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Abstract: Mechanical properties are very important when choosing a material for a specific
application. They help to determine the range of usefulness of a material, establish the service
life, and classify and identify materials. The size effect on mechanical properties has been well
established numerically and experimentally. However, the role of the size effect combined with
boundary and loading conditions on mechanical properties remains unknown. In this paper, by
using molecular dynamics (MD) simulations with the state-of-the-art ReaxFF force field, we study
mechanical properties of amorphous silica (e.g., Young’s modulus, Poisson’s ratio) as a function of
domain size, full-/semi-periodic boundary condition, and tensile/compressive loading. We found
that the domain-size effect on Young’s modulus and Poisson’s ratio is much more significant in
semi-periodic domains compared to full-periodic domains. The results, for the first time, revealed
the bimodular and anisotropic nature of amorphous silica at the atomic level. We also defined a “safe
zone” regarding the domain size, where the bulk properties of amorphous silica can be reproducible,
while the computational cost and accuracy are in balance.

Keywords: nanoscale mechanics; size effect; amorphous silica; reactive molecular dynamics;
bimodular materials; anisotropic materials

1. Introduction

Mechanical properties are a subset of physical properties that are based on the laws of mechanics
dealing with energy and forces, as well as their effects on bodies. Mechanical properties help to
determine the range of usefulness of a material and establish the service life that can be expected,
but also classify and identify materials. Classical laws of mechanics assume that mechanical properties
are independent of sample size. However, numerous experimental and numerical studies have
indicated the size effects on mechanical properties at the sub-micron scale as presented in review
articles [1,2]. These articles summarize two major mechanisms of the size effect as follows: (i) Plastic
deformation, which in macroscopic samples is essentially size independent, however it becomes
strongly size dependent and intermittent at microscale and below; (ii) The surface-to-volume ratio starts
to increase dramatically when the sample is reduced down to nanoscale. In such a situation, surface
effects must be taken into account, including the nature of the chemical bond, equilibrium interatomic
distances, coordination number of atoms which are different from inside the bulk. Mechanical
properties of materials, regardless of length scale, are almost entirely determined by the bonding
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network at the atomic level [1]. Therefore, to understand the size effect on mechanical properties,
studies at nanoscale are essential for the application to larger scales.

Molecular dynamics (MD) approach is an excellent tool to address the demand for nanoscale
studies [3,4]. MD has the ability to provide a higher spatial and temporal resolution of the
fracture process compared to a continuum mechanics approach. This is because the interaction and
distance between atoms in MD are governed by fundamental theories of chemistry. In addition,
MD allows us to investigate and elucidate the microscopic properties that cannot be observed by
laboratory experiments [1]. The advantages of MD have been demonstrated as it has been used for
many applications, such as nanoscale thermal management [5], nanofluidics [6], nano-machining
processes [7], etc.

There have been numerous MD studies on size effect on mechanical properties at nanoscale,
including nanowires [8–11], thin film solids [12,13], etc. The key findings in these articles are that:
mechanical properties at nanoscale are strongly affected by sample size and these properties converge
to bulk values with increasing size. For instance, Heino et al. found that for relatively large systems
(>105 atoms) the moduli of copper turned out to be independent of the system size [14]. In another
study, it was revealed that both strength and toughness of silica glass converge well for domains larger
than 3×105 atoms [15]. However, there is still a knowledge gap in the size effect associated with different
boundary and loading conditions.

We hypothesize that boundary and loading conditions affect the domain-size dependency on
mechanical properties. Boundary conditions (BCs) include periodicity, while loading conditions
(LCs) include tensile and compressive loadings. An investigation of these loading types is important
as it was indicated that most materials including ceramics, concrete, and some composite, exhibit
different tensile and compressive strains under similar applied load in tension or compression [16,17].
These materials are called bimodular materials. They deviate from classical elasticity theory, which
assumes that materials have the same elastic properties in tension and compression. However, these
characteristics are often neglected due to the complexity of their analysis. Despite the fact that
bimodular materials have been studied frequently at the continuum level [16,17], to the best of our
knowledge, the bimodularity of a material at nanoscale has not been studied in the literature yet.
Therefore, in this study, we are also interested in investigating the bimodularity effect at the atomic
level. Furthermore, we investigate the effect of domain-size, boundary and loading conditions on
mechanical properties of amorphous silica (a-SiO2) by using MD simulations and the state-of-the-art
ReaxFF force field [18].

