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AbstractA framework for robustness analysis of input constrained �nite receding horizon control ispresented. Under the assumption of quadratic upper bounds on the �nite horizon costs, wederive su�cient conditions for robust stability of the standard discrete-time linear-quadraticreceding horizon control formulation. This is achieved by recasting conditions for nominal androbust stability as an implication between quadratic forms, lending itself to S-procedure toolswhich are used to convert robustness questions to tractable convex conditions. Robustness withrespect to plant/model mismatch as well as for state measurement error is shown to reduce tothe feasibility of linear matrix inequalities. Simple examples demonstrate the approach.Keywords: predictive control, optimal control, linear systems, robustness, S-procedure, LMI.1 IntroductionReceding horizon, moving horizon and model predictive control are names for a state feedbackcontrol technique where the control action is determined by solving an on-line optimization at eachtime step. The optimization involves the solution to a �nite horizon open-loop control problem usinga model of the true plant. The ability to easily incorporate constraints into the on-line optimizationis the major advantage of receding horizon control. Unfortunately, a thorough theoretical analysisof its properties has proved to be a challenging task.The di�culty with stability analysis of constrained receding horizon control can be attributedto the fact that it produces inherently nonlinear closed-loop systems, even when the plant is linear.Furthermore, this is complicated by the fact that, in general, a closed form expression for thecontroller and closed loop system does not exist. These di�culties are compounded even furtherwhen a mismatch exists between the true plant and the model of the plant used in the on-lineoptimization. Many authors have delved into the area of robustness of receding horizon control,generally approaching the problem from one of two viewpoints. One approach is to provide a robustformulation of receding horizon control by altering the on-line optimization to guarantee certain�Corresponding author, phone: (818) 395 8419, fax: (818) 796 89141



properties [10, 15, 4, 1, 28], while the other involves robustness analysis of more standard recedinghorizon implementations [25, 26, 8, 17, 18, 22, 21, 28, 16]. The approach presented in this papertends to align better with the second point of view.There are two distinguishing features of the problem we tackle. First, we consider control con-strained receding horizon formulations using the simplest on-line optimizations. Since completingthe optimization in a short amount of time is crucial, when constraints are linear, we strip theon-line optimization to the simplicity of a quadratic program, requiring no additional constraintssuch as terminal constraints or that the �nal predicted state reach a speci�ed region. Hence, weconsider schemes that are practically implementable. Secondly, we develop robustness analysistools for these simplest schemes. That is, given a receding horizon controller we probe its stabilityand robustness properties.While some other techniques require di�cult on-line optimizations to obtain robustness results,our main di�culties are translated to o�-line calculations. We make a key assumption to obtainour results, which is that quadratic upper bounds on the �nite horizon cost can be calculated. Thisis nearly equivalent to �nding a stabilizing control law that satis�es the constraints. When sucha controller is already known to exist, what is the bene�t of constrained receding horizon control?The justi�cation tends to be that receding horizon control exhibits superior performance propertieswhen compared to other constrained stabilizing controllers. This is why receding horizon controlis often applied to open-loop stable plants, rather than just allowing the open-loop plant to evolve.Of course, it is not always true that receding horizon control performs well. In certain examples itactually destabilizes open-loop stable plants, hence a stability theory is necessary as well.Our basic approach can be summarized as follows. We use the information in quadratic upperbounds on the �nite horizon costs to write su�cient conditions for robust stability as implicationsbetween quadratic forms. The S-procedure [13, 14, 24] is then used to convert these to LinearMatrix Inequalities (LMIs), which are computationally tractable.2 Problem FormulationLet IRn denote the space of real n dimensional vectors and IRn�m denote real matrices of size n�m.The notation (>;�;�; <) will be used to denote standard inequalities, with (�;�;�;�) denotingmatrix inequalities. That is, A � B if and only if A�B is positive semide�nite.2.1 Plant ModelsWe will refer to three di�erent plant models: a nominal plant model and two uncertain represen-tations. These are described below:1. Nominal: x(k + 1) = Ax(k) +Bu(k) (1)with A 2 IRn�n and B 2 IRn�m.2. Polytopic: x(k + 1) = ~Ax(k) + ~Bu(k); [ ~A; ~B] 2 � (2)with ~A 2 IRn�n, ~B 2 IRn�m and� := Co f[A1; B1]; : : : ; [AL; BL]g (3)where Co denotes the convex hull. 2



