no poles on E,

thenfor each e> 0 there exist a rational function r with poles outside E and an entire

function g such that

lm(z)-(r+g)(z) l< a z e E.
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Mrir Results

Tlcorem 3.lz For any k e N, there is a meromorphic functionf,, which lies in class NI
ad is such that Fatou set has k-connected bounded and k-connected unbounded
wandering domains.

Proof: Let us choose n, k e N. Where ,t is a fixed integer. :

Define e,= lA', g' :191n+z)

,,=f*,,^

(  k4  l l3 t + q , 1 " t , y ,  l z e f , : l z + ( 1 0  n i + 4 t ) l  . t * r , )  
l l

G' ,  =  l z  e  Gr :  d (z ,O i , r r r ; r .  
)J

Gi,  = {z e Gn: d(z,bG)> al .

n = l

n > l '

Let Q, denote the rectangfe

Q,= {z :  - l0n-4k-5 <Re z < lAn + S, l I ,z l< l0r + 5}
and set

D,=  {z :  - (10+ 4k)+  q ,<Rez< - (10+r75,  l I , z - l \n l .4_n, )

v  {z :  Rez>10+ q^  l I ^z - IDn l<4-q ,1 ,

Let G, G:,G: contain two ,t- connected bounded and t- connected unbounded
domains defured as follows:

['t-r
G , =  D n -  |  U  {  z  e  ( :  I  z - ( l \ n i +  4 D l

L /=r

Tbca clcarly

Gi  c  G ' ,  cG,G,aGn={  fo r  m *n .

F c r b  G ' =  { z  e G 1 : d ( z , O C , ) >  
* }

Sd v(s) - : - tOi so that \f map$ Gi onto G,*r,and \y,(G*) . GI*r, n e N.

l-rr l(:) - 
i tt - 5)2 -5 so that B" = B(*5,1) and .Bi eS,y)and let 26 be the constant

map&finodb f(:)=-5.

L,et tre frnctba / bc dcfined on F1 =FovQw O Glby

/ : g o n  B o

f : v o n 4

f  =yon lGy
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Hence the assumptions of lemma 2.1 are satisfied by the function. So there is a
merornorphic function ial with no poles on Fr such that

( l )  lnrQ)-{(d |  .  t  t l ,  , .  Eo

@  l n r / ) - v ( z ) l . t t l ,  r . d |

(3)  lmrQ)-xk) | .  t  t l ,  z  e 'G1

Since Fr satisfies the assumption ofLeznna2.3 there exists rational function r1 with
poles ouSide Fr and entire function 91 such that

(4 )  lm{z) - ( rpgrXz) l<  te l , fo rzeFr
Applying lemma 2.2,we can choose 11 so that it has exactly one pole in C (4vO" ) at

sa/ a1=l0i e 9l \ f BruD,l. We can clearly suppose that r1 really has a pole at since

the addition of Al(z-a), where 2 is a,suffrciently small constant will bring this about I
without spoiling the approximation properties listed above. I

By similar arguments to those which lead to (l) to (4) we obtain a sequence of frrnctions I
ntn= rn* g,, where r, is rational and g, entire and such that I

(5) lr,(z)+ g,(z)1. 
"1,2 

e dn-r rf U 4 f
r-l

n

(6) ll?^k)+g,(4)-v?)1. "1,r. 
C!

m=l

n

(7) llQ^Q)+s^@D-xQ)l< e],2 e OG,
m=l

Moreover we may assume that rfiz) has precisely one pole in the component of
n _

il(Q*tv U Dn), which contains
m=l

a,= l0 ni e Qnl (O*r, < 0 o,l l
r= l

and that this pole is indeed at a,.

It follows from (5) that f(z)= i t r,(4+S.Q)lis meromorphic in l, with
m=l

infuritely many poles. The disk B, rsy'invariant and B,.c'N(f) and hence G*c N (f).

