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Introduction to Differential Equation 
Solving with DSolve

The Mathematica function DSolve finds symbolic solutions to differential equations. (The Mathe-

matica  function  NDSolve,  on  the  other  hand,  is  a  general  numerical  differential  equation

solver.) DSolve can handle the following types of equations:

† Ordinary Differential Equations (ODEs), in which there is a single independent variable t and
one or more dependent variables xiHtL. DSolve is equipped with a wide variety of techniques
for solving single ODEs as well as systems of ODEs.

† Partial Differential Equations (PDEs), in which there are two or more independent variables
and one dependent variable. Finding exact symbolic solutions of PDEs is a difficult problem,
but DSolve can solve most first-order PDEs and a limited number of the second-order PDEs
found in standard reference books.

† Differential-Algebraic Equations (DAEs), in which some members of the system are differen-
tial  equations  and  the  others  are  purely  algebraic,  having  no  derivatives  in  them.  As  with
PDEs, it is difficult to find exact solutions to DAEs, but DSolve can solve many examples of
such systems that occur in applications.

DSolve@eqn,y@xD,xD solve a differential equation for y@xD

DSolve@8eqn1,eqn2,…<,8y1@xD,y2@xD,…<,xD

solve a system of differential equations for yi@xD

Finding symbolic solutions to ordinary differential equations.

DSolve returns results as lists of rules. This makes it possible to return multiple solutions to an

equation. For a system of equations, possibly multiple solution sets are grouped together. You

can use the rules to substitute the solutions into other calculations.

This finds the general solution for the given ODE. A rule for the function that satisfies the 
equation is returned. 

In[1]:= DSolve@8y'@xD ã y@xD<, y@xD, xD

Out[1]= 99y@xD Ø ‰x C@1D==



You can pick out a specific solution by using ê. (ReplaceAll).

In[2]:= y@xD ê. DSolve@8y'@xD ã y@xD<, y@xD, xD

Out[2]= 9‰x C@1D=

A general  solution contains arbitrary parameters C@iD  that  can be varied to produce particular

solutions for the equation. When an adequate number of initial conditions are specified, DSolve

returns particular solutions to the given equations.

Here, the initial condition y@0D == 1 is specified, and DSolve returns a particular solution for 
the problem.

In[3]:= sol = DSolve@8y'@xD ã y@xD, y@0D ã 1<, y@xD, xD

Out[3]= 99y@xD Ø ‰x==

This plots the solution. ReplaceAll (ê.) is used in the Plot command to substitute the 
solution for y@xD.

In[4]:= Plot@y@xD ê. sol, 8x, -3, 2<D

Out[4]=

-3 -2 -1 1 2

1

2

3

4

5

6

7

DSolve@eqn,y,xD solve a differential equation for y as a pure function

DSolve@8eqn1,eqn2,…<,8y1,y2,…<,xD

solve a system of differential equations for the pure func-
tions yi 

Finding symbolic solutions to ordinary differential equations as pure functions.

When the second argument to DSolve is specified as y instead of y@xD, the solution is returned as

a pure function. This form is useful for verifying the solution of the ODE and for using the solu-

tion in further work. More details are given in "Setting Up the Problem".
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The solution to this differential equation is given as a pure function.

In[5]:= eqn = 8y'@xD ã y@xD^2, y@0D ã 1<;
sol = DSolve@eqn, y, xD

Out[6]= ::y Ø FunctionB8x<,
1

1 - x
F>>

This verifies the solution.

In[7]:= eqn ê. sol

Out[7]= 88True, True<<

This solves a system of ODEs. Each solution is labeled according to the name of the function 
(here, x and y), making it easier to pick out individual functions.

In[8]:= eqns = 8Ht^2 + 1L * x'@tD ã -t * x@tD + y@tD - Sign@tD,
Ht^2 + 1L * y'@tD ã -x@tD - t * y@tD + t * UnitStep@tD, x@0D ã -1 ê 2, y@0D ã 2<;

sol = DSolve@eqns, 8x, y<, tD

Out[9]= ::x Ø FunctionB8t<,

-1 + 4 t + 2 
ArcTan@tD t § 0
-t True

+ 2 t
1

2
LogA1 + t2E t § 0

0 True

2 I1 + t2M
F,

y Ø FunctionB8t<,

4 + t - 2 t 
ArcTan@tD t § 0
-t True

+ 2
1

2
LogA1 + t2E t § 0

0 True

2 I1 + t2M
F>>

This substitutes a random value for the independent variable and shows that the solutions are 
correct at that point.

In[10]:= eqns ê. sol ê. 8t Ø RandomReal@D<

Out[10]= 88True, True, True, True<<

This plots the solutions.

In[11]:= Plot@8x@tD ê. sol, y@tD ê. sol<, 8t, -10, 10<D

Out[11]=
-10 -5 5 10

-1

1

2

DSolve@eqn,u@x,yD,8x,y<D solve a partial differential equation for u@x, yD

Finding symbolic solutions to partial differential equations.

While  general  solutions  to  ordinary  differential  equations  involve  arbitrary  constants,  general

solutions  to  partial  differential  equations  involve  arbitrary  functions.  DSolve  labels  these  arbi-

trary functions as C@iD.
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While  general  solutions  to  ordinary  differential  equations  involve  arbitrary  constants,  general

solutions  to  partial  differential  equations  involve  arbitrary  functions.  DSolve  labels  these  arbi-

trary functions as C@iD.

Here is the general solution to a linear first-order PDE. In the solution, C@1D labels an arbitrary 

function of 
-x+y
x y

.

In[12]:= eqn = x^2 * D@u@x, yD, xD + y^2 * D@u@x, yD, yD - Hx + yL * u@x, yD;
sol = DSolve@eqn ã 0, u, 8x, y<D

Out[13]= ::u Ø FunctionB8x, y<, -x y C@1DB
-x + y

x y
FF>>

This obtains a particular solution to the PDE for a specific choice of C@1D.

In[14]:= fn = u@x, yD ê. sol@@1DD ê. 8C@1D@t_D Ø Sin@t^2D + Ht ê 10L<

Out[14]= -x y
-x + y

10 x y
+ SinB

H-x + yL2

x2 y2
F

Here is a plot of the surface for this solution.

In[15]:= Plot3D@fn, 8x, -5, 5<, 8y, -5, 5<D

Out[15]=

DSolve  can also solve differential-algebraic equations. The syntax is the same as for a system

of ordinary differential equations.

This solves a DAE.

In[16]:= eqns = 8f''@xD == g@xD, f@xD + g@xD == 3 Sin@xD, f@PiD == 1, f'@PiD == 0<;
sol = DSolve@eqns, 8f, g<, xD

Out[17]= ::f Ø FunctionB8x<,
1

2
H-2 Cos@xD + 3 p Cos@xD - 3 x Cos@xD + 3 Sin@xDLF,

g Ø FunctionB8x<,
1

2
H2 Cos@xD - 3 p Cos@xD + 3 x Cos@xD + 3 Sin@xDLF>>

This verifies the solutions.
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This verifies the solutions.

In[18]:= Simplify@eqns ê. solD

Out[18]= 88True, True, True, True<<

A plot of the solutions shows that their sum satisfies the algebraic relation 
f@xD + g@xD ã 3 Sin@xD.

In[19]:= Plot@8f@xD ê. sol, g@xD ê. sol, f@xD + g@xD ê. sol<, 8x, -5, 5<D

Out[19]=
-4 -2 2 4

-5

5

Goals of Differential Equation Solving with DSolve 
Tutorials

The design of DSolve is modular: the algorithms for different classes of problems work indepen-

dently  of  one  another.  Once  a  problem  has  been  classified  (as  described  in  "Classification  of

Differential  Equations"),  the  available  methods  for  that  class  are  tried  in  a  specific  sequence

until a solution is obtained. The code has a hierarchical structure whereby the solution of com-

plex  problems  is  reduced  to  the  solution  of  relatively  simpler  problems,  for  which  a  greater

variety of methods is available. For example, higher-order ODEs are typically solved by reduc-

ing their order to 1 or 2. 

The process described is  done internally  and does not  require any intervention from the user.

For this reason, these tutorials have the following basic goals.

† To provide enough information and tips so that users can pose problems to DSolve  in the
most appropriate form and apply the solutions in their work. This is accomplished through a
substantial  number  of  examples.  A  summary of  this  information  is  given in  "Working  with
DSolve".

† To  give  a  catalog  of  the  kinds  of  problems that  can  be  handled  by  DSolve  as  well  as  the
nature of the solutions for each case. This is provided in the tutorials on ODEs, PDEs, DAEs,
and boundary value problems (BVPs).

The author hopes that these Differential Equation Solving with DSolve tutorials will be useful in

acquiring a basic knowledge of DSolve  and also serve as a ready reference for information on

more advanced topics.
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The author hopes that these Differential Equation Solving with DSolve tutorials will be useful in

acquiring a basic knowledge of DSolve  and also serve as a ready reference for information on

more advanced topics.
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Classification of Differential Equations

While differential equations have three basic types~ordinary (ODEs), partial (PDEs), or differen-

tial-algebraic  (DAEs),  they can be further  described by attributes such as order,  linearity,  and

degree. The solution method used by DSolve and the nature of the solutions depend heavily on

the class of equation being solved.

The order of a differential equation is the order of the highest derivative in the equation. 

This is a first-order ODE because its highest derivative is of order 1.

In[1]:= DSolve@x^2 H1 - x^2L * y'@xD ã Hx - 3 x^3 - y@xDL y@xD, y@xD, xD

Out[1]= ::y@xD Ø
-x + x3

C@1D - Log@xD
>>

Here is the general solution to a fourth-order ODE.

In[2]:= DSolve@y''''@xD - 16 * y@xD ã x^2, y@xD, xD

Out[2]= ::y@xD Ø -
x2

16
+ ‰2 x C@1D + ‰-2 x C@3D + C@2D Cos@2 xD + C@4D Sin@2 xD>>

A differential equation is linear if the equation is of the first degree in y and its derivatives, and

if the coefficients are functions of the independent variable.

This is a nonlinear second-order ODE that represents the motion of a circular pendulum. It is 
nonlinear because Sin@y@xDD is not a linear function of y@xD. The Solve::ifun warning 
message appears because Solve uses JacobiAmplitude (the inverse of EllipticF) to find 
an expression for y@xD.

In[3]:= sol = DSolve@y''@xD + 3 * Sin@y@xDD ã 0, y, xD

Solve::ifun :
Inverse functions are being used by Solve, so some solutions may not be found; use Reduce for

complete solution information. à

Out[3]= ::y Ø FunctionB8x<, -2 JacobiAmplitudeB
1

2
H6 + C@1DL Hx + C@2DL2 ,

12

6 + C@1D
FF>,

:y Ø FunctionB8x<, 2 JacobiAmplitudeB
1

2
H6 + C@1DL Hx + C@2DL2 ,

12

6 + C@1D
FF>>
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This plots the solutions. The discontinuity in the graphs at x = -3 results from the choice of 
inverse functions used by Solve.

In[4]:= Plot@8y@xD ê. sol@@1DD ê. 8C@1D Ø -1, C@2D Ø 3<,
y@xD ê. sol@@2DD ê. 8C@1D Ø -1, C@2D Ø 3<<, 8x, -5, 5<D

Out[4]=
-4 -2 2 4

-1.0

-0.5

0.5

1.0

It  should  be  noted  that  sometimes  the  solutions  to  fairly  simple  nonlinear  equations  are  only

available in implicit form. In these cases, DSolve returns an unevaluated Solve object. 

This nonlinear differential equation only has an implicit solution. The Solve::tdep messages 
can be ignored; they appear because Solve cannot find an explicit expression for y@xD because 
non-algebraic functions (ArcTan and Log) are involved.

