
 
 

Solving Problems in Dynamics and Vibrations Using 
MATLAB 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Parasuram Harihara 
 

And 
 

Dara W. Childs 
 
 

Dept of Mechanical Engineering 
Texas A & M University 

College Station.



 2

Contents 
 
 

I.     An Introduction to MATLAB…………………………………………………(3) 

1. Spring-Mass-Damper system…………………………………………………(11) 

2. Simple pendulum……………………………………………………………..(21) 

3. Coulomb friction……………………………………………………..……….(26) 

4. Trajectory motion with aerodynamic drag……………………………..……..(30) 

5. Pendulum with aerodynamic and viscous damping……………………..……(34) 

6. A half cylinder rolling on a horizontal plane……………………………..…..(38) 

7. A bar supported by a cord…………………………………………………….(41) 

8. Double pendulum……………………………………………………………..(50) 

9. Frequency response of systems having more than one degree of freedom…...(56) 

10. A three bar linkage problem…………………………………………………..(63) 

11. Slider-Crank mechanism……………………………………………………....(70) 

12. A bar supported by a wire and a horizontal plane……………………………..(77) 

13. Two bar linkage assembly supported by a pivot joint and a horizontal plane…(84) 

14.  Valve Spring Model...........................................................................................(92) 

 

 



 3

An Introduction to MATLAB 
 
Purpose of the Handout 
 
This handout was developed to help you understand the basic features of MATLAB and 
also to help you understand the use of some basic functions. This is not a comprehensive 
tutorial for MATLAB. To learn more about a certain function, you should use the online 
help. For example, if you want to know more about the function ‘solve’, then type the 
following command in the command window at the prompt: 
 
help solve 
 
Introduction 
 
MATLAB is a high performance language for technical computing. The name MATLAB 
stands for matrix laboratory. Some of the typical uses of MATLAB are given below: 
 
 Math and Computation 
 Algorithm Development 
 Modeling, Simulation and Prototyping 
 
M-Files 
 
Files that contain code in MATLAB language are called M-Files. You create a M-File 
using a text editor and then use them as you would any other MATLAB function or 
command. But before using the user defined functions always make sure that the ‘path’ is 
set to the current directory. There are two kinds of M-Files: 
 
 Scripts, which do not accept input arguments or return output arguments. 
 Functions, which can accept input and output arguments. 
 
When you invoke a script MATLAB simply executes the commands found in the file. 
For example, create a file called ‘SumOfNumbers’ that contains these commands: 
 
% To find the sum of first 10 natural numbers 
 
n = 0; 
i = 1; 
for i=1:10; 
 n = n + i; 
 i = i + 1; 
end 
n 
 
Go to the command window and set the path to the current directory. Then typing  



 4

SumOfNumbers 
 
at the command prompt causes MATLAB to execute the commands in the M-File and 
print out the value of the sum of the first 10 natural numbers. 
 
Functions are dealt in detail later in the handout. 
 
Matrices 
 
Suppose you have to enter a 2x2 identity matrix in MATLAB. Type the following 
command in the command window: 
 
A=[1 0; 0 1] 
 
MATLAB displays the matrix you just entered 
 
A= 

1 0 
0 1 

 
The basic conventions you need to follow are as follows: 
 
 Separate the elements in the row with blanks or commas 
 Use a semicolon, (;) to indicate the end of each row 
 Surround the entire list of elements with square brackets, []. 
 
There are many other ways of representing matrices, but the above-mentioned method is 
one of the popularly used methods. To know more about the different types of 
representation, go through the online help or the MATLAB user guide. 
 
Suppose, you want to separate out the first column in the above matrix and use it for 
some other calculation, then type the following in the MATLAB command window. 
 
Y=A(:,1) 
 
Here Y contains the elements of the first column. Y is a 2x1 matrix. Note that the colon 
in the above expression indicates that MATLAB will consider all rows and ‘1’ indicates 
the first column. Similarly if you want to separate the second row then type the following 
command 
 
T=A(2,:) 
 
Solving Linear Equations 
 
Suppose for example, you have to solve the following linear equations for ‘x’ and ‘y’. 
 



 5

0

62




yx

yx
 

 
There are two methods to solve the above-mentioned linear simultaneous equations. 
  
The first method is to use matrix algebra and the second one is to use the MATLAB 
command ‘solve’. 
 
Matrix Algebra 
 
Representing the above two equations in the matrix form, we get 
 

























 0

6

11

21

y

x
 

 
The above equation is in the form of  
 

BAX   
 
where A is known as the coefficient matrix, X is called the variable matrix and B, the 
constant matrix. 
 
To solve for X, we find the inverse of the matrix A (provided the inverse exits) and then 
pre-multiply the inverse to the matrix B i.e., 
 

BAX 1  
 
The MATLAB code for the above-mentioned operations is as shown below. Open a new 
M-File and type in the following commands in the file. 
 
% To solve two simultaneous linear equations. 
 
A = [1 2;1 –1]; 
B = [6;0]; 
X = inv (A)*B 
 
Before executing the program, always remember to set the path to the current directory. 
Note that the first statement is preceded by a ‘%’ symbol. This symbol indicates that the 
statement following the symbol is to be regarded as a comment statement. Also note that 
if you put a semicolon ‘;’ after each statement, then the value of that statement is not 
printed in the command window. Since we require MATLAB to print the value of ‘X’, 
the semicolon does not follow the last statement. 
 
 
 



 6

 
Solve Command 
 
The ‘solve’ command is a predefined function in MATLAB. The code for solving the 
above equations using the ‘solve’ command is as shown. Open a new M-File and type the 
following code. 
 
% To solve the linear equations using the solve command 
 
p = ‘x + 2*y = 6’; 
q = ‘x – y = 0’; 
[x,y] = solve(p,q) 
 
Subs Command 
 
This command is explained by means of the following example. Suppose you want to 
solve the following linear equations: 
 

ayx

ayx


 62

 

 
Note that there are three unknown and only two equations. So we are required to solve 
for ‘x’ and ‘y’ in terms of ‘a’. To calculate the numerical values of ‘x’ and ‘y’ for 
different values of ‘a’, we use the subs command. 
 
The following MATLAB code is used to demonstrate the ‘subs’ command. 
 
% To solve the linear equations using the subs command 
 
p = ‘x + 2*y = a + 6’ 
q = ‘x – y = a’ 
[x,y] = solve(p,q) 
 
a = 0; 
[x] = subs(x) 
[y] = subs(y) 
 
Here the ‘solve’ command solves for the values of ‘x’ and ‘y’ in terms of ‘a’. Then ‘a’ is 
assigned the value of ‘0’. Then we substitute the assigned value of ‘a’ in ‘x’ and ‘y’ to get 
the numerical value. 
 
Suppose a varies from 1 to 10 and we need to find the value of ‘x’ and ‘y’ for each value 
of ‘a’ then use the following code: 
 
% To solve the linear equations using the subs command 
 



 7

p = ‘x + 2*y = a + 6’ 
q = ‘x – y = a’ 
[x,y] = solve(p,q) 
 
i = 0; 
for a = 1:10 
      t(i) = subs(x); 
      p(i) = subs(y); 
      i = i + 1 ; 
end 
 
In the above code t(i) and p(i) contains the values of ‘x’ and ‘y’ for different values of ‘a’ 
respectively. 
 
Functions 
 
Functions are M-Files that can accept input arguments and return output arguments. The 
name of the M-File and the function should be the same. Functions operate on variables 
within their own workspace, separate from the workspace you access at the MATLAB 
command prompt. The following example explains the use of functions in more detail. 
 
Define a new function called hyperbola in a new M-File. 
 
Function y = twice(x) 
y = 2*x; 
 
Now in a new M-file plot ‘y’ with respect to ‘x’ for different values of ‘x’. The code is as 
shown below 
 
x = 1:10 
y = twice(x) 
plot(x,y) 
 
Basically the function ‘twice’ takes the values of x, multiplies it by 2 and then stores each 
value in y. The ‘plot’ function plots the values of ‘y’ with respect to ‘x’. 
 
To learn more about the use of functions, go through the user guide. 
 
Hold Command 
 
HOLD ON holds the current plot and all axis properties so that subsequent graphing 
commands add to the existing graph. HOLD OFF returns to the default mode whereby 
PLOT commands erase the previous plots and reset all axis properties before drawing     
new plots.  
 
One can also just use the ‘Hold’ command, which toggles the hold state. To use this 
command, one should use a counter in connection with an ‘if’ loop; which first toggles 



 8

the hold on state and then the counter must be incremented such that, the flow of 
command does not enter the  ‘if’ loop. 
 
 
% Example to show the use of the hold command 
 
counter = 0; 
 
if (counter ==0) 
 hold; 
end 
 
counter = counter + 1; 
 
Here the ‘hold’ command is executed only if the value of the counter is equal to zero. In 
this way we can make sure that the plots are held. The drawback of this procedure is that 
we cannot toggle the ‘hold’ to off. 
 
Plotting Techniques 
 
The plot function has different forms depending on the input arguments. For example, if 
y is a vector, plot (y) produces a linear graph of the elements of y versus the index of the 
elements of y. If you specify two vectors as arguments, plot (x,y) produces a graph of y 
versus x. 
 
Whenever a plot is drawn, title’s and a label’s for the x axis and y axis are required. This 
is achieved by using the following command. 
 
To include a title for a plot use the following command 
 
title (‘Title’) 
 
For the x and y labels, use 
 
xlabel(‘ label for the x-axis’) 
ylabel(‘label for the y-axis’) 
 
Always remember to plot the data with the grid lines. You can include the grid lines to 
your current axes by including the following command in your code. 
 
grid on 
 
For more information about various other plotting techniques, type  
 
help plot 
 
in the command window. 



 9

 
Suppose one wants to change the color of the curve in the plot to magenta, then use the 
following command 
 
plot (x,y,’m’) 
 
‘m’ is the color code for magenta. There are various other color codes like ‘r’ for red, ‘y’ 
for yellow, ‘b’ for blue etc. 
 
The following example makes use of the above-mentioned commands to plot two 
different data in the same plot. The MATLAB code is given below. 
 
x=0:0.1:10; 
y1 = x.*2; 
y2 = x.*3; 
plot(x,y1) 
hold on 
plot(x,y2,'-.') 
grid on 
xlabel('x') 
ylabel('y') 
title('X Vs Y') 
legend('y1','y2') 
 
When you run the above code, you will get the following plot. 

 
In order to save the plot as a JPEG file, click the file icon in the figure window and then 
click the export command. In the ‘save as type’ option select ‘*.jpg’. In order to import 
the file in MS word, go to ‘Insert’ icon and then select ‘Picture from file’ command. 
 



 10

Figure Command 
 
Suppose you want to plot two different vectors in two different windows, use the “figure” 
command. The example given below illustrates the use of the “figure” command. 
 
% to illustrate the figure command 
 
x=[1,2,3,4,5,6,7,8,9,10]; 
y=[12 23 4 5 65 67 89]; 
 
figure(1) 
plot(x) 
grid 
title('plot of X') 
 
figure(2) 
plot(y) 
grid 
title('plot of Y') 
 
The above code will plot the values of x and y in two different figure windows. If you 
want to know more about the command type the following at the command prompt. 
 
help figure 
  



 11

1. Spring Mass Damper System – Unforced Response 
 
 
                                                 m 
  
 
 
 
                                      k                       c 
 
 
 
 
 
 
Example 
 
Solve for five cycles, the response of an unforced system given by the equation 

0
...

 kxxcxm                                                                            (1) 
 

For  = 0.1; m = 1 kg; k = 100 N/m; x (0) = 0.02 m; 
.

x (0) = 0; 
 
Solution 
 
The above equation is a second order constant-coefficient differential equation.  To solve 
this equation we have to reduce it into two first order differential equations. This step is 
taken because MATLAB uses a Runge-Kutta method to solve differential equations, 
which is valid only for first order equations. 
 
Let  

vx 
.