3. Structured: x(k + 1) = Ax(k) +B1w(k) +B2u(k)z(k) = C1x(k) +D11w(k) +D12u(k)w(k) = �z(k) (4)where w(k) 2 IRm1 and the operator � is block diagonal: � = diag([�1; : : : ;�r]); where each�j is a memoryless time-varying matrix with k�jk2 := �(�j) � 1, j = 1 : : : r.In all cases, we will assume the pair [A;B] is controllable. In receding horizon control, an opti-mization is solved at every time step. This optimization is based on a plant model. In this paper,that model will always be the nominal model. We will then ask whether this controller basedon the nominal plant model stabilizes all plants within the two uncertain models (polytopic andstructured).2.2 Receding Horizon ControllerA receding horizon controller is based on the following optimization which is solved at each timestep: Ji(x) := minu(0);:::;u(i�1)"xT (i)P0x(i) + i�1Xk=0 �xT (k)Qx(k) + uT (k)Ru(k)�#subject to: x(k + 1) = Ax(k) +Bu(k); k = 0 : : : i� 1x(0) = xcu(u(k)) � 0; k = 0 : : : i� 1 (5)where Q > 0, R > 0, P0 > 0 and i is the horizon length. The input constraint cu(�) � 0 is assumedto be convex and feasible in a neighborhood containing u = 0. (Note that we only consider controlconstraints. In Section 4 we discuss the di�culties associated with extending the results in thispaper to state constraints.) To streamline notation, we will use the following de�nitions. Letu[j;r] := [u(j); : : : ;u(r)]denote a sequence of control actions from j to r. The � notation will be reserved to denote theoptimal solution to (5) which is a function of the initial state x and horizon length i, i.e.u�[0;i�1](x; i) := [u�(0;x; i); : : : ;u�(i� 1;x; i)]corresponds to Ji(x). Furthermore, we will use the notation x�(k;x; i), k = 0; : : : ; i to denote thestate trajectory obtained by applying the optimizing sequence u�[0;i�1](x; i) from the initial conditionx through the nominal dynamics x(k+1) = Ax(k)+Bu(k). The optimization in (5) can be writtenentirely in terms of the initial state x and the sequence of controls u[0;i�1] in which case it takesthe form: Ji(x) := infu[0;i�1]cu(u(k)) � 0; k = 0 : : : i� 1� xu[0;i�1] �T Hi � xu[0;i�1] �= � xu�[0;i�1](x; i) �T Hi � xu�[0;i�1](x; i) � (6)where Hi is the appropriately formulated matrix. The receding horizon controller is based on theoptimization in (6). That is, at each time step k, the optimization (6) with a �xed horizon i = N is3



solved for u�[0;N�1](x(k); N). The �rst control action u�(0;x(k); N) is implemented. At time k + 1the optimization is re-solved and the process repeats. From now on, we will �x the horizon ati = N for our receding horizon controller, and analyze the stability and robustness of this scheme.2.3 Notation and AssumptionsWe will often �nd it convenient to stack the state x(k) and control sequence u[0;N ] together intoa single vector. To transition between time k and time k + 1 using the nominal plant model, wede�ne the matrices �j for j = 1:::N as follows.�j := � A B 00 0 Ijm � (7)(where Ijm is the identity matrix of size jm� jm and m is the dimension of the control input) sothat for the nominal plant model we have the following relationship� x(1)u[1;j] � = � Ax(0) +Bu(0)u[1;j] � = � A B 00 0 Ijm �24 x(0)u(0)u[1;j] 35 = �j � x(0)u[0;j] � :Additionally, de�ne �[i;j] := jYk=j�i+1�kso that � x(i)u[i;j] � = �[i;j] � x(0)u[0;j] �(where jYk (�) = 1 when j > k).Throughout this paper, we will make use of the following key assumption:Assumption 2.1 Given a horizon length N , and a set W, there exist matrices Ui; i = 1 : : : N anda ~U1 such that for all x 2 W,Ji(x�((N � i);x;N)) � x�T ((N � i);x;N)Uix�((N � i);x;N); i = 1 : : : Nand J1(x�(N ;x;N)) � x�T (N ;x;N) ~U1x�(N ;x;N):This assumption states that we can construct quadratic upper bounds for the cost of the �nitereceding horizon objective along optimal trajectories beginning in some set W. (Note that U1 and~U1 essentially de�ne the same bound, the only di�erence being that they might be valid in di�erentregions: U1 corresponding to x�(N � 1;x;N) and ~U1 corresponding to x�(N ;x;N). In practice,they can often be chosen to be equal.) Furthermore, to be meaningful, these bounds must be tightin the sense that ideally they correspond to a stabilizing trajectory for the nominal plant. Whilethis assumption is certainly restrictive, there are large classes of systems for which bounds can befound. Furthermore, these classes of systems are those that receding horizon control is typicallyapplied to. Below we provide a brief outline:Open-loop stable plants 4



When plants are open-loop stable, as is often the assumption in receding horizon control, the setW can be chosen as the entire state space, with the upper bound being the cost of the open-loopsystem. Speci�cally, Ui can be chosen as:Ui = AiTP0Ai + i�1Xk=0AkTQAk (8)and ~U1 = U1.Marginally Stable/Unstable plantsIn this case, no general procedure exists for determining upper bounds. Nevertheless, there are anumber of standard approaches to this problem.LQR. By choosing appropriate cost parameters in LQR, it is often possible to �nd a stabilizingcontroller that satis�es control and/or state constraints within some region of state space. Thiscontroller is used to generate upper bounds by evaluating its cost (the exact formula for Ui wouldbe equation (8) with A replaced by A+BK where K is the stabilizing LQR controller that satis�esthe constraints). For so-called Asymptotically Null Controllable with Bounded Input (ANCBI)plants, an LQR controller can provide semi-global stability (i.e. stability for arbitrarily large butbounded sets of initial states). ANCBI plants have been considered in receding horizon literature[5, 27] and schemes for semi-global stabilization with linear control laws have been proposed in[11, 12, 23, 2].LMIs. LMIs are a 
exible tool for the computation of feedback control laws, even for constrainedsystems. In [10] LMIs are solved on-line to compute an in�nite horizon state feedback that cansatisfy magnitude and two-norm constraints on both the inputs and outputs. An alternate LMIformulation for some constrained systems has been proposed in [19] and numerous other problemsmay be found in [3].Linear Programming. In [6] an algorithm is given for computing a constant upper bound through alinear program when state constraints de�ne a bounded convex polytope. Their approach is easy toadapt to determine a quadratic upper bound. This can be done by either solving a linear programwhich is guaranteed to bound the cost at each vertex of the convex polytope (but requires furtheranalysis to be guaranteed as an upper bound for the entire polytope) or solving an LMI requiringthe upper bound to be valid on the entire boundary of the polytope, which establishes the requiredbound.2.4 Application of Upper BoundsWe will use the bounds described in Assumption 2.1 in the following manner. Consider the optimaltrajectory x�(i;x;N) i = 0 : : : N generated by the solution to (6), u�[0;N�1](x;N) with x 2 WwhereW is a set over which Assumption 2.1 holds. Along this trajectory, the following bounds aresatis�ed: JN (x�(0;x;N)) � (x�(0;x;N))TUNx�(0;x;N)JN�1(x�(1;x;N)) � (x�(1;x;N))TUN�1x�(1;x;N)... (9)J1(x�(N � 1;x;N)) � (x�(N � 1;x;N))TU1x�(N � 1;x;N):5



