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Abstract—Effective Big Data Mining requires scalable and
efficient solutions that are also accessible to users of all levels of
expertise. Despite this, many current efforts to provide effective
knowledge extraction via large-scale Big Data Mining tools
focus more on performance than on use and tuning which are
complex problems even for experts.

Weka is a popular and comprehensive Data Mining work-
bench with a well-known and intuitive interface; nonetheless
it supports only sequential single-node execution. Hence, the
size of the datasets and processing tasks that Weka can handle
within its existing environment is limited both by the amount
of memory in a single node and by sequential execution.

This work discusses DistributedWekaSpark, a dis-
tributed framework for Weka which maintains its existing user
interface. The framework is implemented on top of Spark,
a Hadoop-related distributed framework with fast in-memory
processing capabilities and support for iterative computations.

By combining Weka’s usability and Spark’s processing
power, DistributedWekaSpark provides a usable prototype
distributed Big Data Mining workbench that achieves near-
linear scaling in executing various real-world scale workloads
- 91.4% weak scaling efficiency on average and up to 4x faster
on average than Hadoop.
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I. INTRODUCTION

Big Data is “high-volume, high-velocity, and/or high-
variety information assets that require new forms of process-
ing to enable enhanced decision making, insight discovery
and process optimization” [1]. In practice, the term refers to
datasets that are increasingly difficult to collect, curate and
process using traditional methodologies. Effective Big Data
Mining requires scalable and efficient solutions that are also
easily accessible to users at all levels of expertise.

Distributed systems provide an infrastructure that can
enable efficient and scalable Big Data Mining. Such systems,
made up of organized clusters of commodity hardware, pro-
cess large volumes of data in a distributed fashion. Hadoop
[2], an open source implementation of MapReduce [3], is
the most widely-used platform for large-scale distributed
data processing. Hadoop processes data from disk which
makes it inefficient for data mining applications that often
require iteration. Spark [4] is a more recent distributed
framework that works with Hadoop and provides in-memory
computation that allows iterative jobs to be processed much
faster, hence making it a more suitable base for data mining.

A difficulty in developing large-scale data mining toolkits
is how to express the algorithms in such a way to make
them as easy to use as existing sequential tools [5]. Most
attempts expose a restricted set of low-level primitives such
as MapReduce but usually tend to be prohibitive due to their
complex nature and inability to accommodate the patterns
of data mining algorithms. Data analysts aim to extract
knowledge and to better understand their data; they do not
wish to learn complex programming paradigms and new
languages. Recent implementations attempt to provide high-
level interfaces for data mining and associated algorithms
which are compiled to low-level primitives [6], [7]. Such
developments tend to require knowledge of the underlying
distributed system effectively shifting the focus from data
mining to individual algorithm implementation.

Weka [8] is a widely used data mining tool [9] that
supports all phases of the mining process, encapsulates well
tested implementations of many popular mining methods,
offers a GUI that supports interactive mining and result
visualization, and automatically produces statistics to assist
result evaluation.

However, a major disadvantage of Weka is that it only
supports sequential single-node execution and hence has
significant limitations in handling Big Data [10].

To address the need for efficient and scalable processing,
allied to ease-of-use and seamless transformation between
platforms for Big Data Mining, we have designed and
prototyped DistributedWekaSpark to leverage Weka
and distributed systems via Spark.

This paper makes the following contributions, it:
• develops a cloud-ready system, easily accessible to

users of all levels of expertise, that allows ef-
ficient analysis of large-scale datasets. Users al-
ready familiar with Weka can seamlessly use
DistributedWekaSpark;

• extends the existing Weka framework without the need
to re-implement algorithms from scratch. This enables
faster porting of existing systems and allows existing
users to use the same interface for both local and
distributed data analysis;

• describes a unified framework for expressing Weka’s
algorithms in a MapReduce model. This eliminates the
need to inspect algorithms to identify parallel parts and
re-implement them using MapReduce;



• evaluates DistributedWekaSpark’s performance
on various real-world scale workloads - the system
achieves near-linear scaling and outperforms Hadoop
by a factor of 4 on average on identical loads.