                                                                                                                               (2) 
 
From the above expression we see that 

 
so the equation (1) reduces to 
 

])()[(
.

x
m

k
v

m

c
v 


                                                                                                         (3)                                  

 
We can see that the second order differential equation (1) has been reduced to two first 
order differential equations (2) and (3). 
 

0
.

 kxcvvm



 12

For our convenience, put 
 
 x = y (1); 

);2(
.

yvx   
 
Equations (2) and (3) reduce to 

)1(
.

y  = y (2);                (4) 

)2(
.

y  = [(-c/m)*y (2) – (k/m)*y (1)];                                                                                (5) 
 
To calculate the value of ‘c’, compare equation (1) with the following generalized 
equation. 

02 2
...

 nn xx   

 
Equating the coefficients of the similar terms we have 
 

nm

c 2                                                                                                                          (6) 

m

k
n 2                                                                                                                            (7) 

 
Using the values of ‘m’ and ‘k’, calculate the different values of ‘c’ corresponding to 
each value of . Once the values of ‘c’ are known, equations (4) and (5) can be solved 
using MATLAB. 
  
The problem should be solved for five cycles. In order to find the time interval, we first 
need to determine the damped period of the system. 
 

Natural frequency n = )/( mk = 10 rad/sec. 

For  = 0.1 

Damped natural frequency d = n  2
1 = 9.95 rad/sec. 

Damped time period Td = 2/d = 0.63 sec. 
 
Therefore for five time cycles the interval should be 5 times the damped time period, i.e., 
3.16 sec. 
 
 
 
 
 
 
 



 13

MATLAB Code 
 
In order to apply the ODE45 or any other numerical integration procedure, a separate 
function file must be generated to define equations (4) and (5). Actually, the right hand 
side of equations (4) and (5) are what is stored in the file. The equations are written in the 
form of a vector. 
 
The MATLAB code is given below. 
 
function yp = unforced1(t,y) 
yp = [y(2);(-((c/m)*y(2))-((k/m)*y(1)))];               (8) 
 
Open a new M-file and write down the above two lines. The first line of the function file 
must start with the word “function” and the file must be saved corresponding to the 
function call; i.e., in this case, the file is saved as unforced1.m. The derivatives are stored 
in the form of a vector. 
 
This example problem has been solved for  = 0.1. We need to find the value of ‘c/m’ 
and ‘k/m’ so that the values can be substituted in equation (8). Substituting the values of 
 and n in equations (6) and (7) the values of ‘c/m’ and ‘k/m’ can be found out. After 
finding the values, substitute them into equation (8).  
 
Now we need to write a code, which   calls the above function and solves the differential 
equation and plots the required result. First open another M-file and type the following 
code. 
    
tspan=[0 4]; 
y0=[0.02;0]; 
[t,y]=ode45('unforced1',tspan,y0); 
plot(t,y(:,1)); 
grid on 
xlabel(‘time’) 
ylabel(‘Displacement’) 
title(‘Displacement Vs Time’) 
hold on; 
 
The ode45 command in the main body calls the function unforced1, which defines the 
systems first order derivatives. The response is then plotted using the plot command. 
‘tspan’ represents the time interval and ‘y0’ represents the initial conditions for y(1) and 
y(2) which in turn represent the displacement ‘x’ and the first derivative of ‘x’. In this 
example, the initial conditions are taken as 0.02 m for ‘x’ and 0 m/sec for the first 
derivative of ‘x’.  
 
MATLAB uses a default step value for the vector ‘tspan’. In order to change the step size 
use the following code  
 
tspan=0:0.001:4; 



 14

 
This tells MATLAB that the vector ‘tspan’ is from 0 to 4 with a step size of 0.001. This 
example uses some arbitrary step size. If the step size is too small, the plot obtained will 
not be a smooth curve. So it is always better to use relatively larger step size. But it also 
takes longer to simulate programs with larger step size. So you have to decide which is 
the best step size you can use for a given problem. 
 
In order to solve for different values of , calculate the values of ‘c/m’ for each value of 
. Substitute each value of  in the function file, which has the derivatives, save the file 
and then run the main program to view the result. This process might be too tedious. The 
code can be made more efficient by incorporating a ‘For loop’ for the various values of 
zeta. 
 
In the above code ‘y(:,1) represents the displacement ‘x’. To plot the velocity, change the 
variable in the plot command line to ‘y(:,2)’. 
 
The plot is attached below 
 
 



 15

Assignment 
 
Solve for six cycles the response of an unforced system given by  

0
...

 kxxcxm  
 

For  = {0, 0.1 0.25, 0.5, 0.75, 1.0}. 

Take m = 5 kg; k = 1000 N/m; x(0) = 5 cms; 
.

x (0) = 0; 
 
Develop a plot for the solutions corresponding to the seven  values and comment on the 
plots obtained. 
 
Note: When you save the M-File, make sure that the name of the file does not 
coincide with any of the variables used in the MATLAB code. 



 16

Spring Mass Damper System – Forced Response 
 
 
                                  fsint 
 
 
 
                                                    m 
 
 
 
                                         k                      c 
 
 
 
 
 
 
Example 
 
Plot the response of a forced system given by the equation 

tfkxxcxm sin
...

                                                                (1) 
 

For  = 0.1; m = 1 kg; k = 100 N/m; f = 100 N;  = 2n; x(0) = 2 cms; 
.

x (0) = 0. 
 
Solution 
 
The above equation is similar to the unforced system except that it has a forcing function. 
To solve this equation we have to reduce it into two first order differential equations. 
Again, this step is taken because MATLAB uses a Runge-Kutta method to solve 
differential equations, which is valid only for first order equations. 
 
Let  

vx 
.

                                                                                                                               (2) 
 
so the above equation reduces to 
 

])()(sin)[(
.

x
m

k
v

m

c
t

m

f
v                                                                                         (3) 

 
We can see that the second order differential equation has been reduced to two first order 
differential equations. 
 
 



 17

For our convenience, put 
 
 x = y (1); 

);2(
.

yvx   
 
Equations (2) and (3) then reduce to 

)1(
.

y  = y (2); 

)2(
.

y  = [(f/m)*sin( * t) + (-c/m)*y (2) – (k/m)*y (1)]; 
 
Again, to calculate the value of ‘c’, compare equation (1) with the following generalized 
equation 

tfxx nn  sin2 2
...

  

 
Equating the coefficients of the similar terms we have 

nm

c 2  

m

k
n 2  

 
Using the values of ‘m’ and ‘k’, calculate the different values of ‘c’ corresponding to 
each value of .  
 
To find the time interval the simulation should run, we first need to find the damped time 
period. 
 

Natural frequency n = )/( mk = 10 rad/sec. 

For  = 0.1; 

Damped natural frequency d = n  2
1 = 9.95 rad/sec. 

Damped time period Td = 2/d = 0.63 sec. 
 
Therefore, for five time cycles the interval should be 5 times the damped time period, i.e., 
3.16 sec. Since the plots should indicate both the transient and the steady state response, 
the time interval will be increased. 
 



 18

MATLAB Code 
 
The MATLAB code is similar to that written for the unforced response system, except 
that there is an extra term in the derivative vector, which represents the force applied to 
the system. 
 
The MATLAB code is given below. 
 
function yp = forced(t,y) 
yp = [y(2);(((f/m)*sin(*t))-((c/m)*y(2))-((k/m)*y(1)))]; 
 
 
Again the problem is to be solved for  = 0.1. So, calculate the value of ‘c/m’, ‘k/m’ and 
‘f /m’ by following the procedure mentioned in the earlier example and then substitute 
these values into the above expression. Save the file as ‘forced.m’. 
 
The following code represents the main code, which calls the function and solves the 
differential equations and plots the required result. 
 
tspan=[0 5]; 
y0=[0.02;0]; 
[t,y]=ode45('forced',tspan,y0); 
plot(t,y(:,1)); 
grid on 
xlabel(‘time’) 
ylabel(‘Displacement’) 
title(‘Displacement Vs Time’) 
hold on; 
 
Again, ‘tspan’ represents the time interval and ‘y0’ represents the initial conditions for 
y(1) and y(2) which in turn represent the displacement ‘x’ and the first derivative of ‘x’. 
In this example the initial conditions are taken as 0.02 m for ‘x’ and 0 cm/sec for the first 
derivative of ‘x’. Again the default step size of the vector ‘tspan’ can be changed 
accordingly as explained in the previous example. 
 
To solve for different values of , calculate the values of ‘c/m’ for each value of . 
Substitute each value of  in the function file, which has the derivatives, save the file and 
then run the main program to view the result. 
 
In the above code ‘y(:,1) represents the displacement ‘x’. To plot the velocity,  change the 
variable in the plot command line to ‘y(:,2)’. 
 
The plot is attached below. 
 
 
 



 19

 
 
 
 
 

 
 



 20

Assignment 
 
Plot the response of a forced system given by the equation 

tfkxxcxm sin
...

  

For  = {0, 0.1 0.25, 0.5, 0.75, 1.0}. 

Take m = 5 kg; k = 1000 N/m; f = 50 N;  = 4n, x(0) = 5 cms; 
.

x (0) = 0. 
 
Develop a plot for the solutions corresponding to the seven  values and comment on the 
plots obtained. 
 
 
 
 
 
 
 



 21

2. Simple Pendulum  
 
 
                                                           
  
 
 
        l 
 
 
 
                                                                                 m 
 
 
 
 
Example 

Compute and plot the linear response of a simple pendulum having a mass of 10 grams 

and a length of 5 cms. The initial conditions are  (0) = 90 and 0)0(
.

  
Also compare the generated plot with the nonlinear plot. 
 
Solution 
 
The differential equation of motion for the simple pendulum without any damping is 
given by 

 
If we consider the system to be linear, i.e., for small angles,  

 
So the linearized version of the above non-linear differential equation reduces to 

 
The above equation is a second order, constant-coefficient differential equation. In order 
to use MATLAB to solve it, we have to reduce it to two first order differential equations 
as MATLAB uses a Runge-kutta method to solve differential equations, which is 
applicable only for first order differential equations. 
 
Let  

 sin)(
..

l

g


 sin

 )(
..

l

g


)2(
.

y

)1(y



 22

 
When the values of ‘theta’ and the first derivative of ‘theta’ are substituted in the second 
order linearized differential equation, we get the following two first order differential 
equation: 

 
For a nonlinear system,  

 
The second order non-linear differential equation reduces to the following, two first order 
differential equation:  

 
 
MATLAB Code 
 
The MATLAB code is written following the procedure adopted to solve the spring-mass-
damper system. For the linear case the function file is saved as ‘linear.m’. 
 
function yp = linear(t,y) 
yp = [y(2);((-g/l) *(y(1)))]; 
 
In this example, the value of ‘l’ is chosen to be 5 cms. So the value of ‘g/l’ turns out to be 
–196.2 per square second. Note that since the mass and the length are expressed in grams 
and centimeters respectively, the value of the acceleration due to gravity ‘g’ is taken to be 
981 cms per square second. Substitute this value in the above MATLAB code. 
 
For the nonlinear case, open a new M-file to write a separate function file for the 
nonlinear differential equation. In this case the function file is saved as ‘nonlinear.m’. 
 
function yp = nonlinear(t,y) 
yp = [y(2);((-g/l) *sin(y(1)))]; 
 
 
The main code should be written in a separate M-file, which will actually call the above 
function files, solve the derivatives stored in them and plot the required result. 
 
tspan = [0 5]; 
y0 = [1.57;0]; 
[t,y] = ode45('linear',tspan,y0) 

)2()1(
.

yy 

)1()/()2(
.

ylgy 

 sin

)2()1(
.

yy 

))1(sin()/()2(
.

ylgy 



 23

plot(t,y(:,1)) 
grid on; 
xlabel(‘Time’) 
ylabel(‘Theta’) 
title(‘Theta Vs Time’) 
hold on; 
 
‘tspan’ represents the time interval and ‘y0’ represents the initial condition. Note that the 
value of  in the initial conditions must be expressed in radians. 
 