In[5]:= DSolve@Hy@xD + x - 1L * y'@xD - y@xD + 2 x + 3 ã 0, y@xD, xD

Solve::tdep :
The equations appear to involve the variables to be solved for in an essentially non-algebraic way. à

Solve::tdep :
The equations appear to involve the variables to be solved for in an essentially non-algebraic way. à

Out[5]= SolveB
2

3
2 ArcTanB

-2 +
2 H2+3 xL

-1+x+y@xD

2 2
F - LogB

H-1 + x + y@xDL2 3 +
H2+3 xL K-2+

2+3 x

-1+x+y@xD
O

-1+x+y@xD

H2 + 3 xL2
F ã C@1D +

4

3
Log@2 + 3 xD, y F

When  the  coefficients  of  a  linear  ODE  do  not  depend  on  x,  the  ODE  is  said  to  have  constant

coefficients.

This is an ODE with constant coefficients.

In[6]:= eqn = y'''@xD + 3 * y''@xD - 25 * y'@xD + 21 * y@xD;
sol = DSolve@eqn ã 0, y@xD, xD

Out[7]= 99y@xD Ø ‰-7 x C@1D + ‰x C@2D + ‰3 x C@3D==

The previous equation is also homogeneous: all terms contain y or derivatives of y and its right-

hand side is zero. Adding a function of the independent variable makes the equation inhomoge-

neous.  The  general  solution  to  an  inhomogeneous  equation  with  constant  coefficients  is

obtained  by  adding  a  particular  integral  to  the  solution  to  the  corresponding  homogeneous

equation. 

Here, x2 is added to the right-hand side of the previous equation, making the new equation 
inhomogeneous. The general solution to this new equation is the sum of the previous solution 
and a particular integral.
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Here, x2 is added to the right-hand side of the previous equation, making the new equation 
inhomogeneous. The general solution to this new equation is the sum of the previous solution 
and a particular integral.

In[8]:= sol2 = DSolve@eqn ã x^2, y@xD, xD

Out[8]= ::y@xD Ø
1124 + 1050 x + 441 x2

9261
+ ‰-7 x C@1D + ‰x C@2D + ‰3 x C@3D>>

When  the  coefficients  of  an  ODE  depend  on  x,  the  ODE  is  said  to  have  variable  coefficients.

Since equations with variable coefficients that are rational functions of x have singularities that

are easily classified, there are sophisticated algorithms available for solving them.

The coefficients of this equation are rational functions of x. 

In[9]:= sol =
DSolve@8y''@xD - HH1 ê xL - H3 ê H16 x^2LLL * y@xD ã 0, y@1D ã 1, y'@1D ã 4<, y@xD, xD

Out[9]= ::y@xD Ø
1

8
‰-2-2 x J-11 ‰4 + 19 ‰4 x N x1ë4>>

There is a close relationship between functions and differential equations. Starting with a func-

tion of almost any type, it is possible to construct a differential equation satisfied by that func-

tion.  Conversely,  any  differential  equation  gives  rise  to  one  or  more  functions,  in  the  form of

solutions  to  that  equation.  In  fact,  many  special  functions  from  classical  analysis  have  their

origins in the solution of  differential equations. Mathieu functions  are one such class of special

functions. Mathieu was interested in studying the vibrations of elliptical membranes. The eigen-

functions  for  the  wave  equation  that  describes  this  motion  are  given  by  products  of  Mathieu

functions.

This linear second-order ODE with rational coefficients has a general solution given by Mathieu 
functions.

In[10]:= DSolve@Ht - 1L Ht + 1L * y''@tD + t * y'@tD + H-2 - 6 * t^2L * y@tD ã 0, y@tD, tD

Out[10]= ::y@tD Ø C@1D MathieuCB5, -
3

2
, ArcCos@tDF + C@2D MathieuSB5, -

3

2
, ArcCos@tDF>>

The presence of ArcCos@tD in the previous solution suggests that the equation can be given a 
simpler form using trigonometric functions. This is the form in which these equations were 
introduced by Mathieu in 1868. 

In[11]:= DSolve@y''@xD + H3 Cos@2 xD + 5L y@xD == 0, y, xD

Out[11]= ::y Ø FunctionB8x<, C@1D MathieuCB5, -
3

2
, xF + C@2D MathieuSB5, -

3

2
, xFF>>
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This plots the surface for a particular product of solutions to this equation.

In[12]:= Plot3DBMathieuCB5, -
3

2
, xF * MathieuSB5, -

3

2
, yF, 8x, -3, 3<, 8y, -3, 3<F

Out[12]=

The degree of a differential equation is the highest power of the highest-order derivative in the

equation. 

This is a first-order ODE of degree 2.

In[13]:= sol = DSolve@8y'@xD^2 ã 1 - x^2, y@0D ã 2<, y, xD

Out[13]= ::y Ø FunctionB8x<,
1

2
4 - x 1 - x2 - ArcSin@xD F>,

:y Ø FunctionB8x<,
1

2
4 + x 1 - x2 + ArcSin@xD F>>

The higher degree leads to non-uniqueness of the solution.

In[14]:= Plot@8y@xD ê. sol@@1DD, y@xD ê. sol@@2DD<, 8x, 0, 1<D

Out[14]=

0.2 0.4 0.6 0.8 1.0

1.5

2.0

2.5

The  examples  in  this  tutorial  have  focused  on  the  classification  of  ODEs.  The  classification  of

PDEs is similar but more involved. PDEs can also be classified by linearity or nonlinearity, order,

degree, and constant or variable coefficients. More important is the classification that identifies

a PDE as hyperbolic, parabolic, or elliptic. These classifications are discussed in further detail in

"Second-Order PDEs".
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Ordinary Differential Equations (ODEs)

Overview of Ordinary Differential Equations (ODEs)

There are four major areas in the study of ordinary differential equations that are of interest in

pure and applied science.

† Exact  solutions,  which  are  closed-form  or  implicit  analytical  expressions  that  satisfy  the
given problem.

† Numerical solutions, which are available for a wider class of problems, but are typically only
valid over a limited range of the independent variables.

† Qualitative theory, which is concerned with the global properties of solutions and is particu-
larly important in the modern approach to dynamical systems.

† Existence and uniqueness theorems, which guarantee that  there are solutions with certain
desirable properties provided a set of conditions is fulfilled by the differential equation.

Of  these  four  areas,  the  study  of  exact  solutions  has  the  longest  history,  dating  back  to  the

period just after the discovery of calculus by Sir Isaac Newton and Gottfried Wilhelm von Leib-

niz. The following table introduces the types of equations that can be solved by DSolve.
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name of equation general form date of discovery mathematician

Separable y£HxL f HxL gHyL 1691 G. Leibniz

Homogeneous y£HxL f J x
yHxL

N 1691 G. Leibniz

Linear first-order ODE y£HxL + PHxL yHxL QHxL 1694 G. Leibniz

Bernoulli y£HxL + PHxL yHxL QHxL 1695 James Bernoulli

Riccati y£ HxL f HxL + gHxL yHxL + hHxL yHxL2 1724 Count Riccati

Exact first-order ODE M d x + N d y  0 with 
∂M
∂y

= ∂N
∂x

1734 L. Euler

Clairaut yHxL x y£HxL + f Hy£HxLL 1734 A-C. Clairaut

Linear with constant 
coefficients

yHnLHxL + an-1 yHn-1LHxL + … + a0 yHxL PHxL 
with a1 constant

1743 L. Euler

Hypergeometric xH1 - xL y££HxL + Hc - Ha + b + 1L xL y£HxL -
a b yHxL 0

1769 L. Euler

Legendre I1 - x2M y££HxL - 2 x y£HxL + nHn + 1L yHxL = 0 1785 M. Legendre

Bessel x2 y££ HxL + x y£ HxL + Ix2 - n2M y HxL = 0 1824 F. Bessel

Mathieu y££HxL + Ha - 2 q cosH2 xLL yHxL = 0 1868 E. Mathieu

Abel y£ HxL f HxL + gHxL yHxL + hHxL yHxL2 +
k HxL yHxL3

1834 N. H. Abel

Chini y£ HxL f HxL + g HxL y HxL + h HxL y HxLn 1924 M. Chini

Examples of ODEs belonging to each of these types are given in other tutorials (clicking a link in

the table will bring up the relevant examples).

First-Order ODEs

Straight Integration

This equation is solved by simply integrating the right-hand side with respect to x.

In[1]:= sol = DSolve@y'@xD ã x^2 * Sin@xD + Sqrt@1 + x^2D, y, xD

Out[1]= ::y Ø FunctionB8x<,
1

2
x 1 + x2 +

ArcSinh@xD

2
+ C@1D - I-2 + x2M Cos@xD + 2 x Sin@xDF>>
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Here is a plot of the integral curves for different values of the arbitrary constant C@1D.

In[2]:= tab = Table@y@xD ê. sol@@1DD ê. 8C@1D -> k<, 8k, -80, 80, 40<D;

In[3]:= Plot@Evaluate@tabD, 8x, 3, 18<D

Out[3]=

6 8 10 12 14 16 18

-100

100

200

300

400

Separable Equations

The general solution to this equation is found by separation of variables.

In[1]:= DSolveBy£@xD ã
x2 y@xD^2

3 - x2
, y, xF

Out[1]= ::y Ø FunctionB8x<,
2

x 3 - x2 - 3 ArcSinB x

3

F - 2 C@1D

F>>

Even when variables  can be separated,  the final  solution might  be accompanied by a  warning

message from Solve, or it might only be given as an InverseFunction object.

Solving this ODE generates a warning message because Solve obtains an expression for y@xD 
using Log, the inverse of Exp. This warning message can be ignored.

In[2]:= DSolveBy£@xD ã
x2 Exp@y@xDD

3 - x2
, y, xF

Solve::ifun : Inverse functions are being used by Solve
, so some solutions may not be found; use Reduce for complete solution information. à

Out[2]= ::y Ø FunctionB8x<, -LogB
1

2
x 3 - x2 -

3

2
ArcSinB

x

3
F - C@1DFF>>
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The solution to this equation is given as an InverseFunction object, in order to get an 
explicit expression for y@xD.

In[3]:= sol = DSolveBy£@xD ã
x2

9 - x2 Log@y@xDD * Sin@y@xDD

, y@xD, xF

InverseFunction::ifun : Inverse functions are being used. Values may be lost for multivalued inverses. à

InverseFunction::ifun : Inverse functions are being used. Values may be lost for multivalued inverses. à

Solve::tdep:
The equations appear to involve the variables to be solved for in an essentially non-algebraic way. à

Out[3]= ::y@xD Ø InverseFunction@CosIntegral@Ò1D - Cos@Ò1D Log@Ò1D &DB

-Â
1

2
-3 + x x 3 + x + 9 ArcSinhB

-3 + x

6
F + C@1DF>>

Homogeneous Equations

Here is a homogeneous equation in which the total degree of both the numerator and the 
denominator of the right-hand side is 2. The two parts of the solution list give branches of the 
integral curves in the form y = f HxL. 

In[1]:= eqn = y'@xD ã -Hx^2 - 3 y@xD^2L ê Hx * y@xDL;
sol = DSolve@eqn, y, xD

Out[2]= ::y Ø FunctionB8x<, -
x2

2
+ x6 C@1D F>, :y Ø FunctionB8x<,

x2

2
+ x6 C@1D F>>

This plots both branches together, showing the complete integral curves y2  C@1D x6 + x2

2
 for 

several values of C@1D.