Therefore, if we de�ne the set of all u[0;N�1] such that:� xu[0;N�1] �T HN � xu[0;N�1] � � (x�(0;x;N))TUNx�(0;x;N)� xu[0;N�1] �T �T[1;N�1]HN�1�[1;N�1] � xu[0;N�1] � � (x�(1;x;N))TUN�1x�(1;x;N)... (10)� xu[0;N�1] �T �T[N�1;N�1]H1�[N�1;N�1] � xu[0;N�1] � � (x�(N � 1;x;N))TU1x�(N � 1;x;N)then u�[0;N�1](x;N) is a member of this set. For notational convenience, de�ne the matrices�i := �T[i�1;N ]�� Ui 00 0(i+1)m �� � Hi 00 0m ���[i�1;N ] (11)so that the inequality constraints in (10) can be written as:� xu[0;N ] �T �i � xu[0;N ] � � 0; i = 1 : : : N: (12)Note that we have added another control move u(N) which just multiplies zero. We will deal withthis control move in a moment. For now, note that as stated above, u�[0;N�1](x;N) is a member ofthe set: (u[0;N�1] : � xu[0;N ] �T �i � xu[0;N ] � � 0; i = 1 : : : N) : (13)A standard trick in stability analysis for receding horizon control is to compare the optimalcost at time k, with the cost corresponding to a feasible sequence at time k + 1. If the cost attime k + 1 is smaller then the optimal cost at time k, then JN (�) is a Lyapunov function. We willuse the same trick. At time k we will use the optimal sequence u�[0;N�1](x(k); N). At time k + 1we need a feasible sequence of N control moves. We will use u�[1;N�1](x(k); N) for the �rst N � 1moves. We are then left to choose a �nal feasible control action. This �nal control action is whywe included the additional control action u(N) in (13). We have complete freedom in choosing thiscontrol action so long as it is feasible. Possible choices include:� u(N) = 0� u(N) = u�(N � 1;x;N)� u(N) = u�(0;x�(N ;x;N); 1).For this presentation, we will select the �nal choice u(N) = u�(0;x�(N ;x;N); 1) which is theoptimal control action corresponding to the cost J1(x�(N ;x;N)). By Assumption 2.1,J1(x�(N ;x;N)) � (x�(N ;x;N))T ~U1x�(N ;x;N)or if we consider the set of u(N) such that24 xu�[0;N�1](x;N)u(N) 35T �T[N;N ]H1�[N;N ]24 xu�[0;N�1](x;N)u(N) 35 � (x�(N ;x;N))T ~U1x�(N ;x;N)6



then u�(0;x�(N ;x;N); 1) is in this set. Let us de�ne�0 := �T[N;N ]�� ~U1 00 0m ��H1��[N;N ]: (14)Hence, we know that the sequence [u�[0;N�1](x;N); u�(N ;x�(N ;x;N); 1)] satis�es (13) and (14) forall x 2 W. Therefore, for x 2 W, if we de�ne the set(u[0;N ] : � xu[0;N ] �T�i � xu[0;N ] � � 0; i = 0 : : : N) (15)then [u�[0;N�1](x;N); u�(N ;x�(N ;x;N); 1)] is a member of this set. A key step in our derivationof robust stability conditions will be to replace [u�[0;N�1](x;N); u�(N ;x�(N ;x;N); 1)] by the entireset of control actions in (15). Stability conditions are then veri�ed over (15) which guarantees thatthey were true for [u�[0;N�1](x;N); u�(N ;x�(N ;x;N); 1)].2.5 S-ProcedureA tool that we will call upon frequently often goes by the name S-procedure and can be summarizedas follows:A su�cient condition for the implicationzT�0z � 0; : : : ; zT�Nz � 0) zT�sz � 0to hold is for there to exist positive scalars �i � 0; i = 0 : : : N such thatNXi=0 �i�i ��s � 0:This result is trivially proved by rewriting the above equation as NXi=0 �i�i � �s and multiplying onthe left by zT and the right by z.2.6 Lyapunov StabilityFinally, we state the Lyapunov theorem that we will use to establish stability.Theorem 2.1 Consider the discrete time, free dynamic system x(k+1) = f(x(k)) where f(0) = 0.Suppose there exists a scalar function V (x) such that V (0) = 0, V is positive de�nite, continuous,and V (x) ! 1 when kxk ! 1. Then, if there exists a positively invariant set D and a scalarfunction 
 such that 
(0) = 0 and for all x 2 D; x 6= 0, we have V (x(k))�V (x(k+1)) � 
(x) > 0,then the equilibrium x = 0 is asymptotically stable in D.The proof of this result is easily adapted from [9]. We will apply this theorem as follows. The costJN will be our Lyapunov function V , and f(x(k); k) will be the receding horizon controlled closed-loop system. It is obvious that JN is a valid choice for V since it is positive de�nite, continuous(from convexity), and tends to in�nity as the state tends to in�nity. We are only left to show that itis decreasing along trajectories of the system. The following sections establish su�cient conditionsto ensure this under polytopic, structured and measurement uncertainty.7