Now run the code for the linearized version of the simple pendulum. A plot of ‘theta’ 
versus ‘time’ will be obtained. The ‘hold’ command in the code freezes the plot obtained. 
This command is used so that the nonlinear version can also be plotted in the same graph. 
After running the program for the linear version, change the name of the function in the 
third line of the main code from ‘linear’ to ‘nonlinear’. By doing this, the Ode45 
command will now solve the nonlinear differential equations and plot the result in the 
same graph. To differentiate between the linear and the non-linear curve, use a different 
line style. 
 
The plots of the responses are attached. From the plots we can see that the time period for 
the non linear equation is greater than that of the linear equation.  
 
To plot the angular velocity with respect to ‘time’ change the variable in the plot 
command line in the main code from ‘y(:,1)’ to ‘y(:,2)’. This is done because initially we 
assigned y(1) to ‘theta’ and y(2) to the first derivative of ‘theta’. 
 



 24

 

 
 
 
 



 25

 
Assignment 
 
a) Compute and plot the response of a simple pendulum with viscous damping whose     
     equation of motion is given by     

 

                                   0
...

2   mglcml  
 
Compute the value of the damping coefficients for  = 0.1.The initial conditions are  

 (0) = {15, 30, 45, 60, 90} and 0)0(
.

 .  M = 10 g ; l = 5 cms. 
 
b) Compare the generated plot with Non-linear plot for each value of (0). 
    What do you infer from the plots obtained? 
 
c) Plot the natural frequency of the nonlinear solution versus initial condition (0). 
 
(Note: Plot the linear and the nonlinear curve in the same plot. Remember to convert the 
initial values of theta given in degrees, to radians.) 
 
Also make sure that the difference between the linear and the non-linear responses can be 
clearly seen from the plot. If necessary use the zoom feature in order to show the 
difference. 
 
 



 26

3. Coulomb Friction 
 
Example 

Solve the following differential equation for 0
.

 . 

]sin)1([coscos)sin1(
2

2...

 
dddd l

g
  

d ={0, 0.1,0.2}; ml 25.0 . 0)0(;0)0(
.

   

 
Solution 
 
As explained earlier, to solve the above differential equation by MATLAB, reduce it into 
two first order differential equations. 
 
Let )1(y  

      )2(
.

y  
 
The above equation reduces to  
 

)2()1(
.

yy   

)}2)^2())(1(cos({
)))1(sin(1(

1
))}1(sin(]1))[1({cos(

)))1(sin(1(
)2( 2

.

yy
yl

yy
yl

g
y d

d
dd

d





 






 
 
MATLAB Code 
 
A M-file must be written to store the derivatives. In this case the file is saved as 
‘coulomb.m’. 
 
function yp =coulomb(t,y) 
g=9.81; 
mu=0; 
l=0.25; 
k1=1+mu*sin(y(1)); 
k2=mu*cos(y(1))*(y(2)^2); 
k3=cos(y(1))*(1-mu^2); 
k4=mu*sin(y(1)); 
yp=[y(2);((g/l)*((k3-k4)/k1)-(k2/k1))] 
 
 
 
 
 
 



 27

Type the following code in a new M-file. 
 
tspan=[0 2] 
y0=[0;0] 
[t,y]=ode45('coulomb',tspan,y0) 
plot(t,y(:,1)) 
grid 
xlabel(‘Time’) 
ylabel(‘Theta’) 
title(‘Theta Vs Time’) 
hold on; 
 
 
This main file calls the function ‘coulomb.m ’ to solve the differential equations. ‘Tspan’ 
represents the time interval and ‘y0’ represents the initial condition vector. To plot the 
results for different values of , change the value of  in the function file, save it and then 
run the main code.  
 
The vector ‘y(:,1)’ represents the values of theta at the various time instants and the 
vector ‘y(:,2)’ gives the values of the angular velocities. To plot the angular velocity, 
change the variable in the plot command line in the main code from ‘y (:,1)’ to ‘y(:,2)’. 
Also plot the angular velocity with respect to theta. 
 
The plots are attached. From the plots it can be seen that by increasing the value of the 

coulomb damping constant the system takes more time to reach 
2

  and the maximum 

value of the angular velocity also decreases. 
 
 



 28

 

 
 
 



 29

 
Assignment 
 

Solve the following differential equation for 0
.

 . 

]sin)1([coscos)sin1(
2

2...

 
dddd l

g
  

d ={0, 0.05,0.1,0.15,0.2}; ml 5.0 . 0)0(;2/)0(
.

   

 
a) Plot the maximum value of angular velocity and maximum value of theta with respect    
    to  

b) Is the differential equation valid for 0
.

 . If not, what is the correct equation? 
c) Analytically confirm the angular velocity predictions for  = 0.0 and  = 0.2. 
d) Comment on the results obtained. 
 
 
 
 



 30

4. Trajectory Motion with Aerodynamic Drag 
 
Example 
 
Solve the following differential equations for dc ={0.1, 0.3,0.5} N/m. 

0)( )2/1(
.
2

.
2

...

 yxxcxm d  

wyxycym d  )2/1(
.
2

.
2

...

)(  

 

m = 10 kg. 100)0(
.

x m/s; 10)0(
.

y m/s; x(0) = 0; y(0) = 0.  
 
Solution 
 
As explained earlier, to solve the above two differential equations, we have to reduce 
each of them into two first order differential equations. 
 
So Let 
 

)1(yx   

)2(
.

yx   

)3(yy   

)4(
.

yy   
 
The above equations reduce to the following first order differential equations. 
 

)2()1(
.

yy   

2

1
22

.

])4()2([*)2(*)()2( yyy
m

y cd   

)4()3(
.

yy   

2

1
22

.

])4()2([*)4(*)()()4( yyy
mm

w
y cd 


  

 



 31

MATLAB Code 
 
Type the following code in a separate m-file. As mentioned earlier, the system 
derivatives must be written in a separate m-file. Since the name of the function is 
‘airdrag’, save the m-file as ‘airdrag.m’ in the current directory. 
 
function yp = airdrag(t,y) 
m = 10; 
cd = 0.2; 
g = 9.81; 
w = m*g; 
yp = zeros(4,1); 
yp(1) = y(2); 
yp(2) = ((-cd/m)*y(2)*(y(2)^2+y(4)^2)^(0.5)); 
yp(3) = y(4); 
yp(4) = ((-w/m)-(cd/m)*y(4)*(y(2)^2+y(4)^2)^(0.5)); 
 
Open a new m-file and type the following code for the main program. This program calls 
the function ‘airdrag.m’ in order to solve the differential equations. Again ‘tspan’ 
represents the time interval and ‘y0’ represents the initial condition vector. The plots have 
to be drawn between the displacement in the x direction and the displacement in the y 
direction. Refer to the handout ‘Introduction to MATLAB’ for the explanation about 
using the ‘hold’ command with the help of a ‘counter’ variable. 
 
tspan=[0 5]; 
y0=[0;100;0;10] 
[t,y]=ode45('airdrag',tspan,y0); 
plot(y(:,1),y(:,3)) 
grid 
xlabel(‘X-Displacement’) 
ylabel(‘Y-Displacement’) 
title(‘X vs Y Displacement’) 
hold on; 
 
 
It can be seen from the plots that as the coefficient of the aerodynamic drag is increased 
the maximum value of the displacement in the y direction decreases. The value of the 
displacement in the x direction, for which the displacement in the y direction is 
maximum, also decreases. Here the plots have been zoomed to the current version so that 
the difference in the curves could be seen clearly. 
 



 32



 33

Assignment 
 
Solve the following differential equations for dc ={0.0, 0.1,0.2,0.3} N/m. 

0)( )2/1(
.
2

.
2

...

 yxxcxm d  

wyxycym d  )2/1(
.
2

.
2

...

)(  

 

m = 5 kg. 10)0(
.

x m/s; 200)0(
.

y m/s; x(0) = 0; y(0) = 0. 
 
a) Plot separately the maximum range and the maximum elevation with respect the  
    damping coefficient, Cd. 
b) Analytically confirm the results for Cd = 0. 
c) Comment on the results obtained. 

 



 34

5. Pendulum with Aerodynamic and Viscous Damping 
 
Example 
 
Solve the following non-linear differential equation with aerodynamic damping  

0)sgn(sin
.2...

 
ml

C

l

g a            (1) 

and compare it with the following linearized differential equation with viscous damping 

   0
...

 
l

g

m
cd              (2) 

m = 10 g; l = 5 cms; Ca = Cd = 14 ; .0)0(;57.1)0(
.

   
(Note: The initial value of theta is given in radians.) 
 
Solution 
                     
As mentioned earlier, to solve the above differential equations, convert them into two 
first order differential equations. 
 
Let 
 

)1(y  

)2(
.

y  
 
Equation (2) becomes 

)2()1(
.

yy                   (3) 

))2((*)())1((*)()2(
.

y
m

y
l

g
y cd              (4) 

 
Similarly equation (1) becomes 

)2()1(
.

yy                   (5) 

))2(sgn()2)^2((*)())1(sin(*)()2(
.

yy
ml

y
l

g
y cd             (6) 

 
MATLAB Code 
 
In this example, we are required to solve two separate problems, i.e., a pendulum with 
aerodynamic drag and a pendulum with viscous damping. So, we have to write two 
separate M-files, ‘pendulum1.m’, which contains the derivatives of the problem with 
aerodynamic drag and ‘pendulum2.m’, which contains the derivatives of the problem 
with viscous damping. 
 
 



 35

 
Open a new m-file and type the following code which contains equations (5) and (6). 
Note that the derivatives are represented in the form of a vector. Also note that the 
signum function, ‘sgn’ has to be written as ‘sign’ in MATLAB. 
 
function yp = pendulum1(t,y) 
m=10; 
g=981; 
l=5; 
Ca=14; 
yp=[y(2);((-g/l)*sin(y(1))-Ca/(m*l)*(y(2)^2)*sign(y(2)))]; 
 
In a new m-file type in the following main program, which calls the function, named 
‘pendulum1.m’ and solves the non-linear differential equation and plots it. 
 
tspan=[0 10]; 
y0=[1.57;0] 
[t,y]=ode45('pendulum1',tspan,y0); 
plot(t,y(:,1));grid 
xlabel(‘Time’) 
ylabel(‘Theta’) 
title(‘Theta Vs Time’) 
hold on; 
 
Open a new m-file type the following code. This file contains equations (3) and (4). 
 
function yp = pendulum2(t,y) 
m=10; 
g=981; 
l=5; 
Ca=14; 
yp=[y(2);((-g/l)*(y(1))-(Ca/m)*(y(2)))]; 
 
In a new m-file type the following main program. This code calls the function and solves 
the linearized differential equation and plots it. 
  
tspan=[0 10]; 
y0=[1.57;0] 
[t,y]=ode45('pendulum2',tspan,y0); 
plot(t,y(:,1));grid 
xlabel(‘Time’) 
ylabel(‘Theta’) 
title(‘Theta Vs Time’) 
hold on; 
 
As mentioned in the earlier examples, ‘tspan’ represents the time interval and ‘y0’ 
represents the initial condition vector. The vector ‘y(:,1)’ gives the values of theta at the 



 36

various time instants and the vector ‘y(:,2)’ gives the values of the angular velocity. To 
plot the angular velocity, change the variable ‘y(:,1)’ in the plot command line to ‘y(:,2)’. 
 
From the plots it can be seen that, quadratic damping causes a rapid initial amplitude 
reduction but is less effective as time increases and amplitude decreases. Whereas, linear 
damping is less effective initially but is more effective as time increases. 
 



 37

Assignment 
 
a) Solve the following non-linear differential equation with aerodynamic damping  

0)sgn(sin
.2...

 
ml

C

l

g a            (1) 

and compare it with the following linearized differential equation with viscous damping 

   0
...

 
l

g

m
cd              (2) 

m = 5 g; l = 10 cms; Ca = Cd = 140; .0)0(;5233.0)0(
.