II. DISTRIBUTED FRAMEWORKS: MAPREDUCE,
HADOOP, SPARK

Google in 2004 [3] introduced MapReduce, a distributed
computing model targeting large-scale processing. MapRe-
duce expresses computations using two operators (Map and
Reduce), schedules their execution in parallel on dataset
partitions and guarantees fault-tolerance through replica-
tion. Map processes dataset partitions in parallel; Reduce
aggregates the results. A MapReduce distributed system
consists of a Master node which handles data partitioning
and schedules tasks automatically on an arbitrary number
of Workers. Once the functions are specified, the runtime
environment automatically schedules execution of Mappers
on idle nodes. Each node executes a Map function against
its local dataset partition, writes intermediate results to its
local disk and periodically notifies the Master of progress.
As the Mappers produce intermediate results, the Master
node assigns Reduce tasks to idle nodes.

Yahoo in 2005 introduced Hadoop [2], an open source
implementation of MapReduce. The Hadoop Distributed File
System (HDFS) is a disk-based file system that spans across
the nodes of a distributed system. Files stored in HDFS are
automatically divided into blocks, replicated and distributed
to the nodes’ local disks. HDFS maintains metadata about
the location of blocks and assists Hadoop to schedule each
node to process local blocks rather than receive remote
blocks through the network. HDFS encapsulates distributed
local storage into a single logical unit and automates the
procedure of distributed storage management.

Although MapReduce can express many data mining
algorithms efficiently, significant performance improvement
is possible by introducing a loop-aware scheduler and main-
memory caching. Data mining algorithms tend to involve
multiple iterations over a dataset and thus, multiple, slow,
disk accesses. As a consequence, storing and retaining
datasets in-memory and scheduling successive iterations
to the same nodes should yield significant benefits. Mod-
ern nodes can use performance-enhancing main-memory
caching mechanisms.

Spark [4] supports main-memory caching and possesses
a loop-aware scheduler. Additionally, Spark implements the
MapReduce paradigm and is Java-based (as is Hadoop).
These features enable users to deploy existing Hadoop
application logic in Spark via its Scala API. Spark has
been shown to outperform Hadoop by up to two orders of
magnitude in many cases [11].

MapReduce was designed to develop batch applications
that process large amount of data using a large number of
nodes. During this process disk is used as the intermediate

storage medium (as opposed to memory) to share data
amongst different stages and iterations of an application. In
contrast, Spark enables a near-real time application devel-
opment framework with more effective use of memory for
different stages of an application to communicate and share
information. This allows Spark to overlap I/O and compu-
tation more efficiently as, without waiting for a partition to
be fetched from HDFS, multiple partitions can be loaded at
once. Spark is fully compatible with Java-based applications
as it uses Scala as its programming language which runs
a Java Virtual Machine, hence allowing easier integration.
Further, it allows the user to use anonymous functions which
enables chaining multiple computation in to a single line and
leveraging a larger number of functional operators.

Spark provides Resilient Distributed Datasets (RDDs)
[11], a distributed main-memory abstraction, that enable
users to perform in-memory computations in large systems.
RDDs are an immutable collection of records distributed
across the system’s main memory. These data structures can
be created by invoking a set of operators either on persistent
storage data objects or on other RDDs. RDD operators are
divided into two categories: Transformations and Actions.
Transformations define a new RDD, based on an existing
RDD and a function; actions materialize the transformations
and either return a value to the user or export data to
persistent storage.

Transformations provide native support for MapReduce.
When users execute tasks, the system creates RDDs (from
the input) and distributes their records across its main
memory. When operations are issued each node processes
its local set of records and return results. Caching datasets
to main memory avoids slow disks reads and performs much
faster than Hadoop’s MapReduce on algorithms such as
Logistic Regression and K-means [11].

When the dataset is larger than the main memory, Spark
employs a mechanism to serialize and store portions of the
dataset to secondary storage. The system offers numerous
memory management options including different serializa-
tion and compression libraries. These features allow the user
to define an application-specific caching strategy that takes
advantage of both dataset and system characteristics.

III. DISTRIBUTEDWEKASPARK : A BIG DATA MINING
ARCHITECTURE

This section demonstrates how
DistributedWekaSpark fits in the context of a
Big Data Mining process. Figure 1 shows the various
components of an efficient and scalable solution for Big
Data Mining; Figure 2 presents a layered view of the
system’s architecture.