From the above construction we know that G contains two components, say

Gl and Gf , /c-connected bounded and k-connected unbounded components

respectively. If HuHzare the components ofil(/) containing Gl ud Gf respectively,

we have

fr+* forz e H1

t62l
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f , - + *  f o r z e H 1

Since/(d G,*r) c B,and,f(O G,*r) c Bs for all m, it follows that

f'(H) c G*1, f (H) c G*r and Ht and H2 are wandering components of N(/).

As in [a] we can show that /is univalent on the set L^ andFlr and r12 are & connected
are bounded and,t connected unbounded components.

From (4) and (5.5),/(Zn))G,*t =f(tt1v H).

G* c (H1 v H2) c D, = fu(G,*,) cf- (f(L,)).

where f" is univalent nf (L,) and Hl and H2are bounded by &-Jordan curves.
Let

a1= - (l0ni + 4,r), where | <j S k-1.

b1= (l0ni + 47), where | <j < k-1.

Denote by A',n, B,,n,C, (where i = 1,2,...,,t-l) the components of the.complements of
D, which contains a;,bi and o respectively. Then the complement of ly'1 u l/2 is the
union of

U c,) ,  i= r ,2, . . . ,k-1 .
n=l

Since l, , B, we bounded by F/1 and .F/2 respectively, H1 andl/2 are ,t-connected

components.

Theorem 3.2: For any k e N. Then there is a mermorphic function f in the class Nl
such thqt Fatou set of fi.e. F(f) has infinitely mdny k-connected bounded and in/initely
many k-connected unbounded wandering components

Proof : Let us choose ,t.n e N. Defrne

i ,  =(0.q,,,) ,F, =r 0 8,,,) ,c:(
n=l n=l

Then 7, * 7,,1*i, E, * E,,j*i.

6n= l0-', t|= 1g{n+2),

I  O  n = r
' '= 

Ifo" 
n>t'

La Q. d.trotc the rectangle

h

v

Q.=  {z : - l 0n -4k -5<Re  z< l }n+5 ,V* l<  l 0n  +5 }

D,= lz : - (10+4k)+4,< Rez < - (10 +qS

| (I;z) -lOnl.4 -q,l r,,r {z : Rez >10 +rt*l (I,s) -l}n | < 4-n,1.
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Let
*-l

Go = Dnl t{ lJ { z el, : I z- (t}ni+ 4t) I < r+q,ll
t=t 

&-l
u t !J { z e g : I z-{l}ni+4t) | < l+?,}}1.

Let 
r=t

G', = { z e G, : {2,0 Gr)> e'rl

Gi = {z e G,:  {z,OG)> €,1.

Then clearly Gic G'; cGnandGonG,= 0 for n+m.and C, ,G:,G: conain
*-connected bounded and /c-connected domains.
Let Bs= B(-5, l), and B: = (-5, +).
The set of all natural numbers can be arranged as follows:

t 2 4 7 . . .

3 5 8 r 2

6 9 1 3 1 8

that is of the fr*, (ry ) + | + pq * gtp:tl, I p = o,.l't 2, ..., Q = 1,2,3, ...\

In fact a natural number lying in pft row and qth 6o;,-o (p = 0,1 2,..., q = l, 2,...)

wouldbe 
q@=+t) 

+ | + Ds + 
p(p+t) 

.
2 " 2

Next, ifz e 4 letr = (i,) be the least positive integer src.h *t 
ry 

) n and let

, = 
"'i" 

- n Then z lies in row nr= r-s-lmd colurnn nc = s+l. Thus without_loss

of generality wc may denote the set G;by its place position Gn,,*orsimpty Gry.
Let

Gi, = {z e Goo: dv,ed> +,
For anyz e Go ,,deftne

vp,q(4=z+# . 
#. 

.#* +@+s+l)lo i

wh€rer=  
p@-+ l )  

+ l+pq+ 
q(q- l ) .