   
 
Show the results in the same plot. 
 
b) Comment on the results obtained. Assuming a harmonic motion, i.e.,  = A cos(nt), 
for what amplitude ‘A’, are the linear and the non-linear damping moments equal? Also 
confirm the result from the plot obtained. 
 
 



 38

6. A Half Cylinder rolling on a Horizontal Plane 
 
Example 
 
The general governing differential equation of motion of the above problem is 

 coscos)sin2
2

3
(

2...2

wemermer
mr

 .            (1) 

Solve the above differential equation for m = 5 Kg; 
3

4r
e   m; r = 0.1 m. 

 
Solution 
 
To solve the differential equation, convert the equation into two first order differential 
equation. 
 
With 
 

);2(

);1(
.

y

y








 

 
Equation (1) reduces to the following equations 
 

))]1(sin(22^5.1[

)]2)^2())(1(cos())1(cos([
)2(

);2()1(
.

.

ymermr

yymerywe
y

yy







 

 
MATLAB Code 
 
The function file ‘tofro.m’ contains the systems derivatives in the form of a vector. 
 
function yp = tofro(t,y) 
m=5; 
r=0.1; 
e=(4*r)/(3*pi); 
g=9.81; 
yp=[y(2);((m*g)*e*cos(y(1))+m*e*r*cos(y(1))*(y(2)^2))/(1.5*
m*r*r-2*m*e*r*sin(y(1)))] 
 
 
The main code, which is given below calls the function ‘tofro.m’, which contains the 
system differential equation and plots the displacement with respect to time. Since there 
is no damping present, the plot resembles a sinusoid of constant amplitude. 
 
 



 39

tspan=[0 4]; 
y0=[0.5233;0]; 
[t,y]=ode45('tofro',tspan,y0); 
plot(t,y(:,1));grid 
xlabel(‘Time’) 
ylabel(‘Beta’) 
title(‘Beta Vs Time’) 
 
 
The plot is attached below. 
 



 40

Assignment 
 

a) Solve the differential equation given in the example for m = 10 Kg; 
3

4r
e   m; r = 0.2 

m. Plot ‘’ with respect to time. Compare the result with that obtained in the example and 
comment on the result. 
 
b) Determine the equilibrium value of ‘’. 
c) Linearize the differential equation for small motion about the equilibrium value and 
determine the natural frequency for the small motion. Also plot the value of the ‘’ with 
respect to time. Note that for plotting the value of ‘’, you have to solve the linearized 
differential equation. 
d) Compare the natural frequency of the linearized model to that produced by the non- 
linear model.  
 



 41

7. A bar supported by a cord 
 
Derive the governing differential equation of motion of a swinging bar supported at its 
ends by a cord. Calculate the eigen values and the eigen vectors. Solve the derived 
differential equation and plot the initial response of the system for the following initial 
conditions: 
a) Arbitrary initial condition 
b) Initial condition vector proportional to the eigen vector.  
Choose l1 = 1m; l2 = 1m; m2 = 5Kg 
 
 
                        
      l1 
 
 
 
          l2 , m2 
         
 
 
 
 
 
 
The differential equations of motion for the above system when represented in a matrix 
form is  
 

































































2

)sin(sin

2

)sin(
sin

32

)cos(
2

)cos(

2.

21222

.
2

22
2

..

..

2
22212

22
12













llmlw

lm
w

lmllm

lm
lm

 

 
Eliminating the second order terms in the above equation gives the linear equation 
 

0

2
0

0

32

2
22

21

..

..

2
22212

1222
12




























































lw

wl

lmllm

llm
lm

 

 
Note that the inertia matrix has been made symmetric via a multiplication of the first row 
by l1. 
 



 42

MATLAB Code 
 
To find the eigen values and the eigen vectors 
 
To find the eigen values and the eigen vectors, the linearized version of the model is 
used. The mass of the bar was considered to be 5 Kg and the length of the cord and the 
bar to be 1m. The MATLAB code is given below. 
 
% to find the eigen values and the eigen vectors. 
l1=1; 
l2=1; 
m2=5; 
g=9.81; 
w2=m2*g; 
M=[m2*l1^2 (m2*l1*l2)/2;(m2*l1*l2)/2 (m2*l1^2)/3]; 
K=[l1*w2 0;0 (w2*l2)/2]; 
 
[v,d]=eig(K,M) 
 
The columns ‘v’ represent the eigen vectors corresponding to each eigen value ‘d’. 
‘M’ represents the inertia matrix and ‘K’ represents the stiffness matrix. The square root 
of the eigen values gives the natural frequencies of the system. 
 
The eigen values were found to be 6.2892 and 91.8108 and the corresponding eigen 

vectors were 








7458.0

6661.0
and 









8726.0

4885.0
respectively. 

 
Initial response 
 
To plot the initial response of the system the original nonlinear differential equation has 
to be used. Moreover the second order differential equation has to be converted into a 
vector of first order differential equation. This step is done by following the procedure 
given below. 

 
Substituting the above relations in the original nonlinear differential equation, we get the 
following nonlinear first order differential equation, which when represented in matrix 
form is 
 
 

);4(

);3(

);2(

);1(

.

.

y

y

y

y

















 43

 

 
 
MATLAB Code 
 
In this type of a problem where the inertia matrix (mass matrix) is a function of the states 
or the variables, a separate M-file has to be written which incorporates a switch/case 
programming with a flag case of ‘mass’.  
 
For example if the differential equation is of the form,  
 
M (t, y) *y’ (t)=F (t, y), 
 
then the right hand side of the above equation has to be stored in a separate m-file called 
‘F.m’. Similarly the inertia matrix (mass matrix) should also be stored in a separate m-file 
named ‘M.m’. So, when the flag is set to the default, the function ‘F.m’ is called and later 
when the flag is set to ‘mass’ the function ‘M.m’ is called. 
 
The code with the switch/case is given below. Note that it is a function file and should be 
saved as ‘indmot_ode.m’ in the current directory. 
 
function varargout=indmot_ode(t,y,flag) 
 
switch flag 
case ''                    %no input flag 
   varargout{1}=FF(t,y); 
case 'mass'                 %flag of mass calls mass.m 
   varargout{1}=MM(t,y); 
otherwise 
   error(['unknown flag ''' flag '''.']); 
end 
 
To store the right hand side of the original matrix form of differential equation, a separate 
function file must be written as shown below. Note that the name of the function is ‘FF’, 
so this file must be saved as ‘FF.m’.  
 
%the following function contains the right hand side of the  
%differential equation of the form 
%M(t,y)*y'=F(t,y) 
























































































2

)sin(sin

)4(
2

))1()3(sin(
sin

)2(

)4(

)3(

)2(

)1(

3
0

2

))1()3(cos(
0

0100
2

))1()3(cos(
00

0001

2.

21222

2
22

2

.

.

.

.

2
22212

22
12






llmlw

y

yylm
w

y

y

y

y

y

lmyyllm

yylm
lm



 44

%i.e. it contains F(t,y).it is also stored in a separate 
file named, FF.m. 
 
function yp=FF(t,y) 
l1=1; 
l2=1; 
m2=5; 
g=9.81; 
w2=m2*g; 
yp=zeros(4,1); 
yp(1)=y(2); 
yp(2)=-w2*sin(y(1))+ (m2*l2/2)*(y(4)^2)*sin(y(3)-y(1)); 
yp(3)=y(4); 
yp(4)=(-w2*l2*sin(y(3)))/2+(m2*l1*l2/2)*(y(2)^2)*sin(y(3)-
y(1)); 
 
Similarly, to store the mass matrix a separate function file is written which is stored as 
‘MM.m’. 
 
% the following function contains the mass matrix. 
%it is separately stored in a file named, MM.m 
 
function n = MM(t,y) 
l1=1; 
l2=1; 
m2=5; 
g=9.81; 
w2=m2*g; 
n1=[1 0 0 0]; 
n2=[0 m2*l1 0 (m2*l2/2)*cos(y(3)-y(1))]; 
n3=[0 0 1 0]; 
n4=[0 (m2*l1*l2/2)*cos(y(3)-y(1)) 0 m2*l2*l2/3]; 
n=[n1;n2;n3;n4]; 
 
 
To plot the response, the main file should call the function ‘indmot_ode.m’, which has 
the switch/case programming which in turn calls the corresponding functions depending 
on the value of the flag. For the main file to recognize the inertia matrix, the MATLAB 
command ODESET is used to set the mass to ‘M (t, y)’.  
 
This MATLAB code for the main file should be written in the same M-file, following the 
code to solve for the eigen values and eigen vectors. 
 



 45

tspan=[0 30] 
 
y0=[0.5233;0;1.0467;0]  % Arbitrary Initial condition 
x01=[v(1,1);0;v(2,1);0]    %  Low Frequency mode initial  
               Condition 
x02=[v(1,2);0;v(2,2);0]    %  High frequency mode initial  
               Condition 
 
options=odeset('mass','M(t,y)') 
[t,y]=ode113('indmot_ode',tspan,y0,options) 
subplot(2,1,1) 
plot(t,y(:,1)) 
grid 
xlabel('Time') 
ylabel('phi') 
 
subplot(2,1,2) 
plot(t,y(:,3)) 
grid 
xlabel('Time') 
ylabel('Theta') 
 
The above code plots the values of ‘theta’ and ‘phi’ with respect to time for the arbitrary 
initial condition case. To plot for the initial condition case where the initial conditions are 
proportional to the eigen vectors, change the variable ‘y0’ in line 6 of the code to first 
‘x01’ and then to ‘x02’.  
 
Notice the command “ subplot”.  
 
subplot(m,n,p),  breaks the Figure window into an m-by-n matrix of small axes and 
selects the p-th axes for the current plot. The axes are counted along the top row of the 
Figure window, then thesecond row, etc.  For example, 
   
        subplot(2,1,1), plot(income) 
        subplot(2,1,2), plot(outgo) 
   
plots “income” on the top half of the window and “outgo” on the bottom half. 
 
From the plots it can be observed that: a) For initial condition vector that is proportional 
to the eigen vectors, the response amplitudes are harmonic at their corresponding natural 
frequency. b) For an arbitrary initial condition, we get a coupled response displaying 
response at both the natural frequencies. The plots are attached below 
 
 
 



 46



 47



 48



 49

Assignment 
 
Solve the above-derived differential equation and plot the initial response of the system 
for the following initial conditions: 
a) Arbitrary initial condition 
b) Initial condition vector proportional to the eigen vector.  
Choose l1=2m;  l2=4m;  m2=10Kg. 
 
Compare the results obtained from that of the example and comment on the plots 
obtained. 
 
 
 



 50

8. Double Pendulum  
 
Derive the governing differential equation of motion of a double pendulum. Solve the 
derived differential equation and plot the values of 1 and 2 with respect to time. 
Choose l1 = 1m; l2 = 1m; m1 = m2 = 5Kg. The initial conditions for 1 and 2 are 0.5233 
and 0.5233 radians respectively. 
 
 
                        
                           1     l1, m1 
 
 
 
    2         l2 , m2 
     
 
 
 
 
Solution 
 
When represented in a matrix form, the differential equations of motion for the above 
system is  
 







































)12
2

1

.

1122

)12

2.

222121
..

2

..

1

221212

1222112

sin(sin

sin(sin)(
)cos(

)cos()(












lmw

lmww
lmlm

lmlmm
 

 
 
MATLAB Code 
 
These coupled second order differential equations must be converted into a vector of first 
order differential equation. This step is done by the following substitutions. 

 
Substituting the above relations in the original nonlinear differential equation, we get the 
following first order differential equations,  

);4(

);3(

);2(

);1(

.

2

2

.

1

1

y

y

y

y

















 51

 
 
In this type of a problem where the coefficient matrix is a function of the states or the 
variables, a separate M-file must be written which incorporates a switch/case 
programming with a flag case of ‘mass’.  
 
