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Hardy's Uncertainty Principle on IR'=[0,0)

CHET RAJ BHATTA

Abstract: Hardy's uncertainty principle states that if the function fis "very rapidly decreasing”
then the Fourier transform can not also be "very rapidly decreasing” unless / is identically zero.
In this paper we discuss some variants of Hardy's theorem on IR'=[ 0, «0).

Keywords: Uncertainty principle, Fourier transform pair, Laplace transform, very
rapidly decreasing.

1. Introduction

It is well-known simple fact that if a function fon R is compactly supported,
then its Fourier transform f can not also be compactly supported, unless /= 0. More

generally, we have the following principle in classical Fourier analysis: If the function
£ is "very rapidly decreasing” then the Fourier transform can not also be "very rapidly
decreasing” unless f is identically zero. An important result making this precise is the
following theorem. There are several ways of measuring "Concentration"”. One way of
measuring concentration is by considering the decay of the function at infinity and
another natural way of measuring ‘concentration’ is in terms of the supports of the

function fand its Fourier transform 7.
Hardy Theorem 1.1 [1]: Let &, f and C be positive real numbers and suppose that f
is measurable function on R such that

(i) |f(x)|<Cexp (-axx?) forallxeR

(i) | f(£)| SCexp (-fn&?) forallfeR

If @f> 1 then /=0 almost everywhere. If @< | then there are infinitely many
linearly independent functions satisfying (i) and (ii) and if @8 = 1, then

f(x)=Cexp (~axx?) for some constant C.
Fo)= [ f@)exp(2rixy)ds,y €R

Definition 1.2: A function f is said to be "exponential type" if | f(y) | < constant x e’
for some T < .
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Definition 1.3: For a measurable function Son R" = [0, ) the Laplace transform
Xf of f is defined by

21 0)=[7 10 exp oty an

IfRey>0and fe L' (R) then % fis well-defined. If in addition f satisfies

|/(x¥)| < Cexp (~ax?)forall xe R then & f(7) is defined for all ¥ € € and is holo-
morphic function on @ .
The following is a simple deduction from Hardy's theorem on IR".

_Theorem 1.3: Let f be a measurable function on R" satisfying
(D) |f®)|<Cexp (~ax*)forallx er’
(i) |Xf (I < Cexp (-8 (Imy)2) for all YEIR
If afi> Yathen f =oae,
Proof: Extend fto f on Rby defining O on {x : x < o} then f is a measurable
functions on Rand satisfy | 7(x)|< Cexp (-ax?) forallxe R

ForyeR, l?(y)l-—-‘ _[: ?(x) exp(—2xixy)dx

z‘ me(x}exp(—l-rf:r) dx

=X/ 2y
<Cexp (~487%)
Since 4@ >1 so by Hardy's theorem on i, f =oae Thus f =pae.
Theorem 1.4: Let f be a measurable function on & satisfying
() [/ ) <Cexp (-axx?)forallx e R

(i) | X/ () |<Cexp (-pay*)forally eR
Ifaf >1then f=0ae

Proof: Suppose that @= £= 1 and £/ (y) is a even function i.c. =2 ¢c,r™".
Since the function u(y) = y*, ke Ris a holomorphic function in the cut plane
{y=Rexp (if); R>0,]8| <n} where yk=Rg* exp (ik6), we can define a function

H)=%f(r) =X C, .
14601 | [ roespari)a

<C _L” exp(~71?)exp (-7 Cos %r)dt

(1)
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=Cexp (ﬁl RCos? -95] I:-exp (—:r(.r +LJR Cos & ¥ )dt
<C'exp(%Cos2 4 R)
(n S'C'exp'(%ﬂ)forsome Cc'>0
Which is independent of 6. Thus h is a exponential type

ForO<d<nm

¥ -I% ,._ e ._..é.
|exe G2 | = o (2L 2 1 (Re
i =

Sin%

If =0 then Reif=R>0s0

. I8 '
|exp %)ﬂrﬂ =exp (R)| H(R) |

< exp(#R) |% f(VR)|

<C exp(zR)exp(-zR)<C

:':rye"%

1£f6 =5 then,
Siné4

e 22 )i | = exp ) cRe )

< C'exp (=7 R) exp ("4 R) using (1)
RL
Now we apply Phragmen - Lindelof's theorem to the sector 0 < 8< J to get

xRsin(9-2 !
[ h(¥)i< K exp 5;:£ 2 )), K=Max(C,C)
/2

Now taking & T =, we have
| h(y)| < Kexp(-nR Cos #)for0< f<n
=|exp(my) by |SK ¥ = Re'?, 06 <n
A similar argument will hold for the lower half plane so
lexp (my) A(y) | <K for <@ <0,y =Re"

Therefore g(y) = exp (7y ) h(y) is bounded and holomorphic in €. Hence by
Liouville's theorem there is a constant A > 0 such that

hy)=Mexp (-7y)
Thus Ef(y)=Mexp (=ry*)
Suppose now that & f(y ) is an odd function i.e.
Zf()=Y, Cn 7™, 27(©)=0. For y#0, y' % (1) =3 Ca 1"
Thus by even case y-1&/(y)= Mexp (-7y2). But for y R we have

[3]
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IRf(r)|<Cexp (~x52)

Therefore, Mly |exp (-xy2)<Cexp (~x3?)
ie MIy]SCforaIlreRwhichispossﬂ:leonlyif).h().
Hence X f(y) =0.
In general, we break %1 into even and odd part i.e.

XDV =&+ X ) +4 210) - 2109y

=81(1) * 25(7) (say)

8i() is an even function satisfying | g,()| < Cexp (~x»?) forall

7 €IR. So the function h(y) =g,(v/7) is of exponential type as
I3 17+ 21(-47))

and
27 [Tl exp (=70t
<C _Lmexp (~zt%)exp(x J?Cos%r)d!
=Cexp (;rf-Cosz g) ‘mexp(*ﬁ(f—lg_&(:osg- )‘ldr
<C'exp (%‘E)
Hence, [A(r)| <C'exp (3‘5)
Thus, &(7) =Kexp (-xy*)and g,(y)=0and so
Xf(r)=Kexp (-xy°)
If a=f£>1.Then
|/ @) s Cexp (~ax?)< Cexp (-x?)
and RS(7D| s Cexp (<Br*)< Cexp (%)
So, X/ (r))=Kexp (-zy?)by the above case.
Forx =0,

fx)=M L‘TD %r' Eexp (—:r (a+ :‘b}z)cxp (ibx) db
=M -518,— E exp(-7(a2-52 +ib(2a~§))db
=M ' exp (-:ra‘z-)—z%[ Eexp (7b%)cos b(?,a—%)db

+i _[:exp(xbz)J sinb(2a-X)db
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Therefore, 'm, f(x)=M.L j': exp(rb?)db 22 X forall X0
Hence we must have M = 0 and therefore X f(y) =0 forall yie.f =oa.e
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Representation of certain probability
groups as orbit Spaces of groups

H.N, BHATTARA[

morphisms are finite, the multivalued prodycts can be provided with some weightages forming
so-called Probability Groups. It is shown in this Paper that certain abstract probability groups can
be realized ag orbit spaces of Broups.

I.Introduction

The set of double ©osets of a group witp respect to a subgroup and the set of
orbits of 3 group with res
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study of projective geometry and related spaces in the framework of Pasch geometry
has the convenience of dealing with morphisms and homomorphisms with the
availability of homomorphism theorems similar to other algebraic structures (see [3].).

2. Preliminaries

In this section we briefly present the basic concepts and preliminary results on

Pasch geometries and probability groups. The details can be found in the references,
particularly in [7].

Definition 2.1 By a Pasch geometry is meant a triple (4, e, A)where 4 isaset, e e A4,
and A\ =AcAxAxA subject to the following axioms:
1. Va e, 3aunique b € A with (a, b, ¢) € A. Let = a.
2. é=ceand (@)'=aVae 4.
3. (@, b,0) e A= (b, ¢, a)e A.
4. (a1, @, @), (@, ay, as) e A= Ja; € A with (ag.uj.a,),(a5,a5,af) €A.
The identity element e and the inverse o* are unique. Throughout this paper,
geometry will mean Pasch geometry.
A geometry is called abelian if (a, b, )eA= (bac)eA A geometry is
called sharp if (a, b, c), (a, b, d)eA=c=d Also,a geometry is called projective if
d'=avaed and(a,a,b)e A= b=corb=a.

Now a structure stronger than the geometry defined above is given in the
following.

Definition 2.2, A probability group is a pair (4, P) where A is a set and
PiAXAXA—S[0,1]isa map to the unit interval, denoted as (a,b,¢) = p.(a,b),
subject to the following axioms:

I. Fora, b € A, p, (a,b) =0 for all but finitely many x €4 and

Z Pelab)=1.

xeA

2. Fora, b,c,d e A,

,ZA P-;(a'b)pd(x!c)= ZA Pd(a-y)Py(b.C)
Xxe ye

3. 3e € 4 such that Po(ea)=1= p, (ae) ¥ aecd

4. For each a € A, there exists a unique b € 4 with p, (a,b) # 0. We denote b
by a".

3. p.(ab)= Pa " a)Va, bee A

It should be noted that p(a,b) can be read as the probability for the element ¢ to
belong to the multivalued product a.b. Also, axiom (1) describes probability
distribution, (2) gives associativity, the identity e given by (3) is unique and the unique
inverse a” of a given by (4) satisfies (@)=aV aec A When dealing with more than
one probability group, we write them as (4, 7),(B, p) etc. or use the same pto let the

0 i W ed
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context distinguish. We may simply write A is a probability group, the associated p
being understood. A probability group is called abelian if p.(a,b) = pAb,a)¥a.b.c € A.
The following useful relations are obtained as consequences of the axioms:

Lemma 2.3. For any probability group (4, p), we have:

(i) pyc'a)=p,ca) Vace A

(i) pJaa)#1¥a e A*~{e}

(iii) pa(a.b) p (", ©) = p(ad") pu(b,c). In particular, if b = ¢, we get
Pyab) p(bb") =p(a,d) p bb").

(iv) p(a,b)# 0 if and only if pb,c")#0.

For a probability group 4, let A, = {(a,b,c) : p_4(a,b) # 0}. Then

Proposition 2.4. (4, e, A,) is a Pasch Geometry.

Thus, when A is a probability group, we speak of the geometry 4 to mean the
induced Pasch geometry structure as described above. Every probability group is a
Pasch geometry but the example (4) below shows that the converse is not true.

A probability group is called sharp (projective) if it is sharp (projective) as a

geometry.
Examples 2.5.

1. Let G be a group. Define p by p, (b,c) =1 if a = b.c and 0 otherwise. Then (G, p)
is a sharp probability group with a' = a". Note that the probability for an element a to
be in the product b.c is either 1 or 0. Conversely, every sharp probability group is a

group.
2. Let P be the set of points of a finite projective plane of order m. Let

A=Pu {e}, e  P. On A, define the map p as follows:

[ 8a(e) if b =e, where 5, (¢) =1if a=c, 0 otherwise
8,(b) ifc=e
—L.&y(c) ira=e
A=l ifa=b=cwe

m=]

;—1 if @, b,c e P and a, b, ¢ are distinct and collinear

m
0 otherwise

L

Then (4, p) is a probability group, the induced geometry being that of the projective
plane. Note that if m = 2, p, (a, @) =0 and A is sharp.
3. Let G be a finite group and G= {X % - X} be the set of irreducible complex

characters of G. For | <1 j<s, let % -2‘:-=ZLO n;;‘jxk. Let p be defined by
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1) = 2
Pu Xir ;) %Mz,

Then (G, P) is a probability group.

4. The multiplicative group of positive rationals O acts on the additive group of
rationals Q with three orbit elements: {11, [-11, [0]}. It forms a Pasch geometry of
orbits) (cf. 2.3). For elements g = [1], 5= [1], we have ¢ = [1] a unique element such
that ([1], [1], [-1]) € A. So if this geometry were induced by a probability group, then
we would have py,, ([1], [1D=1, contradicting lemma 2.3 (ii).

Now let (4, p) be a probability group and § € A, a finite subset. Set
ns =3 s ?(«:77' Note that p.(x, ) # 0 and § is finite, so n, is well defined. In

particular, n, is defined if 4 is finite. If A is sharp and hence a group, then ny = |4], the

order of t}w3 group; if 4 is projective representing a finite projective plane of order m,
then ny=n,

2.1. Subgeometry and subprobabilily group. Let 4 be a geometry and Bc A. Then
Biscalled a subgeometry if e € B and (b1, by, x) € A, by, bye B>xe b Let
Ap=A4 (B x B x B). Then (8, e, A) is a geometry.

Let (4, p) be a probability group and B € A. Then B is called a subprobability

group of 4 if and only if the following hold: e< B and p, (b, ) 0, bubye B=d' e .
We call B a normal subprobability group if B is normal as a subgeomeltry of A.

2.2. Factor Geometry and factor probability group. Let B be a subgeometry of 4.
Fora, b € A, define a~ b if3by, b, € Bandx e 4 such that (a, b,, "), (x, &', b)) € A,
This defines an equivalence relation on A. Let A//B = {[a] : a € A} be the set of all
equivalence classes. Let ([al[B)lc)) € Agpif 3x € [a). y €[b), z [c] with
(¥,2) € Ay. Then A//Bis a geometry.

In particular, if 4=G is a groupand B=Hisa subgroup, then the set of double
cosets G//H is a geometry.

Now suppose B is a finite subprobability group of a probability group A. Then

B is a subgeometry of 4 and so we get the factor geometry A4//B. ForX,Y,Ze 4//B
define

PXN=LF 3 3 e bp(ay) p b
"B beB ze7 aed

for son

Examy
The mu

the comr

Fol=

A case |
2.4. Ho
called 2
=3d:1t0n

et 4 B
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_|xHynZ|
p_:_(X,Y) = l H |

for somex € x, Yy €Y.

2.3. Geometry and probability groups of orbits. Let A be a geometry. A group I’
is said to act on A if there is a homomorphism from I” to the geometry automorphisms
of A. Thus for & € " and @ € 4, we get aa e A satisfying obvious properties. In such
cases, we call 4 a I'-geometry. For a € 4, let (@) = {aa : @ € I'} denote the orbit of 4
and A/T'= {(a) : a € A} be the set of orbits. Let ((a), (b), (¢)) € Agr iff 3x € (a),

y (b).z € {c) with (x,y, z) € A,. This makes A/T" a geometry called the geometry of
orbits of 4 by I. In particular, if ¥ is a (left) vector space over a skewfield F, then the
geometry of orbits V/F" is the geometry of the classical projective space P(V).

Now, let 4 be a probability group. Suppose a finite group I" acts on the
geometry 4. Then A is called a I'- probability group if, in addition, p (ab,ac)
=pAbc)V¥a, b, c € A, a € T. Suppose 4 is a I'- probability group. Since I' acts on the
geometry A, we get the geometry of orbits A/T" as above. Define

K@) :
Pray (B)(€)) = ——"— P.(»2)
4 OGN 20 26,
for some x € {a). The map is well defined and makes A/T" into a probability group
inducing the geometry of orbits. Thus, if G is a group and I' is a finite group of auto-
morphisms, then the geometry of orbits G/T is a probability group.
A special important case is given by the following:

Example 2.6. Suppose V' is a vector space over a finite filed F containing m elements.
The multiplicative group £~ acts on ¥ and the set of orbits VIF" is a probability group of
the comresponding projective space.. If (W) eV/F’, v+ 0, then (v)=F v, s0 | (v) | =

| F'o|={F"|=m -1. Hence the above formula becomes

P @@= T T p@d=—= % T pilav, pw)

| F* l ye(v) z=(w) acF" peF"
A case by case consideration will give p-values exactly as defined in example 2.5(2).

2.4. Homomorphism. Let 4 and B be geometries and f: 4 — B be a map. Then fis
called a morphism if /(e4) = eg and (x, Y, 2) € A, = (f(x), f(¥). f(2)) € Ap. If in
addition, (f(x), f(y), b) € Ap=> b=1(2) for some z € A with (x, y, 2) € A, then the
morphism is called a homomorphism.