2 " 2

I

Lr

L

I
t

(

h

I

(

I
a

I

I

I
t
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Then ryoo maps G'o,o onto Gp+r,q, amd

(tyo,o o tyo-r.uo. . .o Vo,c) G6,o) c Gp+q .

Let {(z) 
= 

t{r+S)'-5, then $ is a mapping from B" to ,Bi

LetyQ): -5,

Fs,1=Eo, GJ,,  u dGo,r and

I 6e), ,.E[
f t , ,=  ]  vo , r (z ) ,  t .G[ ,1

Lr(z) '  ze0Gs,1

Then by Lemma 2.l,there exists a mermorphic function zo,r, with no poles on Fo.r

such that 

s',
( 8 )  l m o / 4 - i l 2 ) l < f  , z e  A ,

t?
( e ) .  l m o . t / ) - v o , f t ) | . + , r . E o

eA,
(10) l mot!) -^1" (z) 1. 

; 
,2 e 0 Gs.1

Also It,r satisfies the condition of Lemma 2.3, so that there exists a rational function

rs,l with poles outside Fql and entire function go., such that

I mo,(z) - (r o.r/)+ so,,(z)) | . +, 
z e Fs.1

Applying Lemma 2.2we can choose rs,1 so that it has exactly one pole in

p f t A,i, Do,', ) say at as,1= lOi e Qt., - 6 iu Do,, ). Also we can suppose that rq,1

really has a pole at asJfor it is possible to choose 2 suffrciently small so that (l l) holds

with re,l (z) replaced by the rational function ro,r@) +L
z - Qo.t

By considerin g Fn = O*ru ('it o.) u Glv \Gn and
m=l

n-l _

0,  z  eQnlu( lJ rDr )

n-l

vnQ)- lQrQ)+ srQ)), t.ci,
k=l
n-l

xQ)- L?r,<tl+ g*(z), z eoGo
k=l

( l  l )

f , =
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and by the above argumen! it is possible to find an entire firnction g,(z) andrational

firnction r,(y' which has exactly one pole in the component of C, I e,_rv ( 0 D. )
which contain s a, = lAi, and this pole is at an anifrrtr€r 

m=l

I r,(z) + g,(z) | < e|,, .Q*rv ( U 4)
Fl

tt, V,O + gn{z) -v,G\<e}, z e ci
^;'

L*f (z) = 
i. tr^o + g,(4).Then / is meromorphic fimaion having infinitery many
m=l

poles and so belongs to class M. Also/(gj ). B'o d B; c F(f). Also

foGl,il. ci,c andhence Gl,,o cffi.

lf Ho,q, H[,, arecomponents of F(f)r"6ffieenrqimcoqonenb of Gf,' wehave

fo(Ho,)-+ o and/e( Ht,il +€ asp + @. Since/(a Grri c B,o arrdf^(O Go.) c Bo
for all m. It follows that f (H r") c Gro and heoce Hq d H'o sre wandering
components of F(,f). As in Theorem 5.2.1 f is rmivalcu h thc set

Lps= {z e Go,r:42,re-)> Ll__pr, 
le,

wherea 
ry 

*, *o\*! +drll)which eooai"sf1n"o1maf1ni,,r1

and Hon, H'o,, are of *octty hconneaivity.

Theorem 3.32 For any k e N. There qist two mqonrophicfinaioa sayf and g such
thatf has a k-connected bounded and a k-eonrcaeduiourdidwotdering domaiw,
sU Bn old &t suchthat B1,rABr,n= $,m*n,4.64,= i ,^*r ,"*hrr"
8,,^ = f 

*r (Bi, )-and f 
'(B 

11 I + r,as', e'o, i = | 2 od rtqe qists a doubly
connectedwandoing donein A of g such tha

A c B r t , g ( A ) c B a 1 ,

i Qt) . f @, i, ! QD c f (Bz. ), sl (A) c f 
2(B t,,)

tQt, cf2@r,r) . . .?U)cf,(Br.r),f, (e)c.f ,(Bzr)...