For example if the differential equation is of the form,  
 
M (t, y) *y’ (t) = F (t, y), 
 
then the right hand side of the above equation has to be stored in a separate m-file called 
‘F.m’. Similarly the coefficient matrix should be stored in a separate m-file named 
‘M.m’. So, when the flag is set to the default, the function ‘F.m’ is called and later when 
the flag is set to ‘mass’ the function ‘M.m’ is called. 
 
The code with the switch/case is given below. Note that it is a function file and should be 
saved as ‘indmot_ode.m’ in the current directory. 
 
function varargout=indmot_ode(t,y,flag) 
 
switch flag 
case ''                    %no input flag 
   varargout{1}=pend(t,y); 
case 'mass'                 %flag of mass calls mass.m 
   varargout{1}=mass(t,y); 
otherwise 
   error(['unknown flag ''' flag '''.']); 
end 
 
To store the right hand side of the state variable matrix form of the model, a separate 
function file must be written as shown below. Note that the name of the function is ‘FF’, 
so this file must be saved as ‘FF.m’.  
 
%the following function contains the right hand side of the  
%differential equation of the form 
%M(t,y)*y'=F(t,y) 
%i.e. it contains F(t,y).it is also stored in a separate 
file named, pend.m. 
 
function yp= pend(t,y) 














































































)sin(sin

)4(

)sin(sin)(

)2(

)4(

)3(

)2(

)1(

0)cos(0

0100

)cos(0)(0

0001

12
2

1

.

1122

12

2.

222121

.

.

.

.

221212

1222112









lmw

y

lmww

y

y

y

y

y

lmlm

lmlmm



 52

M1=5; 
M2=5; 
g=9.81; 
l1=1; 
l2=1; 
w2=M2*9.81; 
w1=M1*9.81; 
yp=zeros(4,1); 
yp(1)=y(2); 
yp(2)=-(w1+w2)*sin(y(1))+M2*l2*(y(4)^2)*sin(y(3)-y(1)); 
yp(3)=y(4); 
yp(4)=-w2*sin(y(3))-M2*l1*(y(2)^2)*sin(y(3)-y(1)); 
 
 
Similarly, to store the coefficient matrix a separate function file is written which is stored 
as ‘MM.m’. 
 
% the following function contains the mass matrix. 
%it is separately stored in a file named, mass.m 
 
function m = mass(t,y) 
M1=5; 
M2=5; 
g=9.81; 
l1=1; 
l2=1; 
m1=[1 0 0 0]; 
m2=[0 (M1+M2)*l1 0 M2*l2*cos(y(3)-y(1))]; 
m3=[0 0 1 0]; 
m4=[0 M2*l1*cos(y(3)-y(1)) 0 M2*l2]; 
m=[m1;m2;m3;m4]; 
 
 
To plot the response, the main file should call the function ‘indmot_ode.m’, which has 
the switch/case programming which in turn calls the corresponding functions depending 
on the value of the flag. For the main file to recognize the coefficient matrix, the 
MATLAB command ODESET is used to set the mass to ‘M (t, y)’.  
 
This MATLAB code for the main file should be written in the same M-file, following the 
code to solve for the eigen values and eigen vectors. 
 
% this is the main file, which calls the equations and 
solves using ode113. 
%it then plots the first variable.  
 
tspan=[0 10] 
y0=[0.5233;0;0.5233;0] 



 53

options=odeset('mass','M(t,y)') 
[t,y]=ode113('indmot_ode',tspan,y0,options) 
subplot(2,1,1) 
plot(t,y(:,1)) 
grid 
xlabel('Time') 
ylabel('Theta1') 
 
subplot(2,1,2) 
plot(t,y(:,3)) 
grid 
xlabel('Time') 
ylabel('Theta2') 
  
 
For help regarding ‘subplot’ refer to the previous example or you can look in the online 
help in MATLAB by typing the following statement at the command prompt. 
 
help subplot 
 
The plot has been attached. 
 
 
 
 
 
 
 
 
 
 
 
 
 



 54



 55

 
Assignment 
 
1.) For the double pendulum problem, calculate the eigen values and eigen vectors. 
 
2.) Solve the above-derived differential equation and plot the initial response of the 
system for the following initial conditions: 
 
a) Arbitrary initial condition 
 
b) Initial condition vector proportional to both eigen vectors.  
 
Choose l1 = 2m;  l2 = 4m;  m1 = m2 = 10Kg. 
 
What do you infer from the plots? 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 56

 
9. Frequency response of systems having more than one degree of freedom 
 
Example 
 
Consider the following system as shown in the figure below. Derive the governing 
differential equation of motion and plot the amplitude and the phase of the masses m1 and 
m2 with respect to the frequency. Choose m1 = 1Kg; m2 = 2Kg; k1 = k2 = 1N/m; c1 = c2 = 
0.001 N sec/m. The amplitude of the excitation force vector is 1 N. 
 
   f1   f2 
            K1                                 K2 
 
 
        C1                   M1            C2             M2 
 
 
 
 
Solution 
 
The governing differential equation of motion for the above system when written in 
matrix form is given by 
 









































































)(

)()()(

0

0

2

1

2

1

22

221
.

2

.

1

22

221
..

2

..

1

2

1

tf

tf

x

x

kk

kkk

x

x
cc

ccc

x

x
m

m
 

 
The above equation can be written in a more simplified manner,  
 

         tfxKxCxM ioiii sin
...














  

 
where [M] is the inertia matrix, [C] is the damping matrix and [K] is the stiffness matrix. 
 
Assuming the steady state solution of the differential equation to be 
 

txtxx icisiss  cossin   

 
where i = 1,2.  
 
Substituting the values of x1 and x2 and their corresponding first and second derivatives 
in the original matrix differential equation results in a single matrix equation given by 
 



 57





























iois

ic

fx

x

KMC

CKM 0

][][][

][][][
2

2




 

 
The solution of the above given matrix equation is normally given in terms of the 
amplitude and the phase as defined by 
 

2

1

)( isici xxX   

)(tan 1

is

ic
i x

x  

 
The mass matrix, the damping matrix and the stiffness matrix are given as below 
 











20

01
][M  Kg 

 














11

12
][K  N/m 

 














001.0001.0

001.0002.0
][C  N sec/m 

 
The amplitude of the excitation force vector is 1 N. 
 
MATLAB Code 
 
The objective of the problem is to find the amplitude and phase and plot them with 
respect to the excitation frequency. 
 
The MATLAB code is attached below. 
 
%*********************************************************% 
%Defining the frequency vector and the mass matrix, 
%damping matrix, the stiffness matrix and the amplitude of 
%the excitation force. 
%*********************************************************% 
 
f=linspace(0,0.7,50); 
m=[1 0;0 2]; 
k=[2 -1;-1 1]; 
c=[0.002 -0.001;-0.001 0.001]; 
fi=[1;1]; 
 
 



 58

%*********************************************************% 
%Calculating the amplitude and the phase for each frequency 
%defined by the frequency vector. 
%*********************************************************% 
 
for i = 1:50 
   omega(i)=2*pi*f(i);    %omega in terms of frequency 
   omega2(i)=omega(i)*omega(i); % squaring omega 
   a11=-omega2(i)*m+k;   % representing the left hand… 
   a12=omega(i)*c;         %  matrix of the single matrix… 
   a21=-omega(i)*c;        %  equation 
   a22=-omega2(i)*m+k; 
   a=[a11 a12;a21 a22]; 
   b=inv(a); 
   c1=[0;0;fi]; 
   d(1,i)=b(1,:)*c1;   
   d(2,i)=b(2,:)*c1; 
   d(3,i)=b(3,:)*c1; 
   d(4,i)=b(4,:)*c1; 
   x(1,i)=sqrt(abs(d(1,i))^2+abs(d(3,i))^2); 
   x(2,i)=sqrt(abs(d(2,i))^2+abs(d(4,i))^2); 
   p(1,i)=atan(d(1,i)/d(3,i))*180/pi; 
 
   if p(1,i)<0     % to check whether the angle is  
            negative or not. 
      p(1,i)=180+p(1,i);   
 else    
  
      p(1,i)=p(1,i); 
   end 
      
   p(2,i)=atan(d(2,i)/d(4,i))*180/pi; 
    
    if p(2,i)<0 
      if d(4,i)<0 
         p(2,i) = -180 + p(2,i) 
      else 
         p(2,i)=180+p(2,i); 
      end 
       
   else 
      p(2,i)=p(2,i); 
   end 
 
 
end 
 



 59

figure(1) 
plot(f,x(1,:));grid 
xlabel(‘Frequency’) 
ylabel(‘Amplitude of Mass 1’) 
 
 
figure(2) 
plot(f,x(2,:));grid 
xlabel(‘Frequency’) 
ylabel(‘Amplitude of Mass 2’) 
 
figure(3) 
plot(f,p(1,:));grid 
xlabel(‘Frequency’) 
ylabel(‘Phase of Mass 1’) 
 
figure(4) 
plot(f,p(2,:));grid 
xlabel(‘Frequency’) 
ylabel(‘Phase of Mass 2’) 
 
In the above code, a command ‘linspace ‘ is used. linspace(x1, x2, N) generates a row 
vector of N points between x1 and x2. 
 
The above code calculates the amplitude and phase of each of the masses and plots them 
with respect to the excitation frequency. 
 
where x(1,:) and x(2,: ) are the amplitudes of the two masses and p(1,: ) and p(2,:) are the 
respective phase difference. 
 
The plots are attached . 



 60

 

 

 
 
 
 
 



 61

 
 

 
 



 62

Assignment 
 
Consider the system shown below. 
 
   f1   f2 
            K1                                 K2   K3 
 
 
        C1                   M1            C2             M2  C3 
 
 
 
 
Derive the governing differential equation of motion and solve for the eigen values and 
the eigen vectors.  
 
Plot the amplitude and the phase of the masses m1 and m2 with respect to the frequency 
for the system shown above. Choose m1 = 1Kg; m2 = 2Kg; k1 = k2 = k3 = 1N/m; c1 = c2 = 
c3 = 0.001 N sec/m. The amplitude of the excitation force vector is 2 N. 
 
What do you infer from the plots? 
 



 63

10. A Three Bar Linkage Problem 
 
Example 
 
Consider the three-bar-linkage mechanism shown below. For a constant rotation rate  of 
link L1, determine and plot the angular velocities and accelerations of links L2 and L3 for 
one cycle of rotation of L1. Choose L1, L2 and L3 as 0.35m, 1m and 1m respectively. 
Also choose ‘a’ and ‘b’ as 0.6m and 0.4m respectively. The angular velocity,  of link 
L1 is chosen to be 3 rad/sec. 
 
 
 
 
                                         L2                    L3  
                                                                                                                  
 
                             L1 
                                                                 b 
                                
                                               a 
 
Solution 
 
From the above figure, the geometric relations can be derived as 

 
First we have to solve for ‘’ and ‘’ for values of ‘’ ranging from 0 to 2 given the 
values of ‘a’ and ‘b’. The value of alpha should be given in radians. 
 
The MATLAB code for solving the above equation is given below. 
 
p='cos(b)+cos(c)=0.6-0.35*cos(a)'; 
q='sin(b)-sin(c)=0.4-0.35*sin(a)'; 
[b,c]=solve(p,q) 
i=1; 
for a=0:0.1:6.3 
   beta(:,i)=subs(b) 
   gamma(:,i)=subs(c) 
   i=i+1; 
end 
alpha=0:0.1:6.3 
figure(1) 
plot(alpha,beta(1,:));grid 
xlabel('alpha') 

bLLL

aLLL







sin3sin2sin1

cos3cos2cos1



 64

ylabel('beta') 
title('beta VS alpha') 
 
figure(2) 
plot(alpha,gamma(1,:));grid 
xlabel('alpha') 
ylabel('beta') 
title('gamma VS alpha') 
 
To know, how to use the ‘figure command’, refer to the “Introduction to MATLAB” 
chapter. The positive values of both ‘beat’ and ‘gamma’ have to be plotted. This is the 
reason why only the first row is used to plot the results. 
 
To find out the angular velocities, differentiate the above two equations (geometric 
relations) with respect to time and put them into matrix form. We get the following 
equation. 
 