Let A, B be probability groups and f: A — Bbe amap. Then f'is called a probability
homorphism if f(e,) = ¢z and

Pb(f(“l )sf(ai')) & Z Px(ah EZ) Valral € A,b-E B.
xefl(b)
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A homomorphism of probability groups is naturally a homomorphism of
corresponding geometries. A bijective homomorphism is an isomorphism. So a bijective
f is an isomorphism if and only if p,(b,c) = Prw(f(B),f(c)) Va, b, c € A. Note that the
context distinguishes p for 4 and B.

As in geometry, the natural map A — A//Bisa homomorphism if and only if B
is normal in A. There are isomorphism theorems for homomeorphisms of probability
groups similar to those in geometry. A probability group 4 is said to be of discrete
probability type if Va € 4, there is a finite set Fawith py(a,b) € F, ¥ x, b € 4. For

such we have:

Proposition 2.7, Let 4 be a probability group of discrete probability type and B,C be
subprobability groups of 4 with C normal in 4. Let B.C = {x:(b, ¢ x) < A, for some
b € B, c € C}. The B.C is a subprobability group of A and B.C/IC= B//BCas
probability groups.

In particular, the proposition is true if 4 is finite.

2.5.Geometry and Probability Spaces over Geometric Skewfields. Lot (4,04, A)
be an abelian geometry. Suppose, in addition, (4, .) is a semigroup with 1 such that
0.a=a.,0=0.1tis called a geometric ring if (@, b,¢) € A, x € A = (ax, bx, cx),
(xa, xb, xc) € A. It is called a geometrics sfield if 4° = 4 —| 0} is a group. Suppose
(¥, Oy, A) is an abelian geometry and the geometric sfield 4 acts on V' compatibly as
scalars satisfying: a(bv) = (ab)v; 0. v=a.0y=0y; 1. v = v (mp,0)eA>
(au, av, aw) € A; (a, b, ¢) € A= (av, bv, v) € A; (ab, bv, cv) € A,
v#0=>(a, b, ¢) € A; (avbv,0) € A= w=cv; where a. b, ¢ & A and u,v,w e V. Then
V is said to be a geometric space over geometric sfield 4. For such there is a basis and
well defined dimension (see[4], [S]). In case ¥ and A4 have sharp geometries, the
geometric space ¥ is a vector space over the usual skewfield 4,

. If Vis a geometric space over a geometric sfield A4, then the geometry of orbits
VA" is projective and so represents a projective space (including degenerate ones).

Now suppose ¥ is a geometric space over A and in addition, (¥, p) is a proba-
bility group inducing the given geometry. Then we call ¥ a probability space over 4 if
Vis A - probability group. Hence, ¥ u,v, @ ¥ and Va 4. we have
Pulav, aw) = p,(v,w)
If A is finite, then the projective space /4" is a probability group.
2.6. Semi-isomorphism. Let /' and W be geometric spaces over geometric sfields 4
and B respectively. A pair of maps (0,6 ) : (¥, 4) = (W, B) is called a semi-isomorphism
if ¢ : ¥V — W is an isomorphism of geometries, & : 4 — B is an isomorphism of
geometric sfields and o{av ) = & (@) ¢ (V)Vv € V, Va € A.
Suppose, in addition, ¥ and W are probability spaces over 4 and B respectively.

Then (0,6 ) is called a semi-isomorphism of probability spaces if p,(v,w) =

Poy@(V)o(w)) Yupw eV,

2

g YEF R}

~
8

jvop

)

- .,
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3. Elementary abelian probability groups

Let (4,p) be an abelian probability group. Recall that an abelian geometry A4 is
elementary if Va € A4, the subgeometry (a) generated by a is simple in the sense that
whenever § is a subgeometry of A and {e} # S < (a), then S = (a) (see [2]). In such a
geometry, (a) # (b) = (@) N (b) = {e}. Now, since B is a subprobability group of 4 if
and only if B is a subgeometry of A, we make the

Definition 3.1 An abelian probability group A is called elementary if it is elementary as
a geometry,

Also, the length of the probability group A will mean the length of the
corresponding geometry [2].
Lemma 3.2. Let 4 be a finite elementary abelian probability group of length greater
than one. Then _ _

(i) pda, @) =pAb')Wa, b e A*. (i) pdb, )= pss (c, d'Wa, b, ¢ € A*.
Proof: (i) Let a,b € A*. Suppose (a) # (b). Let t € A such that p,(a,b) # 0, so
(a,b,1") € A. Since (a) # (b), we have ¢ ¢ (a), 1 & (b). So (@) (f)= {e} and
(a0) = (b, ). By proposition (2.7), we get

(a) = {a) Il (ay r () ={a) ) 1) = '(f_?)-(f) 1ty = (b).
If the composite map is g, then o{a) = b, s0 o (a”) = b". Hence,
pda, d"y= Peie) (ola), o(a”) = peb, Y. If (a) = (b), then the length being greater
than one, 3c € A" such that (c) = (@). Then, p(a,d") = p.(c,c®) = p(b,bY). (i) 1t
follows from (1) and lemma 2.3 (iii).

Lemma 3.3 Let 4 be o finite elementary abelian probability group of length greater
than 2. Seppose 5, (5y.0)) # 0, and p,(by, 03) # 0, where b, b.c\,c; € 4%, (b)) # (1),
(B2) = (c2). Then, p, (b1.61) = pa(br.02).

Proof: In corresponding geometry, we have (af .5, 01),(a},b2,c2) € A. Note that a; #
e, otherwise it would give (&) = (¢;). Similarly a; # e.

Case (1): a; = a,. Suppose first, b, & (by,c1). Then, (af,br,c1), (af ,by,¢,) € A, 50
3t € A such that (£,65,5,), (t,e5,¢f) €A. Note that 1 ¢ (a,, b), otherwise (6,b3,b;) €A
would give b5 and hence b e (a,b1) = (b, ¢1). So being elementary, we get \
(& O (ay,br) = {e} = (D) 0 {a1,b). So by proposition (2.7), we get
(anbr)= (@b O (aybyy = (@b o) 1 8= Canba) ey 11 {6) = (ay,ba).
Suppose o is the composite map. If x € (a;,b;), then x € (a;,b)).{f)
= {ay, by) (1), s0 3y € (a,by), 1y € (fy with (x, y", t) € A. Since (ay, byyr\{t) = {e}, the
elements y* and #; are unique. Chasing the above isomorphisia, it easily verifies that
o(x) = y. In particular, we have o (a;) = a) = aj, a (b)) = by, o (c;) = ¢3. So,

Pa, (b, 1) = Patay) (0(b1), o(c1)) = pa, (b2, €2).
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Now suppose b; € (by,c;). Then (b,c;) = (b2c2). Since the length of 4 > 2, 3b;
such that b; & (by,¢;). Choose ¢; € A4 such that Pay(bs,e5) # 0. Then, (b5) = (c3),
otherwise (bs) = (a;) < (by,cy). So from the first part, we get

: Pay (b1,c1) = Pa (b3,c3) = Pay (b1,¢2) = Pay (b2.¢2).
Case (2): Let a, be arbitrary. Since (B1) # (er), either (@) = (b)), or (ap) » (¢1). We may
assume (@) # (b;). Now, 3d € 4 with Py (a¥,d) #0. By lemma 32 (ii), we get
Pa(bisci) = Py (e1.at). Now using case (1), we get

Py (eial) = py(ad,d) = pu, (d5) = po, (Bacy).

Thus in every casepn; (bhcl) = Pay (bz,Og).

Now, suppose (4,p) is a probability group of length greater than two such that
the corresponding geometry is projective. Then the geometry 4 corresponds to a projec-
tive space. Suppose the projective space is of order m so that each line contains m + 1
points. The following theorem shows that the probability structure on a projective space
is unique. This result was proved in [7] by using duality.

Theorem 3.4 Let (4,p) be a finite probability group such that the induced geometry on
A is projective of order m with length (4) > 2. Then,

[ 8.(c) ifb=e
S,(b) ifc=e
L) ifa=e
Pa(b,c)=1 :'T:?- ifa=b=cwe
;1_—1 if @, b,c e Pand a, b, ¢ are distinct and collinear
0 otherwise

Proof: Since 4 is projective, it is abelian and (a,a,b) € A = b= e or b=a. This implies
that (@) = {e,a},Vaec 4. So A is elementary abelian.

Now if b= ¢, then p,(e,c) = d,(c) and if c = e, then Polb,e) = 8,(c) are clear, So
suppose b,c € A’ We consider two cases.

Case (1): b+ c. Then p,(b,c) # 0 if and only if (a,b,c) € A. Since A is elementary
Abelian, lemma 3.3 gives that p,(b,c) = p.(b,c)Vx € A* such that (x,b,c) € A. But (x,b,c)
€ Aifandonly ifx € Ly, - {b,c}, where L. is the line determined by the points b and c.
Since the line Ly, has m + 1 points, the number of x € L;, - {b,c} willbe {m+1}-2=
m-1.So

1= Z Px(byc)= Z Px(b,c)=(m=1) p,(b,c).

xed sely~{be}

Hence, py(bic) = -L:.

Case (2): b=c. Then py(b,c) 20 only ifa=b=cora=e. Suppose first

"
¥

s 2 M = 8= Y B » "N

"meES B AW B
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a= b= cand p,(a, a) #0. Since length (4) > 2, Eiy e A such that y#a, Letz € 4 such
that (a, y, z) € A. Clearly z # ¢, a, y. So p,(v, 2) = —. Now consider the equation:

Z P:(yaz)}?a(ﬂ--‘-‘)= Z Pa(y-x)Px(z,ﬂ)
xed xed

On the left side, p.(a, x) = 0 except for x = a or e. But if x = ¢, then
p. 2) = py, z) =0, since y # z. So the only nonzero term in the sum is for x = a. So

Left side = py, 2) p.(a, a) = H—T pda, a).
Also on the right a, y, z are distinct and collinear, so p.(y, x) = pdz, a) =;1_T or 0. The

number of elements x such that p,(y, x) # 0 is m — 1 and includes z, but if x =z, then
pz, @) = 0. So the number of elements for which both factors are not zero is m—2. So

Right side = (m - 2) L) )= (m - 2) (5 ).
Thus, =5 pula, a)=(m -2) (M_,)z giving pa(a, a) = 2=
Finally, suppose a = e. Then, we have p.(b.b)*+ py(b, b,) = 1, so p(bb) =1~ B2 L

m- m~1

and the proof is complete.

4. Probability spaces over geometric sfields as orbits of vector spaces

The following theorem establishes uniqueness of the probability structure
which induces a given geometric space over a geometric sfield.

Theorem: 4.1 Let V be a finite geometric space over a geometric sfield
A, dimy (V) > 2. Suppose (V, p) and (V, q) are probability spaces over A inducing the
given geometric space over A. Then, p = q.

Proof: Since ¥ is a geometric space over the geometric sfield A, the orbit space V/A* is

a projective space of length greater than 2. Since (¥, p) is an A* —probability group, it
gives a probability structure on the orblts ViA* as follows (cf. 2.3):

P(ul) ({Uz),OJ})) Z Z pul (auzsﬂUB)
IA laeA ﬁeA

Similarly, the A*~probability group (V,q) gives

2, Xy (rop,003)
i"‘ |,reA ded'

But by (3.4), the two probability structures on the projective space V/4* must
be the same. So

oy) ((vy,(03)) =

Z Z P"I(aoz'ﬁv3) |Ati Z Z ‘Iug()’ﬂz’é"’a)

I A" feA
aed reA Sed'

i Z Z Pul (a'”:-ﬂ”s)— Z Z qut{}’ulla%)

aEA. PeAd* re A deA*
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Now let vy,03,03€ ¥ be arbitrary. Then p,, (t,03) # 0 if and only if (uy,v5,0f)
€ Aif and only if gy, (02,03) # 0. So let (vs,05,0{') € A. We show
Pu;(02,03) = Py, (02,03). We consider the following cases.

Case (1). vp,0; are independent over A. Then for any v € span (15,05), 3 unique

@, 3 € A such that (v, awvy, Pu;) € A. So, since p, (02, V3) # 0, we get p,, (s, fus) =0
except for a = = 1. So on the left side of the above equation we get only one nonzero
term p,, (U2,03). Similarly, the right side gives g, (05,03). So, p,,(02,05) = g,,,(U2,01).

Case (2). vy,05 are dependent. If vy =00r vy =0, it is obvious. So let vy = 0, vy £ 0.

Suppose first vy # 0. Then v €¥ such that v =v, v; = av, us = fu. So we show
phav, Ab)= gfav,Av). Since dim (V) > 2, Ju, we V independent such that
(u,0,00") € A. So by case (1), pad, W) = Gafuo) # 0. Also, pyut0) = gsfuaw) =0
for & # e In (¥, p), we have:

Y. pyw)p,(y, Bo)= Y, p,(u,x)p.(w, pv)

ye¥ el
But p,{y.fv) # 0 implies y = yv for some y€ A and p,.fu, w) = 0 oaly when y= .
Hence the above equality gives

Pafuw) phav, fO)= 3 p,lu,x)p,(w, fv)
xel’

Similarly we get for g:
quu_(u-w) q;(ab‘, vy = Z qu(u,x) g, (w, fv)
xeV
Since u,v are independent p,, (#.x) # 0 implies ,x are also independent. So by
case (1), po(1.%) = g, (ux) ¥V x € V. Similarly, p, (w,fv)= g ,(w fu) ¥ x € V. So the
right sides of the above equalities are equal giving the equality of the left sides:

Pad0) pf @v,pv) = gafuw) gL av,fu)

But again, p,(uw) = g fuw) # 0. So we eventually get p {av,fv) = g.Lav,fu).
Finally, let v,;=0. Then, 1=, p.(02,03) =% ¢:(v2,05). Since p.(11.05) = gu02,03)
Vx # 0, we must have pg(vs, V3) = go(V2,03). Thus p = g.

Now suppose ¥ is a vector space over a finite field F, dim (¥) 23 andisa
subgroup of ¥, Then the orbit spaces ¥/T" and F/T are probability groups in a natural
way (cf. 2.3). It can easily be seen that the probability group V/T so defined is
F'IT- probability group. So the theorem gives:

Corollary 4.2. Let ¥ be a finite dimensional vector space over a finite field F and I be
a subgroup of F*. Then the space ¥/T is a probability space over F/T in a unique
(natural) way.

gex

gec
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Definition 4.3. We call a geometric space ¥ over a geometric sfield 4 to be of finite
order type if the corresponding projective space P(F) is of finite order.

The following theorem gives the representation of a probability space over a
geometric space as orbits of a vector space.

Theorem 4.4. Suppose (V, p) is a probability space of finite dimension over a
geometric sfield A with dim, V = 4. Suppose V is of finite order type. Then there is a
finite dimensional vector space W over a finite F, a subgroup I" of F * and a semi-
isomorphism of probability spaces:

(yay ) (WIT, FIT) — (V, 4)
The same is true if dim, ¥'= 3 and the geometry of V' is D-geometry.

Proof : Since ¥ is a geometric space over the geometric sfield 4 with proper dimension,
there is a vector space ¥ over a skewfield F, a normal subgroup I' of F  and a semi-
isomorphism of geometric spaces (y; ) ; (W/T,F /I') = (V.A) (see [5]). We show that
it is a semi-isomorphism of probability spaces. Since ¥ is of finite order type, the
projective space P(W) is of finite order and so F isa finite field. So W and hence V'is
finite. We use the isomorphism y/to make W/T" into a probability space as follows:
23 (0.,8)= py(a)w @) w(@) Vii,b,® e W IT.
We have for @ € F* /T, pz (@0,a0)= py(ay (i) @@y ©). @)y ©))
= Py @),y (@)= pz (0, 7),
* *
as Vis A -probability group. So this makes W/ into F* /I - probability group. But by
corollary 4.2, such probability structure is uniquely the natural probability structure
of W/

Hence the theorem is proved.