Amorphous silica is selected in this study for two reasons: (i) a-SiO2 is mainly classified as a
brittle material, in which a fracture event at the atomic scale determines its mechanical properties [3],
and (ii) the potential application of an understanding of fracture process of a-SiO2 to a wide spectrum
of fields [19–21]. The results in this study will provide very useful information for studies on material
failure. Specifically, domain-size has usually been defined arbitrarily regardless of applied boundary
and loading conditions as shown in the literature [22–24]. Furthermore, multi-scale modeling has
been applied recently to provide efficient and accurate insight into the fracture of materials [25–27].
In these studies, material properties are computed by MD, then they are passed to the fracture model
at the larger scale. The accuracy of MD information (e.g., mechanical properties, bimodularity, and
isotropy) affects the reliability of fracture analysis of such systems. Therefore, a proper simulation
of the domain-size at atomic level is critical to obtain accurate information for predicting the overall
performance of such multi-scale systems.

The remaining part of the paper is organized as follows. In Section 2, we provide details about the
computational approach including fundamental background of reactive molecular dynamics (RMD)
simulation, development of a-SiO2 model used in this study, and simulation cases and computations.
In Section 3, results and discussion will be presented, followed by Section 4 containing the conclusions
and closing remarks.



Nanomaterials 2020, 10, 54 3 of 16

2. Numerical Approach

2.1. Reactive Molecular Dynamics Simulation

One of the critical challenges in modeling silicates is the availability of an MD force field that is able
to reproduce the mechanical properties under different compositions and chemical environments [28].
Classical MD force fields (e.g., Beest-Kramer-van Staten (BKS) [29], Tersoff [30], Stillinger-Weber
(SW) [31], and Pedone [32]) are based on structural data and equations of state or cohesive energies,
however, because they are rarely designed for simulating high-strain conditions, it causes deviation in
tensile properties [22]. ReaxFF [18] is a reactive bond-order based force field and usually derived by
fitting against a training set comprising both quantum mechanical and experimental data. ReaxFF
has been shown to be an excellent candidate for high-strain conditions and can better predict the
mechanical properties of a-SiO2 better compared with two and three bodies force fields [22].

The total energy of the system modeled by ReaxFF includes several energy terms, such as:

Etotal = Ebond + Eover + Eunder + Elp + Eval + Epen + Etors + Econj + EvdW + Ecoul. (1)

Ebond describes the energy of single, double and triple bonds, Eover and Eunder represents the energy
terms due to complex interactions that lead a specific atom type to have over and under coordination
with other atom types, respectively. Elp models the lone electron pairs, Eval is related to the valence
angle. Epen takes into account a penalty coming from cumulative double bonds in a particular valency
angle. Etors describes all different torsional configurations, Econj represents the conjugated double
bonds effect. EvdW is an energy term that takes into account non-bonded interactions and Ecoul is the
energy contribution due to electrostatic interactions.

In this study, simulations were carried out using LAMMPS code with the USER-REAXC
package [33]. All the interaction and reaction parameters in the a-SiO2 model are obtained from
literature [34].