 
The MATLAB code to solve this equation to get the angular velocities and then plot them 
with respect to ‘’ is given below. 
 
L1 = 0.35; 
L2 = 1; 
L3 = 1; 
omega = 3; 
 
for i=1:size(alpha,2) 

A=[-L2*sin(beta(1,i)) –L3*sin(gamma(1,i)); 
L2*cos(beta(1,i))  -L3*cos(gamma(1,i))]; 
B=[omega*L1*sin(alpha(i));-omega*L1*cos(alpha(i))]; 
C=inv(A)*B; 
betadot(1,i)= C(1); 
gammadot(1,i)= C(2); 

end 
 
figure(3) 
plot(alpha,betadot(1,:));grid 
grid 
xlabel('alpha') 
ylabel('beta dot') 
title('betadot VS aplha') 
 
figure(4) 











































cos

sin
1

3

2
coscos

sinsin
.

.

L
L

L



 65

plot(alpha,gammadot(1,:));grid 
grid 
xlabel('alpha') 
ylabel('gamma dot') 
title('gammadot VS aplha') 
 
In the above code ‘A’ contains the coefficient matrix and ‘B’ contains the RHS matrix.  
 
To calculate the angular accelerations, the geometric relations given by the second 
equation set must be differentiated to obtain the following relation, 
 

 
The MATLAB code for solving this equation is given below. 
 
for i=1:size(alpha,2) 
A1=[-L2*sin(beta(1,i)) -L3*sin(gamma(1,i)); 
L2*cos(beta(1,i)) -L3*cos(gamma(1,i))]; 
B1=[omega*omega*L1*cos(alpha(i))+L2*(betadot(1,i)^2)*cos(be
ta(1,i))+L3*(gammadot(1,i)^2)*cos(gamma(1,i));... 
      
omega*omega*L1*sin(alpha(i))+(betadot(1,i)^2)*L2*sin(beta(1
,i))-(gammadot(1,i)^2)*L3*sin(gamma(1,i))]; 
C2=inv(A1)*B1; 
beta_accl(1,i)=C2(1); 
gamma_accl(1,i)=C2(2); 
end 
 
figure(5);plot(alpha,beta_accl(1,:));grid 
xlabel('alpha') 
ylabel('beta acceleration') 
title('beta accl VS alpha') 
 
figure(6);plot(alpha,gamma_accl(1,:));grid 
xlabel('alpha') 
ylabel('gamma_accl') 
title('gamma_accl VS aplha') 
 
In the above code ‘A1’ contains the coefficient matrix and ‘B1’ contains the RHS matrix.  





































































sin3sin2sin1

cos3cos2cos1

3

2
coscos

sinsin

2.2.
2

.
.

222

2

1

2

1
..

..

LLL

LLL
f

f

f

f

L

L



 66

 
 

 
 
 



 67

 

 



 68

 

 
 



 69

Assignment 
 
For a constant rotation rate  = 4 rad/sec of link L1, determine the angular velocities and 
accelerations of links L2 and L3 for one cycle of rotation of L1 for the system shown in 
the above example. Choose L1, L2 and L3 as 0.5m, 1.2m and 1m respectively. Also 
choose ‘a’ and ‘b’ as 0.7m and 0.45m respectively. 
 
Also plot the angular velocities and the accelerations with respect to ‘alpha’. 
 
What do you infer from the obtained? 
 
 
 
 



 70

11. Slider-Crank Mechanism 
 
Example 
 
Consider the slider crank mechanism shown below. For constant angular velocity, ‘’ 
equal to 3 rad/sec of link L1, determine  and S and their first and second derivatives for 
one cycle of . Choose L1 as 0.5m and ‘a’ as 1m.  
 
 
 
 
                 L1                                   S 
             
                                                     
                                                                             L2 
                               a                                    
 
 
 
 
Solution 
 
From the figure, the following geometric relation can be derived,  
 

 
These equations are nonlinear but can be readily solved for  and S in terms of . 
 
The MATLAB code for solving the above equation is given below. The values of S and  
are plotted with respect to . 
 
p='s*cos(b)=1-0.5*cos(a)' 
q='s*sin(b)=0.5*sin(a)' 
[b,s]=solve(p,q) 
 
i=1; 
for a=0:0.1:6.3 
   phi(:,i)=subs(b) 
   S(:,i)=subs(s) 
   i=i+1; 
end 
 
theta=0:0.1:6.3 
figure(1) 
plot(theta,S(1,:)) 

.sin1sin

cos1cos




LS

LaS






 71

grid 
xlabel(‘Theta’) 
ylabel(‘S’) 
title(‘S Vs Theta’) 
 
figure(2) 
plot(theta,phi(1,:)) 
grid 
xlabel(‘Theta’) 
ylabel(‘Phi’) 
title(‘Phi Vs Theta’) 
 
 
Here notice that, a new command ‘figure’ is used to plot different variables. Refer to the 
“Introduction to MATLAB” chapter to know more about the command and how to use it. 

To find the angular velocity, 
.

  and the linear velocity, 
.

S  differentiate the above 
equations once with respect to time. When written in matrix format the result is shown 
below, 

 
The MATLAB code is as shown below. 
 
L1 = 0.5; 
omega = 3; 
for i=1:size(theta,2) 
   A=[cos(phi(1,i)) -S(1,i)*sin(phi(1,i));... 
         sin(phi(1,i)) S(1,i)*cos(phi(1,i))]; 
   B=[L1*omega*sin(theta(i));L1*omega*cos(theta(i))]; 
   C=inv(A)*B; 
   linvel(1,i) = C(1); 
   angvel(1,i) = C(2) 
end 
figure(3) 
plot(theta,linvel(1,:));grid 
xlabel(‘Theta’); 
ylabel(‘linvel’); 
title(‘Linear velocity vs Theta’); 
 
figure(4) 
plot(theta,angvel(1,:));grid 
xlabel(‘Theta’) 
ylabel(‘Angvel’) 
title(‘Angular velocity Vs Theta’) 




























 







cos

sin
1

cossin

sincos
.

.

L
S

S



 72

To calculate the angular acceleration, 
..

  and linear acceleration, 
..

S , differentiate the last 
equation with respect to time. Representing the result in matrix format gives, 
 


































 
2...2.

2...2.

..

..

sincos2sin1

cossin2cos1
cossin

sincos








SSL

SSL

S

S  

 
The MATLAB code for solving the above equation is given below. 
 
L1 = 0.5; 
omega = 3; 
 
for i=1:size(theta,2) 
   A1=[cos(phi(1,i)) -S(1,i)*sin(phi(1,i));... 
         sin(phi(1,i)) S(1,i)*cos(phi(1,i))]; 

               
B1=[L1*(omega^2)*cos(theta(i))+2*linvel(1,i)*angvel(1,i)*
sin(phi(1,i))+S(1,i)*(angvel(1,i)^2)*cos(phi(1,i));... 
-L1*(omega^2)*sin(theta(i))-
2*linvel(1,i)*angvel(1,i)*cos(phi(1,i))+S(1,i)*(angvel(1,
i)^2)*sin(phi(1,i))]; 
 

   C2=inv(A1)*B1; 
   Linaccl(1,i) = C2(1); 
   Angaccl(1,i) = C2(2); 
end 
 
figure(5) 
plot(theta,linaccl(1,:));grid 
xlabel(‘Theta’); 
ylabel(‘linaccl’); 
title(‘Linear acceleration vs Theta’); 
 
figure(6) 
plot(theta,angaccl(1,:));grid 
xlabel(‘Theta’) 
ylabel(‘angaccl’) 
title(‘Angular acceleration Vs Theta’) 
 
 
The plots are attached below. 
 
 



 73

 
  
 

 
 



 74

 

 
 



 75

 
 
 

 
 
 



 76

Assignment 
 
Consider the Geneva-wheel mechanism shown in figure 5/194 in Merriam, page 412. 
Derive the governing differential equations of motion and plot the angular velocity 2. 
 
 



 77

12. A Bar supported by a wire and a horizontal plane 
 
Example 
 
Consider the system shown below. Derive the governing model of motion and plot the 
values of ‘’ and ‘’ with respect to time and also their first derivatives with respect to 
time. Choose ‘l’, ‘L’, ‘m’ and ‘d’ as 1m, 1m, 5 Kg and 1.1m respectively. The initial 
value of ‘’ is chosen to be 0.5233 radians, whereas the initial value of ‘’ is calculated 
in the main code of MATLAB using the constraint equation.` 
 
 
 
    L 
                                              
                                                    
 
              d 
    l,m 
 
            
 
 
Solution 
 
The model for the above system is  
 

 

First we solve for 
.

  and . Then we substitute them into the following constraint 

equations to obtain the values of 
.

  and . The constraint equations are the geometrical 
relations, which can be derived from the above figure to be 

 
The above model involves second derivatives of the variables and must be converted to 
an equation involving first derivatives so that MATLAB can be used to solve the 




























































































2.2.

2.2.

2.

..

..

2

sinsin

cos
2

cos

sin
2

0

00coscos

0cossinsin
2

1sin0cos
2

cos
2

)sin(
2

0
12

















lL

ml
mL

ml
w

N

T

Ll

mL
ml

ml

llml

c




sinsin

0coscos
..

lLd

lL






 78

differential equation. The method employed is similar to the one followed to solve the 
problem in which a bar was connected to a cord. 
So with 
 

);4(

);3(

);2(

);1(

.

.

y

y

y

y















 

 
The model becomes 
 












































































































2.2.

2.2.

2.

.

.

.

.

2

sinsin

cos
2

cos

sin
2

)4(

0

)2(

)4(

)3(

)2(

)1(

00cos0cos0

0cossin0sin
2

0

1sin00cos
2

0

000100

cos
2

)sin(
2

00
12

0

000001















lL

ml
mL

ml
w

y

y

N

T

y

y

y

y

Ll

mL
ml

ml

llml

c

 
As mentioned earlier, since the coefficient matrix is dependent on the states or the 
variables, a separate M-file has to be written which incorporates a switch/case 
programming, and a separate M-file for the mass matrix must also be written. 
 
MATLAB Code 
 
The code with the switch/case programming is given below. 
 
% In order to solve this type of problem, the odefile needs 
% to have switch/case programming with a flag case of        
% 'mass'. when the flag is set to default the function     
% FF1.m is called. Later in the time step, the function    
% with the flag of 'mass' is called. As you can see in the 
% function indmot_ode1, when the flag is 'mass', the       
% function MM1.m is called.   
function varargout=indmot_ode1(t,y,flag) 
 
switch flag 
case ''                    %no input flag 
   varargout{1}=FF1(t,y); 
case 'mass'                 %flag of mass calls MM1.m 
   varargout{1}=MM1(t,y); 
otherwise 



 79

   error(['unknown flag ''' flag '''.']); 
end 
To store the right hand side vector of the original model, a separate function file must be 
written as shown below. Note that the name of the function is ‘FF1’, so this file must be 
saved as ‘FF1.m’.  
 
%the following function contains the right hand side of the  
%differential equation of the form 
%M(t,y)*y'=F(t,y) 
%i.e. it contains F(t,y).it is also stored in a separate 
%file named, FF1.m. 
 
function yp=FF1(t,y) 
l=1; 
L=1; 
m=5; 
g=9.81; 
w=m*g; 
yp=zeros(6,1); 
yp(1)=y(2); 
yp(2)=0; 
yp(3)=y(4); 
yp(4)=-w+(m*l/2)*sin(y(1))*(y(2)^2); 
yp(5)=m*L*cos(y(3))*(y(4)^2)-(m*l/2)*cos(y(1))*(y(2)^2); 
yp(6)=L*sin(y(3))*(y(4)^2)+l*sin(y(1))*(y(2)^2); 
 
Similarly, to store the coefficient matrix, a separate function file is written which is stored 
as ‘MM1.m’. 
 