The architecture includes the following components: an
Infrastructure layer consisting of a reconfigurable cluster
of either physical or virtual computing instances, e.g. us-
ing Amazon EC2 instances; a Distributed Storage layer



Figure 1. Components of a Big Data Mining process
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Figure 2. Layered view of a Big Data Mining architecture

which automatically encapsulates the local storage of the
system instances into a large-scale logical unit, e.g. HDFS;
a Batch Execution layer which schedules and executes
tasks on data stored in distributed storage, e.g. Spark; an
Application layer that integrates the application logic of
Big Data Mining workloads into the programming model
supported by the Batch Processing layer - this is where
DistributedWekaSpark is used; a User Interface for
interaction with the system to run Data Mining tasks; and
a Monitoring Mechanism, used for performance tuning and
system evaluation (e.g. CloudWatch). This structure is also
used in [11].
DistributedWekaSpark is cloud-ready and can be

accessed through an interface that mimics Weka’s simple

Command Line Interface. For example, a classifier can be
built with a simple command such as:
>bin/spark DistributedWekaSpark.jar -path

<dataset> -task buildClassifier
Default values are provided for Spark and Weka options with

the user allowed to change preference, e.g. choice of a specific
classifier and the number of folds. Hence, users familiar with Weka
can use DistributedWekaSpark “out of the box”.

IV. DESIGN OF DISTRIBUTEDWEKASPARK

This section describes DistributedWekaSpark’s design,
implementation, and execution on Spark. We explain how
DistributedWekaSpark enables Data Mining methods [12]
to be ported for distributed processing. We also provide examples
of how methods such as Classification, Regression and Association
Rules have been extended to run on Spark. Note that the system
user is unaware of the implementation details discussed in this
section. We first consider how sequential Weka model works.

A. The Weka Model
Sequential Weka allows easily new implementations of Data

Mining methods to be added by taking advantage of Object
Oriented design principles [13]. The framework provides abstract
interfaces for developers to build and evaluate such models. For
example, to develop a classification algorithm Weka provides the
Classifier interface which specifies two abstract methods, one
to build a classifier and one to classify the instances using the
classifier previously built. The developer inherits these two methods
for their algorithm and provides their own implementations. Every
algorithm for classification redefines the interface according to how
it builds a classifier and how it classifies instances. This allows a
uniform interface for building and using classifiers from other code.

In a similar way, Weka provides interfaces for Association Rules
and Clustering in order to provide developers a uniform way to
build and evaluate their models.

Further, when Weka first reads the data, it generates a special
object to structure the dataset in such a way that data can be easily
and quickly accessible later on during model creation. Alongside,
another structure called Headers is created to hold useful statistics
for each dataset. More details are provided in Section IV-C.

B. Distributed Model Requirements
Extending Weka for distributed execution on Spark requires to

express the following steps using MapReduce functions:
• RDD generation from raw data;
• Header creation using the RDDs;
• Model creation;
• Model evaluation;
The following sections describe DistributedWekaSpark’s

approach to each of these steps.
Our unified framework focuses on the steps for creating and

evaluating models where various implementations may exist. Note
that RDDs and headers are created only once and then reused across
executions regardless of the Data Mining model.

C. RDD Generation
Upon submitting a task using Weka’s interface and a set of

parameters, the application’s main thread is invoked in the Spark
Master. The application parses user options using a custom text
parser, configures the essential environment parameters (application
name, total number of cores, per-instance cache memory, etc.) and
initializes a Task Executor. The Task Executor begins the execution
procedure by defining an RDD (raw data) from the data on HDFS.



RDD Transformations are “lazy”: until an Action is issued (a
Reduce operator in this case), the RDD will not be materialized.
Thus, the RDD at this stage is logical.

Weka processes data in a special-purpose object format known
as Instances. This object contains a header (meta-data about the
attributes) and an array of Instance objects. Each Instance object
contains a set of attributes which represents the raw data. HDFS
data on Spark are usually defined as RDDs of Java String objects.
Thus, a Transformation is needed to parse the strings and build an
Instances object for each partition. This is achieved by defining
a new RDD (dataset), based on the previous RDD (raw data)
and a Map function. These Transformations are logged by Spark
into a lineage graph. The Task Executor will then use the newly
defined RDD as an initialization parameter for the user requested
task. These tasks will add their own Transformations to the graph.
When an Action is issued (a Reduce function), Spark schedules
node instances to build the RDD partitions from their local dataset
partitions, and to materialize the Transformations in parallel.