Prtof: We first do the constuction of .g'. Define e 
" 

= l0-i e,n = 104ffi),n e N.

IA

nr

rn

r l
"u

tl

t

V
{

A
J
(rI

(t3

(r2

ail

( l :

(16

( t7
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I  o '  n = l
I n-l

4 n =  
1 2  t ^ '  n > l '
L rt=l

Let B, denote the disc B(0,10n) and set

Gn: {  z :  I  z- l \n +51 < 3-q,,1 z -  l \n + 5l> |  
+ 4,.1

G'^,= {t e G,: d(z,OGn)> e',1 '

Gi, : {, e G, : d(2,0G,) > e,}.

L,= {z e Gn: d(z,Nn) > l0'(*tlt, n e N.

Thus G,,G'r,Gi are doubly connected domain such that

Gi, c G'r, c Gr, 
9, 

a Gr= $ for m * n.

write a,= lDn-Sand further C1,, = I0n4 + n, + +
2

C2,,= ar*tr * qr- +

so that Cr. ,, Cz.,lie in one of the components of J, \ Cl, .

WesetBo:B(-5,1)and B[ =B(-5, 
]).

Denote G* = {z e G1 : d(z,a GJ > 
i }'

Note that VQ)= z+10 maps Gj univalently onto G,*r and /(G*) c GXt, n e N.

Let $(z) = 
tr @ * 5)2-5 so that B" = B(-5, I ) and Bi = B(-5, %). Let T,Q) : -S,so that in

particular r( (U a G) c BI. By Lemma 2.1 applied to K= (.Bj v iGt u q ), there is a
I

rational function R1 such that

(r2)

( l  3)

(r2)

I Rr (z) - 0(z) I < e3r,z e Bo

l R ' ( z ) - V ( z ) l . e l , r . Q

lRr (z) -XQ)l< el ,z e Nt

and Rr has poles in {asCt,t C4r, o}. For n > l, there is a rational function & such that

lR,(z) l<e),2 eEn-1

n

I In, (z)- v(z)l < efl , z e Gi,
m=l

n

I In, Q)-x?)l< e], z eoG,
m=l

(15)

(16)

(17)
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and & has poles in {a,, a1, n, Cz. n, @}.

It follows from (15) that g(z): i ^, (z) defines E function meromorphic in l.
n=l

Since by (15) and (t7),1 g(z)* t I .i e3, (so that.g (z)e B[) onevery dG" while g
. n=l

takes values larger than 5 on G'r, it follows that g has poles in each G, and so is
transcendental and is in class M.

We note that in B,,l g(z) +5|r<+ +I ei <t so that Bo is g-invariant and B" c F(g). Now

{(G') cGXa. Hence G* c F@), {(r)-+ oo as r? -+ a for z e G* or more generally, in
the whole component ,4 of F'G) such that I : G'. Since g(0 G*) c 8,, g!(d G,*1) c Bo,
for all m, it follows that g:(A) c Gn+t and I is a wandering component of rk). Also as
in Theorem 3.1, we can showl is doubly connected. we now do the construition of f

As in Theorem 3.1 we choose,t e N. Define e,-- 10", s' : 1g-(#2),

|  0 ,  n = l
^ - l n - l

" ' -  1 2 " ^ '  n > l '
( m=l

Let Q, denote the rectangle

Qn= {z :  I  Rez |  <20n,- l0n-5 < I*  < S + 4k+ l0r} .
And set

Dt,n = {z : I Rez - (20n-15) | < 4- q,, -5 1 1,, z < 5 + 4k}.

Dz .n :  {z :  lRez-  Q0n-5) l t4 - r7 , , -5  < l^z l

Let Bo = B(-5,1) and .Bi = (-5, 
+). Let H1,n, Hi,,, Hi., and H2.n, H).n, Hi.n be the

t-connected bounded and,t-connected unbounded domains defined as follows:

And

Ht,n = D\,t U. {z e ( : I z-((20n-15) +, g+afll s 1 + r7,}
P=l

H'1,, = 
{z e H1,n: d(z,OHyn)> s:|.