5. Elementary abelian probability groups as orbits of groups

The following theorem gives orbit space representation of probability groups,
which are elementary abelian.

Theorem 5.1 Suppose A is a finite elementary abelian probability group, length
(A) 2 4. Then there exists a vector space V over a finite field F and a subgroup " of F
such that A = VIT as probability groups.

If length (4) = 3, then the same is true if 4 is a D-geometry.

Proof: Since A is elementary abelian geometry of proper length, there is a vector space
¥ over a skewfield F and a subgroup I of F/ *such that o': ¥/T" — A is an isomorphism
of geometries which induces isomorphism of projective spaces P(¥) and P(4) (see [2]).
We show that o is an isomorphism of probability groups.
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Since 4 is finite, the projective space P (4) and hence P(¥) has finite order. So
F'is finite and hence a held. Then, ¥/T is a geometric space over F / T". We make VIT a
probability group by defining p as follows:

PLY,2)=pow(o(y), o(2))Vx, y.z € VIT.

The probability group (V/T, p) so defined is isomorphic to (4p). To show that it is the
natural probability group, it is sufficient to show that J/T is F . T-probability group. So,
let @ e F/T, a#0. We show p. (ay, a2) = p, (y, 2)¥ xu,z € VIT. It is obvious if
x=0,0ry=0,0rz=0.S0letx, y, z e (VT)". Suppose first y, = are independent. This
means in P(V), (y) # (2), so in P(4), (o (y)) # (o' (2)). Similarly, (o ay)) # {o(az)). So
by lemma 3.3, posy (0'(Y), 0(2)) = Potany (0'(@y), (az)), showing that p, (y, =) =
Ped @y, 0z). Now suppose y, z are dependent. They y=pfx z=yx Chooset e VIT
with x, ¢ independent. Then, as in lemma 3.2, (x) = () = (ax), the composite isomor-
phism being given by x — ax. So for fx, yx € (x), we getp(Bx,vx)=
Palafix, @y x) = palay, cz).

Thus, (¥,p) is the natural probability group and o T —» A is the required
isomorphism.

Now since a vector space over a finite field of characteristic, say p, is a vector
space over Z,, and hence is a finite elementary abelian p-group, we may restate

Theorem 5.2. A finite elementary abelian probability group of length greater than three
is isomorphic to the probability group of orbits of a finite elementary abelian p-group
with respect to a finite group of automorphisms.
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The Schriodinger equation associated to 2nd
order linear differential equation

J. H. CALTENCO, J. L. LOPEZ-BONILLA, R.PENA-RIVERO

Abstract: We determine the Schrédinger equations associated to Hermite and Laguerre
differential equations, hoping that the process here exhibited may be useful in quantum mechanics.

1. Introduetion:
It is known [1,2] that the 2nd order linear differential equation :

dy dy
(1 ——+P(x)—+0(x)y=0
dx* dx
can be written as an Schrodinger-like equation:
2
@) et
dx?
via the following change of variable:
‘l A
(3) y=Wexp (—-2— rP(r)dt)
such that:
. LdP. . B
4) J(x)=0(x)-——=-—
2dx 4

We here shall apply this procedure to Laguerre and Hermite equations, which has
didactic value in the teaching of the elementary quantum mechanics

2. The Schrodinger type equations associated to Hermite and Laguerre
equations.
The Hermite equation is given by [1, 2}:
(5) Y =2xy'+ 2y =0 , n=0,1,2, ...
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and its corresponding polynomial solution is denoted by H,(x). By comparison of (1)
with (5) we see that P=-2x and Q =2, then J = 2n + 1- x? and thus the Schrédinger
equation (2) adopts the form

© e

2
for the potential fi- of the harmonic oscillator in natural units (A =m=a = 1),

1 ;
resulting thus the energy spectrum (n +E) for the stationary status. The equation (3)

! 2
implies W H,, exp (-iz-) , then the normalization of the waves functions leads to

final result [3—5] :

=1 S 2
@ Va(@)=0" i) 2 Hy(x)exp (..17)_
The associated Laguerre equation has the structure [1, 2J:
k+1-x N
® '+ y+— y=0
X

and the polynomials L_;: (x) represent their respective solutions. From (1) and (8) it is
-x

k i
clear that P = £ with 0= i , then (2), (3) and (4) give us the expressions :
x

1-K? | K+l+2N_L}

%) W'+( W=0
4x? 2x -
with
(10) Wex'Ted Ly(x).
In (9) is not evident the corresponding potential, thus we make the changes :
& - ]
(11) K=21+1,N=n-1 l.x-bn , b= X
then (9) takes the known form for the Coulomb potential (A =m=1):
2 2 2
L o I T
2lar* P° dregr 32x%e} n?

where n and / denote the principal and orbital quantum numbers,
respectively. Therefore, (10) and (11) imply the normalized radial wave functions [3,4, 6]

4 5

2yt =1 51 (2
(13) %;(r)=(f) |:(u(n+:')!):| bl+% Lot 35)

that (9)
dmmensi

SRRV ECETO
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If in (9) we use changes of variables different to (11), then it is easy to show

that (9) reproduces the radial part of the Schrodinger equation for the Morse and two-
dimensional harmonic oscillator potentials [7].

(1]
2]
i3]
[4]

5]

[6]
(7]
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Just-in-Time Sequencing Algorithms for
Mixed-Model Production Systems

TANKA NATH DHAMALA

Abstract: Obtaining an optimal sequence in a mixed-model production system under the just-in-
time philosophy is a challenging problem. The problems in a multi-level facility are strongly NP-
herd, however, the single-level problems are pseudo-polynomial solvable. In this paper, we
consider more practical just-intime sequencing problem with given set of sequences as
precedence constraints, We propose an efficient algorithm which obtains an optimal solution for
the maximum deviation objective in the single-level.

Keywords: nonlinear integer programming, just-in-time scheduling, mixed-model
systems, level schedules, balanced words, efficient algorithms, precedence constraints.

1. Introduction

The main goal of mixed-model production systems is to increase profit by reducing
costs. The just-in-time (JIT) systems, which require producing only the necessary
product in the necessary quantities at the necessary time, have been used for controlling
systems. These methods satisfy the consumer demands for a variety of products without
incurring large shortages or holding large inventories. We consider flexible transfer
lines, where negligible switch over costs from one model to another make possible for
diversified small-lot production avoiding production of each model in large-lots. One of
the most important optimization problems have been considered is to determine the
sequence in which different models are scheduled on the line. The sequences refereed as
balanced, fair or level always keep the actual production level and the desired
production one as close to each other as possible all the times. The objectives may vary.

There has been growing research in JIT sequencing since MONDEN [13]. MILTENBURG
[12), formulates the single-level JIT sequencing problem as a nonlinear integer
programming. STEINER/YEOMANS [15], give an efficient algorithm for minimizing the
maximum deviation. KUBIAK/SETH! [9] reduce the minimization of more general sum
deviation to an assignment problem and give efficient algorithm. These algorithms are
also applicable for multi-level problems under the pegging assumption [14]. The
existence of cyclic schedules have reduced computational time [14], KuBiak [10].
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remains open for the binary encoding [1]. We refer to Dramarn Kusiak [4] for a
recent survey of JIT sequencing and the references.

In this paper, we study the JIT sequencing problem with different settings. Given a set
of non-overlapping Sequences as chain constraints, we give a pseudo-polynomial

order first-serve concept in mixed-model systems.

further research,

2. Just-in-Time Sequencing Problem

Fori=1,2,.. ., n, given n products (models) i, n positive integers (demands) d, and n

convex-symmetric functions £, of a single variable, called deviation, all assuming
minimum 0 at 0, the following optimization problem have been considered in the
literature [9, 12, 15]. Find a sequence s = sy sy .. .sp with total demand D = Id; of
products where product / occurs exactly d, times that minimizes one of the following
objective function (s) 4

M Fyp(s) = max f(xy - k)

ik
. tn D
(2) Fsp(9) = 373" filwn =nk)

i=] k=]
where x; represents the number of product i occurrences (copies) in the prefix
e k=12, Dand n=% =12, .. » Associated to cach function
Fyp, Fsp, there have been studied two type of objective functions in the literature:

(¥ix —r;k)?  thesquared - deviation,
| xik —r;k|  the absolute - deviation.

Filis r;k)={

A solutios
productio
of the me
Here, the
represente
Both min-
problem s
9,12,15};

where 4 d
denoted by
the followin

A solution s

max, , f; (x4

B-feasible sc

STENER/YEC
scheduling ¢
problem as -
L1225,
represents the
s in the per
J-th copy of tt
Lemma 1 Le

F .,

seguence assi,

dempez the rele
Derrvation of
AmomEst varic
wte wih rele
e of GL
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A solution of this problem always keeps the actual production level x; and the desired
production level rjk as close to each other as possible all the times. The problem is one
of the most fundamental problems in flexible JIT mixed-model production systems.
Here, the sequencing problems maximum-deviation JIT and sum-deviation JIT are
represented by min-max and min-sum problems, respectively.

Soth min-max and min-sum problems have been formulated as integer programming
problem subject to the following cardinality, monotonicity and integrality constraints
[9.12,15];

Ziixe=k k=1,...,D

x,"[;:d,' i=1l,...,n
Xk S Tigs) iw_—l....,lll, k=1,...,D=1
Tive N S RPN s SRR )

where ¢ denotes the set of all nonnegative integers. The whole solution region is
denoted by X={X|X = (x4), .p}- Thus, the JIT sequencing problem is equivalent to
the following optimization problem

min {F(s) | X € X}, where F € {Fup, Fsp}.
A solution s =5, s, . . . s of the min-max problem of #» models is called B-feasible if
max; , f; (% — r; k) < B holds for the n x D matrix variables X = (x;, ) The set of all
B-feasible solutions is denoted by y 5.

STEINER/YEOMANS [15] study min-max problem reducing to a single machine
scheduling decision problem with release times and due dates. They répresent the
problem as a perfect matching in a Fj-convex bipartite graph G = (V' UV, E) where
Vi={1,2,..., D} represents positions and V2= {(ij ) | i=1,....n:j=1,...,d}
represents the copies of the produets. There exists an edge {k, (i, j)} E if and only if k
lies in the permissible interval [E(i, j), L(i, j )] < V) of release time and due date for the
j-th copy of the product i, They prove the following (see also [1]).

Lemma 1 Let di,ds, . . ., dy be any instance of min-max-absolute problem. A sequence
§ =3y 82. .. 8p, is B-feasible if and only ifforall i = 1,. .. ,nandj =1, . . . d; this
sequence assigns the copy (i, j) to the interval [E(i, j ), L(i, j )], where
=7 j—B e —I1+B
EG)=[1==1 and LG.j)= ==tui]

denote the release date and the due date of the copy (i, j) for given upper bound B.
Derivation of similar closed formulas for other measures of deviations remains open.
Amongst various versions of the earliest due date algorithms for scheduling unit time

jobs with release times and due dates on a single machine, they apply a modified
version of GLOVER's [6]O(|E]) Earliest Due Date algorithm for finding a maximum
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matching in a Vi-convex bipartite graph G = (¥; WV2,E) such that each ascending
k €¥1 is matched to the unmatched copy (i, j) with smallest due date value of L3, j).
They prove the following result.

Theorem 1 The min-max-absolute sequence s is 1-feasible if and only if the graph G
with bound B = 1 has a perfect matching. Moreover, an optimal solution can be deter-
mined by a exact pseudo-polynomial algorithm with complexity O (D log D).

However, 1-r,,,, is the tight lower bound for the min-max-absolute problem.

A binary search finds an optimal solution for the weighted min-max-absolute problem in
O(D log(D$Gax)) time, where ¢ is a positive integer constant depending upon problem
data [14]. They show in this case that the maximum weight G, ,.= max {Gi(1-r;) gives
an upper bound and [, B,,~ min; G(1-r,) gives a lower bound for the optimal objective
value.

Note that both release dates and due dates are non-decreasing functions of j for a fixed
i. But, they are non-increasing functions of d; for a fixed j, on the other hand. As

rig = ry for any models i, and i) with equal product rates di,= d;,, the equal quantity
products 7 with densities %— always do competition for their release times and due dates.

Moreover, the corresponding positions & for the copy (i, j) are interchangeable in any
feasible sequences s.

For any instance d;,i = 1,2, . . ., n{n 2 2) of the min-max-absolute problem, the optimal
value B* satisfies the inequality B* < 1-max {"}J"ELTJ} » [1, 16]. For n 2 3, an instance

with ged (dy, ds, . . . , d,) =1 of this problem has optimal value B* =2;L-Il<% if and

only if d;=2"fori=1,2,...,n,[1,2,11]. In the case of two products, B* < +if and
only if one of the demands is even and the other is odd [1,11].

The existence of cyclic sequences reduces the computational time. The set of optimal
sequences for min-sum problem includes cyclic sequences [10]. Similar result holds for
min-max-absolute problem [14]. We refer to [4] for more discussion on this issue,

For the sake of completeness we mention that the min-sum problem has been efficiently
solved by reducing it to the well-known assignment problem [9]. The results in [3,8]
either refute or establish relations between different objective functions (see also [4]).

3. JIT Sequencing with Input Sequences

Here we extend the formulation of single-level JIT sequencing problem under a number
of chain constraints as follows. We denote the following problem by JIT-Chain, (see

also DHAMALA / KuBIAK [5]). Let

be By, B
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aln,. D) = un,D,), u(n, D), .. “(“t-D-l)Dl
u(n,,D,) = u(ny, D, ), u(n,, D), ... H(HI,DZ)Dz
u(n,,D,) = u(n_, D)y u(n,.D,), ... u(n,, Dr)D‘
u(n,.D,) = u(m,.D, )y uln,.D,), .. n(nm,Dm)Dm

be By, Bs, . .. B, -feasible sequences of lengths Dy, D, . . . D,,, where D, = 2. X, d!,
of given any model sets n,, ¢=1, 2, ... .m, respectively. These sequences represent as
chainy, chainy, . . ., chainy, . . ., chain,, respectively. More than a single chain may

contain the same type of product models. We call it by overlapping system. Here, we
consider the problem with non-overlupping system.

In this paper we extend the previous results and obtain a B-feasible sequence
$ =818 ...5p,where D= Z;‘_':, Dy for min-max-absolute problem such that the
restricted ‘mappings satisfy Slufnppy ¢ 5 —> w(ngDy) forallt =12, . .. m and has the

least maximum deviation, i.e., F(s) < F(s) for any sequence § = 51 82. .. 85p satisfying
EL‘(-"’;.D;}: E—) u{nth.)

The restriction $|ufn,.pp OF the super sequence s to any given subsequence u(n,,D,),

t=12, ..., m,yields the sequence u(n,D,). Therefore, the super sequence & that
contains u(n,D),) as its subsequence is order preserving with respect to the m-chain
constraints u(n,,D,) as its subsequence is order preserving with respect to the m-chain
constraints u(ny, Do) <u(n,Dy), ,ifl < l'foralll=1,2,...,D,andt=1,2,...m.
We call such a sequence by order-persevering super sequence. By construction each

subsequence represents a chain and there exist at most D constraints all together in these
chains.

4. An Efficient Scheduling Algorithm

To study the single-level min-max problem with chain constraints, let us consider the
collective demand rates of all together n= Emin, models with total demand

D=3%m, D, in the union of all chains. Then for given bound B, we calculate the

permissible intervals of time-windows [E(i, j), L(i, j)]. where i=1,2,..., n: I=172,
-+« d;, (see Lemma 1) using the known algorithm of STEINER / YEOMANS [15]. But our
chain constraints imposed in min-max-absolute sequencing problem are not included for
calculating these time windows yet. Therefore, it is straight forward that these time
windows must be feasible without chin constraints (see Theorem 1) for this data set.
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To ensure that the given bound B which is a target variable value for the objective
function is feasible for the super sequence to be delivered, a further test is required. We
reduce min-max-absolute-chain sequencing problem to a single machine scheduling
decision problem with release times, due dates and chain constraints. Given any bound
B for min-max-absoluté-chain problem, we ask does there exists a feasible solution of
the single processor scheduling problem 1| r;, chain| L with L, <0?