In[3]:= tab1 = Table@y@xD ê. sol@@1DD ê. C@1D Ø k, 8k, 0, 3, 0.5<D;

In[4]:= tab2 = Table@y@xD ê. sol@@2DD ê. C@1D Ø k, 8k, 0, 3, 0.5<D;

In[5]:= Plot@Evaluate@Join@tab1, tab2DD, 8x, 0, 1.7<D

Out[5]=
0.5 1.0 1.5

-4

-2

2

4

If an initial condition is specified, DSolve picks the branch that passes through the initial point. 
The DSolve::bvnul message indicates that one branch of the general solution (the lower 
branch in the previous graph) did not give a solution satisfying the given initial condition 
y@1D ã 3. 
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If an initial condition is specified, DSolve picks the branch that passes through the initial point. 
The DSolve::bvnul message indicates that one branch of the general solution (the lower 
branch in the previous graph) did not give a solution satisfying the given initial condition 
y@1D ã 3. 

In[6]:= DSolve@8eqn, y@1D ã 3<, y@xD, xD

DSolve::bvnul :
For some branches of the general solution, the given boundary conditions lead to an empty solution. à

Out[6]= ::y@xD Ø
x2 I1 + 17 x4M

2
>>

Linear First-Order Equations

The following is a linear first-order ODE because both y@xD and y£@xD occur in it with power 1 and 
y£@xD is the highest derivative. Note that the solution contains the imaginary error function Erfi.

In[1]:= DSolve@y'@xD + x * y@xD ã Exp@3 xD, y@xD, xD

Out[1]= ::y@xD Ø ‰
-
x2

2 C@1D + ‰
-
9

2
-
x2

2

p

2
ErfiB

3 + x

2
F>>

Here is the solution for a more general linear first-order ODE. The K variables are used as 
dummy variables for integration. The Erfi term in the previous example comes from the 
integral in the second term of the general solution as follows.

In[2]:= sol = DSolve@y'@xD + y@xD ã Q@xD, y@xD, xD

Out[2]= ::y@xD Ø ‰-x C@1D + ‰-x
‡
1

x
‰K@1D Q@K@1DD „K@1D>>

A more traditional form of the solution can be obtained by replacing K@1D with a variable such 
as t. 

In[3]:= sol ê. 8K@1D Ø t<

Out[3]= ::y@xD Ø ‰-x C@1D + ‰-x
‡
1

x
‰t Q@tD „t>>

Inverse Linear Equations

It may happen that a given ODE is not linear in yHxL but can be viewed as a linear ODE in xHyL. In

this case, it is said to be an inverse linear ODE.
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This is a inverse linear ODE. It is constructed by interchanging x and y in an earlier example.

In[1]:= DSolve@y'@xD ã 1 ê H-x * y@xD + Exp@3 * y@xDDL, y@xD, xD

Solve::tdep:
The equations appear to involve the variables to be solved for in an essentially non-algebraic way. à

Out[1]= SolveBx ã ‰
-
1

2
y@xD2 C@1D + ‰

-
9

2
-
y@xD2

2

p

2
ErfiB

3 + y@xD

2
F, y@xDF

Bernoulli Equations

A Bernoulli equation is a first-order equation of the form 

y£HxL + PHxL yHxL QHxLyHxLn.

The  problem of  solving  equations  of  this  type  was  posed  by  James  Bernoulli  in  1695.  A  year

later,  in  1696,  G.  Leibniz  showed  that  it  can  be  reduced  to  a  linear  equation  by  a  change  of

variable.

Here is an example of a Bernoulli equation.

In[1]:= eqn = y'@xD + 11 x * y@xD ã x^3 * y@xD^3

Out[1]= 11 x y@xD + y£@xD ã x3 y@xD3

In[2]:= sol = DSolve@eqn, y, xD

Out[2]= ::y Ø FunctionB8x<, -
11

1 + 11 x2 + 121 ‰11 x
2
C@1D

F>, :y Ø FunctionB8x<,
11

1 + 11 x2 + 121 ‰11 x
2
C@1D

F>>

This verifies that the solution is correct.

In[3]:= eqn ê. sol êê Simplify

Out[3]= 8True, True<

In  general,  the  solution  to  a  Bernoulli  equation  will  consist  of  n - 1  branches,  where  n  is  the

degree of yHxL in the equation. 
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Here is an example of a Bernoulli equation with n = 5. The solution has four branches.

In[4]:= DSolve@3 x * y'@xD - 7 x * Log@xD * y@xD^5 - y@xD ã 0, y@xD, xD

Out[4]= ::y@xD Ø -
71ë4 x1ë3

I12 x7ë3 + 7 C@1D - 28 x7ë3 Log@xDM
1ë4

>, :y@xD Ø -
Â 71ë4 x1ë3

I12 x7ë3 + 7 C@1D - 28 x7ë3 Log@xDM
1ë4

>,

:y@xD Ø
Â 71ë4 x1ë3

I12 x7ë3 + 7 C@1D - 28 x7ë3 Log@xDM
1ë4

>, :y@xD Ø
71ë4 x1ë3

I12 x7ë3 + 7 C@1D - 28 x7ë3 Log@xDM
1ë4

>>

Riccati Equations

A Riccati equation is a first-order equation of the form 

y£ HxL f HxL + gHxL yHxL + hHxL yHxL2.

This equation was used by Count Riccati of Venice (1676|1754) to help in solving second-order

ordinary differential equations.

Solving Riccati equations is considerably more difficult than solving linear ODEs. 

Here is a simple Riccati equation for which the solution is available in closed form.

In[1]:= DSolve@y'@xD + H2 ê x^2L - 3 y@xD^2 ã 0, y@xD, xD êê Simplify

Out[1]= ::y@xD Ø -
3 x5 - 2 C@1D

3 x6 + 3 x C@1D
>>

Any  Riccati  equation  can  be  transformed  to  a  second-order  linear  ODE.  If  the  latter  can  be

solved explicitly, then a solution for the Riccati equation can be derived.

Here is an example of a Riccati equation and the corresponding second-order ODE, which is 
Legendre’s equation.

In[2]:= DSolve@u'@xD ã HH2 xL ê H1 - x^2LL * u@xD - HH15 ê 4L ê H1 - x^2LL - u@xD^2, u@xD, xD êê
Simplify

Out[2]= ::u@xD Ø 5 -x C@1D LegendrePB
3

2
, xF + C@1D LegendrePB

5

2
, xF - x LegendreQB

3

2
, xF + LegendreQB

5

2
, xF ì

2 I-1 + x2M C@1D LegendrePB
3

2
, xF + LegendreQB

3

2
, xF >>

In[3]:= DSolve@H1 - x^2L * y''@xD - 2 x * y'@xD + H15 ê 4L * y@xD ã 0, y@xD, xD

Out[3]= ::y@xD Ø C@1D LegendrePB
3

2
, xF + C@2D LegendreQB

3

2
, xF>>
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Finally, consider the following Riccati equation. It is integrable because the sum of the coeffi-
cients of the terms on the right-hand side is 0.

In[4]:= eqn = y'@xD ã 3 x + 5 * y@xD - H3 x + 5L * y@xD^2;

In[5]:= RightHandSideCoeffs = 83 x, 5, -H3 x + 5L<;

In[6]:= Total@RightHandSideCoeffs D

Out[6]= 0

In[7]:= sol = DSolve@eqn, y, xD

Out[7]= ::y Ø FunctionB8x<, 1 +
‰-5 x-3 x2

C@1D +
1

12
-6 ‰-x H5+3 xL + 5 ‰25ë12 3 p ErfB 5+6 x

2 3

F

F>>

This verifies the solution.

In[8]:= eqn ê. sol êê Simplify

Out[8]= 8True<

Exact Equations

Here is an example of an exact ODE.

In[1]:= P@x_, y_D := -H5 x^2 - 2 y^2 + 11L

In[2]:= Q@x_, y_D := HSin@yD + 4 x * y + 3L

In[3]:= Simplify@D@P@x, yD, yD - D@Q@x, yD, xDD

Out[3]= 0

In[4]:= eqn = y'@xD == -P@x, y@xDD ê Q@x, y@xDD

Out[4]= y£@xD ã
11 + 5 x2 - 2 y@xD2

3 + Sin@y@xDD + 4 x y@xD

In[5]:= sol = DSolve@eqn, y@xD, xD

Solve::tdep:
The equations appear to involve the variables to be solved for in an essentially non-algebraic way. à

Out[5]= SolveB-11 x -
5 x3

3
- Cos@y@xDD + 3 y@xD + 2 x y@xD2 ã C@1D, y@xDF
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This verifies the solution.

In[6]:= Solve@D@sol@@1DD, xD, y'@xDD êê Simplify

Out[6]= ::y£@xD Ø
11 + 5 x2 - 2 y@xD2

3 + Sin@y@xDD + 4 x y@xD
>>

Here is a contour plot of the solution.

In[7]:= ContourPlot@Evaluate@sol@@1, 1DD ê. 8y@xD Ø y<D, 8x, -5, 5<, 8y, -5, 5<D

Out[7]=

If an equation is not exact, it may be possible to find an integrating factor (a multiplier for the

functions P and Q, defined previously) that converts the equation into exact form. DSolve tries a

variety of techniques to automatically find integrating factors in such situations.

Clairaut Equations

A Clairaut equation is a first-order equation of the form 

yHxL x y£HxL + f Hy£HxLL.

A  remarkable  feature  of  this  nonlinear  equation  is  that  its  general  solution  has  a  very  simple

form.
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This is an example of a Clairaut equation. The warning message from Solve can be ignored. It 
is given because DSolve first tries to find an expression for y£@xD from the given ODE.

In[1]:= sol = DSolve@y@xD ã x * y'@xD + y'@xD^2 + Exp@y'@xDD , y@xD, xD

Solve::tdep :
The equations appear to involve the variables to be solved for in an essentially non-algebraic way. à

Out[1]= 99y@xD Ø ‰C@1D + x C@1D + C@1D2==

The general solution to Clairaut equations is simply a family of straight lines.

This plots the solution for several values of C@1D.

In[2]:= Plot@Evaluate@Table@y@xD ê. sol ê. 8C@1D Ø 1 ê k<, 8k, -5, 5, 2<DD, 8x, 1, 5<D

Out[2]=

2 3 4 5

-2

2

4

6

8

Abel Equations

An Abel ODE is a first-order equation of the form 

y£ HxL f HxL + gHxL yHxL + hHxL yHxL2 + kHxL yHxL3.

This  equation arose in  the context  of  the studies  of  Niels  Henrik  Abel  on the theory of  elliptic

functions, and represents a natural generalization of the Riccati equation.

Associated with any Abel ODE is a sequence of expressions that is built from the coefficients of

the equation 8 f0, f1, f2, f3< and invariant under certain coordinate transformations of the indepen-

dent variable and the dependent variable. These invariants characterize each equation and can

be  used  for  identifying  integrable  classes  of  Abel  ODEs.  In  particular,  Abel  ODEs  with  zero  or

constant  invariants  can  be  integrated  easily  and  constitute  an  important  integrable  class  of

these equations.
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Here is the construction of a particular invariant with value 0 and the solution of the correspond-
ing Abel ODE.

In[1]:= f0 = 0; f1 =
1

x
; f2 = -3; f3 = x;

In[2]:= Invariant = f0 f32 +
1

3

2 f23

9
- f1 f3 f2 - ∂xf3 f2 + f3 ∂xf2

Out[2]= 0

In[3]:= AbelODE = y£@xD ã f0 + f1 y@xD + f2 y@xD2 + f3 y@xD3

Out[3]= y£@xD ã
y@xD

x
- 3 y@xD2 + x y@xD3

In[4]:= sol = DSolve@AbelODE, y, xD

Out[4]= ::y Ø FunctionB8x<,
1

x
-

1

x2 1

x2
+ C@1D

F>, :y Ø FunctionB8x<,
1

x
+

1

x2 1

x2
+ C@1D

F>>

In[5]:= AbelODE ê. sol êê Simplify

Out[5]= 8True, True<

In[6]:= Clear@f0, f1, f2, f3D

Another important class of integrable Abel ODEs are those that can be reduced to inverse linear

first-order ODEs using a nonlinear coordinate transformation.