Lt,n = 
{z e H1,,: d@Ht,,) > l0-(*r)}.

k-l

Hz.n= Dt, , \  U. {  z e ( : lz-((20n-5)+1(5 + 4p)l<t + r7,)
P=l

Hi,, = { z e H2,n : d(z,O H2,)> €:1.

Hi,, = { z e H2.,: d(2, OH2.)> e,} .

Lln = {z e H2.n: d(2, H2,) > l0-(*r)}.

q
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WANDERING DOMAINS OF MEROMORPHIC FI.JNCTIONS

Then clearly H i,, c H i,, c H\n, Hr,. a Ht, n : 0, for m * n, and

Hi,r. H'r,r. Hz,o , H2,^ (1 Hz,r= {, for n * n and

CT : t z e Hy1 : d(z,OH1,)> l\.

|  = { ,  e H2,1: d(z,OH2,)> !) .

Set ry(z) = z 120, so that \y maps Hi.,, H;, on to llr+1, .F12,'+r respectively

,y' (cl) c Hl.n*r,\y'(ci) c Hl.n*t, n e N.

Let Q@) = 
l{z +s)2-5, so that

Q : B" +Ai andyQ)= -5

LetFl = Eo uFi,ru a nr,rwEi,rwO H2.1 .

Define a function/on F1 by

I Okl on Eo
,Q) = I v@) on ni,rv ar,,

l ri'> on OH1,1vOH2,1.

Exactly similar arguments as theorem [3.1] we can consfuct a transcendental

meromorphic functions / which has ,t connected bounded and unbounded wandering

domains say, ̂8,., and 82,1 such thatBl,. A Br,n= 0,m*fi, B2,rA Bz,n: O,m* n,

where Bi, = f 
^-' (8,.r) and f 

' (B ;sr1'+ @ as n + o, i : 1,2 .

After constuction 9f4!vo meromorphic frrnctions g and /and its wandering

domains A and 8,., anl.B2; respectively, it is clear from the way of construction

A c 811 , {,A) c 82.1 ,

tU) cf@,.r), g3Qq) cf (Bz,), s4(A) c fz(Bt,t)
'g'1.ty 

c1'1or,t) ... {@) cf'(Br,), **tQl) cfn(Bzi ...

Cor l: For any t e N. there exists two meromorphic functions, say/and g such ttrat/

has a k-connected bounded and a ,t-connected unbounded wandering domains say

81.1 and B2,1 such that 8r,.n Br,' = 0, Bz. n Bz, = i, m +n, where Bi,r: f "-t (Bt,)

and f^(Bt,r)-)@as; n+aasn+@, i = 1,2,... andthere is ak-connectedsubset

(wande-ring domain of g) say A nch tha

A c B t , g ( A ) c B z ; ,

*Qq) cf@,i,{U) cf (Br.), {Qq ef2(Br.r)

ss@) cld(82.) ... {U) c.f '(Bt.D, 
{.'a) cf n(Bz) ...

Exirctly on similar arguments we can prove

[5e]
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Theorem 3.42 For arry k e N. There etcist two meromorphicfunctions, sayf andg such

tniTn^ infinitely mirry k-connected bounded and infinitely many k-c-onnected unboun-

iia".ona"iirg io.ot^ and g has a doubly connected wandering domain say A such-

that ander the iteration of g, fie domain A passes through all k'connected bounded and

k-connected unboundedwandering domains of f'
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On Hypersurfaces of fI Hsu - Manifold

GEETA VERMA

Abstract: In these papers [2], [3] and tlf yt *"t 
studied some properties of hypersurfaces of H

Hsu - manifold. In this pup€i'r;,hun"ienneO ftyp.tUofiJ *noti tJttttt manifold and studied is

hvpersurfaces. rt t^ u""n i"ft ilth" ht..iitr*t-ot rtyperbolic almost Kahler manifold is

localty quasi-sasakian ,r;;il. 
--ior" 

,rliftr ,.g*ding itti hypetsurfaces of a flat H Hsu'

*tliioritt*. also been obtained'

Keywords: Hyperbolic Almost Katrler manifold' Curvature tensor' Reimannian

connection.