Here considered the problem 1|r;, chain | L, . the time windows are represented by
the intervals [r;,d;] = [E(s, j), L(i, j)] calculated as a function of the given bound B. The
chain constraints are given by the subsequences UJZ; {u(n,, D, }f’z'[ } that may be repre-
sented by the following graph. Define a directed graph G = (V. &) with the vertex set
V=Up; {u(n,, D, )g, }. There exists an arc in & from u(n,D,), to u(n,D), if the
precedence relation u(n,,D,), < u (n,,D,);, is satisfied.

HorN[7] formulated O(nlog n) time algorithm to the single machine scheduling problem
1| r;, chain| Lumax. His rule, also called earliest due date (EDD), at any time schedules
an available job with the smallest due date. For implementing this rule to 1| r;, chain|
Luax one needs to modify the due dates. In this modification, if job k is the immediate
predecessor of job / in any chkain and d;, = d; -1 < dy, denoted by k — I, then the due

date d; has to be replaced by the modified due date d;. A proof on the validity of
optimality on L, objective makes the use of interchange arguments.

Following algorithm is proposed for the mim-max-absolute-chain sequencing problem,
(see also DHAMALA/KUBIAK [5]).

Algorithm 1 min-max-absolute-chain-algorithm
Given: df fori=1,2,...,mandt=1,2,...,m;
an upper bound B for min - max - absolute - chain-problem;
Chainy, Chainy, . . ., Chainy, . . ., Chain,;
Update:
rumber of demands n =¥ n,;
demandrates d; for i=1,2,...,n;
total demand D=L, d;.

Step 1.  Calculate windows [E(i, j), L(i, j)] forj=1,... . d;andi=1,...,n by
. STEINER / YEOMANS [15].
Step 2. Modify the due dates L{i, j):
If (i) = (1)), then L{i, j ) : = min {L(i, j).L(", j')}-1}.
Step 3.  Schedule the jobs by EDD-Algorithm of HORN [7].

Proof:
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Owtpat : B feasible for (n,D) if Ly, < 0. _ 1

A the first two steps require O(D) time and the Step 3 costs O(D log D), the overall
sme complexity of the min-max-absolute-chain-algorithm is O(D log D). An EDD
algorithm in Step 3 applied to modified due dates by Step 2 is called modified EDD
algorithm.

Following theorem proves the correctness of Algorithm 1, (see also DHAMALA/
Kuniax [5]).

Theorem 2 Let B be a target value for the objective function of min-max-absolute-
chain sequencing problem. Then, if the modified EDD algorithm finds an optimal
solution with Ly < 0, then min-max-absolute-chain-algorithm finds a B-feasible solu-
tion to min-max-absolute-chain sequencing problem.

Proof: Suppose s = s; s - - - sp be a sequence obtained by min-max-absolute-chain-
algorithm such that Ly, < 0. That is, each job k=1, 2, . .., D is scheduled in the proper
window and none of the job is delayed. If 5 is infeasible to min-max-absolute-chain
sequencing problem, then | x4~2; k| >B for some praduct copy (i j) with k=12, ..., D
andi=1,2,...,n Butthisis impossible by the constriction of time windows. u}

If the first copy (i,1) of the product / has to be completed at position k. then it holds
|2 bor;] =1-rie Therefore, the sharp lower bound 17y on a target value B is still
valid. An optimal solution to the min-max-absolute-chain problem has to be determined
by applying binary search of the target value B in the interval [1— 7max, Bl

One way to give an upper bound to the obtained super sequence is 1o put given
sequences U= {u(n, D, )f‘,l} one after another and then calculate

B = max {| s —hr [ 1.2,....nandk=1,2,...,D}.
i,

To calculate an upper bound on the target value B of the super sequence s, we study also
the properties of batch sequences. A batch w is a factor of sequence s consisting of the
same product copies which cannot be extended either to the left or to the right by the
same product type copy. The cardinality |w| is the batch size of the batch w in s.
Clearly, longer batches reduces the number of setups provided sufficiently long buffer
size.Given an instance (n,D), we consider a batch sequence s with exactly n-batches,
say s = Oiy Tis .« . Fta where o;, represents a batch with respect to the product type

=12, asme

Lemma 2. Let s= 04, Gip ... Tix be a sequence with batches oi fort=12,...,n
Then an upper bound on the target value of s is dyx (1= Truax)-

Proof: For any product model i = 1,2,.. ., n with demand d; and j=1,2,...,di,
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J=kn if j2kn
ki —j if j<ky
and any positive integer k', we have |j —kr; | <d,—d,r, forall i andj. As |j —kr;|<
d;(1-r;) for each (i, j), it follows that the deviation with respect to product / is not
more than d; (1 — r;) . Then the statement follows by considering the batch of maximum
length d,,... a
Corollary 1 4n upper bound on the target value of the super sequence s obtained by
min-max-absolute-chain-algorithm is dyg, (1 = e ). Moreover, the tight lower bound
91— Toae

""’h‘“’”|f“"’?l={ As d; —di; 2d; —(d; +K'); for any model i

The bound max;;, {|x; ,—kr; | :i=1,... , nandk=1... .. D} obtained making use
of the super sequence improves the bound d,, (T-r1s) Obtained by batch sequences.

However, the latter yields an explicit bound of the super sequence. DHAMALA/ KUBIAK
[5] prove the following result.

Theorem 3 An optimal solution to the min-max-absolute-chain problem can be
determined testing at most O (D dyu (1= ryw)) sequences each with time complexity

(D log D).

Proof: An optimal solution to the min-max-absolute-chain problem can be determined
by applying binary search in the interval [1-r,,., d(1-r,...)]. But a feasibility test
requires O(D log D) time. 0
As the HORN's [7] algorithm works for the problem 1|ri, prec| Lo, our approach is

applicable to the min-max-absolute problem with precedence constraints as well. The
time complexity of the algorithm does not increase.

Given two sequences u(3,11) = bebbeebebbe and w(2.2) = aadaaaada, the super
sequence s = abcabdabcaebacbadbea preservers the orders of the subsequences:
Sup,ny = bebbeebebbe and sy,00 = aadaaaada. Moreover, the obtained super

sequence s is optimal as B= 1-r,_ = 1--L- = 0.65 is tight. Note that first subsequence
q max 20

of the input subsequences is not optimal: [3-4 x ﬁ] =79[- > Iil for the 3rd copy of product

b. But the sequence u/(3,11) = bebebebebbe is optimal with upper bound B =L,

Consider an example, on the other hand, to illustrate that not each optimal sequence
necessarily preserves the order of the input subsequences. Given two EDD-optimal
subsequences u(2,3) = bab and u(2,3) = ded, the super sequence s = dabcbd is EDD-
optimal but does not preserve the order of the subsequence as s, 3, = abb = bab. The

tight lower bound of the super sequence s is B=1-r,,, = 1-Z=2 . The EDD-optimal
super sequence s = dbacbd is order preserving.
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Following two lemmas illustrate some properties.

Lemma 3. Any EDD-optimal sequence's= s s, . . . sp with total demand L satisfies
the following properties for a target value in [1-r,,,., 1]

& Only the first (last) copy of a product may startat q =0 (q=D -1)

b E(i,j) < E(i,] +1) and L(i, j) < L(i, j +1) for every j and i.

Lemma 4. Let D, be total demand of any subsequence u of a super sequence s of total
demand D for any floor or ceiling function H on nonnegative numbers, it holds H(xD,)
< H(yD) if and only if H(xD) < H(yD).

Because of which we conjecture that given any number of optimal sequences for min-
max-absolute problem with B = 1, there exists an optimal super sequence with B = 1
which preserves the order of the subsequences.

5. Concluding Remarks

In this paper, we assumed a number of non-overlapping sequences in the mixed-model
production systems. With respect to those input sequences as constraints, we presented
an efficient algorithm which finds an optimum solution (sequence) to the maximum
deviation JIT sequencing problem. Our result is carried out based on the reduction of
JIT sequencing problem to a single machine scheduling problem. Earlier results of
Horwn [7] and STEINER/YEOMANS [15] were applicable for solving our problem. It is
open whether the min-sum problem with such constraints and/or min-max problem with
overlapping sequences as constraints are efficiently solvable.

REFERENCES

(1] Brauner, N., and Crama, Y., The maximum deviation just-in-time scheduling
problem; Discrete Applied Mathematics 134 (2004) 25-50.

2] Brauner, N., Jost, V., and Kubiak,W., On symmetric Fraenkel's and small
deviations conjecture, Les cahiers du Laboratoire Leibniz-IMAG, No. 54,
Grenoble, France (2004).

3] Corominas, A., and Moreno, N., On the relations between optimal solutions for
different types of min-sum balanced JIT optimization problems, INFOR 41 (2003)
333-339.

4] Dhamala, T.N., Kubiak, W., 4 brief survey of just-in-time sequencing for mixed-
model systems, International Journal of Operations Research, submitted.

%1 Dhamala, T.N., Kubiak, W., Optimal just-in-time sequences for mixed-model
mudti-level production, Working Paper, Memorial University of Newfoundland,
Canada, (2005).

& Glover, F., Maximum matching in a convex bipartite graph, Naval Research
Logistics Quarterely 4(1967) 313-316.

. Hom, W.A,, Some simple scheduling algorithms, Naval Research Logistics
Quarterely 21 (1974) 177-185.



181 K:mlyov M.Y., Kubiak, W., and Yeomans, J. ., 4 mmmmmcf
Rcﬁm%hlﬂ (200&)‘2’39—-3}6

[9] Kubiak W., and Sethi, S. P., Optimal just-in-times schedules for flexible tranfer
lines, International Journal of Flexible Manufacturing Systems 6(1994) 137-154.

[10] Kubiak, W., C)fcfw_ Jjust-in-time sequences are optimal, Joumnal of Global

Optimization 27 (2003) 333-347.
[11] Kubiak, W., On small deviations conjecture, Bulletin of the Polish Academy of
Sciences 51 (2003) 189-203.

[12] Miltenburg, J., Level schedules for mixed-model assembly lines m;mt—m-ame
production systems, Management Science 35 (1989) 192-207.

[13] Monden, Y., Tbyﬂamdtdcﬁan systems (Industrial Engineering and Management
Press, Norcross, GA, 1983).

[14] Steiner, G., and Yeomans, S., Optimal level schedules in mixed-model multi-level
.ﬂTmemb{vmtzmmﬂhpegg&:g,EmopunlowmlofOpammﬂmeuh%
(1996), 38-52. T

[15]) Shamer. G and Yeomans, S., Level schedules for just in time p."'

Aanagement Si ',\__3!!(1993). T28-735.
.assignment problem, Discrete Mathematics 32 (1980)

[16] Ti 'memau, R.' The chairman
323-330.

ANk A DHAMALA.

institute/of Sciénce and Teckinology
Tribhuvan University,
Kathmandu, Nepal.




The Mepai Math. Sci. Report
Vol 3¢ Ne.l. 2005. -

Invariant and non invariant hypersurfaces
of almost Lorentzian para contact manifolds

HARSIMRAN GILL AND K. K. DUBE

Goldberg, S. 1. and Yano studied and defined Noninvariant Hypersurfaces of almost
contact manifolds and has become subject of sufficient interest and Sato (1976) studied
about a structure similar to almost contact structure. In present paper our aim is to study
Invariant and Noninvariant Hypersurfaces of almost Lorentzian Para contact manifolds.

Introduction. Let V, be an n —dimensional differentiable manifold endowed with a
tensor field @ of type (1.1) a vector field U and a 1-form w such that

(1.1) =1+u® U, u(l)=-1,¢ U=0
©O¢ =0, rank ¢ =n-1.

Then ¥, is said to have an almost Lorentzian Para contact structure. If in ¥, there exista
Remannian metric g such that
(12) u(X)=g X0,

g X, g V=g (XY +uX) u(Y),
Then ¥, is said to have an almost Lorentzian Para contact metric structure [4]. We say
that the almost Lorentzian Para contact structure is normal if
{1.3) [¢]-U® du=0.
Where [¢,¢] is the Nijenhuis torsion of ¢. -
An almost Lorentzian Para contact metric structure is said to be Lorentzian Para-
Sasakian,
(14 (D $XD) = u(VX + 24 (Ou(Y) U+ g (XN,
where D denotes the Riemannian connexion of g([1],[2]). An almost Lorentzian Para
contact metric manifold is said to be a closed almost Lorentzian Para contact metric

manifold if u is closed. Further if|
(1.5) Dx U= gX.
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Then it is called a Lorentzian Para contact meme manifold ([2], [4]). It is observed that
a Lorentzian Para-Sasakian manifeld is a Lorentzian Para contact metric manifold.

An almost product manifold is a differentiable manifold which has a (1,1) tensor field J
satisfying the condition,

(1.6) IE=1

Moreover if there exist a Riemannian metric g such that,

(1.7) SUK I =g (D),

then it is called an almost product metr c manifold. Let D be the Riemannian connexion
of g. then the manifold is said to be an almost product almost decomposable manifold if,

(1.8) (D D=0

Consider an almost Lorentzian Para contact manifold ¥, and let ¥,, be an orientable
hypersurface of ¥,, and B the differential of the immersion I of ¥ into ¥/, LetX,Yand Z
be tangent to ¥,,and C a unit normal vector.

Then we have ; !

(1.9) $BX=BFX +a(X) C.

Where F is a (1,1) tensor field, and cwa 1 - form on ¥,, If « = 0, then ¥, is called a non-
invariant hypersurface of V). If « is identically zero, then ¥, is said to be an invariant
hypersurface, that is, the tangent space of ¥, is invariant under ¢ [3].

The metric g of an almost Lorentzian Pam contact metric manifold induces a
Riemannian metric G on the Hypersurface ¥,, given by,

(1.10) G(X)Y) = g(BX.BY).

Further the symmetric affine connexion D on V,, induces a symmetric affine connexion
D on the hypersurface V,, such that,

(1.11) Dy C=B(Dy 1) + h(X,NC,

where h is a symmetric tensor of type (0.2) called the second fundamental form of the
hypersurface 1. We have,

(1.12) Dyy C==BHX + W(X)C,

where Wis a | - form on I, defining the connexion an affine normal bundle ana H is a
(1,1) tensor field on ¥,, such that g (HX)Y)=h(X.Y).

2. Noninvariant Hypersurfaces of Almost Lorentzian Para Confact
Manifolds.

Let V%, be an almost Lorentzian Para Contact Manifold with the structure
tensors (¢ .U, u), and V,, a non-invariant hypersurface of ¥,. In what follows we
assume that U is nowhere tangent to ¥, and so we can take C = U, then (1.9) takes the
form,

@ty #BX = BEX+ a(X)U.
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Theorem 1. If V,, is a noninvariant hypersurface of an almost Lorenizian Para Contact
mandold ¥V, with U nowhere tangent to Vy, then Viw admits an almost product structure.
Proof : Applying ¢ to both sides of (2.1), we get

_ ¢*BX= ¢ BFX+ ¢(a(X) Up).
From (1.1) & (2.1) we have

BX + u(BX)U = BF'X + a(FX)U.
Now equating the co-efficient of above equation we have,
22) Fx=X,
23) u(BX) = o (FX).
Thus F acts as an almost product structure on V.

Theorem 2. If'V,, is a noninvariant hypersurface of an almost Lorentzian Para contact
melric manifold V,, (ﬁ.‘U, u, g), then V,, is an almost product metric manifold.

Proof : From Theorem (1) it follows that ¥, has an almost product structure F, Let G
be the induced metric in V,_,_,, that is,

! 8(BX.BY) = G(X,Y)
Now we define a metric on ¥, by

G*X.Y) = GXY) —a(X)AY).