3 Robust StabilityWe are now prepared to derive su�cient conditions for robust stability in the form of linear matrixinequalities. Our approach is to write everything as quadratic forms and then apply the S-procedure.We begin by considering the polytopic model of an uncertain plant.3.1 Polytopic UncertaintyRecall the polytopic description of an uncertain plant model:x(k + 1) = ~Ax(k) + ~Bu(k); [ ~A; ~B] 2 �with � = Co f[A1; B1]; : : : ; [AL; BL]gwhere Co denotes the convex hull. We will derive su�cient conditions for robust stability of thissystem under the receding horizon controller. As stated in Section 2.6, our basic approach tostability is motivated by trying to determine when JN can act as a Lyapunov function. Since it ispositive de�nite, continuous, and tends to in�nity as the state does, we are only left to show thatit is decreasing along trajectories, orJN (x)� JN ( ~Ax+ ~Bu�(0;x;N)) � �kxk22 (16)for all [ ~A; ~B] 2 � where � is some small positive number. Unfortunately, it is not computationallytractable to test this condition exactly because it would involve solving the receding horizon opti-mization at every state. Instead, let us assume x 2 W where W is a set in which Assumption 2.1is satis�ed. Now, we can follow a systematic approach which derives a su�cient LMI condition inplace of (16).1. Replace the condition JN (x) � JN ( ~Ax + ~Bu�(0;x;N)) � �kxk22 by a su�cient condition interms of quadratic forms.From (6) we can writeJN (x) = � xu�[0;N�1](x;N) �T HN � xu�[0;N�1](x;N) � :Additionally, JN ( ~Ax+ ~Bu�(0;x;N)) can be bounded from above by the cost of applying thefeasible control actions [u�[1;N�1](x;N); u�(0;x�(N ;x;N); 1)] (see Section 2.4 for an explana-tion of this choice). HenceJN ( ~Ax+ ~Bu�(0;x;N))� 24 ~Ax+ ~Bu�(0;x;N)u�[1;N�1](x;N)u�(0;x�(N ;x;N); 1) 35T HN 24 ~Ax+ ~Bu�(0;x;N)u�[1;N�1](x;N)u�(0;x�(N ;x;N); 1) 35= 24 xu�[0;N�1](x;N)u�(0;x�(N ;x;N); 1) 35T� ~A ~B 00 0 INm �THN� ~A ~B 00 0 INm �24 xu�[0;N�1](x;N)u�(0;x�(N ;x;N); 1) 35 :8



Therefore, if we de�ne~�s := � HN 00 0m �� � ~A ~B 00 0 INm �T HN � ~A ~B 00 0 INm �� � �In 00 0(N+1)m � ; (17)it is possible to replace JN (x)� JN ( ~Ax+ ~Bu�(0;x;N)) � �kxk22by the su�cient condition24 xu�[0;N�1](x;N)u�(0;x�(N ;x;N); 1) 35T ~�s 24 xu�[0;N�1](x;N)u�(0;x�(N ;x;N); 1) 35 � 0: (18)2. Write (18) as an implication:u[0;N ] = [u�[0;N�1](x;N); u�(0;x�(N ;x;N); 1)] ) � xu[0;N ] �T ~�s � xu[0;N ] � � 0 (19)for all [ ~A; ~B] 2 � and x 2 W.3. Replace the condition u[0;N ] = [u�[0;N�1](x;N); u�(0;x�(N ;x;N); 1)] by the set (15).Since u[0;N ] = [u�[0;N�1](x;N); u�(0;x�(N ;x;N); 1)] is an element of the set (15), we canreplace (19) by the su�cient condition� xu[0;N ] �T�i � xu[0;N ] � � 0; i = 0 : : : N ) � xu[0;N ] �T~�s � xu[0;N ] � � 0:4. Apply the S-procedure to convert this implication to an LMI:NXi=0 �i�i � ~�s � 0; �i � 0:Finally, we argue by convexity that it is only necessary to check this linear matrix inequality onthe vertices of � to verify its satisfaction. Assume thatJN (x)� JN (Aix+Biu�(0;x;N)) � �kxk22; i = 1 : : : L: (20)But, JN is a convex function and for �xed x,n ~Ax+ ~Bu�(0;x;N) : [ ~A; ~B] 2 �ois a convex polytope. Furthermore, convex functions achieve their maximum only on the verticesof polytopes. Hence, JN ( ~Ax + ~Bu�(0;x;N)) achieves its maximum on one of the vertices of �.Therefore it easily follows that if (20) is true on the vertices of � then it is true for every plant in� as well. This leads to the following theorem. 9