% the following function contains the mass matrix. 
%it is separately stored in a file named, MM1.m 
 
function n = MM1(t,y) 
l=1; 
L=1; 
m=5; 
g=9.81; 
w=m*g; 
n1=[1 0 0 0 0 0]; 
n2=[0 (m*l^2)/12 0 0 (-l/2)*sin(y(1)+y(3)) 
(l/2)*cos(y(1))]; 
n3=[0 0 1 0 0 0]; 
n4=[0 (m*l/2)*cos(y(1)) 0 0 -sin(y(3)) -1]; 
n5=[0 (m*l/2)*sin(y(1)) 0 -m*L*sin(y(3)) cos(y(3)) 0]; 
n6=[0 l*cos(y(1)) 0 L*cos(y(3)) 0 0]; 
n=[n1;n2;n3;n4;n5;n6];  
 



 80

To plot the response, the main file should call the function ‘indmot_ode1.m’, which has 
the switch/case programming which in turn calls the corresponding functions depending 
on the value of the flag. For the main file to recognize the coefficient matrix, the 
MATLAB command ODESET is used to set the mass to ‘M (t, y)’.  
 
l=1; 
L=1; 
m=5; 
g=9.81; 
w=m*g; 
d=1.1; 
tspan=[0 10]; 
options=odeset('mass','M(t,y)'); 
 
% to calculate the initial conditions. 
% Theta = 0.5233. For this value of theta 
% using the constraint equation, the value 
% phi has to be calculated. 
theta_init = 0.5233; 
phi_init = asin((d-l*sin(theta_init))/L); 
 
y0=[theta_init;0;phi_init;0;0;0];   
[t,y]=ode23('indmot_ode1',tspan,y0,options); 
figure(1) 
plot(t,y(:,3));grid 
xlabel('Time') 
ylabel('Phi') 
title('Phi Vs Time') 
 
figure(2) 
plot(t,y(:,4));grid 
xlabel('Time') 
ylabel('Phidot') 
title('Phidot Vs Time') 
 
 
phi=y(:,3); 
phidot=y(:,4); 
 
% solving the constraint equation to get the value of phi. 
 
for i = 1:size(phi,1) 
   theta(i)=asin((d-L*sin(phi(i)))/l); 
end 
 
% solving the constraint equation to get the value of 
phidot. 



 81

for i = 1:size(phi,1) 
thetadot(i)=(L*(-phidot(i))*cos(phi(i)))/(l*cos(theta(i))); 
end 
 
t1=t'; 
figure(3) 
plot(t1,theta);grid    
xlabel('Time') 
ylabel('Theta') 
title('Theta Vs Time') 
 
figure(4) 
plot(t1,thetadot);grid    
xlabel('Time') 
ylabel('Thetadot') 
title('Thetadot Vs Time') 
 

Once the values of ‘’ and 
.

  are known, they are substituted in the constraint equation to 

get the values of ‘’ and 
.

 . To know more about the ‘figure’ command, either refer to 
the “Introduction to MATLAB” chapter or go through the online help as suggested in the 
previous example. The plots are attached below. 



 82

 
 
 
 



 83

 
 
 
 
 

  
 



 84

13. Two bar linkage assembly supported by a pivot joint and a horizontal plane 
 
Example 
 
Consider the system shown below. Derive the governing model and plot the values of ‘’ 
and ‘’ with respect to time and also their first derivatives with respect to time. Choose 
‘l’, ‘L’, ‘m’, ’M’ and ‘d’ as 1m, 1.5m, 5 Kg, 5Kg and 1.2m respectively. The initial value 
of ‘’ is chosen to be 0.5233 radians, whereas the initial value of ‘’ is calculated in the 
main code of MATLAB using the constraint equation. 
 
 
 
    l,m 
                                              
                                                    
 
              d 
    L,M 
 
            
 
 
Solution 
 
The model for the above system is 
 









































































































2.2.

2.2.

2.
..

..

2

2

sinsin

cos
2

cos

sin
2

cos
2

0

000coscos

001sinsin
2

1100cos
2

0cossin
3

0

cos
2

cos
2

sin
2

0
12






















lL

ml
mL

ml
w

L
W

N

B

B

Ll

mL
ml

ml

LL
ML

lllml

y

x

 

First we solve for 
.

  and . Then we substitute them into the following constraint 

equations to obtain the values of 
.

  and . The constraint equations are the geometrical 
relations, which can be derived from the above figure to be 

 



sinsin

0coscos
..

lLd

lL






 85

 
The above model involves second derivatives of the variables and must be converted to 
an equation involving first derivatives so that MATLAB can be used to solve the 
differential equation. The method employed is similar to the one followed to solve the 
problem in which a bar was connected to a cord. 
 
So with 
 

);4(

);3(

);2(

);1(

.

.

y

y

y

y















 

 
The above model becomes 
 






























































































































2.2.

2.2.

2.
.

.

.

.

2

2

sinsin

cos
2

cos

sin
2

cos
2

)4(

0

)2(

)4(

)3(

)2(

)1(

000cos0cos0

001sin0sin
2

0

11000cos
2

0

0cossin
3

000

0000100

cos
2

cos
2

sin
2

00
12

0

0000001



















lL

ml
mL

ml
w

L
W

y

y

N

B

B

y

y

y

y

Ll

mL
ml

ml

LL
ML

lllml

y

x

 
As mentioned earlier, since the coefficient matrix is dependent on the states or the 
variables, a separate M-file has to be written which incorporates a switch/case 
programming, and a separate M-file for the mass matrix must also be written. 
 
MATLAB Code 
 
The code with the switch/case programming is given below. 
 
% In order to solve this type of problem, the odefile needs 
% to have switch/case programming with a flag case of      
% 'mass'. When the flag is set to default the function     
% FF2bar1.m is called. Later in the time step, the function 
% with the flag of 'mass' is called. As you can see in the 
% function ‘indmot_ode2bar1.m’, when the flag is 'mass',  
% the function MM2bar1.m is called.   
 
 



 86

function varargout=indmot_ode2bar1(t,y,flag) 
 
switch flag 
case ''                    %no input flag 
   varargout{1}=FF2bar1(t,y); 
case 'mass'                 %flag of mass calls mass.m 
   varargout{1}=MM2bar1(t,y); 
otherwise 
   error(['unknown flag ''' flag '''.']); 
end 
 
 
To store the right hand side vector of the original model, a separate function file must be 
written as shown below. Note that the name of the function is ‘FF2bar1’, so this file must 
be saved as ‘FF2bar1.m’.  
 
%the following function contains the right hand side of the  
%differential equation of the form 
%M(t,y)*y'=F(t,y) 
%i.e. it contains F(t,y).it is also stored in a separate 
file named, FF2bar1.m. 
 
function yp=FF2bar1(t,y) 
l=1; 
L=1.5; 
m=5; 
M=5; 
g=9.81; 
w=m*g; 
W=M*g; 
yp=zeros(7,1); 
yp(1)=y(2); 
yp(2)=0; 
yp(3)=y(4); 
yp(4)=(W*L*cos(y(3)))/2; 
yp(5)=-w+(m*(l/2))*sin(y(1))*(y(2)^2); 
yp(6)=m*L*cos(y(3))*(y(4)^2)-(m*(l/2))*cos(y(1))*(y(2)^2); 
yp(7)=L*sin(y(3))*(y(4)^2)+l*sin(y(1))*(y(2)^2); 
 
 
Similarly, to store the coefficient matrix a separate function file is written which is stored 
as ‘MM2bar1.m’. 
 
% the following function contains the mass matrix. 
%it is separately stored in a file named, MM2bar1.m 
 
 



 87

function n = MM2bar1(t,y) 
l=1; 
L=1.5; 
m=5; 
M=5; 
g=9.81; 
w=m*g; 
n1=[1 0 0 0 0 0 0]; 
n2=[0 (m*(l^2))/12 0 0 (l/2)*sin(y(1)) -(l/2)*cos(y(1)) 
(l/2)*cos(y(1))]; 
n3=[0 0 1 0 0 0 0]; 
n4=[0 0 0 (M*(L^2))/3 -L*sin(y(3)) -L*cos(y(3)) 0]; 
n5=[0 (m*(l/2))*cos(y(1)) 0 0 0 -1 -1]; 
n6=[0 (m*(l/2))*sin(y(1)) 0 -m*L*sin(y(3)) -1 0 0]; 
n7=[0 l*cos(y(1)) 0 L*cos(y(3)) 0 0 0]; 
n=[n1;n2;n3;n4;n5;n6;n7];  
  
 
To plot the response, the main file should call the function ‘indmot_ode1.m’, which has 
the switch/case programming which in turn calls the corresponding functions depending 
on the value of the flag. For the main file to recognize the coefficient matrix, the 
MATLAB command ODESET is used to set the mass to ‘M (t, y)’.  
 
 
l=1; 
L=1.5; 
m=5; 
M=5; 
g=9.81; 
w=m*g; 
W=M*g; 
d=1.2; 
 
tspan=[0 10]; 
options=odeset('mass','M(t,y)'); 
 
% to calculate the initial conditions. 
% Theta = 0.5233. For this value of theta 
% using the constraint equation, the value 
% phi has to be calculated. 
phi_init = 0.5233; 
theta_init = asin((d-l*sin(phi_init))/L); 
 
y0=[theta_init;0;phi_init;0;0;0;0]   
[t,y]=ode23tb('indmot_ode2bar1',tspan,y0,options); 
figure(1) 
plot(t,y(:,3));grid 



 88

xlabel('time') 
ylabel('phi') 
title('phi Vs time') 
 
figure(2) 
plot(t,y(:,4));grid 
xlabel('time') 
ylabel('phidot') 
title('phidot Vs time') 
 
phi=y(:,3); 
phidot=y(:,4); 
 
% solving the constraint equation to get the value of phi. 
for i = 1:size(phi,1) 
   theta(i)=asin((d-l*sin(phi(i)))/L); 
end 
 
% solving the constraint equation to get the value of      
% phidot. 
for i = 1:size(phi,1) 
   thetadot(i)=(l*(-
phidot(i))*cos(phi(i)))/(L*cos(theta(i))); 
end 
 
t1=t'; 
figure(3) 
plot(t1,theta);grid 
xlabel('time') 
ylabel('theta') 
title('theta Vs time') 
 
figure(4) 
plot(t1,thetadot);grid 
xlabel('time') 
ylabel('thetadot') 
title('thetadot Vs time') 
 
 

Once the values of ‘’ and 
.

  are known, they are substituted in the constraint equation to 

get the values of ‘’ and 
.

 . The plots are attached below. 
 



 89

 
 
 
 

 
 
 



 90

 
 
 
 

 
 
 



 91

Assignment:  Three bar linkage assembly 
 
Consider the system shown below. Derive the governing differential equations of motion 
and plot the values of ‘1’, ‘2’ and ‘3’ with respect to time and also their first 
derivatives with respect to time. Choose ‘L1’, ‘L2’, ‘L3’, ‘m1’, ‘m2’, ‘m3’, ‘a’ and ‘b’ as 
0.35m, 1m, 1.2m, 5Kg, 5Kg, 6Kg, 0.6m and 0.4m respectively. The initial values of 
‘1’is chosen to be 0.1744 radians. The initial values of ‘2’ and ‘3’ are calculated from 
the constraint equations.  
 
 
                                                           L2, m2                     
 
                                                     2 
  
                                           L1, m1                            L3, m3               
                                   1 
                                     
             3 
                
                                     b                                 
 
    a 
 
 
 
 
 



 92

14. Valve Spring Model 
 
Consider the following system, which has 10 blocks of equal weight that are 
interconnected by springs. The objective of this exercise is to calculate the eigen values 
and eigen vectors for the system defined for three different boundary conditions. The 
boundary conditions are as follows. 
 

1. Fixed at both ends 
 

            k                k                                        k 
       ................... 

                                m               m                     m 
 

2. Fixed at one end and free at the other 
 

            k                k                                         
       ...................              f1 

                                m               m                     m 
 
 

3. Free at both ends 
 
 

           f1                  k                                    f2     
       ................... 