GHFXFY) = G(FX FY) ~a(FX) a(FY).
Applying the condition of equation (1.10), (2.1) & (2.3) in above equation we have,
GYFX.FY) = g(BEX, BFY) - u(BX) u(BY),
= g(¢ BX —a(X)U, ¢ BY —a(Y)U) — u(BX) u(BY),
= g(¢ BX, ¢ BY) ~a(X)a(Y)~ u(BX) u(BY)
Applying the condition of equation (1.2) in above equation
= g (BX.BY) + u(BX) u(BY) — o (X) o (Y) - u (BX) u (BY),
=g(BXBY)~a(X)a()),
=G* (X))
Hence G* is the metric which makes ¥, an almost product metric manifold.
Theorem 3. Let V,, be a noninvariant hypersurface of Lorentzian Para contact metric

Then we have,

manifold V., then,
ir)) (a) F=-H, (b)a=W
Preof @ Since ¥, is a Lorentzian Para contact metric manifold, we have,

D;}x Up‘—' ¢BX
Ui (1.12) and (2.1) we have
—BHX + w()U = BFX + a(X)U.
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Theorem 4. If V,, is a noninvariant hypersurface of a Lorentzian Para-Sasakian
manifold V., then, g .
(Dy FY¥)=a(FN)X ~a()FX,
&(BX.BY)=h(X,FY)+(Dya)¥)+a(X)a(¥)-2a(FX)a(FY)
Proof : We know that
(Dgx$)(BY)=Dpy$ BY —4(Dpgy BY).

Using equation (1.4), (1.9) & (1.11) in the above equation we get,

U(BY)BX +2u(BX)u(BY)U + g(BX.BY)U =Dy (BFY +a()U)

- $(BDyx Y+ HX.1)U)

= Dyy BFY + Dgxa(Y)U ¢ BDyY,

= B(Dy FY)+K(X,FY)U+(Dgya(Y))+a(¥)Dyx U~ BF Dy¥ ~(Dx¥)U,

= B(Dy F)Y)+{h(XFY)+ Daya(¥)-a(Dx Y)}U +a(¥ ) DaxU.
In consequence of equation (1.5) we have,

= a(_'g}F){m{h(x,m+bsxa(r)—a(b}in‘}v+a(r)¢ax,

= B(Dy F)(Y)+ {h(X,FY)+ Dgxa(Y) - a(Dx ¥} +a(Y)a(X)}U +a(Y)BFX,

equating the components we get

(Dy F)(Y)=-a(Y)FX +u(BY)X,
and =
WX, FY)+(Dya)(¥)+a(X)a(Y)=2u(BX)u(BY)+g(BX,BY).
From equation (2.3) we have
(Dy F)(Y)=a(FY)X -a(Y)FX,
WX, FY)+(Dya)(V)+a(X)a(Y)=2a(FX)a(FY)+g(BX,BY).
As an immediate consequence we have the following:
COROLLARY : Let ¥, be a noninvariant hypersurface of Lorentzian Para-Sasakian
manifold ¥, with the induced almost product structure F. Then V, is an almost product
almost decomposable manifold if and only if
a(V)FX =a(FY)X.
3. Invariant hypersurface of almost Lorentzian paracontact manifolds.
Let ¥,(¢,U, u) be an almost Lorentzian Para contact manifold and let ¥, be an invariant
hypersurface of ¥,,. Then, equation (1.9) becomes




INVARIANT AND NON INVARIANT HYPERSURFACES OF ALMOST ... 39}

¢ BX =BFX.
= what follows we study the invariant hypersurface with the following conditions:
(2) When Uis nowhere tangent to ¥,
(5) When U is everywhere tangent to ¥,
When U is nowhere tangent to V,,
Theorem 5. Let V,, be an invariant hypersurface of an almost Lorentzian Para contact
manifold V,,. Then V,, is an almost product manifold with u(BX) = 0.

Proof : The proof follows from theorem (1), for invariant hypersurface & = 0, then we
will get
3.1) u(BX)=0.

Theorem 6. Let V,, be an invariant hypersurface of an almost Lorentzian Para contact
manifold V... If V,, is normal then the almost product structure induced on V,, is
integrable. . -

Proof : We know that,
[¢.81(BX,BY)=¢*[BX,BY]+[$ BX ¢ BY]-$[¢ BX,BY]-$[BX 4 BY]
Using equation (3.1) and B[X,Y] = [BX, BY] in above equation we have
[¢.¢)(BX,BY)= BFz[X,I’]+B{FX.FY]— BF[ FX,Y]-BF [X,FY],

= BIF,F1(X.1),
further we have

du (BX,BY) = BX. u(BY) = BYu (BX) —u(B[X.Y])
=(.
Thus we can write,

[4.4] (BX,BY) ~du (BX,BY)U = B[F,F] (X.Y).
Hence the theorem is proved.

Theorem 7. An invariant hypersurface V,, of a Lorentzian Para-Sasakian manifold V,,
i an almost product almost decomposable manifold.

Proof : From theorem (5) it follows that V,, is an almost product manifold. Further,
theorem -3 gives that it is metric also. Now from (1.11) we have,

Dy BFY =BDy FY + h(X,FY)U,

=B[(DyF)Y)+F Dy Y]+ h(XFY)U,

Dy BFY = B(Dy F)(Y)+ BF DyY + h(X,FY)U,
32) DyyBFY - BF DyY =B(DxF)Y)+ h (X.FY) U,
From equation (1.4) we have

(D @) (Y)=u(Y)X +2u(X) u(Y)+g(X,Y) U,




140] HARSIMRAN GILL AND K. K. DUBE

(Dax§) (BY)=u(BY)BX +2u(BX) u(BY)+ g(BX, BY)U,
(Dyx$)(BY)=g(BX, BYU,
Dyy ¢ BY —$Dyy ¢ BY = g(BX,BY)U,
Dyx$ BFY ~$[BDy Y +h(X,Y)U]= g(BX,BY)U,
Dgy #m-—vﬁ:sf;_‘;,gh g(BX,BY)U,
Dyy ¢ BFY—BF DyY = g(BX,BY)U.
From equation (3.2) we have,
_ g(BX,BY)U = B(Dy F)¥))+h(X, FY)U.
Hence |
(DyF)(¥)=0.
. & (BX, BY)= h(X,FY).
When U is everywhere tangent to ¥,
Theorem 8. Let ¥,, be an invariant hypersurface of an almest Lorentzian Para contact
manifold V,. Then V, is almost Lorentzian Para contact manifold. Further, if V,, is
normal then V,, is normal. '
Proof : Since U is everywhere tangent to ¥, then in a unique vector field U* such that
u* (BX) = u(BX)
Then u* is a 1-form on ¥, Further, we have,
| BFX=¢ BX,
Which implies oy e
BF' X= ¢* BX=BX+u* (X) BU*,
That is F X=X+ u*(X)U*.
Also uMFX)=u(BFX)=u($ BX)=0,
|  uNU)=u(BU) = u(U) = -1,
BF(U*)=¢BU* = g U=0.
AU%=0.
Thus ¥, be is an almost Lorentzian Para contact manifold with the structure tensors (F,
U*, u*). =
N (BX, BY)=[¢.$] (BX, BY) —du (BX, BV)U,

a-ﬂd !
Which gives that,
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= $2B[X.Y1+[¢ BX.¢ BY]- $[BX ¢ BY] 4[4 BX.BY]
~{BX.u(BY) + BY.u{BXy+u(B [X,Y))U},
= BF[X.YJ+ [BFX,BFY] -BFIX.FY| -BF|FX.Y]
— {BXu*(Y) + B.Y.u*(X) +U*([X.Y]} BU,
= B{[FFIX.Y) ~du*(X.N)U*}.
Hence, if ¥, normal, then ¥,,. is also normal.

Theorem 9. If V,, is an invariant hypersurface of a Lorentzian Para contact metric
manifold V,, Then V,, is also Lorentzian Para contact metric manifold.

Proof : From theorem 8 it follows that ¥, is an almost Lorentzian Para contact
manifold with structure tensors (F,U*, u*). Let g* be the induced metric on V,,. Then
we have,

g*(FX, FY)= g(BFX, BFY) =g (¢ BX, ¢ BY)
Further we easily show that #* is closed. Finally, since ¥, is a Lorentzian Para contact
metric manifold, we have-

Dy U= $BX,

DyyBU* = BFX,
Which is in consequence of (1.11) becomes,
BDyU*+h(X,U*)C =BFX,

Where C is normal to V,.
Equating the components of above equation we have,

5XU‘= FX, I
& hXU"=0 |

that is

Which completes the proof.
Theorem 10. Let V,, is an invariant hypersurface of a Lorentzian Para Sasakian
manifold V.. Then V,, is a Lorentzian Para Sasakian manifold.
Proof : we have proved that V,, is a Lorentzian Para contact manifold, Now we have,
B(Dy F)(Y)=BDyFY - BF (DyY).
Which is in consequence of equation (1.11) and (3.1) becomes,
B(Dy F)(Y)=Dyy BFY ~h(X,FY)C~#(BDyY),
=Dy § BY —§(Dpy BY —h(X,Y)C)-h(X,FY)C,
= (Dgx#) BY +¢(h(X,Y)C)-h(X,FY).C.
Using equation (1.4) in above equation we have,
B(Dy F)Y)=u(BY)BX +2u(BX)u(BY)U
+g(BX,BY)U+@¢(h(X,Y)C)-hX.FY)C,
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= Blu* ()X +2u* (X) u* (HU*
+ g X, NU* + WX V)¢ C-h (X, FY) C.

Since C and U are linearly independent unit vectors, C can be thought of as eigen vector
of ¢ corresponding to eigen +or—and ¢ C =+ C.
Equating the tangential and normal components we have

(Dx F) (Y)=u*(Y) X +2u*(X) w*(V)U*+g*(X.Y)U*
h(XNgC=h(XFY)C. ]
Hence V,, is Lorentzian Para Sasakian manifold, Now we have.
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Submanifold of Codimension p of a
HSU-Structure Manifold

RAM NIVAS AND DHARMENDRA SINGH

Abstract : Hsu-structure manifolds have been defined and studied by Prof. Mishra [2]. Islam and
others. The purpose of the present paper is to study the submanifolds of such a manifold. It has
been shown that a submanifold of condimension p of such a manifold admits a para p-contact

Hsu-metric structure. Certain other interesting results have also been proved.

1. Preliminaries
Let V, be an n-dimensional differentiable manifold of class C”. Suppose
there exists on V,, atensor field F(= 0) of type (1,1) satisfying
(1.1) F?=a'l
where ‘a’ is any non-zero complex number and r a positive integer. Suppose further
that V,, admits a hermite metric G satisfying
(12) G(FX, FY) + a'G(X,Y)=0
for arbitrary vector fields X and Y on V,, . Thus, in view of the equations (1.1) and
(1.2) V, will be said to possess a Hsu-metric structure.
Let F(X,Y) is the tensor field of type (1.2) given by
(1.3) F(X,Y) = G(FX,Y).
The following results can be proved easily
()  FEXY)=-FXFY)= a’GX,Y)
(1.4)
(i)  FEXFY)+a" FX.Y)=0 and
FOGY) + FY.X)= 0
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Let D be the Riemannian connection on V, ; then
(1.5) DyY-DyY=[X.Y] DxG =0
Let N be the Nijenhuis tensor formed with F ; then
(1.6) N (X,Y) = [FX,FY] - F[FX,Y] - F[X,FY] + F?[X,Y]

A Hsu-structure manifold V, will be called a HK-manifold if the structure
tensor F is parallel i.c.
(1.7 @xF) (Y)=o0.

A sub manifold V,,-,, of condimesion p of the Hsu-structure manifold V,,
will be said to possess a para p-contact Hsu-structure if there exists a tensor field
f oftype (l 1) p(c‘) contravariant vector fields U p(c*) 1-forms u (p some finite

p
(1.8) : i:‘*!_f::aﬂ-_-._-.;z. ﬁ@
X=1

Also,

X

uof+z ex,,, =0 fU+Z e§‘,{=o
X=1 Y=1

Ly

(19 u(U)+Y, 0} 6y =a'sy
L=
where X, Y=1,2,... p, 6% denotes the Kronecker delta and 8% are scalar fields.
If in addition, the submanifold V,,_, admits a Riemannian metric g satisfying
. ) e gy el |
(1.10) YEX, V) + g (KY) + Y, u () u(¥)=0
A=l

we say that V,,_, admits a para p-contact Hsu-metric structure.
2. Submanifolds of Codimension p

Let Vy-p be the submanifold of codimension p of a Hsu-structure menifold
V, IfB denotes the differential of the immersion t: Vo, — V, a vector field X in
the tangent space of V,,_, determines a vector field BX in that of V. Let ?;(l,
X=12,...,pbep mutually orthogonal fields of unit normal vestors defined on
Vap- Thus, we have
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@n GBXBY)=EX.Y) GEBXN)=0 G(N,N)= 5}
The vector fields FBX and FN can be expressed by
X

15
(i FBX=BfX- ) u(X)N
x=1 X

1M~

() FN=-BU+Y 6IN
X X X

<
N

X
where [ is a (1,1) tensor field, u 1-forms and U vector fields on the submanifold
X

Vi-p - Operating by F on both the sides of (2.2)(i) and making use of equation (1,1)
and (2.2), we obtain '

Py Py i P i
a'BX=Bf*X~3" u(fX)N -3 u (X){-BU+Y 0IN }.
v=1 s L 7
Comparison of tangential and normal vectors gives
Py Y p
23) fP=a'1- Y u®U  uef+ Y 6¥y=0
X=1 X X=1
Multiplying both the sides of equation (2.2)(ii) by F and using again equation (1.1) and
(2.2), we get

¥ P P
a"N = —Bfﬂ—i u (U N} + 0y 4-BU+Y 02N
X { 0L (xJ'v é $ "y ; Y7 :
Comparison of tangential and normal vectors gives
Lo ¥ 2 Loz z
2.4) fu+> 85U=0 u(U)+Y 626y =a"s?
e ST ~ o il

Further in view of the equations (1.1), (2.1) and (2.2), if g is the induced metric
on V,_, then we have

AT X
2.5) X, fY) +a"gX.Y)+ 3] u(X) u(¥)=0
X=1
In view of the equation (2.3), (2.4) and(2.5), we have

Theorem 2.1. The submanifold Vu-p of codimension p of a Hsu-structure manifold
V. admits a para p-contact Hsu-metric structure.




Sumwmn is the Riemannian connection on V,, and D the
ifold V., . Then the equations of Gauss and

"“’Z h(X,Y)N

@7 Dgx N =-BHX) +2 ox N

¥Y=1
@8 by =fs_(ﬁcx>.v).
Suppose that the enveloping manifold V,, is a HK-manifold. Hence we have
(Dgx FXBY) = 0 or equivalently
Dgpx FBY = F Dgy BY.
In view of the equations (2.2), (2.6) and (2.7), the last equation takes the form

P Py '
Dex = {nfv-): LN } =F{anv+z YN }
X=1 x X=1 A
I ——
P ox - Px [ x
BDfY +Y h XfY)N-Y u (Y) {-B-t[{:g-+£ Ox N }

X=!

=BD,Y - Z u(D,Y)N+): h(x.‘n[-ami: e,’{r:}

x-‘l x Xﬂl Y=1

The bson of e Wnsslal veotons gives
LS JRANE P x
DxY +) u (YHX)=fDxY -3 h(X,Y)U
X=t X=1 x
@9 cmm*ﬁ*{ u(Y)HOO)+u(X,

IfN(X,Y) is the Nijenhuis tensor for the submanifold V,_, we can write
N(X,Y) = (Dgx £X(Y) gy £)X) + £(Dy £)(X) - £Dx £)(Y)

or equivalently
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A mecessary and sufficient condition that the submanifold V;,_,, be totally geodesic is
x ' ' '

that b (X,Y)=0(X=12,...p). Thus, in view of the equations (2.8) and (2.9) it

follows that Dy f = 0. Hence from (2.1) we have N(X,Y) =0.