2.2. Development of a-SiO2

a-SiO2 was created through a melt-and-quench procedure. For this procedure, a simulation time
step of 0.5 fs was used. A similar time-step was used for this procedure in other studies [22,35]. First, a
simulation domain of 4.95 × 4.95 × 1.53 nm3 of β-cristobalite was generated containing 2400 atoms in
a 2:1 O/Si ratio. The β-cristobalite model was annealed by increasing temperature from 300 to 4000 K
for 200 ps using an NVT ensemble (i.e., constant number of atoms, volume, and temperature) to create
an amorphous structure. An NVT ensemble was used to avoid evaporation of the silica [22]. Then,
the system was cooled down to 300 K at a rate of 5 K/ps using an NVT ensemble. Finally, a-SiO2

model was relaxed at 300 K and a pressure of 1 atm for 200 ps by using an NPT ensemble (i.e., constant
number of atoms, pressure, and temperature) for releasing all the accumulated tension during the
cooling process and adaptation of the system volume. The dimensions of the equilibrated system
(4.902× 4.902× 1.51 nm3) are similar to the initial system.

To verify the a-SiO2 model obtained from our simulation, we show the analysis of our structure
in Figure 1. Figure 1a shows density of the a-SiO2 model in the relaxation stage (with an average
density of 2.202 g/cm3), which is in an excellent agreement with the experimental measurement
(2.2 g/cm3) [36]. Figure 1b shows the radial distribution function (RDF) of all pairs. The data shows a
very good agreement in RDF peak positions between MD and experiment [36] as presented in Table 1.
Therefore, our a-SiO2 model is verified for further investigations.
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Figure 1. (a) Density of a-SiO2 in the relaxation stage (circles). The dashed line denotes the average
value (2.202 g/cm3). (b) Radial distribution function (RDF) analysis for all pairs of a-SiO2 model.
The results of O-O and Si-Si pairs are shifted 10 and 20 up, respectively, for better view.

Table 1. RDF first and second peak positions of all pairs in a-SiO2. The data includes both the results
from our simulation and experiment from literature [36], which are in good agreements.

Structural Parameters Our Simulation Results Experimental Results [36]

Si-Si RDF 1st peak position (nm) 0.3071 0.3077
Si-Si RDF 2nd peak position (nm) 0.5193 0.5182
O-O RDF 1st peak position (nm) 0.2538 0.2626
O-O RDF 2nd peak position (nm) 0.4896 0.5097
Si-O RDF 1st peak position (nm) 0.1633 0.1608
Si-O RDF 2nd peak position (nm) 0.3969 0.4061

2.3. Cases Studied and Computations

Figure 2a shows an example of a simulation domain. The unit of a-SiO2 sample obtained
previously is replicated in the x- and y-directions by an identical number of units. Thus, dimensions in
these directions are equal (Lx = Ly). These lengths are varied to investigate the effect of simulation
domain. In this study, the domain thickness remained constant (Lz = 1.51 nm).

To study the effect of domain-size, boundary and loading conditions, we employ four different
simulation sets as follows. Note that we assign each set an ID for convenience.

• T2—simulation domain is fully periodic and subjected to tensile loading on both sides in the
x-direction, cf. Figure 2b.

• C2—simulation domain is fully periodic and subjected to compressive loading on both sides in
the x-direction, cf. Figure 2c.

• T1—simulation domain is periodic in the y- and z-directions, while in the x-direction, the tensile
loading is applied to the top surface as the bottom surface is fixed, cf. Figure 2d.

• C1—simulation domain is periodic in the y- and z-directions, while in the x-direction,
the compressive loading is applied to the top surface as the bottom surface is fixed, cf. Figure 2e.
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Figure 2. (a) Dimensions of a simulation domain of a-SiO2, where Lx = Ly and Lz = 1.51 nm. Lx is
varied to study the effect of simulation domain. (b–e) Different simulation sets are employed in
this study. Specifically, (b,c) the simulation domain is fully periodic and subjected to mechanical
loading on both sides. T2 and C2 denote tensile and compressive loading on both sides, respectively.
(d,e) Simulation domain is semi-periodic with free surfaces in the x-direction, where the bottom
surface is fixed and the top surface is subjected to mechanical loading. T1 and C1 denote tensile and
compressive loading on one side, respectively.