Theorem 3.1 Let W be a set under which Assumption 2.1 holds with corresponding bounds Ui,i = 1 : : : N and ~U1. Furthermore, let �i, i = 1 : : : N be given by (11), �0 by (14), and �ls by (17)with ~A and ~B replaced by Al and Bl, respectively. If there exist scalars � li � 0; i = 0 : : : N; l =1 : : : L that satisfy the linear matrix inequalitiesNXi=0 � li�i ��ls � 0; l = 1 : : : L (21)then the receding horizon controller of horizon N based on the nominal system (1) stabilizes everyplant in the set � = Cof[A1; B1]; : : : ; [AL; BL]g in any subset of W which is positively invariantunder the uncertain closed loop dynamics.This theorem states su�cient conditions for robust stability as the feasibility of LMIs. The generalprocedure outlined in this section for deriving su�cient LMI conditions for robust stability is thesame for both structured and measurement uncertainty. Di�erences only occur in the details.Hence, we will proceed much more quickly through the following two sections which handle thestructured and measurement uncertainty cases.3.2 Structured UncertaintyWe now consider the structured uncertainty representation for uncertain systems:x(k + 1) = Ax(k) +B1w(k) +B2u(k)z(k) = C1x(k) +D11w(k) +D12u(k)w(k) = �z(k)where w(k) 2 IRm1 and the operator � is block diagonal: � = diag([�1; : : : ;�r]); where each �jis a memoryless time-varying matrix with k�jk2 := �(�j) � 1, j = 1 : : : r. This can be rewrittenas: x(k + 1) = Ax(k) +B1w(k) +B2u(k) (22)wTj (k)wj(k) � (C1x(k) +D11w(k) +D12u(k))Tj (C1x(k) +D11w(k) +D12u(k))j (23)for j = 1 : : : r. It is easy to see that the equations (23) are quadratic forms in x(k); w(k) and u(k)which we will generically denote by:24 xwu[0;N ] 35T �j 24 xwu[0;N ] 35 � 0; j = 1 : : : r (24)with �j the appropriate matrix representations of (23). (Note that we write � in terms of x, w andu[0;N ], but equation (23) only involves x, w and u(0). This is done for convenience of notation.)Again, we wish to determine ifJN (x)� JN (Ax+B1w +B2u�(0;x;N)) � �kxk22 (25)for all w satisfying2664 xwu�[0;N�1](x;N)u�(0;x�(N ;x;N); 1) 3775T �j 2664 xwu�[0;N�1](x;N)u�(0;x�(N ;x;N); 1) 3775 � 0; j = 1 : : : r:10



If we assume x 2 W where W satis�es Assumption 2.1, then we can once again transform this intoa su�cient linear matrix inequality in four steps:1. Replace the condition JN (x)�JN (Ax+B1w+B2u�(0;x;N)) � �kxk22 by a su�cient conditionin terms of quadratic forms.Similar to step 2 in the polytopic case, de�ne��s := 24 HN 0 00 0m1 00 0 0m 35� � A B1 B2 00 0 0 INm �T HN � A B1 B2 00 0 0 INm �
�24 �In 0 00 0m1 00 0 0(N+1)m1 35 (26)where the �rst term replaces JN (x), the second term bounds JN (Ax+B1w +B2u), and the�nal term replaces �kxk22. Then a su�cient condition for (25) is2664 xwu�[0;N�1](x;N)u�(0;x�(N ;x;N); 1) 3775T ��s 2664 xwu�[0;N�1](x;N)u�(0;x�(N ;x;N); 1) 3775 � 0 (27)for all w satisfying2664 xwu�[0;N�1](x;N)u�(0;x�(N ;x;N); 1) 3775T �j 2664 xwu�[0;N�1](x;N)u�(0;x�(N ;x;N); 1) 3775 � 0; j = 1 : : : r:2. Write (27) as an implication:u[0;N ] = [u�[0;N�1](x;N); u�(0;x�(N ;x;N); 1)]24 xwu[0;N ] 35T�j24 xwu[0;N ] 35 � 0; j = 1 : : : r 9>>>>=>>>>;) 24 xwu[0;N ] 35T ��s 24 xwu[0;N ] 35 � 0: (28)3. Replace the condition u[0;N ] = [u�[0;N�1](x;N); u�(0;x�(N ;x;N); 1)] by the set of quadraticforms (15).From (15) we know that [u�[0;N�1](x;N); u�(0;x�(N ;x;N); 1)] satis�es:(u[0;N ] : � xu[0;N ] �T�i � xu[0;N ] � � 0; i = 0 : : : N) :Purely for notational reasons, we need to write these in terms of x, w and u[0;N ], not just xand u[0;N ] as above. Hence, de�ne��i := � In 0 00 0 INm �T �i � In 0 00 0 INm � ; i = 0 : : : N (29)11



so that we can write (15) equivalently as:8><>:u[0;N ] : 24 xwu[0;N ] 35T��i 24 xwu[0;N ] 35 � 0; i = 0 : : : N9>=>; :This leads to the implication:24 xwu[0;N ] 35T ��i 24 xwu[0;N ] 35 � 0; i = 0 : : : N24 xwu[0;N ] 35T �j 24 xwu[0;N ] 35 � 0; j = 1 : : : r
9>>>>>>>=>>>>>>>;) 24 xwu[0;N ] 35T ��s 24 xwu[0;N ] 35 � 0: (30)