D. Headers Phase
Weka pays particular attention to metadata. An essential initial

step is to compute the header of the ARFF file (Weka’s supported
format, represented by the aforementioned Instances object at
runtime). A header contains attribute names, types and multiple
statistics including minimum and maximum values, average values
and class distributions of nominal attributes. Figure 3 displays the
MapReduce job that computes the dataset’s header file.

Figure 3. Header creation MapReduce job

The job requires the attributes names, the total number of
attributes and a set of options. These parameters are used by the
Map function to define the expected structure of the dataset. Map
functions compute partition statistics in parallel; Reduce functions
receive input from the Map phase and aggregate partition statistics
into global statistics.

This procedure is only mandatory for nominal values, but can
be invoked for any type of attributes. Upon creation, Headers
are distributed to the next MapReduce stages as an initialization
parameter. This procedure is required only once for each dataset;
Headers can be stored in HDFS and retrieved upon request.

E. A Unified Framework Approach
The high-level primary goals of data mining are description and

prediction and can be achieved using a variety of data mining
methods [12]. Each data mining method has a number of possible
algorithms; for instance, Classification includes Support Vector
Machines (SVM), Decision Trees, Naive Bayes, etc. Each algo-
rithm can in turn have different implementations. There are many
sequential implementations for these algorithms and a relatively
small number of methods, thus, our focus is on parallelization of
methods themselves rather than individual implementations.

As discussed, previous attempts to introduce parallelism to Weka
in a distributed environment [26], [27], [28] have reviewed the
Weka libraries to identify algorithm parts to execute in parallel
and then re-implemented using MapReduce. This does not provide
a unified framework for expressing Weka’s algorithms, rather
it entails producing custom distributed implementations of each
algorithm. This is complex and time-consuming, and the quality of
the provided solutions varies significantly based on the contributor

expertise. Lack of a unified execution model leads to inconsistent
performance, difficulties in maintaining and extending the code-
base and discourages widespread adoption. Thus, here we have
focused on building execution models for Data Mining methods
rather than providing implementations of specific algorithms.

To enable a unified execution model, we exploit the Object-
Oriented properties of the Weka implementation. Weka represents
each method of Data Mining algorithms (e.g. classification, re-
gression, etc.) using an abstract interface. Individual algorithms
must implement this interface. By implementing Map and Reduce
execution containers (“wrapper”) for Weka’s interfaces, a scalable
execution model becomes feasible. This enables all the algorithms
currently implemented for sequential Weka to utilize distributed
processing. DistributedWekaSpark’s interface mimics that
of Weka, hence users can design and execute Data Mining
processes using the same tools either locally or in distributed
environments. The proposed execution model is based on a set of
packages released by the Weka development team [14], extended
in this work to Spark’s API and Scala’s functional characteristics.

F. Building & Evaluating Models
Spark begins execution by scheduling the slave instances to

load local dataset partitions to main memory. Each slave invokes
a unary Map function containing a Weka algorithm against a local
partition and learns an intermediate Weka model. Intermediate
models generated in parallel are aggregated by a Reduce function
and the final output is produced. However, the order of operands
in the Reduce functions is not guaranteed. Consequently, Reduce
functions have been carefully designed to be associative and
commutative, so that the arbitrary tree of Reducers can be correctly
computed in parallel.

The functional model demands stateless functions. Spark pro-
vides a mechanism to broadcast variables, but this practice intro-
duces complexity, race conditions and network overheads. As a
result, Map and Reduce functions have been designed to solely
depend on their inputs. As Map outputs consist of Weka models
(plain Java objects), this should minimize network communication
between the nodes during execution.

1) Classification and Regression: Classifiers and Regressors
are used to build prediction models on nominal and numeric values
respectively. Although many learning algorithms in these categories
are iterative, both training and testing phases can be completed
in a single step using asynchronous parallelism. It is important
to emphasize the performance improvement offered by Spark in
multi-phase execution plans. Once the dataset is loaded into main
memory in the Header creation phase, Spark maintains a cached
copy of the dataset until explicitly told to discard. This feature
offers significant speedup in consecutive MapReduce phases, as
redundant HDFS accesses required by Hadoop are avoided.