The simulation sets T2 and C2 are referred to full-periodic cases, while T1 and C1 are referred
to semi-periodic cases. In each set, Lx and Ly are varied from 4.902 to 39.261 nm. Table 2 shows
domain dimensions, domain volume, Vd, and number of atoms, N, used in this study. In full-periodic
cases (T2 and C2), the simulation domain is linearly expanded with a constant axial displacement rate
through scaling the coordinates of all atoms along the x-direction at every time step. The engineering
strain rate on each side is εxx. In semi-periodic cases (T1 and C1), a grip with a thickness of 0.75 nm
is defined at both top and bottom ends. The bottom grip is fixed, while the top grip is subjected to
tensile/compressive deformation with a strain rate of 2εxx. Therefore, the deformation rate in all
simulations remain the same regardless of applied boundary and loading conditions.

Table 2. Number of atoms N and simulation domain volume Vd corresponds to every simulation
domain-size studied. The initial simulation box thickness is always a constant, Lz = 1.51 nm.

Lx = Ly (nm) Vd (nm3) N × 104

4.902 36.285 0.24
9.804 145.139 0.96

14.706 326.562 2.16
19.608 580.555 3.84
24.510 907.118 6.00
39.216 2322.221 15.36

In all simulations, we set εxx = 5× 109 s−1. The strain-rate dependence on modulus of a-SiO2 was
studied in the literature [22]. The authors found that as long as the applied strain-rate is smaller than
2.5× 1011 s−1, the bulk modulus can be reproduced. By using a Nose-Hoover thermostat/barostat
in the NPT ensemble, the temperature and pressure in y- and z-directions are controlled at 300 K
and 1 atm, respectively. The time step is set to 0.25 fs. A similar time step was used in ReaxFF MD
simulations on material failure as performed by other researchers [28,35,37].

Engineering stress σ is calculated using the classical definition of virial stress defined as [38]:

σ =
F

A0
, (2)
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where F is the total inter-atomic force and A0 is the initial cross-sectional area. The engineering strain
rate ε is calculated as:

ε =
∆L
L0

=
L− L0

L0
, (3)

where L and L0 are deformed and initial sample length, respectively.

3. Results and Discussion

The effects of domain-size, boundary and loading conditions are characterized through the
global stress-strain curve, Young’s modulus E, Poisson’s ratio ν, and bond deformation process.
Young’s modulus and Poisson’s ratio are selected among various mechanical properties as they are
fundamental and most used properties in characterizing mechanical performance of any materials
in elastic region and beyond. To verify the results, we compared the mechanical properties obtained
from our simulations with the corresponding ones from the literature as shown in Table 3. Young’s
modulus and Poisson’s ratio obtained in all simulations can be found in Table A1 in the Appendix A.

Table 3. Example of Young’s modulus, E, and Poisson’s ratio, ν, of a-SiO2 from experiment and
simulational studies reported in literature. The bound refers to the maximum and minimum values of
reported experimental and numerical data.

Reference Study E (GPa) ν

Experiment

Freund and Suresh [39] 80 0.22
Deschamps et al. [40] 71.5 0.176

Wiederhorn [41] 72.1 ...
Wallenberger et al. [42] 69 ...

Bansal and Doremus [43] 72.9 ...
Bound 69–80 0.176–0.22

ReaxFF simulation

Hao and Hossain [15] 69.1 0.25–0.32
Chowdhury et al. [22] a 75.4–76.68 ...
Chowdhury et al. [44] 74 0.39

Rimsza et al. [28] ... 0.31
Yu et al. [45] 80.4 ± 1.9 ...

Mei et al. [35] 60 0.296
Bound 60–82.3 0.25–0.39

a Values for strain-rate smaller than 2.5× 1011 s−1.