4. Apply the S-procedure to convert this implication to an LMI:rXi=1 �i�i + NXi=0 �i��i ���s � 0; �i � 0; �j � 0:Hence we have the following theorem:Theorem 3.2 Let W be a set under which Assumption 2.1 holds with corresponding bounds Ui,i = 1 : : : N and ~U1. Furthermore, let ��i , i = 0 : : : N be given by (29), ��s by (26) and �j,j = 1 : : : r by (24). If there exist scalars �i � 0; i = 0 : : : N and scalars �j � 0; j = 1 : : : r thatsatisfy the linear matrix inequality rXj=1 �j�j + NXi=0 �i��i ���s � 0 (31)then the receding horizon controller of horizon N based on the nominal system (1) robustly stabilizesthe uncertain system (22-23) in any subset of W which is positively invariant under the uncertainclosed loop system.3.3 Measurement UncertaintyIn this section we deal with the issue of state measurement error. Let x(k) denote the true stateand x̂(k) denote our measurement of the state at time k. Furthermore, assume that the statemeasurement contains an error that can be characterized through a quadratic form:24 x̂(k)x(k)u[0;N ] 35T 	j 24 x̂(k)x(k)u[0;N ] 35 > 0; j = 1 : : : r: (32)A simple example of such an error is: kx̂(k)� x(k)k2 � 0:01kx(k)k2 :This time we would like to show thatJN (x)� JN (Ax+Bu�(0; x̂; N) � �kxk2212



where u�[0;N�1](x̂; N) is the solution toinfu[0;N�1]cu(u(k + i)) � 0; i = 0 : : : N � 1 � x̂u[0;N�1] �T HN � x̂u[0;N�1] �and x is related to x̂ through (32). That is, the on-line optimization is based upon the statemeasurement. This time we assume x 2 W and x̂ 2 W where W satis�es Assumption 2.1 andproceed in the following steps:1. Replace the condition JN (x) � JN (Ax + Bu�(0; x̂; N)) � �kxk22 by a su�cient condition interms of quadratic forms.Let M be a matrix that satis�es:JN (x) � JN (x̂)� � x̂x �T M � x̂x � (33)hence,JN (x)� JN (Ax+Bu�(0; x̂; N)) � JN (x̂)� � x̂x �TM � x̂x �� JN (Ax+Bu�(0; x̂; N)):As in the polytopic and structured uncertainty case, we replace this with a su�cient conditionin terms of quadratic forms. De�ne:�̂s := � In 0 00 0 I(N+1)m �T � HN 00 0m � � In 0 00 0 I(N+1)m �� � M 00 0(N+1)m �� � 0 In 00 0 I(N+1)m �T � A B 00 0 INm �T HN � A B 00 0 INm � � 0 In 00 0 I(N+1)m �� 24 0n 0 00 �In 00 0 0(N+1)m 35 (34)where the �rst term replaces JN (x̂), the second term replaces the M term, the third termbounds JN (Ax+Bu�(0; x̂; N)), and the �nal term replaces �kxk22, so that2664 x̂xu�[0;N�1](x̂; N)u�(0;x�(N ; x̂; N); 1) 3775T �̂s 2664 x̂xu�[0;N�1](x̂; N)u�(0;x�(N ; x̂; N); 1) 3775 � 0 (35)represents a su�cient condition for JN (x)� JN (Ax+Bu�(0; x̂; N)) � �kxk22. Furthermore, asu�cient condition for (33) is for M to satisfy� xu�[0;N�1](x;N) �T HN � xu�[0;N�1](x;N) �� � x̂u�[0;N�1](x;N) �T HN � x̂u�[0;N�1](x;N) �� � x̂x �T M � x̂x � :13