This Abel ODE is solved by transforming it to an inverse linear first-order ODE. The 
ExpIntegralEi term in the solution to this equation comes from solving the linear ODE.

In[7]:= DSolveBy£@xD ã y@xD3 -
x y@xD2

x - 1
, y@xD, xF

InverseFunction::ifun : Inverse functions are being used. Values may be lost for multivalued inverses. à

InverseFunction::ifun : Inverse functions are being used. Values may be lost for multivalued inverses. à

Solve::tdep:
The equations appear to involve the variables to be solved for in an essentially non-algebraic way. à

Out[7]= SolveB
‰
1-x+

1

y@xD

-1 + x
+ C@1D + ExpIntegralEiB1 - x +

1

y@xD
F ã 0, y@xDF

Another important class of integrable Abel ODEs consists of those that can be transformed to an

inverse  Riccati  equation.  Since  Riccati  equations  can  be  transformed  to  second-order  linear

ODEs, the solutions for this class are usually given in terms of special functions such as AiryAi

and BesselJ.

This Abel ODE is solved by reducing it to an inverse Riccati equation.
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This Abel ODE is solved by reducing it to an inverse Riccati equation.

In[8]:= AbelODE = y£@xD ==
y@xD3

8 x2
- y@xD2

Out[8]= y£@xD ã -y@xD2 +
y@xD3

8 x2

In[9]:= sol = DSolve@AbelODE, y@xD, xD

InverseFunction::ifun : Inverse functions are being used. Values may be lost for multivalued inverses. à

InverseFunction::ifun : Inverse functions are being used. Values may be lost for multivalued inverses. à

InverseFunction::ifun : Inverse functions are being used. Values may be lost for multivalued inverses. à

General::stop : Further output of InverseFunction::ifun will be suppressed during this calculation. à

Solve::tdep:
The equations appear to involve the variables to be solved for in an essentially non-algebraic way. à

Out[9]= SolveB

C@1D + AiryAiPrimeB-
H-1L2ë3

2 µ 21ë3 x
+ -H-2L1ë3 x +

H-2L1ë3

y@xD

2

F + AiryAiB-
H-1L2ë3

2 µ 21ë3 x
+ -H-2L1ë3 x +

H-2L1ë3

y@xD

2

F

-H-2L1ë3 x +
H-2L1ë3

y@xD
ì AiryBiPrimeB-

H-1L2ë3

2 µ 21ë3 x
+ -H-2L1ë3 x +

H-2L1ë3

y@xD

2

F +

AiryBiB-
H-1L2ë3

2 µ 21ë3 x
+ -H-2L1ë3 x +

H-2L1ë3

y@xD

2

F -H-2L1ë3 x +
H-2L1ë3

y@xD
ã 0, y@xDF

This verifies the solution.

In[10]:= Solve@D@sol@@1DD, xD, y'@xDD êê FullSimplify

Out[10]= ::y£@xD Ø
1

8
y@xD2 -8 +

y@xD

x2
>>

The Abel ODEs considered so far are said to be of the first kind. Abel ODEs of the second kind

are given by the following general formula.

y£HxL
f HxL + gHxL yHxL + hHxL yHxL2 + kHxL yHxL3

aHxL + bHxL yHxL

An Abel ODE of the second kind can be converted to an equation of the first kind with a coordi-

nate transformation.  Thus,  the solution methods for  this  kind of  Abel  ODE are identical  to the

methods for equations of the first kind.
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Here is the solution for an Abel ODE of the second kind.

In[11]:= sol = DSolveBy£@xD ã
-

2 x

9
+ x^3 + y@xD

y@xD
, y@xD, xF

Solve::tdep:
The equations appear to involve the variables to be solved for in an essentially non-algebraic way. à

Solve::tdep:
The equations appear to involve the variables to be solved for in an essentially non-algebraic way. à

Out[11]= SolveBC@1D ã -1 +
2

3 x
-

2 y@xD

x2

2 1ë4

-
3 x

2
-

Hypergeometric2F1B 1

2
, 3

4
, 3

2
,

2

3 x
-

2 y@xD

x2

2

F
2

3 x
-

2 y@xD

x2

2 1 -
2

3 x
-

2 y@xD

x2

2 1ë4
, y@xDF

This verifies the solution.

In[12]:= Solve@D@sol@@1DD, xD, y'@xDD êê FullSimplify

Out[12]= ::y£@xD Ø 1 +

-
2 x

9
+ x3

y@xD
>>

Chini Equations

Chini equations are a generalization of Abel and Riccati equations. 

This solves a Chini equation.

In[1]:= DSolve@y'@xD ã 5 * y@xD^4 + 3 * x^H-4 ê 3L, y@xD, xD

Solve::tdep:
The equations appear to involve the variables to be solved for in an essentially non-algebraic way. à

Solve::tdep:
The equations appear to involve the variables to be solved for in an essentially non-algebraic way. à

Out[1]= SolveB-45 RootSumB-45 + 31ë4 53ë4 Ò1 - 45 Ò14 &,
LogB-Ò1 + J

5

3
N
1ë4

Ix4ë3M
1ë4

y@xDF

31ë4 53ë4 - 180 Ò13
&F ã

C@1D +
33ë4 51ë4 Ix4ë3M

1ë4
Log@xD

x1ë3
, y@xDF

Linear Second-Order ODEs

Differential Equation Solving with DSolve     23



Linear Second-Order ODEs

Overview of Linear Second-Order ODEs

Solving linear first-order ODEs is straightforward and only requires the use of a suitable integrat-

ing factor. In sharp contrast, there are a large number of methods available for handling linear

second-order ODEs, but the solution to the general equation belonging to this class is still  not

available. Therefore the linear case is discussed in detail before moving on to nonlinear second-

order ODEs.

The general linear second-order ODE has the form 

y″HxL + PHxL y£HxL + QHxL yHxL RHxL.

Here, PHxL, QHxL and RHxL are arbitrary functions of x. The term "linear" refers to the fact that the

degree of each term in yHxL, y£HxL and y″HxL is 1. (Thus, terms like yHxL2 or yHxL y″HxL would make the

equation nonlinear.)

Linear Second-Order Equations with Constant Coefficients

The simplest type of linear second-order ODE is one with constant coefficients.

This linear second-order ODE has constant coefficients.

In[1]:= sol = DSolve@y''@xD + 5 * y'@xD - 6 y@xD ã 0, y, xD

Out[1]= 99y Ø FunctionA8x<, ‰-6 x C@1D + ‰x C@2DE==

Notice that the general solution is a linear combination of two exponential functions. The arbi-

trary constants C@1D and C@2D can be varied to produce particular solutions.

This is one particular solution to the equation.

In[2]:= sol1 = y@xD ê. sol@@1DD ê. 8C@1D Ø 2, C@2D Ø 3<

Out[2]= 2 ‰-6 x + 3 ‰x

The exponents -6  and 1  in the basis 9‰-6 x, ‰x=  are obtained by solving the associated quadratic

equation. This quadratic equation is called the auxiliary or characteristic equation.

This solves the auxiliary equation.
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This solves the auxiliary equation.

In[3]:= Solve@m^2 + 5 m - 6 ã 0, mD

Out[3]= 88m Ø -6<, 8m Ø 1<<

The roots are real and distinct in this case. There are two other cases of interest: real and equal

roots, and imaginary roots.

This example has real and equal roots.

In[4]:= sol = DSolve@y''@xD - 6 y'@xD + 9 y@xD ã 0, y, xD

Out[4]= 99y Ø FunctionA8x<, ‰3 x C@1D + ‰3 x x C@2DE==

In[5]:= sol2 = y@xD ê. sol@@1DD ê. 8C@1D Ø 2, C@2D Ø 3<

Out[5]= 2 ‰3 x + 3 ‰3 x x

This example has roots with nonzero imaginary parts.

In[6]:= sol = DSolve@y''@xD - y'@xD + y@xD ã 0, y, xD

Out[6]= ::y Ø FunctionB8x<, ‰xë2 C@1D CosB
3 x

2
F + ‰xë2 C@2D SinB

3 x

2
FF>>

In[7]:= sol3 = y@xD ê. sol@@1DD ê. 8C@1D Ø 2, C@2D Ø 3<

Out[7]= 2 ‰xë2 CosB
3 x

2
F + 3 ‰xë2 SinB

3 x

2
F

Here is a plot of the three solutions.

In[8]:= Plot@8sol1, sol2, sol3<, 8x, -0.5, 0.5<D

Out[8]=

-0.4 -0.2 0.2 0.4

5

10

15
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Euler and Legendre Equations

An Euler equation has the general form

x2 y££HxL + a x y£HxL + b yHxL 0.

Euler equations can be solved by transforming them to equations with constant coefficients.

This is an example of an Euler equation.

In[1]:= DSolve@x^2 * y''@xD + 5 * x * y'@xD + 6 * y@xD ã 0, y@xD, xD

Out[1]= ::y@xD Ø
C@2D CosB 2 Log@xDF

x2
+
C@1D SinB 2 Log@xDF

x2
>>

The Legendre linear equation is a generalization of the Euler equation. It is an ODE of the form 

Hc x + dL2 y££HxL + a Hc x + dL y£HxL + b yHxL 0.

Here is an example of a Legendre linear equation.

In[2]:= DSolve@H3 x + 1L^2 * y''@xD + 5 * H3 x + 1L * y'@xD + 6 * y@xD ã 0, y@xD, xD

Out[2]= ::y@xD Ø

C@2D CosB 1

3
5 Log@1 + 3 xDF

H1 + 3 xL1ë3
+

C@1D SinB 1

3
5 Log@1 + 3 xDF

H1 + 3 xL1ë3
>>

Exact Linear Second-Order Equations

A linear second-order ordinary differential equation

a0HxL y″HxL + a1HxL y£HxL + a2HxL yHxL 0

is said to be exact if 

a0″HxL - a1£HxL + a2HxL 0.

An exact linear second-order ODE is solved by reduction to a linear first-order ODE.

Here is an example. The appearance of the unevaluated integral in the solution is explained 
here.

In[1]:= a0 = 1;

In[2]:= a1 = Log@xD;
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In[3]:= a2 = 1 ê x;

In[4]:= eqn = a0 * y''@xD + a1 * y'@xD + a2 * y@xD ã 0;

In[5]:= conditionforexactness = HD@a0, 8x, 2<D - D@a1, xD + a2 ã 0L

Out[5]= True

In[6]:= sol = DSolve@eqn, y, xD

Out[6]= ::y Ø FunctionB8x<, ‰x-x Log@xD C@2D + ‰x-x Log@xD ‡
1

x
‰-K@1D+K@1D Log@K@1DD C@1D „K@1DF>>

This verifies the solution.

In[7]:= eqn ê. sol êê FullSimplify

Out[7]= 8True<

In[8]:= Clear@a0, a1, a2D

Linear Second-Order Equations with Solutions Involving Special 
Functions

DSolve  can  find  solutions  for  most  of  the  standard  linear  second-order  ODEs  that  occur  in

applied mathematics.

Here is the solution for Airy’s equation.

In[1]:= DSolve@y''@xD - x * y@xD ã 0, y@xD, xD

Out[1]= 88y@xD Ø AiryAi@xD C@1D + AiryBi@xD C@2D<<

Here is a plot that shows the oscillatory behavior of the Airy functions for large negative values 
of x.