Model Training: Once the Headers are either computed or
loaded from persistent storage, Spark schedules slaves instances
to begin the training phase. Every instance possesses a number of
cached partitions and trains a Weka model against each partition,
using a Map function. Classifiers and Regressors are represented
in Weka by the same abstract object. Figure 4 displays the
implementation of the model-training Map function.

By using Meta-Learning techniques, the intermediate models are
aggregated using a Reduce function to a final model. Depending
on the characteristics of the trained model the final output may be:

• a single model, in case the intermediate models can be
aggregated (where a model of the same type as the inputs
can be produced);

• an Ensemble of models, in case intermediate models cannot
be aggregated.



Figure 4. Classification/Regression: Model-Training Map Function

Figure 5 displays the implementation of the model-aggregation
Reduce function.

Figure 5. Classification/Regression: Model-Aggregation Reduce Function

The trained models can be either used directly for testing
unknown data objects or can be stored in HDFS for future use.

Model Testing and Evaluation: Once a trained model is
either computed or retrieved from persistent storage, the Model-
Evaluation phase can be completed in a single MapReduce step.
The trained model is distributed to the slave instances as an
initialization parameter to the Evaluation Map functions. During
the Map phase, each instance evaluates the model against its local
partitions and produces the intermediate evaluation statistics. Figure
6 displays the model Evaluation Map function.

Figure 6. Classification/Regression: Evaluation Map Function

Reduce functions produce the final output by aggregating in-
termediate results. Figure 7 displays the implementation of the
evaluation Reduce function.

In a similar fashion, trained models can be used to classify
unknown instances.

2) Association Rules: Association Rules (ARs) are computed
in parallel using a custom MapReduce implementation of the

Figure 7. Classification/Regression: Evaluation Reduce Function

Partition algorithm [15]. Partition requires two distinct phases
to compute ARs on distributed datasets (not shown here due to
space limitations). In the candidate generation phase, a number of
candidate rules are generated from each partition. In the candi-
date validation phase, global support and significance metrics are
computed for all the candidates and those that do not meet global
criteria are pruned.

The user defines a support threshold and an optional threshold to
any Weka-supported measure of significance (confidence is used by
default). A number of Map functions proceed to mine partitions in
parallel using a Weka AR learner and generate candidate rules.
A rule is considered a candidate, if global significance criteria
are met in any of the partitions. Candidate rules are exported
from Map functions using a hash-table. Reduce functions aggregate
multiple hash-tables and produce a final set of candidates. The
hash-table data structure was selected because it enables almost
constant seek time. In the validation phase, each Map function
receives the set of candidates and computes support metrics for
every rule. The validation Reduce phase uses the same Reduce
function to aggregate the metrics across all partitions. Each rule
that fails to meet the global criteria is pruned. The rules are sorted
on the requested metrics and returned to the user.

V. EVALUATION

A. Experimental Setup
The implementation has been evaluated using Amazon EC2

instances of three distinct configurations:
• Small-scale: an 8-core system of m3.xlarge instances pos-

sessing 28.2GB of main-memory;
• Medium-scale: a 32-core system of m3.xlarge instances

possessing 112.8GB of main-memory;
• Large-scale: a 128-core system of m3.xlarge instances pos-

sessing 451.2GB of main-memory.
The dataset scales used in the evaluation process are proportional

to the system size: Small-scale: 5GB; Medium-scale: 20GB;
Large-scale: 80GB. The scale of data volumes used for evaluation
was based on Ananthanarayanan et al. [16], which identified, based
on analysis of access patterns of data mining tasks at Facebook,
that 96% of tasks processed data that could be stored in only a
fraction of the cluster’s total main memory (assuming 32GB of
main memory per server). Further, similar work by Appuswamy et
al. [17] reports that the majority of real-world data mining tasks
process less than 100GB of input.
DistributedWekaSpark includes three Data Mining meth-

ods: classification, regression and association rules. Each method
has been evaluated by using a representative algorithm: classifica-
tion using SVM, regression using Linear Regression, association
rules using FP-Growth. In each case, the experiment was repeated



using the three scales. An identical workload was executed on
Hadoop for comparison.