We can write this as a quadratic form by de�ning:�̂M := � 0 In 00 0 I(N+1)m �T � HN 00 0m � � 0 In 00 0 I(N+1)m �� � In 0 00 0 I(N+1)m �T � HN 00 0m � � In 0 00 0 I(N+1)m �+ � M 00 0(N+1)m �(36)and requiring 2664 x̂xu�[0;N�1](x;N)u�(0;x�(N ;x;N); 1) 3775T �̂M 2664 x̂xu�[0;N�1](x;N)u�(0;x�(N ;x;N); 1) 3775 � 0: (37)2. Write (35) and (37) as implications:We can write (35) asu[0;N ] = [u�[0;N ](x̂; N); u�(0;x�(N ; x̂; N); 1)]24 x̂xu[0;N ] 35T 	j 24 x̂xu[0;N ] 35 � 0; j = 1 : : : r 9>>>>=>>>>;) 24 x̂xu[0;N ] 35T �̂s 24 x̂xu[0;N ] 35 � 0 (38)and (37) asu[0;N ] = [u�[0;N ](x;N); u�(0;x�(N ;x;N); 1)]24 x̂xu[0;N ] 35T 	j 24 x̂xu[0;N ] 35 � 0; j = 1 : : : r 9>>>>=>>>>;) 24 x̂xu[0;N ] 35T �̂M 24 x̂xu[0;N ] 35 � 0: (39)3. Replace the conditions u[0;N ] = [u�[0;N ](x̂; N); u�(0;x�(N ; x̂; N); 1)] andu[0;N ] = [u�[0;N ](x;N); u�(0;x�(N ;x;N); 1)] by the set of quadratic forms (15).If we de�ne �̂i := � In 0 00 0 I(N+1)m �T �i � In 0 00 0 I(N+1)m � ; i = 0 : : : N (40)and ��i := � 0 In 00 0 I(N+1)m �T �i � 0 In 00 0 I(N+1)m � ; i = 0 : : : N (41)where �i i = 1 : : : N and �0 are from (11) and (14), respectively, then the implication (38)can be replaced by the su�cient condition:24 x̂xu[0;N ] 35T �̂i 24 x̂xu[0;N ] 35 � 0; i = 0 : : : N24 x̂xu[0;N ] 35T 	j 24 x̂xu[0;N ] 35 � 0; j = 1 : : : r
9>>>>>>>=>>>>>>>;) 24 x̂xu[0;N ] 35T �̂s 24 x̂xu[0;N ] 35 � 0 (42)
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and (39) by:24 x̂xu[0;N ] 35T ��i 24 x̂xu[0;N ] 35 � 0; i = 0 : : : N24 x̂xu[0;N ] 35T 	j 24 x̂xu[0;N ] 35 � 0; j = 1 : : : r
9>>>>>>>=>>>>>>>;) 24 x̂xu[0;N ] 35T �̂M 24 x̂xu[0;N ] 35 � 0: (43)

4. Apply the S-procedure to convert these implications to LMIs:NXi=0 �i�̂i + rXj=1 �j	j � �̂s � 0; �i � 0; �j � 0NXi=0 �i ��i + rXj=1 �j	j � �̂M � 0; �i � 0; �j � 0 9>>>>>=>>>>>; :We state this result as a theorem:Theorem 3.3 Let W be a set under which Assumption 2.1 holds with corresponding bounds Ui,i = 1 : : : N and ~U1. Furthermore, let �̂i, i = 0 : : : N be given by (40), ��i, i = 0 : : : N by (41), �̂sby (34), �̂M by (36) and 	j, j = 1 : : : r describe the measurement error (32). Then, if there existscalars �i � 0; i = 0 : : : N , �j � 0; j = 1 : : : r, �i � 0; i = 1 : : : N , �j � 0; j = 1 : : : r, and amatrix MT =M that satisfy the linear matrix inequalitiesNXi=0 �i�̂i + rXj=1 �j	j � �̂s � 0NXi=0 �i ��i + rXj=1 �j	j � �̂M � 0 9>>>>>=>>>>>; (44)then the receding horizon controller of horizon N based on the state measurements x̂ is stabilizing inany subset of W for which the measurements x̂ are also contained within W and which is positivelyinvariant for the closed loop system.4 DiscussionIn deriving our LMI results we proceed through four steps, each introducing some amount of con-servativeness. How conservative, then, is the �nal result? It turns out that the �nal LMI conditionsare actually less conservative than many existing approaches. Our su�cient LMI conditions forstability are based on checking whether the �nite horizon cost JN is decreasing. This approach isquite standard in receding horizon literature. As a result, some previous results can be reconciledwith the LMI approach we have taken. Let us provide two examples to guide the reader.The in�nite horizon results of Rawlings and Muske [20] for open{loop stable plants are alsoguaranteed by the LMIs derived in this paper. This can be checked by using a terminal weightequal to the open-loop in�nite horizon cost, and checking the appropriate LMIs. Additionally, theLMI approach can be used to go further and guarantee stability under other terminal weights, andunder plant and measurement uncertainty. 15



As a second example, consider a scheme in which the on-line optimization requires a terminalconstraint that the �nal state lie within a speci�ed set. Furthermore, the terminal weight corre-sponds to the cost of applying a stabilizing linear controller (u = Kx) that satis�es the constraintswithin the terminal set [6]. In the nominal stability case, this information is equivalent to sayingthat u(N) = Kx�(N ;x;N) is a valid choice for the control move u(N). With this information wecan substitute for u(N) and write quadratic forms in terms of x(k), u[0;N�1] and x�(N ;x;N). Evenwithout the upper bounds on any of the �nite horizon costs that we have assumed in Assumption2.1, this information alone will guarantee nominal stability from our LMIs since the matrix �s interms of x(k); u[0;N�1] and x�(N ;x;N) will be positive de�nite! One can then proceed further, withadded di�culty, and attempt to analyze robustness properties, etc. We leave it to the reader topursue other direct extensions.We are also obliged to mention at least a plausible technique for dealing with the di�cultquestion of �nding a positively invariant subset of W. One approach is as follows: First choosea set of initial conditions I and calculate a scalar upper bound S for JN over the set I. If JNis indeed a Lyapunov function then the set W = fx : JN (x) � Sg is positively invariant. But,a priori we don't know whether JN is a Lyapunov function. So, instead calculate a lower boundxTLx for JN by solving the unconstrained problem (a Riccati equation). Then if we verify the LMIconditions in the stability theorems over the set fx : xTLx � Sg, (which contains W), then JN is aLyapunov function in the set W which is positively invariant and contains our initial conditions I.Hence, we are stable from any initial condition in I. We have used this technique for the secondexample in Section 5. More details can be found in [19].We have also utilized the following freedom in our numerical examples. Note that we includethe initial term xTQx in the cost JN (x) (5) even though it has no e�ect on the optimizing solutionu�[0;N�1](x;N) and hence no e�ect on the receding horizon control law. In fact, the Q correspondingto this �rst term can be used as a free variable in the �s term in the LMIs we derived. Thiscorresponds to testing Lyapunov functions JN , but parameterized by this Q, and can furtherreduce the conservativeness of the LMI conditions.Finally, we mention state constraints. When there is no uncertainty, our LMI approach willwork for state constraints. Again there is the di�cult issue of computing quadratic upper boundsas in Assumption 2.1. On the other hand, when uncertainty is present, the results do not hold.This is because the receding horizon controller is based upon an optimization using the nominalplant model. Hence, state constraints will be satis�ed if the nominal plant model is used, but notnecessarily if the uncertain model is used. So-called soft state constraints [7] can be used to getaround this problem.5 Numerical ExamplesIn this section we demonstrate the LMI computations on both an open-loop stable and unstableplant. These examples provide a simple illustration of the presented approach.5.1 Example 1: An open-loop stable systemConsider the following stable dynamics:x(k + 1) = � 4=3 + d �2=31 0 �x(k) +� 10 �u(k) (45)16