1. Introduction

WeconsideradifferentiablemanifoldMnofc|assC.'Lettherebeavectorvalued

linearfunctionFofC.,satisffingthealgebraicequation

(1 .1) F2 =-a'In

where'a' is a comPlex number'

TherrFi,,-llto-gi"etoMnahyperbolicdifferentiablestructure'brieflyI{

Hsu-structure, dcfined uv atitraic 
"q$:n 

(l'l).and qt TtiiPll^K 
is called HHsu-

manifold t5l.TfE "$r"il[i 
l) gt"o aifrrinJ'leUraic sfiuctures for different values

of a. If a * 0, it is a hypertolic n-stnrcture ' a = +{' ftis an almost complex or an almost

hy6perbol icprductTt""*a=l l ' i t isanalmostproductoranalmostJryperbol ic
complex structr€ -o l-]6, it i. * almost tangent or a hyperbolic almost tangent

structure.Inthesecondcascnhastobeevenandinthesecondandthirdcases42'=1.

If the HHsu-strucurne is endowed with Hermite meric G' such that

(1.2) G(F1"'FP)=I'G(X'P)

Then{4G}issaidtog;veto-lulnhyperbolicHermiteestructure,brieflyknown

as H Hsu-struciure subordinate to H Hsu-structure'

In a hYPerbolic l/-stucture' if
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is satisfied, Jhen Mn is said to be a hyperbolic Ikhter manifold. E is the Reimannian
cnanpxion.

trfa hyperbolic H-structure, if

{1.4) (E;,FXD+(ETFXA\=0

is satisfied, then Mn is said to be a hyperbolic nearly Kahler manifold.

Let us eonsider Mn and Mn asthe l/ Hsu-manifold and its hypersurface
respectively. Let b : Mn -+ Mn be the embedding map, such that
p e M n + b p € M n ,

Let .B be the conesponding Jacobian map such thar a vector field X in Mn at p,
BX n Mn at bp. Let g be the induced Reimannian metric in Mn. Thus we have

(1.5) G(BX,BY)o|= g(X,Y)

for arbifrary vector fieldsX,Y n Mn .

l72l

(1.3)

(1.6a)

(1.6b)

for a unit normal to Mn -

If we put

(r .7a)

(1.7b)

Then it can be easily seen that

(1.8a)

(r.8b)

(1.8c)

(1.8d)

(l.e)
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(E 7, F)(p) =Q or (E 7, F\Fp) = o

G(N,N)ob=l

G(N,BX)ob=0

FBX: BW+ u(X)N

FN=-BU

X =a,X +u(X)U

u(/x):0

u((I)= d

fU=O na

g (X,f 7 = s"(x,Y) - u(X)u(Y)

E6ssBY = BDyY +'H(X,Y)N

EsyN =-BHX, respectively [1].

H(X,Y) def g(HX,Y)

I
: { r

|l

n
-

r  - l
- r

;t

,t

{t
5 r
i|n

3.r
fl

g ?

r:t

N,l':

g ]t)

frx
r . i l

t 3

rq

!.i l

J

3 4

b {

E
tn

where X 9LfX anau(X)=.g(X,U)

i.e. the induced sffucture in a general contact metric structure.

Let E and D be the Reimannian connexions n Mn and, Mn respectively, Gauss
and Weingarten equations are

(1. l0a)

(l . lob)

where
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Let R and K denote the curvature tensors with respect to the connexions E and

D respectively. The generalized Gauss and Mainardi-Codazzi equations are given bV {5].