3.1. Global Stress-Strain Curve

Figure 3 shows the global stress-strain curves that were obtained from all simulations. In tension
cases (T2 and T1), the simulations were performed until the a-SiO2 sample was completely broken.
In compression cases (C2 and C1), the simulations were stopped when the strain of 0.25 was achieved.
From Figure 3, one can observe that there is a negligible difference in terms of domain size in both
compression and tension cases subjected to full-periodic boundary conditions (T2 and C2). This is
mainly due to the fact that these cases were fully periodic and domains are considered infinity long.
On the other hand, the stress-strain curve associated with T1 and C1 were highly influenced by the
domain size. This is due to the presence of free surfaces in simulation domain. For the applied
boundary conditions in this study, the fracture strength (critical stress) decreases with decreasing
domain size in T1 simulations. The influence of periodicity can be described using the arguments the
number of atoms as:

N = Nb + Ns, (4)

where the total number of atoms N in a system includes two contributions: the bulk atoms Nb and
the surface atoms Ns. For T2 and C2 simulations, Equation (4) reduces to N = Nb, and the effect
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of domain-size can therefore be neglected as all the atoms are considered as bulk atoms. However,
for T1 and C1 simulations, with decreasing the domain size, the number of atoms in the bulk decreases
more rapidly in comparison with the number of surface atoms. This leads to an increase of the
surface-to-volume ratio. Under such conditions, the contribution of surface atoms is enhanced with
decreasing the domain-size, leading to the rearrangement of interior atoms [46,47]. Therefore, the
domain-size impacts the stress-strain curve for both T1 and C1 simulations, with more pronounced
effects in cases with a smaller domain size.

Figure 3. Global stress-strain curves for all scenarios investigated in this study including (a) T2, (b) C2,
(c) T1, and (d) C1 simulations.

3.2. Young’s Modulus and Bimodularity

Young’s modulus in the x-direction, Exx, is determined as the slope of the global stress-strain curve
(Exx-εxx) up to 5% strain through linear regression. Figure 4a shows the Young’s modulus obtained
from all simulations. At first glance, one can conclude that the data obtained from the simulations is
in good agreement with the experimental data and other ReaxFF simulation data (Table 3). Young’s
modulus from tensile simulations (T2 and T1) are higher that the corresponding ones from compressive
simulations (C2 and C1). Figure 4a also reveals that with decreasing the domain size, the Young’s
modulus deviates from the Young’s modulus of the larger domains. This deviation depends on applied
boundary and loading conditions. The deviation in Young’s modulus between the smallest and biggest
domains is 22.4% for T1 case, 4.3% for C1 case, and less than 1% for T2 and C2 cases.
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Figure 4. (a) Young’s modulus in the x-direction, Exx, and (b) bimodular factor αbi from all simulations.
The domain-size effect is considered by both number of atoms in the domain N and simulation
domain volume Vd. αbi

2 and αbi
1 describe the bimodularity of T2 and C2, and of T1 and C1 simulations,

respectively. The gray shaded area describes the "safe zone", which is discussed in Section 3.5.

Wang and Li proposed the following surface stress concept to predict the Young’s modulus [2,48]:

E = Eb + σs(1− ν)
a
L

, (5)

where E and Ebulk are the Young’s modulus of a system and of a bulk region, respectively. σs is surface
stress, a is a geometry parameter, and L is the domain size in the loading direction. If the domain is
extremely large (L→ ∞), the contribution of surface stress is neglected and E→ Ebulk. which confirms
the results for full-periodic cases in both tension and compression. On the other hand, a decrease in
the domain size indicates an increase in the surface-to-volume ratio and, thus higher contributions
from surface stress (Equation (5)). This leads to an increase in Young’s modulus, which explains the
higher variation in Young’s modulus in semi-periodic cases (T1 and C1).