In terms of the evaluation, Hadoop was consistent across all
three algorithms. Thus, due to space limitations, we show only
Classification (SVM in this case) in terms of scaling efficiency
and execution times against Hadoop. Classification was chosen as
it underpins many of the fundamental algorithms in data science
[18]. Further, we note that classification algorithms have relatively
low levels of dependencies amongst stages which is challenging
as it complicates memory utilization (compared to association rule
mining).

B. Experimental Results
The system is assessed using two scalability metrics:
• Strong Scaling: the total problem size remains constant as

additional instances are assigned to speed-up computations;
• Weak Scaling: the per-instance problem size remains con-

stant as additional instances are used to tackle a bigger
problem.

Figure 8a-c demonstrate DistributedWekaSpark’s strong
scaling on three algorithms.
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Figure 8. Strong scaling for a) Linear Regression, b) SVM, c) FP-Growth,
and d) SVM run on Hadoop

Strong scaling efficiencies on Spark approach linearity when
datasets are large and runtime is dominated by computation. Using
large systems for small loads is inefficient due to initialization
overheads. These overheads were measured at 11 seconds, regard-
less of the system’s scale. On the largest system (128 cores), this
number corresponds to 40.8% of the average total execution time
on the small scale dataset (5GB), to 20.3% on the medium scale
dataset (20GB), and to 10.1% on the large scale dataset (80GB).
As the dataset size increases, runtime is dominated by computation
and thus, overheads are amortized across total execution time.
For comparison purposes, Figure 8d illustrates the strong scaling
of Hadoop on SVM (vs. Figure 8b). Hadoop’s strong scaling
efficiency demonstrates inferior performance due to larger initial-
ization overheads - Hadoop’s initialization cost was 23 seconds.
This overhead occurs at the beginning of every MapReduce stage,
whereas in Spark it is only required at the first stage.

Figure 9 demonstrates the weak scaling efficiency of the three
algorithms used for benchmarking. The figure also presents the
weak scaling efficiency of the SVM algorithm on Hadoop.

Execution times approach linear performance for systems up to
128 cores in all cases. In contrast, Hadoop’s weak scaling efficiency
rapidly decreases as the number of cores increases.
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Figure 9. Weak scaling for Linear Regression, SVM, and FP-Growth on
DistributedWekaSpark and SVM on Hadoop

In general, a slight performance decline is expected in fully
distributed systems through monitoring multiple instances and load
balancing. However, as Spark achieves high locality in consecutive
stages, the effects are minimal in multi-stage execution plans.

Table I displays the average speedup of
DistributedWekaSpark compared to Hadoop for building a
classifier. Hadoop is used as the baseline, so any number greater
than 1 means that DistributedWekaSpark is faster. Shaded
cells indicate cases where full dataset caching was possible; for
the rest of the cases only partial dataset caching was achieved.
Hadoop loads a partition for each active Map container into
memory, executes the Map task, discards the processed partition
and repeats the procedure until the whole dataset is processed.
In contrast, DistributedWekaSpark loads partitions until
memory saturation and schedules the Map tasks to process
in-memory data. Thus, when the available memory is larger than
the dataset, DistributedWekaSpark’s caching of the dataset
has obvious benefits (up to nearly 4x faster). Successive stages
process the same RDDs so the need to reload and rebuild the
dataset in the required format is avoided.

SPEEDUP 5GB 20GB 80GB
8 cores 2.13 1.78 1.69
32 cores 3.00 2.28 1.68
128 cores 3.97 2.23 2.52

Table I
AVERAGE SPEEDUP OF DISTRIBUTEDWEKASPARK AGAINST HADOOP

FOR CLASSIFICATION.

In cases where the dataset cannot be fully cached, Spark applies
a partition replacement policy where the Least Recently Used
(LRU) partition is replaced. This process indicates that it is highly
unlikely that successive stages will find the required partitions in-
memory. Thus, the partition will be loaded from disk as in Hadoop.
However, there is a big difference between the mechanisms Hadoop
and Spark use to implement this process.