( l . l  l a ) ' R(BX, BY, BZ, BW) o b =' K(X,Y,Z,W) +
-t a" H (X,Z)' H (Y,W)- a" H (Y,Z)' H (X,W)

( 1 . l l b ) '  R ( B X , B Y , B Z , N ) o b = a t  { ( D x H ) ( Y , Z ) - ( D y H ) ( X , Z ) l
where

' R (BX, BY, BZ, Bn) 
LG(R(BX, 

BY,BY), BW)

On the hypersurface of a hyperbolic Kahler manifold subordinate of H Hsu-manifold

the following results hold [2].

(r.r2a)

( l . l2b)

Agreement (1.1): In the above and sequal l, lt, v . . . will be taken as arbitrary vector

fields in the enveloping manifold and X, Y, Z, . . . as arbitrary vector fields in the

hypersurface.

2.Hyperbolic Almost Kahler Manifold

Definition (2.1): Hyperbolic Hermite manifold satisfring

(2.ra) (E ;F)(p,v\ + (E o F)(v, 1) + (E, F)(tr", p) = Q

where 
'FQ',p)aef G(FL,P)

Will be called hyperbolic alrnost Kahler manifold, sub ordinate to H Hsu-manifold.

From the equation (1.7a), we have

(2.1)b) G{FBX, BY) = G (BfX,Bn + u (X) G (N, Bn

Differentiating oquation (2.1b), covariantly with respect to BZ,then using the equations
(1.5), (1.O, (1.74) ad (1.10)a), we have

Q.2) (E p' F\N(,BY)ob =(D7,' f)(X,Y)+' H(X,Z)u(Y)-' H(Y,Z)u(X)

Writing two oftcr c$ttions by cyclic permutations of X, Y, Z,wehave

Q3) (E By' FXBZ,BX)ob=(Dy,' f)(Z,X)+' H (Z,Y)u(X)-' H(X,Y)u(Z)

and
(2.4) (E B:(' FXBY, BZ)ob = (D y,' f)(Y,Z\ +' H (Y, X)u(Z) -' H (X,Z)u(Y)

Thus we have the following theorem:

Theorem Q.\t If the eweloping maniftld is a hyperbolic almost Kahler manfold, its

hypersurface is given by

t73l

(ryfiY : {nHX -',H(X,v)U

(ryig: -'H(x,v)



(2.5) (Dx)f[y,Z\+(Dy,'f)(Z,X)+(DZ,'fl(X,I) =0

Proqf: Adding the equations Q.2), (2.3) and (2.4),we get

Q.6) {(E Bz' F)(BX ,BY'I + (E By 
' F)(BZ, BX) + (E BX' F)(BY , BZ) } ob

* \Dz ,' I)(Y ,Z) + (Dy ,' f)(Z , X) + (D7 ,' f)(X ,Y)

Using the equation (2.1)a) in the equation(2.6), we get the equation (2.5).

Corollary (2.1): Hypersurface of Hyperbolic almost Kahler manifold is locally Quassi
Sasakian manifold.

Proof: Equation (2.5) proves the statement.

Theorem Q.Z)z For the lypersurface of hyperbolic almost Kahler maniftld, we have

(2.7) (D x,' f)(Y, Z) + (Dy,' f\2, X ) + (D 7,' f){X,Y ) +

+' I (@, f)X <ry, flZ,Y) +' f (4, flZ -@, f)Y,h !
+' f ((Dx, fY -(4, f\x,Z) =o

' 
f (X,Y) = g(7,Y) = -' f (X,Y)

' f (7 'V1= a' ' f (X'n

Differentiating (2.8)b) covariantly with respect to Z and Using the equation
(2.8) again,
We get

(2.9a) (Dz' f (F ,V) +' f ((D2 fl(x ,V) +' f (F ,(nz flY) = ar (D2' fl(x ,Y)

Similarly, writing two other equations, we have

Q.gb) (Dr 'I(2,7) +'l((Dy fl2,7'; +'712,1oy f)x) = a'(Dy 'f)(z,x)

Q.gc) (Dx'fl(Y,Z)+'f((Dy f)Y,27+'71V,1or f)z)=a' (Dz'n(x,Y)

Adding the equations Q.9a), (b) ad (c) then using the equations (2.8a) and (2,5), we get

the required result.