But V,_, is said to be integrable if and only if N(X,Y) = 0. Thus, we have
Theorem 2.2. 4 fotally geodesic submanifold V., with a para p-contact Hsu-
structure of a Hsu-structure manifold is integrable
3. Curvature Tensor '

Suppose that W, X, Y, Z are arbitrary vector fields on an open set A in the
neighbourhood of a point of the sub manifold Vip- If L and L are the Riemann
Chrostoffel curvature tensors of V,, and V,,_,, respectively, we have

(3.1) L (BW, BX, BY, BZ) = L(W,X,Y.,Z)
Px X X X
+ 2, {h X2 b (W.Y) ~h (X.Y) h (W.2)}.
X=1
1f the manifold V, admits constant holomorphic sectional curvature C, we have
(3.2) L (BW, BX, BY, BZ)
c

= -;— [G(BW, BZ)G(BX,BY) -G(BX, BZ)G(BW,BY)

+ F(BX,BZ) F(BX,BY)-F (BX,BY) F(BW,BZ)

+2 'F(BW,BX) F(BY,BZ)].
From equation (1.3) and (2.2), it can be proved that

F(BX,BY) = f(X,Y) def g(fX,Y)
Hence in view of the equations (2.1), (3.1) and (3.3) the equations (3.2) takes the
(34) L(W.X,Y.Z)

= £ eV DEKY) 5K 2RV + 102 TV
- TXY) T(W,2)+2 'T(WX) 1(Y,2)
il ¢ X X X
+ 3, {h(XY)h (W,Z) ~h (X,Z)h (W,Y)}]

X=1

Thus, we have
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Theorem 3.1. Let V, be an Hsu-structure manifold of constant holomorphic
sectional curvature C. Then the curvature tensor of the submanifold V,_, satisfies the
equation (3.4).
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On the compact support of solutions to
a nonlinear long internal waves model

MAHENDRA PANTHEE®

Abstract; We use complex analysis techniques to prove that, if a sufficiently regular solution to a
model that governs the unidirectional propagation of long internal waves in a rotating
homogeneous incompressible fluid is supported compactly in a non trivial time interval then it
vanishes identically.

Key words: Dispersive equations; unique continuation property; smooth solution;
compact support. '

2000 Mathematics Subject Classification: 35Q35, 35Q53.
1. Introduction:
In this work we are interested in studying the following initial value problem (IVP):

{ (g = Pruxex +(u2'>z)x -yu=0, xteR
#(x,0) = u,(x),

where ¥ = sz t) is 2 real valued function znd y, f are constants. This model was intro-
duced by Ostrovsky in [12] which describes the propagation of weakly nonlinear long
surfsce and internal waves of small amplitude in a rotating homogeneous incom-
pressible fluid. In literature, this model is also called as Ostrovsky equation. The
parameters y > 0 and J describe the effect of rotation and type of dispersion respec-

tively. The value =1 describes negative dispersion for surface and internal waves in
the Ocean and Surface waves in a shallow channel with uneven bottom. The value 5=1
describes positive dispersion for capillary waves on the’ liquid surface or for magneto-
acoustic oblique waves in plasma [1], [5], [6].

(.n
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Several authors have studied this model in recent literature, see for example
[11,[5).[6),[111,[17] and references there in. In particular, Cauchy problem associated
with (1.1) has been studied in [17].

In this work we are concerned about the unique continuation property (UCP)
for the model (1.1). There are various forms of UCP in the literature, see for example
[21,(81,[91,[10],[15]and references there in. The following is the definition of UCP given
in [15], where the first result of UCP for a dispersive model is proved.

Definition [15]. Let L be an evolution operator acting on functions defined on some
connected open set Q of R” x R,. The operator L is said to have unique continuation
property if every solution u of Lu = 0 that vanishes on some nonempty openset O
vanishes in the horizontal component of € in Q.

Much effort has been used in studying UCP for various models in recent
literature, for example [2],[31,[4],[7].[8].[9],[ 10],[13),[14],[15),[16]and [18] are just few
to mention. [n most cases Carleman type estimates are used to prove UCP. Recently
Bourgain in [2] introduced a new method based on complex analysis to prove UCP for
dispersive models. Although, by using Paley-Wiener theorem, the UCP for linear
dispersive models, with this method, is almost immediate, the same is not so simple
when one considers full nonlinear model. Some extra and technical efforts are
necessary to address the case of nonlinear model. In this work we use method in [2] to
prove that, if a sufficiently smooth solution to the IVP (1.1) it supported compactly in a
non trivial time interval then it vanishes identically. In some sense it is a weak version
of the UCP given in the above definition. Due to technical reason (see proof of
Theorem 1.1, below) we consider the negative dispersion case i.e. #=-1, in (1.1). The
main result of this work reads as follows:

Theorem 1.1: Let u € C (RHXR)) be a solution to the IVP (1.1) with s > 0 large
enough. If there exists a non trivial time interval 1= [~T, T| such that for some B> 0,

suppu(f)c[-B,B],Y 11,

thenu=0.
To prove this theorem we write the IVP (1.1) as
(1.2) {"t“ﬂ“mﬂuz)rrl)}'wﬂ.
"(xlo} = uo(x)'
Now, we use Duhamel’s formula to write the IVP (1.2) in the equivalent integral form
(13) u(t) = Ultug - j’;ua ~)u?)()dl .
where U(y) is the unitary group describing the solution to the linear problem
1.4) {u, ~ Pl =YD 7 u=0
u(x,0) = up (x),

and is given by

ns

A

b !
e
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1 i(xE-(BE3+D)1) .
1 =y =L B [+ ?
(15 VO (s) = e Jig ilg (£)dE.
Note that following are the conserved quantities satisfied by the flow of (1.1):
{1.6) IBI u(x,1)[*dx. (momentum)
(L.7n IB Bui+% '(D; lu)2 +3uldx.  (energy)

We organise this article as follows. We establish some preliminary estimates in
section 2 and in section 3 we supply the proof of the main result of this work, Theorem 1.1.
Now we introduce some notations that will be used throughout this article. The

Fourier transform of a function /" denoted by f' is defined as
A 1 . 3
=— | e f(x)dx.
FO == [ e 1

We use H* to denote L?-based Sobolev space with index s. The various constants whose
exact values are immaterial will be denoted by ¢. We use supp f'to denote support of a
function fand f * g to denote the usual convolution product of f & g. Also, we use
the notation 4 < B, if there existsa constant ¢ > 0 such that A < ¢B.

2. Preliminary estimates

In this section we record some preliminary estimates that are essential in the
proof of our main result. The details of the proof of these estimates can be found in [2]
and the author’s previous works [13] & [14]. For the shake of clearness we just sketch
the idea of the proofs.

Let.us start by recording the following result.

Lemma 2.1: Let u € C([-T,T]; H5 (R)) be a sufficiently smooth solution to the IVP
(100 I for some B > 0, supp u(f) < [-B, B), then for all £, 6.€ R, we have

an () (£ +i8)| S €CI01B,

Proof: The proof follows by using the Cauchy-Schwarz inequality and the conservation
faw (151 The argument is similar to the 2-dimensional case presented in [13] & [14].

Now we define

22) u* (&)= s [u(0)(&)].
te

and

(2.3) m(&) = sup [u*(£")|.

§'2g

Considering the initial data u(0) sufficiently smooth and taking into account the
well-posedness theory for the IVP(1.1) (see for e.g,, [17] we have the following result.
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Lemma 2.2: Let u € C([-T,T]; HS(R)) be a sufficiently smooth solution to the IVP
(1.1) with supp u(f) c [-B, B], V t € 1 then for some constant B, , we have

By B
(2.4) m(&) s T+ 1ER
Proof: The proof follows by using Cauchy-Schwarz inequality, conservation law (1.6)
and well-posedness theory with the similar argument in the author’s previous works
3] & [14].

Proposition 2.3: Let u(f) be compactly supported and suppose that there exists t € I
with u(f) #9. Then there exists a number C > 0 such that for any large number 0 > 0
there are arbitrary large &values such that

2.5 m(g)> C (m + m) (%)

: |
(2:6) mE)>e ¢
Proof: The main ingredient in the proof of this Lemma is the estimate (2.4) in Lemma
2.2. The detail argument is similar to the one given in the proof of lemma in page 440 in
[2], so we omit it.

Now, using the definition of m(£) and Proposition 2.3 we can choose £ large

enough and ¢, € Jsuch that
' b 1

@7 l@t) @O =2 =m@>Clmsm @+ e ©.

In what follows we prove some derivative estimates for entire function. We
start with the following result whose proof is given in [2].
Lemma 2.4: Let ¢ : € — € be an entire function which it bounded and integrable on
the real axis and satisfies

| (£+i0)s B, £ 6<R.
Th&ﬂ, for fl € R+ we hpve
@8) 1415 B(supl#€)1) [1+110g (sup 16(91)].
24 &'25
Corollary 2.5. Let ¢ R be such that

2.9) 1618 [1+]1og ( sup |g&)[]”
§'245>0
(2.10) sup |(£' +i0)| S 2 ;’:‘;E [¢(&M),
1

§'2&

*PERL 2 BL

=
=
e
Pre
Fp
2
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=l
am sup [$(&"+i6)|S B( = [#E)1) [1+uog( A 1N

28
Proof: Detailed proof of this corollary can be found in Corollary 2.9 in [2]. So we omit it.

Now we state the last result of this section whose proof can be found in the
author’s previous works [13] & [14].

Corollary 2.6. Lett € I, §(z) = 1‘.@)(:), @be as in Corollary 2.5 and m(£) be as in
definition (2.3). Then for [@'|<|@| fixed, we have

2.12) |§'(& &' +i8')| S B [m(&) +m(& -] [1+ [ logm(£)]]

3. Proof of the main result

Now we are in position to supply proof of the main result of this work. The
main idea in the proof is similar to the one employed in [2], [13] and [14], but the
structure of the Fourier symbol associated with the linear part of the IVP (1.1) demands
special attention and some basic modifications.

Proof of Theorem 1.1: We prove this theorem by contradiction.
If possible, suppose that there is some ¢ € I such that u(f) = 0. Now our goal is to use
the estimates derived in the previous section to arrive at a contradiction.

Let#,, t, € I'with #; as in (2.7). Using Duhamel’s formula, we have

‘1 r I L
G ule)=UG-n)uw)-c [ Ul -0)6)

Taking Fourier transform in the space variable in (3.1) we get

A~ t BB+
i@ =e D iy @ar-
t _ m‘i
53 _“4,‘[ =i (- MBE ) G ')(f)d!
Let A= 1, —1; and make a change of variable s ="~ ¢, to obtain,

a1 (BE+Ly
o= P e

At (i AL-sX(8 002
¢3) ~aif [ e WSRO0 e
= R [y -eie [ie LD o0

Since u{r), 1 € I is compactly supported, by Paley-W:ener theorem, u(t, )(&) has
analytic continuation in € and we have
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-se{ pigsioy+2 M‘,}[

ﬂ(fz)(f'i'fa)r-ﬂ u(ty)(§ +i6) -
(.4) —a(§+lﬂ) J‘ B U R+ ) (& +if)ds].
Since, ,
gy Suadfs saly : AT e
B+ 0P+ Lo = e 300+ e w0~ - L05),
using Lemma 2.1, we obtain from (3.4)
-ar|38(£20-0%)-
R
—(3852-65- '
(3.5) —ci|E+i0) Io S 'Z*ﬁ]lu‘(sﬂ,)(gwﬁ)]&.
Now, let us select £ very large and 8= & &) such that | 8] = 0. ie.
5 — |0
(-6 I ﬂ«l |
Also, let us choose sign of & in such a way that
G.7) 61 < 0.
Now using these choices we get from (3.5)
-a(apeto-—22)
ce | € +i0)] -
—sbpsrg 18
(.8) ~-1£] L’, e 4'*") |u3(s + 4§ +i6)\ds .
Now considering the negative dispersion case, i.e., #= —1 and taking into account of
(3.6) and (3.7), we obtain from (3.8).
(322
- I“‘.l{iﬁ' 101+ f"W!)E{u(I,)(§+15)I
|&e| —s(3e20)+-29 )
(3.9) -1¢| I‘o € ( 407 |30 £5)(£ +i6)|ds

where '+ ' sign corresponds to As> 0 and '-' sign to Ar < 0. From here onwards we
consider the A7 > 0 case only, the other case follows similarly. Sincee™* <0 forx > 0
we can write the estimate (3.9) as,

T

Ti




ON THE COMPACT SUPPORT OF SOLUT

[551
L _)ions ey
e v
At 5322 Y _)p
G.10) -le1 | e B B e 0
Finally we write the estimate (3.10) in the following way
(321014219 ) o) —3{3«" —Z)iel
e 0 R u)(@)]- 161! 0 R )@~

= “(fl)(g"“e) _“(11 X&) -

At 2#9[
[T R o 0

G.11) T+ X8 .
=d=hL=1

In sequel we use the preliminary estimates from the previous section to get
appropriate estimates for [, /; and /5 to arrive at a contradiction in (3.11).

Now we use definition of #*(¢£) and the estimate (2.5) to obtain

€1 ], e S0 T )|+ 1+ )| @) ds <
A —s324—2 o
SIEIw*su)(@) [ e i ¢’+”)“df
w(s;h—?'—z el
48
<[&|(mam)(&) -
(35 g el
< 1Elmem@)
3¢%10)
. m@
S 380
Therefore we get,
m(&) M(f)
(3.12) L2 m(E) - 3|£6’I =

To obtain estimate for /> we define | §()|=(5)(2), for z € ©. Using (2.7) we get,
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(3.13) 16G2) = |HB)E)|= sup [4(E)|=m(&).
12161
Now, choose @ such that
(3.14) 18] B [1+|log m(£)[]-.
Using Corollary 2.5 we obtain ,
Ir <16| sup |Bity)(& +i8)].
E121€]

S |01 Bm()[1+]log m(£)|1!
< m() S & m(&).

Finally to get estimate for /3 we use Proposition 2.3, Corollary 2.6 and #as in (3.14) to

obtain A~ o~
[P (ty +$)(& +i0) —u? (1 +$)(&)| <

< [T FE - +i0)-iTn ¥ )€ ) i+ € d
< 101[ sup |00 +5)(E~¢ +i8) m(&)de’
1£'11&1

< [y Im@-mE-&Nm&)az
< m(E)ca+(m o m)()
< mE)(er+e S m(E).

Therefore,
L =l ~s(3¢’+—21;)lal
BElEmE [ e T @

1—¢
= || m(&)
b+ )ol
< 1¢Im@)
3¢%16)

< '_"”31‘:915 1sm(é).

Now, using (3.12), (3.15) and (3.16) in (3.11) and using the estimate (2.6) one gets.

7 Ve 4
(3.17) e_(3;2+ £2+02 fi 2 2E) M) m) 1,20,

3 15 153
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O the other hand, with the choice of £and & we have

(et Jionian |
G1%) e B g eI
Now from (3.17) and (3.18) we obtain
(3.19) gleliad 5 o @ .

which is false for || large if we choose @ large enough siich that -é-c | At |. This

contradiction completes the proof of the theorem.

g
1]
(o)
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Wandering Domains of Meromorphic Functions

A.P.SINGH AND A, SINGH

Abstract: We show in this paper that there exists a function /e M which has a k-connected
bounded and a k-connected unbounded connected wandering domains and other properties.

Keywords: Transcendental Meromorphic function, bounded and unbounded
k-connected wandering domains.

1.Introduction

Let M denote the set of all transcendental meromorphic functions with at lest
two polls or exactly one poll which is not omitted value. forn € N, fe M. Let f™
denote the nth iteration of . Thus f'= £ " =f(f ™), n=2,3,4 .. ..