In[2]:= Plot@8AiryAi@xD, AiryBi@xD<, 8x, -15, -12<D

Out[2]=
-14.5 -14.0 -13.5 -13.0 -12.5 -12.0

-0.3

-0.2

-0.1

0.1

0.2

0.3

The solution to this equation is given in terms of the derivatives of the Airy functions, 
AiryAiPrime  and AiryBiPrime .
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The solution to this equation is given in terms of the derivatives of the Airy functions, 
AiryAiPrime  and AiryBiPrime .

In[3]:= DSolve@ HHa * x + b LL * y''@xD - a * y'@xD - Ha * Ha * x + bLL^2 * y@xD == 0, y, xD

Out[3]= 88y Ø Function@8x<, AiryAiPrime@b + a xD C@1D + AiryBiPrime@b + a xD C@2DD<<

Here is the solution for Bessel’s equation with n = 4. Note that the solution is given in terms of 
Bessel functions of the first kind, BesselJ, as well as those of the second kind, BesselY.

In[4]:= DSolve@x^2 * y''@xD + x * y'@xD + Hx^2 - 16L * y@xD ã 0, y@xD, xD

Out[4]= 88y@xD Ø BesselJ@4, xD C@1D + BesselY@4, xD C@2D<<

Here is a plot of the BesselJ functions for specific values of n.

In[5]:= Plot@8BesselJ@1, xD, BesselJ@3, xD, BesselJ@4, xD<, 8x, 0, 10<D

Out[5]=

2 4 6 8 10

-0.2

0.2

0.4

0.6

Here is the general solution for Legendre’s equation with n = 7.

In[6]:= DSolve@16 H1 - x^2L * y''@xD - 32 x * y'@xD + 21 * y@xD ã 0, y@xD, xD

Out[6]= ::y@xD Ø C@1D LegendrePB
3

4
, xF + C@2D LegendreQB

3

4
, xF>>

These special functions can be expressed in terms of elementary functions for certain values of

their parameters. Mathematica performs this conversion automatically wherever it is possible.

These are some of these expressions that are automatically converted.

In[7]:= 8BesselJ@1 ê 2, xD, LegendreP@4, xD, HermiteH@5, xD<

Out[7]= :

2

p
Sin@xD

x
,
1

8
I3 - 30 x2 + 35 x4M, 120 x - 160 x3 + 32 x5>

As  a  result  of  these  conversions,  the  solutions  of  certain  ODEs  can  be  partially  expressed  in

terms of elementary functions. Hermite’s equation is one such ODE. 

Here is the solution for Hermite’s equation with arbitrary n.

28     Differential Equation Solving with DSolve



Here is the solution for Hermite’s equation with arbitrary n.

In[8]:= DSolve@y''@xD - 2 x * y'@xD + 2 n * y@xD ã 0, y@xD, xD

Out[8]= ::y@xD Ø C@1D HermiteH@n, xD + C@2D Hypergeometric1F1B-
n

2
,
1

2
, x2F>>

With n set to 5, the solution is given in terms of polynomials, exponentials, and Erfi.

In[9]:= Collect@Simplify@PowerExpand@
y@xD ê. DSolve@y''@xD - 2 * x * y'@xD + 10 * y@xD ã 0, y@xD, xD@@1DDDD, 8C@1D, C@2D<D

Out[9]=
1

8
I960 x - 1280 x3 + 256 x5M C@1D +

1

8
C@2D J8 ‰x

2
- 18 ‰x

2
x2 + 4 ‰x

2
x4 + p x I-15 + 20 x2 - 4 x4M Erfi@xDN

Linear Second-Order ODEs with Rational Coefficients

The hypergeometric functions play a unifying role in mathematical analysis since many impor-

tant functions, such as the Bessel functions and Legendre functions, are special cases of them.

Each hypergeometric function is associated with a linear ODE having rational coefficients.

Here is the ODE for the Hypergeometric2F1 function.

In[1]:= DSolve@Hx^2 - xL * y''@xD + HHa + b + 1L * x - cL * y'@xD + b * a * y@xD ã 0, y@xD, xD

Out[1]= 99y@xD Ø C@1D Hypergeometric2F1@a, b, c, xD +

H-1L1-c x1-c C@2D Hypergeometric2F1@1 + a - c, 1 + b - c, 2 - c, xD==

DSolve  can solve a large class of second-order linear ODEs by reducing them to the ODEs for

hypergeometric  functions.  The reduction involves coordinate transformations of  both the inde-

pendent and dependent variables.

This equation is equivalent to the ODE for Hypergeometric2F1.

In[2]:= sol = DSolveA64 x2 Hx - 1L2 y''@xD + 32 x Hx - 1L H3 x - 1L y'@xD + H5 x - 21L y@xD == 0, y, xE

Out[2]= ::y Ø FunctionB8x<,
‰

1

4
H-2 Log@-1+xD-Log@xDL C@1D Hypergeometric2F1B- 7

8
, -

3

8
, -

1

4
, xF

x1ë8
-

H-1L1ë4 ‰
1

4
H-2 Log@-1+xD-Log@xDL x9ë8 C@2D Hypergeometric2F1B

3

8
,
7

8
,
9

4
, xFF>>

This verifies the solution using numerical values.

In[3]:= 64 x2 Hx - 1L2 y''@xD + 32 x Hx - 1L H3 x - 1L y'@xD + H5 x - 21L y@xD ê. sol@@1DD ê.
8x Ø RandomComplex@D< êê Simplify êê Chop

Out[3]= 0

Solutions to this equation are returned in terms of HypergeometricU (the confluent hypergeo-
metric function) and LaguerreL. This example appears on (equation 2.16, page 403 of [K59]). 
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Solutions to this equation are returned in terms of HypergeometricU (the confluent hypergeo-
metric function) and LaguerreL. This example appears on (equation 2.16, page 403 of [K59]). 

In[4]:= sol = Simplify@PowerExpand@y@xD ê. DSolve@
Derivative@2D@yD@xD + Ha * x^H2 * cL + b * x^Hc - 1LL * y@xD == 0, y, xD@@1DDDD

Out[4]= 2
c

2+2 c ‰

-
a x1+c

-I1+cM2

C@1D HypergeometricUB-

Â b

a
- c

2 + 2 c
,

c

1 + c
,

2 a x1+c

-H1 + cL2
F + C@2D LaguerreLB

Â b

a
- c

2 + 2 c
, -

1

1 + c
,

2 a x1+c

-H1 + cL2
F

The ODEs for special functions have been studied since the eighteenth century. During the last

thirty  years,  powerful  algorithms  have  been  developed  for  systematically  solving  ODEs  with

rational  coefficients.  An  important  algorithm  of  this  type  is  Kovacic’s  algorithm,  a  decision

procedure that either generates a solution for the given ODE in terms of Liouvillian functions or

proves that the given ODE does not have a Liouvillian solution.

This equation is solved using Kovacic’s algorithm.

In[5]:= DSolve@x * y''@xD + H10 x^3 - 1L * y'@xD + 5 x^2 H5 x^3 + 1L * y@xD ã 0, y@xD, xD

Out[5]= ::y@xD Ø ‰
-
5 x3

3 C@1D +
1

2
‰
-
5 x3

3 x2 C@2D>>

The  solution  returned  from  Kovacic’s  algorithm  may  occasionally  include  functions  such  as

ExpIntegralEi  or an unevaluated integral of elementary functions because, while it is easy to

find  a  second solution  for  a  second-order  linear  ODE once  one solution  is  known,  the  integral

involved in finding the second solution may be hard to evaluate explicitly. 

The solution to this equation is obtained using Kovacic’s algorithm. It includes ExpIntegralEi.

In[6]:= DSolve@4 x * y''@xD + H7 x + 12L * y'@xD + 21 y@xD ã 0, y@xD, xD

Out[6]= ::y@xD Ø ‰-7 xë4 C@1D -

‰-7 xë4 C@2D J16 ‰7 xë4 + 28 ‰7 xë4 x - 49 x2 ExpIntegralEiB 7 x

4
FN

32 x2
>>

In  general,  the  solutions  for  linear  ODEs  with  rational  coefficients  and  order  greater  than  one

can  be  given  in  terms  of  DifferentialRoot  objects.  This  is  similar  to  the  representation  for

solutions of polynomial equations in terms of Root.
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The solution to this equation is given in terms of DifferentialRoot.

In[7]:= sol = DSolveAy''@xD - x2 y'@xD - y@xD - 1 ã 0 && y@0D ã 0 && y'@0D ã -1, y, xE

Out[7]= 99y Ø FunctionA8x<,

DifferentialRootAFunctionA8, <, 9-1 - @D - 2 £@D + ££@D ã 0, @0D ã 0, £@0D ã -1=EE@xDE==

The solution may be evaluated and plotted in the usual way.

In[8]:= Table@y@xD ê. sol@@1DD, 8x, -1, 1, 0.4<D

Out[8]= 81.57269, 0.806671, 0.221252, -0.181388, -0.459045, -0.685918<

In[9]:= Plot@y@xD ê. sol@@1DD, 8x, -1, 1<D

Out[9]=

-1.0 -0.5 0.5 1.0

-0.5

0.5

1.0

1.5

Equations with Non-Rational Coefficients

The ODEs that arise in practical applications often have non-rational coefficients. In such cases,

DSolve  attempts  to  convert  the  equation  into  one  with  rational  coefficients  using  a  suitable

coordinate transformation. 

Here is an equation that has Exp@xD as a coefficient. It is solved by transforming it to Bessel’s 
equation.

In[1]:= DSolve@y''@xD - Exp@5 xD * y@xD == 0, y, xD

Out[1]= ::y Ø FunctionB8x<, BesselIB0,
2 ‰5 x

5
F C@1D + 2 BesselKB0,

2 ‰5 x

5
F C@2DF>>

This equation (equation 2.437, page 507 of [K59]) has trigonometric coefficients. The solution 
is given in terms of elementary functions.

In[2]:= DSolve@y''@xD * Sin@xD * Cos@xD^2 -
y'@xD * H3 * Sin@xD^2 + 1L * Cos@xD - y@xD * Sin@xD^3 == 0, y, xD

Out[2]= ::y Ø FunctionB8x<, C@2D Cos@xD-
3

2
-

13

2 + C@1D Cos@xD-
3

2
+

13

2 F>>

Here is an equation with a hyperbolic function in the coefficient of y@xD. The solution is given in 
terms of Legendre functions.
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Here is an equation with a hyperbolic function in the coefficient of y@xD. The solution is given in 
terms of Legendre functions.

In[3]:= DSolve@y''@xD + Hk^2 + 2 * Sech@xD^2L y@xD == 0, y@xD, xD

Out[3]= 88y@xD Ø C@1D LegendreP@1, Â k, Tanh@xDD + C@2D LegendreQ@1, Â k, Tanh@xDD<<

The solution to this equation is given in terms of HypergeometricU and LaguerreL.

In[4]:= expr = y''@xD + H-d + d H1 - Exp@-b xDL^2L y@xD - l y@xD;

In[5]:= sol = DSolve@expr ã 0, y, xD

Out[5]= ::y Ø FunctionB8x<,

‰
-Â d ‰-b x+ l LogA‰-b xE

b C@1D HypergeometricUB-
-b + 2 Â d - 2 l

2 b
, 1 +

2 l

b
,
2 Â d ‰-b x

b
F +

‰
-Â d ‰-b x+ l LogA‰-b xE

b C@2D LaguerreLB
-b + 2 Â d - 2 l

2 b
,
2 l

b
,
2 Â d ‰-b x

b
FF>>

This verifies the solution using random values of x, b, d, and l.