Hadoop reads HDFS partitions using an iterator. Map tasks read
a HDFS partition line-by-line (each line being represented as a
key-value pair), process each line and emit intermediate key-value
pairs if necessary. In the specific case of Hadoop, the partitions are
read line-by-line, each line is processed by a parser and then added
to an Instances object (Weka’s dataset representation). When this
procedure is completed, the Map tasks execute the SVM algorithm
and iterate over the data until the algorithm converges. When the



model is built, Hadoop emits the trained model, discards the data
and schedules the Mapper to process a new partition. Thus, reading
data from HDFS is coupled with data processing: while the system
is reading data, the CPU is idle and while the system is processing
data the I/O subsystem is idle. This process leads to suboptimal
resource utilization: CPU cycles are wasted and I/O bandwidth is
never saturated.

Spark resolves this issue using RDDs. This abstraction decouples
the two phases. Map tasks process RDD partitions that are already
in-memory. As the system is not required to wait for I/O and reads
directly from main memory, maximum CPU utilization is achieved.
Additionally, Spark removes older partitions from the distributed
cache and fetches the next set of partition from HDFS regardless
of the task execution phase. This gives faster reading of data as
it is performed at a block rather than a line level, and overlaps
data loading and data processing. These two features, along with
the shortened initialization time, contribute to significant speedup
compared to the Hadoop-based solution.

For example, in the smallest cluster configuration of 8 cores
with ∼28GB main memory (see Table I), using 80GB of raw data
produced 200GB of data in memory (we explain this behavior
below). Spark was able to cache only 10% of the dataset effectively
forcing disk reads; given the LRU policy, no suitable partition was
available, yet Spark was still 1.69x faster on average than Hadoop.

Spark RDDs can be represented in memory as distributed Java
objects. These objects are very fast to access and process, but may
consume up to 5 times more memory than the raw data of their
attributes. This overhead can be attributed to the metadata that
Java stores alongside the objects and the memory consumed by the
object’s internal pointers. Spark offers a series of tools to tackle
these overheads by introducing serialization and compression. In
the experiments both serialization and compression were found
beneficial as they demonstrated memory footprints close to the
on-disk dataset values and reduction in main memory utilization
by 40% at a small performance penalty (∼5% on average of the
total execution time in our case). The Kryo serialization library
was used as it offers better compression ratios than the built-in
Java serialization [4].

VI. RELATED WORK

Mahout [19], a community-based Hadoop-related project, aims
to provide scalable data mining libraries. As its libraries do not
provide a general framework for building algorithms, the quality
of the provided solutions varies significantly being dependent on
contributor expertise leading to potential lower performance [20].
Mahout also focuses on implementing specific algorithms, rather
than building execution models for algorithm methods.

Radoop [21] introduced the RapidMiner toolkit to Hadoop.
RapidMiner has a GUI to design work-flows which consist of load-
ing, cleaning, mining and visualization tasks. Radoop introduced
operators to read data from HDFS and execute Data Mining tasks.
Its operators correspond to Mahout algorithms. At runtime the
workflow is translated to Mahout tasks and executed on Hadoop.
Radoop suffers the same performance issues as Mahout. However,
it does separate Data Mining work-flow design from distributed
computations.

Ricardo [22] merged the data mining/statistics tool R with
distributed frameworks. The system uses a declarative scripting
language and Hadoop to execute R programs in parallel. Although
the system uses R-syntax familiar to many analysts, Ricardo suffers
from long execution times due to the overhead produced by
compiling the declarative scripts to low-level MapReduce jobs.

SparkR [6] provides R users with a lightweight front-end to
a Spark system. It enables the generation and transformation of

RDDs through an R shell. RDDs are exposed as distributed lists
through the R interface. Existing R packages can be executed
in parallel on partitioned datasets by serializing closures and
distributing R computations to the nodes. Global variables are
automatically captured, replicated and distributed to the system
enabling efficient parallel execution. However, the system requires
knowledge of statistical algorithms as well as basic knowledge of
RDD manipulation techniques.