The set {z: f" ) is normal in some neighborhood of z} denoted by F(f) is the
Fatou set and its complement denoted by J(7) is the Julin set. Clearly F( f) is open. Also
it is known that F(f') is completely invariant: ze F{ ) is and only if /' (z) € F( f).
Consequently if U is a component of F{ /) then f(U) is in a component ¥ of F( f). In
Bt 1) f(U) contains at most one point [6]. If Uy nUm = ¢ for n = m where, U, denotes
e component of F( f') which contains f (U) then U is called a wandering domain. If
L = U'for some n, then U is called a periodic domain (of period nif Uy= U and Uz U
fcl=12,.... 1)

The structure of periodic domain is well understood [6], and in contrast to it,
e resels corresponding to the wandering domain are still far from in 1976 by Baker
[1] Ssce then several examples of wandering domains with different properties have
beapvub}v:musanthorssuchas[z 3,5,8,9,10, 11].

For an entire function f it is known that a wandering component may be
simply connected or muinply connected. Also it is known that a multiply connected
wandering component is always bounded. Further that example of infinite connectivity
can occur [3]. Also it is open whether the connectivity may be finite but different from
one. However this need not be true for functions in class M. In fact, Baker, Kotus,

Yinian [4] have proved
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Theorem 1: Let k € N. Then there are meromorphic functions f;, 1< i <4, in the
class M and are such that

(i) N (f)) has a k-connected bounded wandering component.

(ii) N (f,) has a k-connected unbounded wandering component

(iii) M (3) has a bounded wandering component of infinite connectivity
(iv) N (f3) has an unbounded wandering component of infinite connectivity.

In the construction of the proof, the authors have exhibited meromorphic functions f;
and f; with one k-connected wandering domain U, satisfying the condition (i) and (ii) of
the above Theorem. Later Singh [11] constructed a meromorphic, function which has
infinitely many wandering component whose paths do not intersect. He proved

Theorem 2: Let k € N. There exists meromorphic function [ e M such that F(f) has
infinitely many k-connected bounded wandering domains each having distinct paths .

Theorem 3: Let k € N. These exist meromorphic function f € M such that F( f') has
infinitely many k-connected unbounded wandering domains, each having distinct paths.

Here the two functions of Theorem 2 and Theorem 3 may be different. In our
theorem we shall show the existence of one meromorphic function / which contains
both k-connected bounded as well as k-connected unbounded wandering components
having distinct paths.

2 Lemmas
In this paper we shall require the following lemmas:

Lemma 2.1: (p.131) Suppose that K is a compact in T and f is holomorphic on K, let
alsoe > 0. Let E be a sel such that E meets every component of ¢..— K. Then there exists
a rational function r with poles in E such that

|fz)-r@E)| <& zek

Suppose that E is a closed set in € and f is a function defined on E. Then f can be
uniformly approximated on E by meromorphic functions without poles in E if and only if
fean be uniformly approximated by rational functions on each compact subset of E.

Lemma 2.2: ([9],p.137): Suppose that E is a closed set in € and that zy z, lie in the
same component of C — E. Then for each function m meromorphic in © with a pole at z,
and for each & > 0 there exists a function m* meromorphic in C which is analytic at z,
has a pole at z,, has no other poles except those of m and for which

Imz) —m*(z)| <e,z€ E

Lemma 2.3. ([9], p. 140): Suppose that E is a closed set in © such that
i) @\ E is locally connected at o If the meromorphic function m has no poles on E,
then for each g > 0 there exist a rational function r with poles outside E and an entire

Junction g such that
| mz)-(rtg) (2)| <5 z€E.
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Main Results

Theorem 3.1: For any k € N, there is a meromorphic function f, which lies in class M
and is such that Fatou set has k-connected bounded and k-connected unbounded
wandering domains.

Proof: Let us choose n, k € N. Where k is a fixed integer,
Define g, = 107, ¢! =107"2
0 n=1

_ )
BN ey L
=l
Let O, denote the rectangle

0n={z:-10n-4k-5<Rez < 10n+ 5, |I, z| < 10n + 5}
and set :
Dp={z: -(10+4k) + 5, <Rez <~ (10 +,), |lz—10n| <4-7,}

U {z: Rez>10+p, |1,z-10n <4-p,}.
Let G, G,, G, contain two k- connected bounded and k- connected unbounded
domains defined as follows:

k-1

G,,=D,_,-[’Ul' {zeg:|z—(10ni + 4D

- k-1
S'IH;,.}U{UI{zE¢: | z+ (10 ni+ 41)| <1+ 7, H
i=]

G, ={z€G,:d(zdG,)>¢.}.
G, ={z€G,:d(z,0G,)>&)}.
Then clearly
G, cG,cG G,NnG,=¢ for m #n.
Farder G'={z€G:dz0G)> 1)
Set wiz) = =+ 10i so that y maps G onto G,+\.and y'(G*)c G, n e N.
Let 8(z) =4 (= + 5)° =5 50 that B, = B(-5,1) and B (-5, %) and let y be the constant
map defined by y(z) = -5.
Let the function / be defined on 7| = B,u G, U3 G, by
f=¢on B,
f=yon G
S =yondG;.
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Hence the assumptions of lemma 2.1 are satisfied by the function. So there is a
meromorphic function m,; with no poles on F; such that

0)) |m@)-4@)| <Lef,ze B,
@) lm@-v@)|<tel, ze G
(3) |m@-x@)<4ie, zeG

Since F satisfies the assumption of Lemma 2.3 there exists rational function r, with
poles outside F and entire function g; such that

4) |mi@)-(ri+ @)@ < L &}, forze Fy
Applying lemma 2.2, we can choose 7, so that it has exactly one pole in @ ( 1-3*,, uD,)at
say a;=10i € 0, \-(E‘,Uﬁl )- We can clearly suppose that r, really has a pole a, since

the addition of A/(z—a,), where A is a sufficiently small constant will bring this about
without spoiling the approximation properties listed above.

By similar arguments to those which lead to (1) to (4) we obtain a sequence of functions
my, =r,+ g,, where r, is rational and g, entire and such that

© i)+ 8,0l < 3.7 € Bor V(U D)

) | 3 (rul2rtg, @) -w@) | < 63,2 ¢ G,
m=|

o) | Y (rul2)tgn(2)) - %) < £, 2 € 3G,
m=1

Moreover we may assume that r,(z) has precisely one pole in the component of

¢1(0..,u U D, ), which contains
m=1

a,=10ni € 0,1 (0, U( Uiﬁ.n
and that this pole is indeed at a,.
It follows from (5) that f(z)= 3" | ru(z)*ga(2)| is meromorphic in ¢, with
m=]
infinitely many poles. The disk B, is f~invariant and B,  N( /) and hence G*c N ().
From the above construction we know that G contains two components, say
G‘T and G; , k-connected bounded and k-connected unbounded components

respectively. If Hy, H, are the components of N( /) containing G? and G; respectively,

we have
fo—=> o forze H
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and
Sform forze H,

Since (0 Gpe1) © B, and f(2 G,,,1) < By for all m, it follows that

J(Hy) © Gy, f*(Hz) © Gy and H and H, are wandering components of N( f).

As in [4] we can show that fis univalent on the set L,, and H, and H, are k connected
are bounded and k connected unbounded components.

From (4) and (5.5), /(L) > Gy S f"(Hu Hy).
G c(HiVH) D, =f"(Gu)cf™ (L))

where /™ is univalent in f(L,) and H, and H, are bounded by -Jordan curves.
Let

a;=-(10ni +4j), where 1 <j < k-1.

by= (10ni + 4 j), where | <j < k-1.

Denote by 4,,, B,,C, (Where i = 1,2,..., k-1) the components of the complements of
D, which contains a,b; and o respectively. Then the complement of A, U H, is the
union of

4, =(Uan, B, =(UBnc=(UC) i=12... k.
Then Az A, izj B +B,j=i
Since 2, ! E, are bounded by H| and H, respectively, H; and H, are k-connected
components.

Theorem 3.2: For any k € N. Then there is a mermorphic function f in the class M
such that Fatou set of fi.e. F([f) has infinitely many k-connected bounded and infinitely
many k-connected unbounded wandering components

Proof : Letus choose kn € N. Define
&= lo-ﬂ, £;= ]0—(n+3),
0 n=1

f, = n
Lol O TR
m=

Let O, denote the rectangle
Ou={z:-10n-4k-5<Rez<10n+5, |l,z| < 10 n+5}

and set

D, = {z: - (10+4k)y+n, <Rez <— (10 +7,)
| Ua2) =10n| <4 =5} U {z: Rez>10 +n, | ([z) =101 | <4-n,)}.




k=1
Gp=D, "'[{E, {zeg:|z—(10ni+4])|<1+7,}}

k=1
u’{g {ze¢:|z-(10ni+41) | < 1+7,}}]

G, ={z€G,:dz0G)>¢.)}

G, ={z2€G,:dz3G,)> s,).
Then clearly G c G} € Gyand G, "G, =¢ forn#m.and G, ,G., G contain
k-connected bounded and k-connected domains.

Let By=B(-5,1),and B, =(-5, L). L
‘The set of all natural numbers can be arranged as follows: 1
1 2 4 7 (
3 5 8 12
9 3 18
6 1 ¢
) \ {
that is of the form (ﬂ?z;‘l) 1 +pq+(-f-’-(%"-]l);p=o,1.z, o G2, ) 1
L
In fact a natural number lying in pth row and qh column (p=0,12, .., g=1,2,...)
_ el i
wouldbeM +1 *'PQ"'M-
2 2 | .I
Next, if# € N, let r = (r,) be the least positive integer such that ’(’2—*” > n and let [ |
r(r+1) ; . !
§ = ——— —n. Then n lies in row #, = r—s—1 and column #. = s+1. Thus without loss ‘
of generality we may denote the set G, by its place position G, or simply G. |
Let | |
Gog ={2 € Gy dz.ng) > 3
Forany z € G, ,, define
1 I 1 1
WM(Z)':Z"' F +~l—0r—+l + ..+W+(p+q+l)10£

where r = &;‘_l) +1+pg+ 9(4’2-.1)_
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Then v, maps G,y 0nto Gp.14, and
(Wpg O Wp1,40--.0 Yo .q)'(Ga,q Y Gy
Let ¢(z) = L (z+5)-5, then ¢ is a mapping from B, 1o B;

Let %(z) =-S5,
Foy= Bou gt:,l U oGy, and
). zeB
Joo1 =14 wou(2), zeGgy
wz),  zedGy,

Then by Lemma 2.1, there exists a mermorphic function my ;, with no poles on Fy
such that

3
® | moate) - 451 < 2k, z ¢ By
3
©) | masz) = wor(e)| < E"T‘ ze B,
& 51
(10) | mo,i (2) =X (2)| < —2*, z€dGy,

Also Fy, satisfies the condition of Lemma 2.3, so that there exists a rational function
ro, with poles outside /o and entire function g, such that

3
(an [ mo1(z) = (ro1 (@) t8,,@)] < -s;_.,‘ z € Fo,
Applying Lemma 2.2 we can choose 7o so that it has exactly one pole in
¢\(Byu b_tm ) say at ag; = 10i € Qg —( Ej uﬁo.:). Also we can suppose that rg,
really has a pole at ap,, for it is possible to choose A sufficiently small so that (11) holds

with rg, (z) replaced by the rational function rg (2) +

:Z - au.l

[ o S
By considering F,= Q_,w( U D,)v G, U dG, and
m=1 '

pe

— =1 __
0, 2€0Q,,9( U| D)

n=| | . .

h={ va@- Y((2)+g(2) zeG,
k=1
n-1

1)~ Y @)+ g @) 280G,
L k=1




[66] A.P.SINGH AND A. SINGH

and by the above argument, it is possible to find an entire function 2+(z) and rational
function 7,(z) which has exactly one pole in the component of T | Q:H v(UD,)

=]
which contains a, = 10, and this pole is at a,, and further

|7 +gu@) | <l ze _.-1 W ( U L_J;,)
m=]

| 2 17n@) + gul@) ~wa @) <63, z < G

m=1

| 2w (@) + gul2) ~x(2) <€3 2 € 3G,
m=1

o

Let/(z)= 3 (ra(2) + g,(2)). Then f'is meromorphic function having infinitely many
m=l

poles and so belongs to class M. Also /( B}) c B, and B, < F{f). Also
I G;'_ ¢) < Gp,, and hence G;,p c HY).

If Hoq Hyg,4 are components of F(f) which contains components of G:,q we have

S (Ho,g) = o0 and fP( H}, ) — o as p - w, Since f@G,,) < B, andf™@G,,)c B,
forall m. 1t follows that /" (H,,) < G,,,, and hence H,q and H; , are wandering
components of F{ f). As in Theorem 5.2.1 f is univalent in the set

I
Ly={z€ G,y dz 6G,,)> B"_}

+plg+1) which contains £ (H,,,) and 1 ( 3, )
and H,,, Hoq are of exactly k-connectivity.

where a = p(*;"hl)- +1 +p(3;+l)

Theorem 3.3: For any k € N. There exist two meromorphic function, say f and g such
that f has a k-connected bounded and a k-connected unbounded wandering domains,
say By, and By, such that B, ,, "\ By , = §, m # n, By w\ By o= ¢, m# n, where
By =1""(By1) andf"(B,;) =~ as n— w, i= 1.2 and there exists a doubly
connected wandering domain A of g such that

AcBy,,gA)c By,

LA /B es (B2.1), 8'(A) = f(By,1)

£l Br) ... 8 L B.), & () 1By ...
Proof: We first do the construction of ‘g”. Define € , = 107, &’ =102, ne N,
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0, n=1
= { nf &y N1
L m=l
Let B, denote the disc B(0,10n) and set
Gy = {z:|z-10n +5| <3-n,,| z— 100+ 5[ > 3+, }
G = {z € G,: dz6G,) > &, }.
G} ={z € G,:dz8G,)>¢e.}.
Ly={z € Gy: d(z.0G,)> 101"}, ne N.
Thus G,, Gy, Gy, are doubly connected domain such that
G} c Gy Gy, Gun G, =¢ form#n.

_ 2
write a, = 10n=5 and further Cy,, = 10n-9 + 7, + %‘l

Con=0nt5 + M+ "‘ii
so that C;_,, Cy, , lie in one of the components of C, \ G,
We set B, = B(-5,1) and By = B(-5, £).
Denote G* = {z € G, : d(z,0 G)) > -%}.
Note that y(z) =z +10 maps G, univalently onto G,y and y'(G*) ¢ Gnasn€N.
Let §(z)= L (z+ 5)’-5 so that B, = B(-5, 1) and Bj = B(=5, %). Let x(z) =5, so that in

parricuiar;x.('lij dG,)c By. By Lemma2.1 applied to K = (B waG, ua’ ), there isa

rational function R, such that

(12) |Ri () - 4@ | < e}z € By

(13) IR -y@) < &,2eG

(12) | Ry (2) -x(2) | < & , 2 € 8G,

and R, has poles in {a,, C;; C2;, %}. For n> 1, there is a rational function R, such that
(15) | Ra(2) | <32 € Byoy

(16) 12}&, @-vI< &,z e G

a7 | Y R (2) - X2 < €3, 2 €96,
m=1
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and R, has pole's in {a,, ai, CZ{ @},
(-]
It follows from (15) that g(z) = Y. Ry () defines & funetion meromorphic in ¢.
n=l

Since by (15) and (17), | g(z) + 5 | QZ &3 (sothat g (z) € B)) onevery 3G, while g
n=l

takes values larger than 5 on G, , it fuﬁows that g has poles in each G, and so is
transcendental and is in class M. _

We note that in B,,,| g(z) +5|<-;— +Z &3 <1 so that B, is g-invariant and B,  F(g). Now
£(G')cGyy . Hence G* F(g), g'(z)—> 0 as n — = for z € G* or more generally, in
the whole component A of F(g) such that 4 > G, Since g(8 G,..,) < B,, £"(2 Gyu1) < B,

for all m, it follows that g"(4) c Gy and A4 is a wandering component of F(g). Also as
in Theorem 3.1, we can show 4 is doubly connected. We now do the construction of i

As in Theorem 3.1 we choose k € N. Define 5,= 10" &/ = 10-"*2,

0, n=1
|

n Yo =T
m=1

Let O, denote the rectangle

0= {z|Rez|<20m,~10n-5 <[z <5 + 4k + 10n}.
And set
Dy = {z:| Rez—(20n-15) | <4~ p,, -5 <[,z <5+ 4dk}.
Dy ={z:|Rez—-(20n-5)| <4 -n,, -5 <I,z
: Let B,=B(-=5,1) and B; =(-5, ). Let Hy,, H| , H\ and Hs,, H3,, H3, bethe

k-connected bounded and k-connected unbounded domains defined as follows:
k-1
Hyy =Dy, | Ul {z€¢:|2-((20n-15) + i (5+4p)| < 1 + 1}
p=

H|, = (z € Hy,: dzoH,n)> ).