In[6]:= expr ê. sol@@1DD ê. 8x Ø RandomComplex@D, b Ø RandomComplex@D,
d Ø RandomComplex@D, l Ø RandomComplex@D< êê Simplify êê Chop

Out[6]= 0

Inhomogeneous Linear Second-Order Equations

If  the  given  second-order  ODE  is  inhomogeneous,  DSolve  applies  the  method  of  variation  of

parameters to return a solution for the problem.

This solves an inhomogeneous linear second-order ODE. The solution is composed of two parts: 
the first part is the general solution to the homogeneous equation, and the second part is a 
particular solution to the inhomogeneous equation.

In[1]:= sol = DSolve@x^2 y''@xD + y@xD ã x^2, y@xD, xD

Out[1]= ::y@xD Ø x C@1D CosB
1

2
3 Log@xDF +

x C@2D SinB
1

2
3 Log@xDF +

1

3
x2 CosB

1

2
3 Log@xDF

2

+ x2 SinB
1

2
3 Log@xDF

2

>>

This solves the homogeneous equation, which is an Euler equation.

In[2]:= DSolve@x^2 y''@xD + y@xD ã 0, y@xD, xD

Out[2]= ::y@xD Ø x C@1D CosB
1

2
3 Log@xDF + x C@2D SinB

1

2
3 Log@xDF>>

Different particular solutions can be obtained by varying the constants C@1D and C@2D in the 
solution. 
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Different particular solutions can be obtained by varying the constants C@1D and C@2D in the 
solution. 

In[3]:= particularsolutions =
Flatten@Table@y@xD ê. sol ê. 8C@1D Ø i, C@2D Ø j<, 8i, 0, 5, 3<, 8j, 1, 3<DD

Out[3]= : x SinB
1

2
3 Log@xDF +

1

3
x2 CosB

1

2
3 Log@xDF

2

+ x2 SinB
1

2
3 Log@xDF

2

,

2 x SinB
1

2
3 Log@xDF +

1

3
x2 CosB

1

2
3 Log@xDF

2

+ x2 SinB
1

2
3 Log@xDF

2

,

3 x SinB
1

2
3 Log@xDF +

1

3
x2 CosB

1

2
3 Log@xDF

2

+ x2 SinB
1

2
3 Log@xDF

2

,

3 x CosB
1

2
3 Log@xDF + x SinB

1

2
3 Log@xDF +

1

3
x2 CosB

1

2
3 Log@xDF

2

+ x2 SinB
1

2
3 Log@xDF

2

,

3 x CosB
1

2
3 Log@xDF + 2 x SinB

1

2
3 Log@xDF +

1

3
x2 CosB

1

2
3 Log@xDF

2

+ x2 SinB
1

2
3 Log@xDF

2

, 3 x CosB
1

2
3 Log@xDF +

3 x SinB
1

2
3 Log@xDF +

1

3
x2 CosB

1

2
3 Log@xDF

2

+ x2 SinB
1

2
3 Log@xDF

2

>

In[4]:= Plot@Evaluate@particularsolutionsD, 8x, 0.1, 2< D

Out[4]=

1.0 1.5 2.0

2

4

6

Nonlinear Second-Order ODEs

The general form of a nonlinear second-order ODE is

FHx, y, y£HxL, y££HxLL 0.

For simplicity, assume that the equation can be solved for the highest-order derivative y££HxL to

give 

y££HxL f Hx, yHxL, y£HxLL.

There are a few classes of nonlinear second-order ODEs for which solutions can be easily found.
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There are a few classes of nonlinear second-order ODEs for which solutions can be easily found.

The first  class consists of  equations that do not explicitly  depend on yHxL;  that is,  equations of

the form y££HxL = f Hx, y£HxLL. Such equations can be regarded as first-order ODEs in uHxL = y£HxL. 

Here is an example of this type.

In[1]:= eqn = y££@xD ã 5 x y£@xD + y£@xD2; sol = DSolve@eqn, y, xD

Out[1]= ::y Ø FunctionB8x<, C@2D - LogB-10 C@1D + 10 p ErfiB
5

2
xFFF>>

As in the case of linear second-order ODEs, the solution depends on two arbitrary parameters

C@1D and C@2D. 

Here is a plot of the solution for a specific choice of parameters.

In[2]:= Plot@Evaluate@y@xD ê. sol ê. 8C@1D Ø -1 ê 2, C@2D Ø -1 ê 8<D, 8x, -0.4, 1<D

Out[2]=

-0.4 -0.2 0.2 0.4 0.6 0.8 1.0

-3

-2

-1

This verifies the solution.

In[3]:= eqn ê. sol êê Simplify

Out[3]= 8True<

The second class of easily solvable nonlinear second-order equations consists of equations that

do not depend explicitly on x  or y£HxL; that is,  equations of  the form y££HxL f HyHxLL.  These equa-

tions  can  be  reduced  to  first-order  ODEs  with  independent  variable  y.  Inverse  functions  are

needed to give the final solution for yHxL. 
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Here is an example of this type.

In[4]:= DSolve@y''@xD == Exp@3 * y@xDD, y@xD, xD

Solve::ifun : Inverse functions are being used by Solve, so some
solutions may not be found; use Reduce for complete solution information. à

Out[4]= ::y@xD Ø LogB- -
3

2

1ë3

-C@1D + C@1D TanhB
3

2
C@1D Hx + C@2DL2 F

2 1ë3

F>,

:y@xD Ø LogB
3

2

1ë3

-C@1D + C@1D TanhB
3

2
C@1D Hx + C@2DL2 F

2 1ë3

F>,

:y@xD Ø LogBH-1L2ë3
3

2

1ë3

-C@1D + C@1D TanhB
3

2
C@1D Hx + C@2DL2 F

2 1ë3

F>>

The third class consists of equations that do not depend explicitly on x; that is, equations of the

form  y££HxL = f HyHxL, y£HxLL.  Once  again,  these  equations  can  be  reduced  to  first-order  ODEs  with

independent variable y. 

This example is based on (equation 6.40, page 550 of [K59]). The underlying first-order ODE is 
an Abel equation. The hyperbolic functions in the solution result from the automatic simplifica-
tion of Bessel functions.

In[5]:= sol =
y@xD ê. DSolve@y''@xD == 3 * y@xD * y'@xD + H3 y@xD^2 + 4 * y@xD + 1L, y@xD, xD@@1DD êê
Simplify

Out[5]= Â 6 ‰-2 x C@1D - 6 C@2D CoshB
3

2
‰-2 x C@1D F +

-3 Â + 2 6 ‰-2 x C@1D C@2D SinhB
3

2
‰-2 x C@1D F ì

6 C@2D CoshB
3

2
‰-2 x C@1D F + 3 Â SinhB

3

2
‰-2 x C@1D F

The fourth class consists of equations that are homogeneous in some or all  of the variables x,

yHxL,  and  y££HxL.  There  are  several  possibilities  in  this  case,  but  here  only  the  following  simple

example is considered.

In this equation, each term has a total degree of 2 in the variables y@xD, y£@xD, and y££@xD. This 
equation can be solved by transforming it to a first-order ODE. 

In[6]:= DSolve@7 * y@xD * y''@xD - 11 * y'@xD^2 ã 0, y@xD, xD

Out[6]= ::y@xD Ø
C@2D

H4 x + 7 C@1DL7ë4
>>

The  fifth  and  final  class  of  easily  solvable  nonlinear  second-order  ODEs  consists  of  equations

that are exact or can be made to be exact using an integrating factor.
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The  fifth  and  final  class  of  easily  solvable  nonlinear  second-order  ODEs  consists  of  equations

that are exact or can be made to be exact using an integrating factor.

Here is an example of this type, based on (equation 6.51, page 554 of [K59]).

In[7]:= eqn = y''@xD + y@xD * y'@xD^2 - x^2 * y'@xD ã 0;

In[8]:= sol = DSolve@eqn, y@xD, xD

Solve::ifun : Inverse functions are being used by Solve, so some
solutions may not be found; use Reduce for complete solution information. à

Out[8]= ::y@xD Ø -Â 2 InverseErfB

Â 3 2 p C@2D -
31ë3 2 p I-x3M

2ë3
C@1D GammaB

1

3
,-

x3

3
F

x2

3 p
F>>

It is important to note that the solutions to fairly simple-looking nonlinear ODEs can be compli-

cated. Verifying and applying the solutions in such cases is a difficult problem.

Higher-Order ODEs

Overview of Higher-Order ODEs

The general form of an ODE with order n is

FIx, yHxL, y£HxL, y″HxL, …, yHnLHxLM = 0.

As in the case of second-order ODEs, such an ODE can be classified as linear or nonlinear. The

general form of a linear ODE of order n is

a0HxL yHnLHxL + a1HxL yHn-1LHxL + … + anHxL yHxL = bHxL.

If bHxL is the zero function, the equation is said to be homogeneous. This discussion is primarily

restricted to that case.

Many methods for solving linear second-order ODEs can be generalized to linear ODEs of order

n, where n is greater than 2. If the order of the ODE is not important, it is simply called a linear

ODE.
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Linear Higher-Order Equations with Constant Coefficients

A  linear  ODE  with  constant  coefficients  can  be  easily  solved  once  the  roots  of  the  auxiliary

equation (or characteristic equation) are known. Some examples of this type follow.

The characteristic equation of this ODE has real and distinct roots: 4, 1, and 7. Hence the 
solution is composed entirely of exponential functions.

In[1]:= DSolve@y'''@xD - 4 * y''@xD - 25 * y'@xD + 28 * y@xD ã 0, y@xD, xD

Out[1]= 99y@xD Ø ‰-4 x C@1D + ‰x C@2D + ‰7 x C@3D==

The characteristic equation of this ODE has two pairs of equal roots: -3 and -5. The repeated 
roots give rise to the basis of the solutions, 9‰3 x, x ‰3 x, ‰5 x, x ‰5 x=.

In[2]:= DSolve@y''''@xD - 16 * y'''@xD + 94 * y''@xD - 240 * y'@xD + 225 * y@xD ã 0, y@xD, xD

Out[2]= 99y@xD Ø ‰3 x C@1D + ‰3 x x C@2D + ‰5 x C@3D + ‰5 x x C@4D==

The characteristic equation for this ODE has two pairs of roots with nonzero imaginary parts: 
3 + 4 Â, 3 - 4 Â, 2 + Â, and 2 - Â. Hence the solution basis can be expressed with trigonometric and 
exponential functions.

In[3]:= DSolve@y''''@xD - 10 * y'''@xD + 54 * y''@xD - 130 * y'@xD + 125 * y@xD ã 0, y@xD, xD

Out[3]= 99y@xD Ø ‰2 x C@2D Cos@xD + ‰3 x C@4D Cos@4 xD + ‰2 x C@1D Sin@xD + ‰3 x C@3D Sin@4 xD==

Finally, here is an example that combines all the previous kinds of solutions.

In[4]:= DSolve@y'''''@xD - 17 * y''''@xD +
108 * y'''@xD - 330 * y''@xD + 488 * y'@xD - 280 * y@xD ã 0, y@xD, xD

Out[4]= 99y@xD Ø ‰2 x C@3D + ‰2 x x C@4D + ‰7 x C@5D + ‰3 x C@2D Cos@xD + ‰3 x C@1D Sin@xD==

Higher-Order Euler and Legendre Equations

An Euler equation is an ODE of the form

xn yHnLHxL + a1 xn-1 yHn-1LHxL + a2 xn-2 yHn-2LHxL … + an yHxL 0.

The following is an example of an Euler equation.