RHIPE [23] and SystemML [7] also aim to extend R for large-
scale distributed computations. All the cited efforts to merge R
with MapReduce suffer from two issues: (1) R is based on C and
hence not native to Java-based frameworks such as Hadoop and
Spark. Thus a bridging mechanism is required between R and the
underlying Java Virtual Machine. R-code is compiled to C-code
which uses the Java Native Interface for execution which reduces
portability; (2) The underlying MapReduce paradigm is visible to
the user. The user needs to express computations as a series of
transformations (Map) and aggregations (Reduce). In Ricardo, this
is achieved by using Jaql declarative queries where the selection
predicates use R functions to transform the data (Map equivalent)
and aggregation functions (Reduce equivalent) to produce the final
output. SparkR uses the same methodology on distributed lists.
RHIPE requires the user to learn MapReduce. SystemML allows
experts to develop efficient distributed machine learning algorithms
but requires programming in custom Domain Specific Language.

RABID [24] also allows R users to scale their work on dis-
tributed systems, particularly Spark. Although RABID provides an
interface familiar to existing R users, the system still suffers from
the performance and portability issues explained above.

These observations further support the decision to use Weka as
it is written in Java and the bridging overheads of these systems
are avoided. Additionally, by using Weka’s interface, distributed
MapReduce computations can be abstracted from the design of
Data Mining processes.

Efforts to combine Weka’s user model with the power of
distributed systems include WekaG [26], WekaParallel [27] and
Weka4WS [28]. WekaG and Weka4WS use web services to sub-
mit and execute tasks to remote servers. However, they do not
support parallelism; each server executes an independent task on its
own local data. WekaParallel proposed a parallel cross-validation
scheme where each server receives a dataset copy, computes a fold
and sends back the results. This practice cannot be applied on a
large scale because of network bottlenecks. Work by Wegener et al.
[10] aimed to merge Weka with Hadoop. Their methodology does
not provide a unified framework for expressing Weka’s algorithms.
Each algorithm must be inspected to identify parts to execute in
parallel and then re-implemented using MapReduce. This process
entails producing custom-distributed implementations of all the
algorithms in Weka and suffers from the same shortcomings as
Mahout. Additionally, reading incrementally from disk produces
large overheads on iterative algorithms.

VII. CONCLUSIONS AND FUTURE WORK

DistributedWekaSpark1 is a scalable Big Data Mining
toolkit that exploits the power of distributed systems whilst re-
taining the standard Weka interface. DistributedWekaSpark
is built on top of Spark which provides fast in-memory iterative
processing, utilizing both parallel and distributed execution, making
it ideal for Data Mining algorithms. Spark can be installed on
Amazon EC2 systems by running a simple script and hence
DistributedWekaSpark is ready to use with simple com-
mands that mimic Weka’s existing user interface.

1The code for DistributedWekaSpark can be found at
https://github.com/ariskk/distributedWekaSpark



Evaluation shows that DistributedWekaSpark achieves
near-linear scaling on various real-world scale workloads and
shows speedups of up to 4x faster on average than Hadoop on
identical workloads.

Further work will consider three areas: the provision of cluster-
ing, detailed analysis of caching performance and comparison with
MLlib [25].

The execution model, that encapsulates Weka algorithms in
MapReduce wrappers, is in theory applicable to any clustering
approach. For example, Canopy Clustering [29] which divides the
dataset into overlapping regions using a cheap distance function,
can be implemented. Canopies within a threshold are assumed
to represent the same region and hence can be aggregated: Map
functions can be used to build Canopy Clusterers on partitions in
parallel and Reduce functions can aggregate Canopies on the same
region. However, this method will not work for other clustering
approaches where aggregation would require the use of consensus
clustering, as it is not yet supported by Weka.

A preliminary analysis of Spark’s default caching strategy has
shown it to be inefficient. As a result, multiple caching strategies
have been investigated for data mining algorithms suggesting
that: (1) serialization and compression mechanisms significantly
decrease memory footprint with marginal performance overheads;
(2) a mechanism to automatically select a strategy decreases
execution time depending on garbage collection overhead (itself
dependent on partition size, cache size and strategy), for example,
with very limited main memory resource (∼1-2GB) and where
garbage collection is frequently triggered, we recorded a decrease
of up to 25% in execution time compared to the default mechanism.

MLlib [25] is a set of distributed machine learning libraries writ-
ten in Scala using the Spark runtime. DistributedWekaSpark
can be viewed as a distributed framework that is as powerful
as MLlib yet both utilizes existing Weka code and is imme-
diately usable on distributed systems by existing Weka users.
An area of further work is to compare performance between
DistributedWekaSpark and MLlib.
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