3. Hypersurfaces of Flat l/Hsu-manifold

Theorem (3,1)t The umbilical hypersurface of a hyperbolic General Dilferentiable (H
Hsu) manifuld is of constant Reimannian curvanfiq if the enveloping manifold is flat.

Proof: La the hypersurface be umbilic, i.e.

'H(X,n: g(X,Y) ., [] ,
then (l.l l)a), gives

i

Proof: We have

(2.8a)

and

(2.8b)

,d
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'R(BX,BY, BZ, Bn ob ='K(X,Y,Z,W) +

t75l

(3.1)

+ d g(X,n g (Y,n - d eg,Q c (X,W

If the enveloping manifold is flat, then (3. I ) reduces to

(3.2) 'K(X,Y, Z, l,/) : d {g (Y,Z) S (X,rn - dX,Q dY,rnl

This shows that the hypersurface is constant Reimannian Curvature.

Conversely, if (3.2) holds, then using (3.2) in (3.1), we have 'R(BX, By, BZ,
BII/) = 0, that is the manifold is flat.

Theorem Q.2\z The scalar carvature of the umbilical hypersurface Arf of aflat H Hsu-

maniftld tf is given by
(3.3) r= m (m -l) a'

Proof: The unbilical hypersurface is of constant R reimannian curvature (by theorem
(3.1)). We have

K(X,Y, Z,) : d {S (Y, D X - g 6, An

From this we at once get the equation (3.3).

Theorem Q.3)z The quosi-umbilical hypersurface of a flat H Hsu-manifuld can never
be of constant Reimannian cuevature.

Proof: Let the hypersurface of a flat .F/ Hsu-manifold be quasi-umbilical, then we can
always write.
(3.4) ' H(X,Y) = g (X,n + u(X)u(Y)

Using (3.4) in (l.l la), we have

(3.5) 'R(BX, BY, BZ, BW) ob ='K(X,Y,Z,|/) +

+ d g(X,Q S(Y,W) - a' g(Y,4 C(X,rl,

d g\Y,W)u(X)u(Q+ d g(X,4u(Y)u(W)- d g(Y,4u(Eu(W)

Now,
'K(X,Y,Z,W) : a'{g (Y,4 g 6,n * 6,4 S V,rY)\

If d ls V,n u(X) u(Y) u(4 + s (X,4 u(Y) u(t/) - g (Y,Qu(X) u(W)

- g 6,lAu& u(Z)] = 0

Let I *0 tren

{s V,w)u(X) u(Q + g(X,Qu(Y)u(W) - s g,Du(x) u(W)

-s6,rY)u(Y)u(41 =0

or s(Y,rv)u(X) U + u(Y)u(tv)X-u(nu(WY - s(X,I/)u(Y) U =0

or ds(Y,rn + nu (Y) u (rv) - a(Y) u(n - u (Y) u (W)= 0

ds(Y,w) + (m 1) u (Y) u (tT) = 0

d Y+ (m-2)u(Y)U =0
or

or
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md + (n-2f=g

2d (m-l) =g

d : 0

thus the quaslumbilical hypersurface can not be of constant

(3,4)z If the hypersurface of aflat H Hsu-nufold of minimal-variety, then

or

or

or

But a'*0,
curvature.

Theeorem
divH=0.

But the converse is not tue in general.

Proof: Let the hypersurface be of minimal variety, then

t .  / / :0 ,  Ul

Since the enveloping manifold is flat, equation (l.l lb) funplic dtat

(DxI{)Y - (DyI{)X=O

Confiacting this equation, we get

(div //)I= Ytr. H = 0 (since Tr. I/= 0)

Conversely, if div. //= 0, then from the last equation, we get

Ytr .H:0 i.e. t. H: oonstanl
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