As mentioned earlier, the theory of linear elasticity assumes that materials have the same elastic
properties in tension and compression, which is a simplified interpretation [16]. However, Figure 4a
shows clear distinction between Young’s moduli in tension (Et

xx) and compression (Ec
xx), indicating

a-SiO2 behaves as a bimodular material at the atomic level if we define the bimodular factor αbi as:

αbi =
Et

xx
Ec

xx
. (6)

Figure 4b shows the bimodularity as a function of the domain sizes, boundary and loading
conditions. The bimodularity in all simulations is larger than 1, which means a-SiO2 is stiffer in
tension than compression. As bimodularity is a product of Young’s modulus, it also shows similar
dependence on domain-size, boundary and loading conditions. Figure 4b shows that the bimodularity
of a full-periodic domain (αbi

2 ) is not affected by domain-size. However, in simulations with free
surfaces (αbi

1 ), bimodularity increases as the domain-size becomes smaller. The high relative difference
of 14.8% from the smallest to the largest domain is another indicator of the importance of the simulation
domain size on material properties. Considering the results of large domains, The bimodularity factor
converges to the value of 1.2 for all cases if the domain size is sufficiently large.

3.3. Poisson’s Ratio and Isotropy

Poisson’s ratio, ν, is calculated as: ν = −εlateral/εaxial, where εlateral and εaxial are lateral and axial
strains, respectively. Accounting for both the lateral y- and z-directions in the calculation of Poisson’s
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ratio leads to νxy and νxz as shown in Figure 5a,b, respectively. Our data matches well with other
simulation data reported in the literature as shown in Table 3.

Figure 5. Poisson’s ratio (a) νxy and (b) νxy obtained from all simulations. The domain-size effect is
considered by both number of atoms in the domain N and simulation domain volume Vd. The gray
shaded area describes the “safe zone”, which is discussed in Section 3.5.

It can be seen from Figure 5 that the Poisson’s ratio follows similar trends as the Young’s modulus.
In another words, there is a negligible difference in full-periodic simulations (T2 and C2), while there
is a distinct difference in semi-periodic simulations (T1 and C1) as the domain size changes. As strain
in x direction (e.g., εxx) remained the same at every time step for all simulations, a larger Poisson’s
ratio implies a larger strains in y and z directions (e.g., εyy or εzz), which indicates that a-SiO2 contracts
easier than it expands. This Poisson’s ratio mismatch is likely due to the porous structure of a-SiO2,
where there are many sub-nanometer pores inside.

Although a-SiO2 has been classified as an isotropic material at the macroscale [49], Figure 5
shows that Poisson’s ratio in xy direction (e.g., νxy) is slightly different than Possion’s ration in xz
direction (e.g., νxz). Isotropic material behavior plays an important role in modeling material failure at
larger scales. However, most models assume an isotropic material behavior, which may not be a valid
assumption for micro-/nano-structures [50,51].

We define the isotropic factor αiso as:

αiso =
νxy

νxz
. (7)

If αiso = 1, the material is isotropic; otherwise, the material is considered as anisotropic.
The isotropic factor obtained from all simulations is shown in Figure 6. All cases manifest slightly
anisotropic behavior at atomic level regardless of domain-size, and applied boundary and loading
conditions. Interestingly, the full-periodic simulation under compression reveals that the material
deforms more in the x-y plane compared with the x-z plane, while this behavior is reversed in other
cases. This behavior might be due to the collapse of nanopores under uniaxial compression from
both sides.
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Figure 6. Characterization of isotropy of a-SiO2 through the parameter αiso from all simulations.
The black solid line indicates αiso = 1. The gray shaded area describes the “safe zone”, which is
discussed in Section 3.5.

The anisotropy of a-SiO2 is attributed to the involvement of ductility during deformation as
revealed by several studies [52,53]. The contribution of ductility in a-SiO2 at nanoscale is caused
by a portion of energy from the stored strain energy that is converted into heat or unrecoverable
inelastic deformation [28]. Note that, to simplify the analysis and to be similar to other RMD
studies [15,28,35,44], plane stress conditions were used in the x-y plane by setting Lz � Lx and
Lz � Ly for this study. An accurate analysis, as well as a comparison in anisotropy of a-SiO2 under
different boundary and loading conditions will be a part of our future work, where the dimensions in
all the directions remain the same.