subject to the saturation constraint, juj �  where d is an unknown parameter that lies in d 2[��; �] (and � is yet to be speci�ed). We consider the following cost parameters:Q = � 1 �23�23 32 � ; R = 1:Since this example is open-loop stable, we will compute the upper bounds Uj required for (10) bysimply calculating the cost accumulated from the open-loop system (see (8)). Using upper boundscalculated in this manner allows for global stability (i.e.,W = IRn) to be determined independent ofthe level of saturation (since the upper bounds are independent of the constraint). We will analyzereceding horizon formulations with the following terminal weights:� P0 = Q. (Note that this terminal weight cannot correspond to the cost associated with anextension by any stabilizing controller.)� P0 = U1 = � 7:1667 �4:2222�4:2222 4:6852 � where U1 denotes the in�nite horizon cost of the openloop stable system: U1 = Q+ATU1A:� Robustness ResultsFor a �xed horizon length, we will determine (by checking the feasibility of the LMI given inTheorem 3.1 for various values of �) the largest value of � (which de�nes the range for the unknownparameter d) that will be guaranteed stable under the receding horizon policy based on the nominalsystem (d = 0). The results are given in Table 1. �Horizon P0 = Q P0 = U1N = 3 0.12 0.15N = 6 0.16 0.15N = 10 0.15 0.15Table 1: Largest value of � for which robust stability is guaranteedFor each horizon tested and both terminal weights we �nd that the receding horizon controllercan tolerate variations from the nominal plant in d of more than 0:1 without jeopardizing stability.For the terminal weight U1 which corresponds to an in�nite horizon approach, the horizon lengthhas little e�ect, if any, on the robustness results obtained for this controller. This is due to thefact that both the terminal weight and the upper bounds are computed from the cost of the open-loop system and provide much of the same information. Hence, extending the horizon in this casedoes not introduce new information which could improve (or worsen) the analysis of robustnessproperties.� Measurement ErrorFinally, we will use our results to determine the amount of state measurement error that can betolerated while stability is still maintained. Measurement error will be modeled as:kx̂� xk2 � ekxk2:17



eHorizon P0 = Q P0 = U1N = 3 0.07 0.08N = 6 0.08 0.08N = 10 0.08 0.08Table 2: Largest value of e for which robust stability is guaranteedThm. 3.3 was used to determine the largest possible values for e for a given terminal weight P0and horizon length N . The results are supplied in Table 2.For the in�nite horizon terminal weight U1, using the same reasoning as in the robustnessanalysis case, it is not surprising that the results were the same regardless of horizon length.Clearly this is more an artifact of the upper bounds being computed from the open loop cost thanany intrinsic property of in�nite horizon controllers. For the terminal weight P0 = Q, varioushorizons produce distinct results. For example, a horizon of N = 3 is guaranteed stable up toerrors of 7%, while for the other horizons in the table, Thm. 3.3 allows for 8% errors.It is important to note that the results obtained in Example 1 used the simplest method forcomputing the upper bounds Ui. Had more sophisticated and tighter bounds been used, the stabilityand robustness results would have been more informative.5.2 Example 2: An open-loop unstable systemConsider the unstable system:x(k + 1) = � 1 1:1 + d�1:1 1 + d �x(k) +� 01 �u(k)with d 2 [��; �] and subject to the following constraint: ju(k)j � 2: For cost parameters we willuse: Q = � 1 22 5 � ; R = 1:With this form of constraint, it is not possible to stabilize the system globally, hence we willconsider initial conditions in the set: I = fxj xTx � 1g: Furthermore, since the system is open-loopunstable, we have used LMIs to compute upper bounds for the �nite horizon costs and determinethe positively invariant set W that contains I (see [19] for details). Finally, we will test threeterminal weights:� P0 = Q� P0 = L1 where L1 solves the algebraic Riccati equation and corresponds to the optimal costof the unconstrained system L1 = � 3:9313 3:79193:7919 9:8283 � :� P0 = 2L1� Robustness ResultsFor this example, we determined the maximum range in which the parameter d could vary whilestability was still guaranteed by Thm. 3.1. The results are supplied in Table 3.18
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