                                m               m                     m 
 
In all the above cases, each lumped mass of the model has mass, 0.002 Kg and the 
stiffness constants of the springs are chosen as 175000 N/m. 
 
Solution 
 
Case 1: Prescribed motion for both ends 
 
Let x2, x3,...,x11 be the displacement of each of the blocks with respect to a reference 
frame and x1 and x12 be the displacements of the end supports. The eigen values and 
eigen vectors are defined for no excitation, i.e, zero motion for x1 and x12.  So this implies 
that both x1 and x12 are equal to zero. The equation of motion for individual masses are 

1211101111

..

43233

..

12322

..

)(

.

0)()(

)(

kxkxxxkxm

xxkxxkxm

kxkxxxkxm







 

 



 93

If the above equations are written in the matrix format, the system equations of motion 
reduce to 

 
 

 
 
where 
 
































































































kk

kkk

kkk

kkk

kkk

kkk

kkk

kkk

kkk

kk

K

m

m

m

m

m

m

m

m

m

m

M

200000000

20000000

02000000

00200000

00020000

00002000

00000200

00000020

00000002

000000002

1

000000000

000000000

000000000

000000000

000000000

000000000

000000000

000000000

000000000

000000000

1

 

 

111
..

FXKXM 



 94









































12

1

0

0

0

0

0

0

0

0

1

kx

kx

F  

 
To calculate the eigen values and eigen vectors, the right hand matrix is ignored and only 
the mass and stiffness matrices are used. Hence the boundary conditions for the eigen 
vectors are x1 = x12 = 0. The ‘eig’ command in MATLAB is used for this purpose. To 
know more about the command, go through the online help by typing the following at the 
command prompt. 
 
help eig 
 
The square root of the eigen values gives the natural frequencies of the system. 
 
Case 2: Prescribed motion at one end and prescribed force at the other end. 
 
In this case, since there is support only at one end, the equation of motion for the last 
block changes. The equation of motion for the 10th mass is  
 

)()( 1101111

..

tfxxkxm   

 
This is very much similar to the equation in case 1, except that since there is a prescribed 
force at the right hand instead of a prescribed motion, x12 does not appear in the equation. 
Here again we assume that the end support at one end is stationary, which implies that x1 
is equal to zero. The effect of this change in the equation of motion can be seen in the 
stiffness matrix. Notice that the element formed due to the intersection of the 10th row 
and 10th column of the stiffness matrix is half of that in the stiffness matrix of the 
previous case.  
 
The right hand side matrix for this case will be similar to that of the previous case except 
that x12 will be replaced with zero. Here again the right hand matrix is ignored to 
calculate the eigen values and eigen vectors. The mass matrix, the stiffness matrix and the 
right hand side matrix for the case wherein one end is fixed and the other is free is given 
by 
 



 95


























































kk

kkk

kkk

kkk

kkk

kkk

kkk

kkk

kkk

kk

K

MM

00000000

20000000

02000000

00200000

00020000

00002000

00000200

00000020

00000002

000000002

2

12

 

 
 









































1

1

0

0

0

0

0

0

0

0

2

f

kx

F  

 
The same procedure is adopted to obtain the eigen values and eigen vectors for the 
system 
 
Case 3: Applied forces at both ends 
 
In this case, the displacements of each block with respect to a reference frame are chosen 
slightly different from the previous two cases. Let x1, x2,..., x10 be the displacements of 
the 10 blocks with respect to a reference frame. Since there is no support at both ends and 
a prescribed force is applied at both ends, the equation of motion for the first and the last 
block changes, which is given as follows. 
 

)()(

)()(

291010

..

1211

..

tfxxkxm

tfxxkxm




 

 



 96

This is very much similar to the equation in case 1, except that since there are no supports 
at the ends, the effect of this change in the equation of motion can be seen in the stiffness 
matrix. Notice that the element formed due to the intersection of the 10th row and 10th 
column of the stiffness matrix and the element formed due to the intersection of the first 
row and first column are half of that in the stiffness matrix of case 1.  
 
The right had side matrix for this case will be a zero vector of size 10 x 1. The mass, the 
stiffness and the right hand side matrices for the case wherein both ends are free are given 
by 
 


























































kk

kkk

kkk

kkk

kkk

kkk

kkk

kkk

kkk

kk

K

MM

00000000

20000000

02000000

00200000

00020000

00002000

00000200

00000020

00000002

00000000

3

13

 

 
 









































2

1

0

0

0

0

0

0

0

0

3

f

f

F  

 
The same procedure is adopted to obtain the eigen values and eigen vectors for the 
system. 
 
The plots are attached after the MATLAB code. 
 



 97

MATLAB Code 
 
The MATLAB code is used to calculate the eigen values, eigen vectors and also the 
natural frequencies of the system for different boundary conditions. But only the first 
three mode shapes are plotted. 
 
% The first code is for a system where both the ends are   
% fixed. In the following codes 'M' is the mass matrix, 'K' 
% is the stiffness matrix. 'm' is the mass of each block    
% in Kgs and 'k' is the value of the stiffness constant in 
% N/m. 'v' and 'd' give the eigen vectors and eigen values 
% respectively. 
 
m = 0.002; 
k = 175000; 
 
M1 = m*eye(10); 
K1=k*[2 -1 0 0 0 0 0 0 0 0; 
   -1 2 -1 0 0 0 0 0 0 0; 
   0 -1 2 -1 0 0 0 0 0 0; 
   0 0 -1 2 -1 0 0 0 0 0; 
   0 0 0 -1 2 -1 0 0 0 0; 
   0 0 0 0 -1 2 -1 0 0 0; 
   0 0 0 0 0 -1 2 -1 0 0; 
   0 0 0 0 0 0 -1 2 -1 0; 
   0 0 0 0 0 0 0 -1 2 -1; 
   0 0 0 0 0 0 0 0 -1 2;]; 
 
 
[v1,d1] = eig(K1,M1); 
 
% This code is written to separate the natural frequencies 
of the system. w_nat1 contains the natural frequencies. 
 
cnt =1; 
for i = 1:10 
   for j=1:10 
      if(i==j) 
         w_nat1(cnt)=sqrt(d1(i,j)); 
         cnt = cnt +1; 
      end 
   end 
end 
 
 
% To plot the first three mode shapes, we need to find the 
% first three eigen values. 



 98

% The 'EIGS' command has been used to find the required    % eigen values and the 
corresponding eigen vectors. 'SM' in % the code denotes that the command should return 
the first % three smallest magnitudes of the eigen values and the    % corresponding eigen 
vectors. 
 
number = 3; 
 
[vect1,lamda1]=eigs(K1,M1,number,'SM'); 
 
% Since this is for a fixed-fixed boundary condition, the   
% mode shapes originate from the origin. Note that zeros   
% have to be augmented on both sides of the vector. 
 
vect_aug1 = [0 0 0;vect1;0 0 0]; 
 
% wn1 is the vector containing the first three natural     
%  frequencies. 
 
wn1 = sqrt(lamda1); 
 
c = ['m','b','r']; 
 
figure(1) 
for i=1:size(vect_aug1,2) 
   plot(vect_aug1(:,i),c(i)) 
   hold on; 
end 
 
title('The mode shapes of the system with both ends fixed') 
grid on 
legend('I-node', 'II-node','III-node') 
axis([1 12 -0.5 0.5]) 
 
%*********************************************************% 
% This is the second code for a system where one end is    
% fixed and the other free. 
%*********************************************************% 
 
M2 = m*eye(10); 
K2 = k*[2 -1 0 0 0 0 0 0 0 0; 
   -1 2 -1 0 0 0 0 0 0 0; 
   0 -1 2 -1 0 0 0 0 0 0; 
   0 0 -1 2 -1 0 0 0 0 0; 
   0 0 0 -1 2 -1 0 0 0 0; 
   0 0 0 0 -1 2 -1 0 0 0; 
   0 0 0 0 0 -1 2 -1 0 0; 
   0 0 0 0 0 0 -1 2 -1 0; 



 99

   0 0 0 0 0 0 0 -1 2 -1; 
   0 0 0 0 0 0 0 0 -1 1;]; 
 
[v2,d2] = eig(K2,M2) 
 
% This code is written to separate the natural frequencies 
% of the system. w_nat2 contains the natural frequencies. 
 
cnt =1; 
for i = 1:10 
   for j=1:10 
      if(i==j) 
         w_nat2(cnt)=sqrt(d2(i,j)); 
         cnt = cnt +1; 
      end 
   end 
end 
 
% To plot the first three mode shapes, we need to find the 
% first three eigen values. The 'EIGS' command has been    
% used to find the required eigen values and the           
% corresponding eigen vectors. 'SM' in the code denotes     
% that the command should return the first three smallest  
% magnitudes of the eigen values and the corresponding     
% eigen vectors. 
 
number = 3; 
 
[vect2,lamda2]=eigs(K2,M2,number,'SM'); 
 
% wn1 is the vector containing the first three natural     
% frequencies. 
wn2 = sqrt(lamda2); 
 
% Since this is for a fixed-free boundary condition, the    
% mode shapes originate from the origin. Note that zeros   
% have to be augmented only on one side of the vector. 
 
vect_aug2 = [0 0 0;vect2]; 
 
 
c = ['m','b','r']; 
 
figure(2) 
for i=1:size(vect_aug2,2) 
   plot(vect_aug2(:,i),c(i)) 
   hold on; 



 100

end 
 
title('The mode shapes of the system with one end fixed and 
the other free') 
grid on 
legend('I-node', 'II-node','III-node') 
 
%*********************************************************% 
% The following code is for a system where both the ends   
% is free. 
%*********************************************************% 
 
M3 = m*eye(10); 
K3 = k*[1 -1 0 0 0 0 0 0 0 0; 
   -1 2 -1 0 0 0 0 0 0 0; 
   0 -1 2 -1 0 0 0 0 0 0; 
   0 0 -1 2 -1 0 0 0 0 0; 
   0 0 0 -1 2 -1 0 0 0 0; 
   0 0 0 0 -1 2 -1 0 0 0; 
   0 0 0 0 0 -1 2 -1 0 0; 
   0 0 0 0 0 0 -1 2 -1 0; 
   0 0 0 0 0 0 0 -1 2 -1; 
   0 0 0 0 0 0 0 0 -1 1;]; 
 
[v3,d3] = eig(K3,M3) 
 
% This code is written to separate the natural frequencies 
% of the system. w_nat3 contains the natural frequencies. 
 
cnt =1; 
for i = 1:10 
   for j=1:10 
      if(i==j) 
         w_nat3(cnt)=sqrt(d3(i,j)); 
         cnt = cnt +1; 
      end 
   end 
end 
 
% To plot the first three mode shapes, we need to find the 
% first three eigen values. The 'EIGS' command has been    
% used to find the required eigen values and the           
% corresponding eigen vectors. 'SM' in the code denotes    
% that the command should return the first three smallest  
% magnitudes of the eigen values and the corresponding     
% eigen vectors. 
number = 3; 



 101

 
[vect3,lamda3]=eigs(K3,M3,number,'SM'); 
 
% wn1 is the vector containing the first three natural     
% frequencies. 
wn3 = sqrt(lamda3); 
 
% Since this is for a free-free boundary condition, the     
% mode shapes do not originate from the origin. Note that  
% here zeros should not to be augmented to the vector. 
 
c = ['m','b','r']; 
 
figure(3) 
for i=1:size(vect3,2) 
   plot(vect3(:,i),c(i)) 
   hold on; 
end 
 
title('The mode shapes of the system with both ends free') 
grid on 
legend('I-node', 'II-node','III-node') 
 
 



 102

 

 
 
 
 



 103

 
 
 



 104

Assignment 
 
For the system shown in case (1), suppose the support at one of the end were to oscillate 
harmonically, whose equation is given by 
 

tFx sin01   

 
Calculate the amplitude and phase of each of the masses and plot the amplitude and the 
phase with respect to the excitation frequency. 
 
 
 
 
 
 