In[1]:= DSolve@
x^4 * y''''@xD - 2 * x^3 * y'''@xD - x^2 * y''@xD + 5 * x * y'@xD + y@xD ã 0, y@xD, xD

Out[1]= ::y@xD Ø xRootA1-4 Ò1+16 Ò12-8 Ò13+Ò14&,1E C@1D + xRootA1-4 Ò1+16 Ò12-8 Ò13+Ò14&,2E C@2D +

xRootA1-4 Ò1+16 Ò12-8 Ò13+Ò14&,3E C@3D + xRootA1-4 Ò1+16 Ò12-8 Ò13+Ò14&,4E C@4D>>

The Legendre linear equation is a generalization of the Euler equation. It has the form 
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The Legendre linear equation is a generalization of the Euler equation. It has the form 

Hc x + dLn yHnLHxL + a1 Hc x + dLn-1 yHn-1LHxL + a2 Hc x + dLn-2 yHn-2LHxL … + an yHxL 0.

This is a Legendre linear equation.

In[2]:= DSolve@H3 x + 5L^4 * y''''@xD - 2 * H3 x + 5L^3 * y'''@xD -
H3 x + 5L^2 * y''@xD + 5 * H3 x + 5L * y'@xD + y@xD ã 0, y@xD, xD

Out[2]= ::y@xD Ø H5 + 3 xLRootA1-570 Ò1+1044 Ò12-540 Ò13+81 Ò14&,1E C@1D + H5 + 3 xLRootA1-570 Ò1+1044 Ò12-540 Ò13+81 Ò14&,2E C@2D +

H5 + 3 xLRootA1-570 Ò1+1044 Ò12-540 Ò13+81 Ò14&,3E C@3D + H5 + 3 xLRootA1-570 Ò1+1044 Ò12-540 Ò13+81 Ò14&,4E C@4D>>

Exact Higher-Order Equations

A linear ordinary differential equation of order n

a0HxL yHnLHxM + a1HxL yHn-1LHxL + … + an-1HxL y£HxL + anHxL yHxL 0

is said to be exact if 

H-1Ln a0HnLHxM + H-1LHn-1L a1Hn-1LHxL + … - an-1£HxL + anHxL 0.

The condition of exactness can be used to reduce the problem to that of solving an equation of

order n - 1.

This is an example of an exact ODE.

In[1]:= a0 = 1;

In[2]:= a1 = -1 ;

In[3]:= a2 = 5 x;

In[4]:= a3 = 5;

In[5]:= ExactODE = a0 * y'''@xD + a1 * y''@xD + a2 * y'@xD + a3 * y@xD

Out[5]= 5 y@xD + 5 x y£@xD - y££@xD + yH3L@xD

This verifies the condition for exactness.

In[6]:= conditionforexactness = -D@a0, 8x, 3<D + D@a1, 8x, 2<D - D@a2, xD + a3

Out[6]= 0
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This solves the equation.

In[7]:= sol = DSolve@ExactODE ã 0, y, xD

Out[7]= ::y Ø FunctionB8x<, ‰xë2 AiryAiB-
H-1L1ë3 J 1

4
- 5 xN

52ë3
F C@2D + ‰xë2 AiryBiB-

H-1L1ë3 J 1

4
- 5 xN

52ë3
F C@3D +

‰xë2 AiryBiB-
H-1L1ë3 J 1

4
- 5 xN

52ë3
F ‡

1

x
-

H-1L2ë3 ‰-
KA2E

2 p AiryAiB-
H-1L1ë3 K

1

4
-5 K@2DO

52ë3
F C@1D

51ë3
„K@2D +

AiryAiB-
H-1L1ë3 J 1

4
- 5 xN

52ë3
F ‡

1

x
H-1L2ë3 ‰-

KA1E

2 p AiryBiB-
H-1L1ë3 K

1

4
-5 K@1DO

52ë3
F C@1D

51ë3
„K@1D F>>

This verifies the solution.

In[8]:= ExactODE ê. sol@@1DD ê. 8x Ø RandomReal@D,
C@1D Ø RandomReal@D, C@2D Ø RandomReal@D< êê N êê Simplify êê Chop

Out[8]= 0

In[9]:= Clear@a0, a1, a2, a3D

Further Examples of Exactly Solvable Higher-Order Equations 

The  solutions  to  many  second-order  ODEs  can  be  expressed  in  terms  of  special  functions.

Solutions to certain higher-order ODEs can also be expressed using AiryAi, BesselJ, and other

special functions.

The solution to this third-order ODE is given by products of Airy functions.

In[1]:= sol1 = DSolve@y'''@xD - 4 * Hx + 2L * y'@xD - 2 * y@xD == 0, y, xD

Out[1]= 99y Ø FunctionA8x<, AiryAi@2 + xD2 C@1D + AiryAi@2 + xD AiryBi@2 + xD C@2D + AiryBi@2 + xD2 C@3DE==

The solution to this third-order ODE is given by Bessel functions.

In[2]:= sol2 = DSolve@
x^3 * y'''@xD + 3 * x^2 * y''@xD + H4 x^3 - 11 xL * y'@xD + 4 x^2 * y@xD == 0, y, xD

Out[2]= ::y Ø FunctionB8x<,

BesselJB 3 , xF
2

C@1D + BesselJB 3 , xF BesselYB 3 , xF C@2D + BesselYB 3 , xF
2

C@3DF>>
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This plot shows the oscillatory behavior of the solutions on different parts of the real line.

In[3]:= Show@8Plot@y@xD ê. sol1 ê. 8C@1D Ø 2, C@2D Ø 3, C@3D Ø 1<, 8x, -10, -4<,
PlotStyle Ø 8Red<D, Plot@y@xD ê. sol2 ê. 8C@1D Ø 2, C@2D Ø 3, C@3D Ø 1<, 8x, 2, 10<,
PlotStyle Ø 8Dashing@80.02<D, Blue<D<, PlotRange Ø 88-10, 10<, Automatic<D

Out[3]=

-5 0 5 10

0.1

0.2

0.3

0.4

0.5

0.6

The solution to this fourth-order linear ODE is expressed in terms of HypergeometricPFQ.

In[4]:= HypergeometricPFQTypeEquation = 30 * x^3 * y''''@xD +
193 * x^2 * y'''@xD + H219 * x - 30 x^2L * y''@xD + H21 - 90 xL * y'@xD - 30 y@xD;

In[5]:= sol3 = DSolve@HypergeometricPFQTypeEquation ã 0, y, xD

Out[5]= ::y Ø FunctionB8x<,
H-1L2ë3 C@1D HypergeometricPFQB:- 1

3
>, :-

5

6
, -

11

15
>, xF

x4ë3
+

H-1L2ë5 x2ë5 C@3D HypergeometricPFQB:
7

5
>, :

9

10
,
41

15
>, xF + Â x C@4D

HypergeometricPFQB:
3

2
>, :

11

10
,
17

6
>, xF + C@2D HypergeometricPFQB81, 1<, :

1

2
,
3

5
,
7

3
>, xFF>>

This verifies that the solution is correct using numerical values.

In[6]:= HypergeometricPFQTypeEquation ê. sol3@@1DD ê. 8x Ø RandomComplex@D< êê Simplify êê
Chop

Out[6]= 0

As  for  second-order  linear  ODEs,  there  are  modern  algorithms  for  solving  higher-order  ODEs

with  rational  coefficients.  These  algorithms  give  "rational-exponential"  solutions,  which  are

combinations of rational functions and exponentials of the integrals of rational functions. These

algorithms  are  combined  with  techniques  such  as  reduction  of  order  to  produce  a  complete

solution for the given ODE.
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The general solution to this equation has a rational term and terms that depend on Airy func-
tions. The Airy functions come from reducing the order of the equation to 2.

In[7]:= DSolve@HH6 - 24 * x + 4 * x^2 - 10 * x^3 + 9 * x^4 - 4 * x^5 + x^6L * y@xDL ê
HH-1 + xL^4 * x^2L +

HH-8 + 30 * x - 10 * x^2 + 10 * x^3 - 3 * x^4 - 2 * x^5 + x^6L *
Derivative@1D@yD@xDL ê HH-1 + xL^3 * x^2L +

HH4 - 16 * x + 5 * x^2 - 2 * x^3L * Derivative@2D@yD@xDL ê HH-1 + xL^2 * x^2L +
HH4 - x^2L * Derivative@3D@yD@xDL ê HH-1 + xL * xL == 0, y, xD

Out[7]= ::y Ø FunctionB8x<,
H-1 + xL C@1D

-4 + x2
+

H-1 + xL AiryAi@xD C@2D

-4 + x2
+

H-1 + xL AiryBi@xD C@3D

-4 + x2
F>>

The equations considered so far have been homogeneous; that is,  with no term free of yHxL  or

its  derivatives.  If  the given ODE is  inhomogeneous, DSolve  applies the method of  variation of

parameters to obtain the solution. 

Here is an example of this type. The exponential terms in the solution come from the general 
solution to the homogeneous equation, and the remaining term is a particular solution (or 
particular integral) to the problem.

In[8]:= sol = DSolve@y'''@xD - 13 * y''@xD + 19 * y'@xD + 33 * y@xD ã Cos@2 xD, y@xD, xD

Out[8]= ::y@xD Ø ‰-x C@1D + ‰3 x C@2D + ‰11 x C@3D +
17 Cos@2 xD + 6 Sin@2 xD

1625
>>

This is the general solution to the homogeneous equation.

In[9]:= generalsolution =
y@xD ê. DSolve@y'''@xD - 13 * y''@xD + 19 * y'@xD + 33 * y@xD ã 0, y@xD, xD@@1DD

Out[9]= ‰-x C@1D + ‰3 x C@2D + ‰11 x C@3D

This particular solution is part of the general solution to the inhomogeneous equation.

In[10]:= particularsolution = Hy@xD ê. sol@@1DDL - generalsolution

Out[10]=
17 Cos@2 xD + 6 Sin@2 xD

1625

Thus, the general solution for the inhomogeneous equation is the sum of the general solution to

the homogeneous equation and a particular integral of the ODE.

The solution methods for nonlinear ODEs of higher order rely to a great extent on reducing the

problem to one of lower order.
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Here is a nonlinear third-order ODE with no explicit dependence on x or y@xD. It is solved by 
reducing the order to 2 using a simple integration.

In[11]:= DSolve@7 * y'@xD * y'''@xD - 11 * y''@xD^2 ã 0, y@xD, xD

Out[11]= ::y@xD Ø -
C@2D

3 H4 x + 7 C@1DL3ë4
+ C@3D>>

Systems of ODEs

Introduction to Systems of ODEs

Systems of ODEs are important in various fields of science, such as the study of electricity and

population biology. Like single ODEs, systems of ODEs can classified as linear or nonlinear.

A system of linear first-order ODEs can be represented in the form

X£HtL AHtL XHtL+BHtL.

Here XHtL is a vector of unknown functions, AHtL is the matrix of the coefficients of the unknown

functions, and BHtL is a vector representing the inhomogeneous part of the system.

In the two-dimensional case, the system can be written more concretely as

x£HtL pHtL xHtL + qHtL yHtL + uHtL

y£HtL rHtL xHtL + sHtL yHtL + vHtL.

If all the entries of the matrix AHtL are constants, then the system is said to be linear with con-

stant coefficients. If BHtL is the zero vector, then the system is said to be homogeneous.

The important global features of the solutions to linear systems can be clarified by considering

homogeneous systems of ODEs with constant coefficients. 

Linear Systems of ODEs

Here is a system of two ODEs whose coefficient matrix has real and distinct eigenvalues.