3.4. Distribution of Si-O Bond

Figure 7 shows the RDF of Si-O bond under deformation (including stretching, σ > 0, and
contraction, σ < 0, in length) at 20% strain. The results are compared with the bond distribution at an
undeformed state. When a-SiO2 sample is not deformed, the distribution is nearly symmetric with a
minimum, maximum, and average bond length of 1.478, 1.718, and 1.581 Å, respectively.

Figure 7 illustrates the variations in bond distribution compared to the undeformed state. As it can
be clearly seen, the bond distributions in tensile simulations were shifted to the right, however, such
a variation in compressive simulations is very small. This observation indicates that the volumetric
change is higher in tensile simulations, leading to a higher Poisson’s ratio in tensile cases. For
semi-periodic cases (T1 and C1), there is a small domain-size effect on the Si-O bond distribution
due to the impact of the fixed bottom layer. For T1 simulations, minimum bond length is lower in
smaller domains compared to the larger ones, which leads to less volumetric changes in the smaller
domains. As a result, Poisson’s ratio increases with a decreasing domain size in T1 simulations.
In contrast, maximum bond length is higher in smaller domains compared to the larger ones in C1
simulations, which causes a higher volumetric change in the smaller domains. Consequently, Poisson’s
ratio increases with increasing domain-size in C1 simulations.
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Figure 7. Radial distribution function RDF gij(r) of Si-O bond distribution under deformation (solid
lines) compared to undeformed state (solid line with solid circles). All the data of undeformed state are
obtained at 20% strain of (a) T2, (b) C2, (c) T1, and (d) C1 simulations. The compressive and tensile
regions are described by σ < 0 and σ > 0, respectively. An inset in (a) describes the Si-O bond length r.

3.5. Computational Cost and Accuracy

The cost in the use of the high-performance computers is specified in the so-called utilization
units (UU) as:

UU = (Number of CPU cores)× hours/1000. (8)

For example, a job that occupies 16 CPU cores for a day consumes 16× 24/1000 = 0.384 UU. In
our simulations, each core was an INTEL Xeon Gold 6130 scalable processor with a clock speed of
2.1 GHz and 192 GB of total memory. The computation cost for each simulation is shown in Table 4.

As multiscale materials modeling becomes increasingly important in many applications, it is
essential to check the accuracy of the results at each scale. Errors across multiscale modeling from
atomistic level may be caused by MD input parameters (force field parameters), as well as input
parameters at larger scales [54]. In this study, we assumed that there is no error associated with MD
as ReaxFF is a reactive bond-order based force field and it can reproduce mechanical properties very
well. Thus, the “safe zone” can be used as a domain in which both accuracy and computational cost
are optimized. Furthermore, the concept of representative volume element (RVE) has been extensively
used in the multiscale modeling [55,56], and it has also been applied to MD studies recently [57]. The
choice of RVE that can accurately capture the material’s bulk-scale mechanical behavior is critical.
Therefore, even though the proposed “safe zone” is valid just for the scenarios investigated in this
paper, it suggests how to choose RVE size at nanoscale.
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Table 4. Computational cost in each simulation is shown in utilization units (UU).

Simulation Set N × 104 UU Simulation Set N × 104 UU

T2

0.24 0.164

T1

0.24 0.411
0.96 0.323 0.96 0.420
2.16 0.575 2.16 0.804
3.84 1.089 3.84 1.105
6.00 1.553 6.00 1.704

15.36 3.107 15.36 3.129

C2

0.24 0.140

C1

0.24 0.140
0.96 0.241 0.96 0.241
2.16 0.368 2.16 0.365
3.84 0.539 3.84 0.532
6.00 0.745 6.00 0.740