Liy ={z € Hy,: d(@H,,)> 10~y
And

_ k-1
Hyp =D\ U {ze ¢:[- Q0n5)+ 1G5 +4pl <1+ )
ﬁ'-
H;‘" ={ze H » :.d(z,aﬂz_,) )3:, }.
Hj, ={zeHy,:dz 0Hy,,) > 6.},
L;.u ={ze Hy,dz Hy)> Io—‘ﬂu}'-
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“Then clearly H{, cH| cH, H wNH, ,=¢, form=n,and
H; < H,,cHyp, Hyw\ Hyy =4, for m=nand
G} ={zeHy dzdH)> L},
G3 = {ze Hyy: diz, 0Hy)> 1},
Set y(z) =z +20, so that y maps H{, , Hj  onto H ., Ha e respectively

v (6 ) H . W(G)c H,,ysneN.
Let ¢(z) = L (z +5)*-5, so that
¢:B,—B; andy (z)=-5

Let Fi = BouH“uaH.,uHL,uaH;,
Define a function fon F; by

#(z) on B,

Fz)={w(z) on HjyUHj
x(z) on OHy \WOHy).

Exactly similar arguments as theorem [3.1] we can construct a transcendental
meromorphic functions f which has & connected bounded and unbounded wandering
domains say, B, , and By, such that By ,, N By y =, m#n, By O\ By =, m#n,

where By, =f"'(B;) and f"(B,;y—> ©asn— 0, i=172.
After construction of two meromorphic functions g and f: and its wandering
domains A and B, , and B,,; respectively, it is clear from the way of construction

Ac By, sg(A-)CBi] 1
£ <f(Bi), £A) < f By, £'A) < 17Br)
LA L (Br) .. A S " Bra) & A S Br) ..

Cor 1: For any k € N. there exists two meromorphic functions, say fand g such that /*

has a k-connected bounded and a k-connected unbounded wandering domains say |
By, and By such that By " By, = 9§, By By = 0, m# n, where B, =™ (B,_l) '
and f"(B,) »>wasn—>xmasn-—>w®, i=12.. andthere rsak~connec:edmbset

(wande-ring domain of g ) say A such that

AcByy,gd)c By,

g cfB1) £ (A) < (B, 1), £(A) <1 (B1.1)

EA S (Br) .. & A By, g"" (A f"(Bry) -..
Exactly on similar arguments we can prove
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Theorem 3.4: For any k € N. There exist two meromorphic functions, say fand g such
that f has infinitely many k-connected bounded and infinitely many k-connected unboun-
ded wandering domains and g has a doubly connected wandering domain say A such
that under the iteration of g, the domain A passes through all k-connected bounded and
k-connected unbounded wandering domains of f

3]
(2]
(3]
[4]
(5]
(61
[7]
(8]

[9]
[10]

(1]

REFERENCES

Baker, 1. N., An entire function which has wandering domains, J. Austral.
Math. Soc. 22(1976) 173-176.

Baker, 1. N., Wandering domains in the iteration of entire functions, Proc.
London Math. Soc. (3) 49(1984) 563-576.

Baker, L. N., Some entire functions with multiply connected wandering domains,
Ergod. Th. and Dynam. System 5(1985) 163-167.

Baker, I. N., J. Kotus, Y.Lu., Iteration of the meromorphic functions II, J.London.

‘Math. Soc. 42(1990) 267-278.

Baker, I. N. and A.P. Singh, Wandering domain in the iteration of composition of
entire functions, Ann. Acad. Sci Fenn. Ser A, I Math 20(1995) 149-153. '
Bergweiler, W., Iteration of meromorphic functions, Bull Amer. Math. Soc.
19(1993) 151-188.

Bergweiler, W., Wang, Y., On the dynamics of composite entire functions Ark.
Mat. 36(1998) 31-39.

Eremenko, A. and Lyubich, M. Yu, Examples of entire functions with patholo-
gical dynamics, 1. London Math. Soc. (2) 36, 1987, 458—468. _

Gaier, D., Lectures on Complex approximation, Birkhauser, Boston 1987.

Singh, A. P., Unbounded components of Fatou sets, Complex Variables 41(2000)
133-144.

Singh, A.P., Dynamics of transcendental meromorphic functions, Finite or
infinite dimensional complex analysis, Ed. J. Kajiwara, Z. Li and K.H. Shan,
Marcel Dekker (2000)479-494.

A.P.SINGH AND A.SINGH A. SINGH
University of Jammu, Central Department of Mathematics
Jammu., ‘Mathematics Tribhuvan,

J & K., India. Kirtipur , Kathmandu, Nepal.




The Nepali Math. Sci. Report
Vol. 24. No.1. 2005.

On Hypersurfaces of H Hsu - Manifold

GEETA VERMA

Abstract: In these papers [2], [3] and [4] we have studied some properties of hypersurfaces of H
Hsu - manifold. In this paper we have defined hyperbolic almost kahler manifold and studied its

hypersurfaces. It has been found that the hypersurface of hyperbolic almost Kahler manifold is
locally quasi-Sasakian manifold. Some results regarding the hypersurfaces of a flat H Hsu-
manifold have also been obtained.

Keywords: Hyperbolic Almost Kahler manifold, Curvature tensor, Reimannian
connection.

1. Introduction

We consider a differentiable manifold M" of class C* . Let there be a vector valued
linear function F of C®, satisfying the algebraic equation

(1.1 Fi=-dl,
where 'a' is a complex number.

Then F is said to give to M"a hyperbolic differentiable structure, briefly H
Hsu-structure, defined by algebraic equation (1.1) and the manifold M" is called HHsu-
manifold [5]. The equation (1.1) gives different algebraic structures for different values
of a. If a#0, it is a hyperbolic n-structure, @ = +1, it is an almost complex or an almost
hy6perbolic product structure. a = +1, it is an almost product or an almost hyperbolic
complex structure and a = 0, it is an almost tangent or a hyperbolic almost tangent
structure. In the second case 7 has to be even and in the second and third cases a" =1.

1f the H Hsu-structure is endowed with Hermite metric G. such that

(12) G(FA,Fu)=a"G(4,4)

Then {F,G} is said to give to M" hyperbolic Hermitee structure, briefly known
as H Hsu-structure subordinate to H Hsu-structure.
In a hyperbolic H-structure, if
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(1.3) (Ea,FXp)=0 or (E;, F)Fu)=0
is satisfied, then M” is said to be a hyperbolic Kahler manifold. £ is the Reimannian
If a hyperbolic H-structure, if
(1.4 (E2, FYu)+(ExF)A)=0
is satisfied, then M" is said to be a hyperbolic nearly Kahler manifold.
Let us consider M" and M" as the / Hsu-manifold and its hypersurface
respectively. Let b : M™ — M" be the embedding map, such that

peEM™"=>bpeM",
Let B be the corresponding Jacobian map such that a vector field X in M” at p,
BXin M" at bp. Let g be the induced Reimannian metric in M™. Thus we have
(1.5) G(BX,BY)ob=g(X.Y)
for arbitrary vector fields X} in M”.
(1.6a) G_(N,N)ob=l
(1.6b) G(N, BX)ob=0
for a unit normal to M™.,
If we put
(1.7a) FBX = B(fX) + u(X)N
(1.7b) FN=-BU
Then it can be easily seen that
(1.83) X=a" X +u(X)U
| (1.8b) u(fX)=0 |
(1.8¢c) ul)=d
(1.8d) fU=0 and
(19) g(X.V)=a"g(X.Y)~u(X)u(¥)
where; X' def fX and w(X)=g(X, U)

i.e. the induced structure in a general contact metric structure.
Let E and D be the Reimannian connexions in M" and M™ respectively, Gauss

(1.10a) EgyBY =BDyY +'H(X,Y)N
(1.10b) EgyN=-BHX, respectively[1].
where

H(X.Y) def g(HX,Y)
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Let R and K denote the curvature tensors with respect to the connexions E and
D respectively. The generalized Gauss and Mainardi-Codazzi equations are given by {5].
(1.11a) '"R(BX,BY,BZ,BW)ob="K(X,Y,Z, W)+
+a" H(X,Z) H(Y,W)=a""H(Y,Z) ' H(X,W)
(1.11b) '‘R(BX,BY,BZ,N)ob=a"{(DyH)(Y.Z)~(Dy HXX,Z)}

where
'R(BX,BY,BZ ,BW) def G(R(BX,BY,BY),BW)

On the hypersurface of a hyperbolic Kahler manifold subordinate of H Hsu-manifold

the following results hold [2].

(1.12a) (Def)Y = u(V)HX —"HX.NU

(1.12b) (Dy)(Y) =—"H(XY)

Agreement (1.1): In the above and sequal 4, g, v . . . will be taken as arbitrary vector

fields in the enveloping manifold and X, Y, Z, . . . as arbitrary vector fields in the

hypersurface.

2.Hyperbolic Almost Kahler Manifold

Definition (2.1): Hyperbolic Hermite manifold satisfying

(2.12) (E2F) V) +(EyF)v,A)+(E, F)(4, 1) =0

where "F(A, ) def G(FA,p1)

Will be called hyperbolic almost Kahler manifold, sub ordinate to H Hsu-manifold.
From the equation (1.7a), we have

(2.1)b) G(FBX, BY) = G (BfX,BY) + u(X) G (N, BY)

Differentiating equation (2.1b), covariantly with respect to BZ, then using the equations
(1.5), (1.6), (1.7a) and (1.10)a), we have

(22)  (Eg'FNBX.BY)ob=(Dgz,'f)X.Y)+'H(X,Z)u(Y)-"H(Y,Z)u(X)
Writing two other equations by cyclic permutations of X, ¥, Z, we have
(23)  (Epy'FXBZ,BX)ob=(Dy,'fNZ,X)+"'H(Z,Y)u(X)-"H(X,V)u(Z)

and
(24)  (Egx'F)BY,BZ)ob=(Dy, )Y, Z)+"H(Y,X)u(Z)~"H(X,Z)u(Y)
Thus we have the following theorem:

Theorem (2.1): If the enveloping manifold is a hyperbolic almost Kahler manifold, its
hypersurface is given by
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(2.5) (Do Y. Z)+(Dy fNZ.X)+(DZ, XX, Y)=0
Proof: Adding the equations (2.2), (2.3) and (2.4), we get
(26)  {(Enz'F)BX,BY)+(Epy' FXBZ,BX)+(E sy F)BY,BZ) job l
= (D2, X.2)+(Dy. XZ, X) +(Dz fXX.Y)

Using the equation (2.1)a) in the equation (2.6), we get the equation (2.5).
Corollary (2.1): Hypersurface of Hyperbolic almost Kahler manifold is locally Quassi
Sasakian manifold. |
Proof: Equation (2.5) proves the statement.
Theorem (2.2): For the hypersurface of hyperbolic almost Kahler manifold, we have
@n (Dx, Y . Z)+(Dy ' IXZ.X) +(Dz, FXX.Y )+

+H(Op NX~Dy NZIV+ Dy NZ—Dy fY, XY+

+' f((Dy X ~(Dy fXX,2)=0

Proofl: We have -
(2.8a) "X, V) =g(X,V)=="f(X,Y)
I and = l
| (2.8b) X, F)=a""f(X.Y) } s
Differentiating (2.8)b) covariantly with respect to Z and Using the equation
! (2.8) &gﬂiﬂ,
We get
(2.9a) (D2'f(X,Y)+'[((Dz f)X,Y)+'f(X ,(Dz YY) =a"(Dz'f}X.Y)
Similarly, writing two other equations, we have
(2.9b) (Dy 'fZ,X)+'f(Dy NZ,X) +'{(Z (Dy ))X)=a" (Dy 'f)Z,X)
(2.9¢) (Dy DT Z)+' f(Dy HY, Z)+'f(¥ (Dy HZ)=a" (D7 )X,Y)
' Adding the equations (2.9a), (b) and (c) then using the equations (2.8a) and (2.5), we get
the required result.
3. Hypersurfaces of Flat H Hsu-manifold
Theorem (3.1): The umbilical hypersurface of a hyperbolic General Differentiable (H
Hsu) manifold is of constant Reimannian curvature, iff the enveloping manifold is flat.
’ Proof: Let the hypersurface be umbilic, i.e.
'HXY) =g(X.Y) 1.

then (1.11)a), gives
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(3.1) 'R(BX,BY, BZ, BW) ob ="'K(X.Y.Z,W) +
+dglX)Y) g (Y,W) - d g(Y.Z) g (X, W)

If the enveloping manifold is flat, then (3.1) reduces to

(32) KXY, Z, W) = d{g (Y,2) g (X, W) - gX.2) g, )}

This shows that the hypersurface is constant Reimannian Curvature.

Conversely, if (3.2) holds, then using (3.2) in (3.1), we have 'R(BX, BY, BZ,
BW) =0, that is the manifold is flat.

Theorem (3.2): The scalar curvature of the umbilical hypersurface M" of a flat H Hsu-
manifold M" is given by _
(3.3) r=m(m-1)d

Proof: The unbilical hypersurface is of constant R reimannian curvature (by theorem
(3.1)). We have |
KXY, Z)= d{g(V,2) X-g(X, )Y}

From this we at once get the equation (3.3).

Theorem (3.3): The quasi-umbilical hypersurface of a flat H Hsu-manifold can never
be of constant Reimannian cuevature.

Proof: Let the hypersurface of a flat A Hsu-manifold be quasi-umbilical, then we can

always write.

G4 'HX.Y) = g (A1) + u(X)u(Y)
Using (3.4) in (1.11a), we have

(3.5) 'R(BX, BY, BZ, BW) ob="K(X,Y,Z,W) +

+d g2 g (W) -d g(V.2) g (X.W)
d g(,WuX) u(Z) + d g (X.2) u(Yyu(W)~-d" g (¥, Z) u(X) u(W)
Now,
KX Y.ZW)= dig(Y.Z)g(XW)-g(X2Z) g (Y, W)}
If d {g (Y, %) u(X) u(¥) u(Z) + g (X,2) u(Y) u(W) — g (¥, Z)u(X) u(W)
~g X W) wZ)} =0
Let @ #0 then
{g (Y. W)u(X) u(Z) + g(X.20u(Y)u(W) — g (¥.Z)u(X) u(W)
- g (X Wu(Y) w(Z)} =0
or gXMu@U+u(NuW)X-uX)u(W)Y -gXW)u(Y)U=0
or d’g(¥, W) + mu (Y) u (W) - u(Y) u(W) —u (Y) u (W)= 0
or dg(Y,W)+(m-2)u@)u(@)=0
or dY+m=-2)u(¥)yu=0
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or md + (m=2)a’=0 &
or 24" (m-1) =0 .

or a=0

But 420, thus the quasi-umbilical hypersurface can not be of constant Reimannian

curvature.

ge;or;m (3.4): If the hypersurface of a flat H Hsu-manifold of minimal variety, then

But the converse is not true in general.

Proof: Let the hypersurface be of minimal variety, then

1 . H=0,[1]
Since the enveloping manifold is flat, equation (1.11b) implies that
I (DxH)Y = (DyH) X=0
Contracting this equation, we get
. (divH)Y=Ytr. H=0 (since Tr. H=0)
: Conversely, if div. i =0, then from the last equation, we get
Yir. H=0 iie.  tr. H=constant
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