15.36 1.561 15.36 1.565

As the effect of domain size on Young’s modulus and Poisson’s ratio is similar, the results of
Young’s modulus are used in driving the discussion on accuracy in this section. Assuming the result
from the largest domain is an exact solution, Figure 8 shows the relative deviation of Young’s modulus
for each domain with respect to corresponding modulus obtained from the largest domain. As expected,
the deviation in full-periodic simulations (T2 and C2) is almost zero. However, for semi-periodic
simulations (T1 and C1), the error increases as the domain size becomes smaller. We observed that
all the errors lay within 2% from the second largest domains (N ≥ 6× 104 or Vb ≥ 907, 118 nm3).
Therefore, for our scenarios, we propose a “safe zone” in which the simulation domain effect is
negligible. However, similar case studies can be performed for other cases, as well.

Figure 8. The relative deviation in Young’s modulus from each simulation to the largest simulation.
The gray shaded area describes the “safe zone” where the errors are reasonably small.

4. Conclusions

In this paper, reactive molecular dynamics simulations were used to investigate the effect
of domain size, as well as the loading and boundary conditions, on mechanical properties of
amorphous silica. Various scenarios based on tensile/compressive loading, full-/semi-periodic
boundary condition, as well as different domain sizes, were numerically explored. The a-SiO2 model
was verified by comparing the density and RDF analysis with experimental measurements from
the literature [36]. The number of atoms in a simulation domain was systematically increased from
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0.24 × 104 to 15.36 ×104. Young’s modulus and Poisson’s ratio were obtained from the simulations.
Our results indicated that:

• Mechanical properties converge with increasing domain size.
• With the presence of free surfaces in semi-periodic cases, the impact of domain size is much more

significant than full-periodic cases.
• Amorphous silica exhibits strong bimodular behavior and slight anisotropy at the atomic level.

Young’s modulus in tension is higher than in compression, while Poisson’s ratio in x-y plane and
x-z plane are slightly different from each other.

• A “safe zone” defined as a zone where accuracy and computational cost are balanced. Defining
such a zone is necessary for multiscale models, as well as defining RVE at nanoscale. In this zone,
bulk properties can be reproduced with good accuracy.

The bimodular and anisotropic characteristics of a-SiO2 at the atomic level are very important
for multiscale models as classical theory are usually applied, which assumes materials are isotropic
and have the same elastic properties in tension and compression. A deeper analysis on anisotropy of
a-SiO2 at the atomic level will be a part of our future work.
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Abbreviations

The following abbreviations are used in this manuscript:

MD Molecular dynamics
RMD Reactive molecular dynamics
BCs Boundary conditions
LCs Loading conditions
RDF Radial distribution function

Appendix A. Simulation Data

The results of all the simulations carried out in the paper are presented in Table A1, including
Young’s modulus, Exx, and Poisson’s ratio, νxy and νxz.
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Table A1. Mechanical properties obtained from all simulations in this study.

Simulation Set N ×104 Exx
(GPa) νxy νxz

T2

0.24 73.052 0.377 0.395
0.96 73.319 0.376 0.396
2.16 73.359 0.377 0.394
3.84 73.500 0.377 0.395
6.00 73.300 0.377 0.395

15.36 73.318 0.377 0.395

C2

0.24 61.231 0.350 0.347
0.96 61.677 0.355 0.348
2.16 61.782 0.355 0.350
3.84 61.779 0.355 0.350
6.00 61.786 0.354 0.349

15.36 61.791 0.355 0.349

T1

0.24 92.412 0.324 0.346
0.96 83.484 0.350 0.366
2.16 79.549 0.362 0.375
3.84 77.850 0.364 0.382
6.00 76.802 0.368 0.384

15.36 75.500 0.370 0.389

C1

0.24 65.246 0.370 0.368
0.96 64.832 0.323 0.339
2.16 64.056 0.315 0.332
3.84 63.270 0.317 0.327
6.00 63.092 0.314 0.324

15.36 62.581 0.311 0.322
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