In[1]:= A = 884, -6<, 81, -1<<;

In[2]:= Eigenvalues@AD

Out[2]= 82, 1<
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In[3]:= X@t_D = 8x@tD, y@tD<;

In[4]:= system = MapThread@Ò1 ã Ò2 &, 8X'@tD, A.X@tD<D

Out[4]= 8x£@tD ã 4 x@tD - 6 y@tD, y£@tD ã x@tD - y@tD<

This solves the system. Note that the general solution depends on two arbitrary constants C@1D 
and C@2D.

In[5]:= sol = DSolve@system, 8x, y<, tD

Out[5]= 99x Ø FunctionA8t<, ‰t I-2 + 3 ‰tM C@1D - 6 ‰t I-1 + ‰tM C@2DE,

y Ø FunctionA8t<, ‰t I-1 + ‰tM C@1D - ‰t I-3 + 2 ‰tM C@2DE==

Here is a plot of some particular solutions obtained by giving specific values to C@1D and C@2D. 
In this case, the origin is a called a node.

In[6]:= particularsols =
Partition@Flatten@Table@8x@tD, y@tD< ê. sol ê. 8C@1D Ø 1 ê i, C@2D Ø 1 ê j<,

8i, -20, 20, 6<, 8j, -20, 20, 6<DD, 2D;

In[7]:= ParametricPlot@Evaluate@particularsolsD, 8t, -3, 3<, PlotRange -> 8-2, 2<D

Out[7]=
-2 -1 1 2

-2

-1

1

2

In this system the eigenvalues of the coefficient matrix are complex conjugates of each other.

In[8]:= A = 887, -8<, 85, -5<<;

In[9]:= Eigenvalues@AD

Out[9]= 81 + 2 Â, 1 - 2 Â<

In[10]:= X@t_D = 8x@tD, y@tD<;

In[11]:= system = MapThread@Ò1 ã Ò2 &, 8X'@tD, A.X@tD<D

Out[11]= 8x£@tD ã 7 x@tD - 8 y@tD, y£@tD ã 5 x@tD - 5 y@tD<

This solves the system.
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This solves the system.

In[12]:= sol = DSolve@system, 8x, y<, tD

Out[12]= ::x Ø FunctionA8t<, -4 ‰t C@2D Sin@2 tD + ‰t C@1D HCos@2 tD + 3 Sin@2 tDLE,

y Ø FunctionB8t<, ‰t C@2D HCos@2 tD - 3 Sin@2 tDL +
5

2
‰t C@1D Sin@2 tDF>>

This plots the solution for various values of the arbitrary parameters. The spiraling behavior is 
typical for systems with complex eigenvalues.

In[13]:= particularsols =
Partition@Flatten@Table@8x@tD, y@tD< ê. sol ê. 8C@1D Ø 1 ê i, C@2D Ø 1 ê j<,

8i, -10, 10, 8<, 8j, -10, 10, 8<DD, 2D;

In[14]:= ParametricPlot@Evaluate@particularsolsD, 8t, -35, 35<,
PlotRange Ø All, PlotPoints Ø 70, Method -> 8Compiled Ø False<D

Out[14]=
-3µ 1015 -2µ 1015 -1µ 1015 1µ 1015 2µ 1015 3µ 1015

-2µ 1015

-1µ 1015

1µ 1015

Solving  homogeneous  systems  of  ODEs  with  constant  coefficients  and  of  arbitrary  order  is  a

straightforward matter. They are solved by converting them to a system of first-order ODEs.

This solves a homogeneous system of ODEs of order 3, with constant coefficients.

In[15]:= system = 8x'''@tD + y@tD, y'''@tD - 64 x@tD<;
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In[16]:= sol = DSolve@8system@@1DD ã 0, system@@2DD ã 0<, 8x, y<, tD

Out[16]= ::x Ø FunctionB8t<,
1

3
‰- 3 t C@3D Cos@tD + ‰2 3 t Cos@tD + ‰ 3 t Cos@2 tD +

1

96
‰- 3 t C@6D Cos@tD + ‰2 3 t Cos@tD - 2 ‰ 3 t Cos@2 tD + 3 Sin@tD - 3 ‰2 3 t Sin@tD +

1

24
‰- 3 t C@1D Cos@tD + ‰2 3 t Cos@tD - 2 ‰ 3 t Cos@2 tD - 3 Sin@tD + 3 ‰2 3 t Sin@tD +

1

192
‰- 3 t C@2D - 3 Cos@tD + 3 ‰2 3 t Cos@tD - Sin@tD - ‰2 3 t Sin@tD - 2 ‰ 3 t Sin@2 tD -

1

24
‰- 3 t C@5D Sin@tD + ‰2 3 t Sin@tD - ‰ 3 t Sin@2 tD +

1

12
‰- 3 t C@4D - 3 Cos@tD + 3 ‰2 3 t Cos@tD + Sin@tD + ‰2 3 t Sin@tD + 2 ‰ 3 t Sin@2 tD F,

y Ø FunctionB8t<,
1

3
‰- 3 t C@5D Cos@tD + ‰2 3 t Cos@tD + ‰ 3 t Cos@2 tD -

2

3
‰- 3 t C@4D Cos@tD + ‰2 3 t Cos@tD - 2 ‰ 3 t Cos@2 tD + 3 Sin@tD - 3 ‰2 3 t Sin@tD +

1

24
‰- 3 t C@2D Cos@tD + ‰2 3 t Cos@tD - 2 ‰ 3 t Cos@2 tD - 3 Sin@tD + 3 ‰2 3 t Sin@tD -

1

3
‰- 3 t C@1D - 3 Cos@tD + 3 ‰2 3 t Cos@tD - Sin@tD - ‰2 3 t Sin@tD - 2 ‰ 3 t Sin@2 tD +

8

3
‰- 3 t C@3D Sin@tD + ‰2 3 t Sin@tD - ‰ 3 t Sin@2 tD +

1

12
‰- 3 t C@6D - 3 Cos@tD + 3 ‰2 3 t Cos@tD + Sin@tD + ‰2 3 t Sin@tD + 2 ‰ 3 t Sin@2 tD F>>

This verifies the solution.

In[17]:= system ê. sol@@1DD ê. 8t Ø RandomComplex@D, C@1D Ø RandomComplex@D,
C@2D Ø RandomComplex@D, C@3D Ø RandomComplex@D, C@4D Ø RandomComplex@D,
C@5D Ø RandomComplex@D, C@6D Ø RandomComplex@D< êê Chop

Out[17]= 80, 0<

In  general,  systems of  linear  ODEs with  non-constant  coefficients  can only  be solved in  cases

where the coefficient matrix has a simple structure, as illustrated in the following examples.

This first-order system has a diagonal coefficient matrix. The system is uncoupled because the 
first equation involves only x@tD and the second equation depends only on y@tD. Thus, each 
equation in the system can be integrated independently of the other.

In[18]:= DSolve@8x'@tD ã Sin@tD * x@tD, y'@tD ã t^2 * y@tD<, 8x, y<, tD

Out[18]= ::x Ø FunctionA8t<, ‰-Cos@tD C@1DE, y Ø FunctionB8t<, ‰
t3

3 C@2DF>>

The rows of the coefficient matrix for this system form an orthogonal set of vectors.

In[19]:= A = 88E^t, Tan@tD<, 8-Tan@tD, E^t<<;

In[20]:= A.Transpose@AD ê Det@AD

Out[20]= 881, 0<, 80, 1<<
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In[21]:= X@t_D = 8x@tD, y@tD<;

In[22]:= system = MapThread@Ò1 ã Ò2 &, 8X'@tD, A.X@tD<D

Out[22]= 9x£@tD ã ‰t x@tD + Tan@tD y@tD, y£@tD ã -Tan@tD x@tD + ‰t y@tD=

In[23]:= sol = DSolve@system, 8x, y<, tD

Out[23]= ::x Ø FunctionB8t<, ‰‰t C@1D Cos@Log@Cos@tDDD - ‰‰t C@2D Sin@Log@Cos@tDDDF,

y Ø FunctionB8t<, ‰‰t C@2D Cos@Log@Cos@tDDD + ‰‰t C@1D Sin@Log@Cos@tDDDF>>

In[24]:= system ê. sol@@1DD êê Simplify

Out[24]= 8True, True<

Here is a system of three first-order ODEs. The coefficient matrix is upper triangular.

In[25]:= A = 88E^t, 2, 3<, 80, 2, -1<, 80, 0, 1<<;

In[26]:= MatrixForm@AD

Out[26]//MatrixForm=
‰t 2 3
0 2 -1
0 0 1

In[27]:= X@t_D = 8x@tD, y@tD, z@tD<;

In[28]:= system = MapThread@Ò1 ã Ò2 &, 8X'@tD, A.X@tD<D

Out[28]= 9x£@tD ã ‰t x@tD + 2 y@tD + 3 z@tD, y£@tD ã 2 y@tD - z@tD, z£@tD ã z@tD=

In[29]:= sol = DSolve@system, 8x, y, z<, tD

Out[29]= ::x Ø FunctionB8t<, ‰‰t C@1D + 2 I-1 - ‰tM C@2D - 5 C@3DF,

y Ø FunctionA8t<, ‰2 t C@2D + ‰t C@3DE, z Ø FunctionA8t<, ‰t C@3DE>>

As for single ODEs, there are sophisticated modern algorithms for solving systems of ODEs with

rational coefficients.

This solves a system of two first-order ODEs with rational coefficients. Note that the solution is 
composed entirely of rational functions.

In[30]:= DSolveB:y£@xD ã
H5 + xL w@xD

I-3 - 2 x + x2M I-1 + x3M
+

I6 + 2 x - 3 x3 - x5M y@xD

x I-3 - 2 x + x2M I-1 + x3M
,

w£@xD ã
I1 + 20 x2 + 3 x3M w@xD

H5 + xL I-1 + x3M
-
4 x I-3 - 2 x + x2M y@xD

H5 + xL I-1 + x3M
>, 8y, w<, xF

Out[30]= ::y Ø FunctionB8x<,
x C@1D

-3 - 2 x + x2
+

x2 C@2D

-3 - 2 x + x2
F, w Ø FunctionB8x<,

C@1D

5 + x
+
x4 C@2D

5 + x
F>>

In the following example, the algorithm finds one rational solution for x@tD and y@tD. (The equa-
tion for z@tD is uncoupled from the rest of the system.) Using the rational solution, DSolve is 
able to find the remaining exponential solution for x@tD and y@tD. 
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In the following example, the algorithm finds one rational solution for x@tD and y@tD. (The equa-
tion for z@tD is uncoupled from the rest of the system.) Using the rational solution, DSolve is 
able to find the remaining exponential solution for x@tD and y@tD. 

In[31]:= system = 8x'@tD ã H2 * HH-9 + t + t^2L * x@tD + H-6 + t^2L * y@tDLL ê HH-2 + tL * tL,
y'@tD ã H-3 * H-12 + 2 * t + t^2L * x@tD + H24 - 2 * t - 3 * t^2L * y@tDL ê HH-2 + tL * tL,
z'@tD ã t * z@tD<;

In[32]:= sol = DSolve@system, 8x, y, z<, tD

Out[32]= ::x Ø FunctionB8t<,
H-2 - tL C@1D

t3
- 2 ‰-t C@2DF,

y Ø FunctionB8t<,
H4 + tL C@1D

t3
+ 3 ‰-t C@2DF, z Ø FunctionB8t<, ‰

t2

2 C@3DF>>

In[33]:= system ê. sol êê Simplify

Out[33]= 88True, True, True<<

The  systems  considered  so  far  have  all  been  homogeneous.  If  the  system  is  inhomogeneous

(that  is,  if  there  are  terms  free  from  any  dependent  variables  and  their  derivatives),  DSolve

applies either the method of variation of parameters or the method of undetermined coefficients

to find the general solution. 

This solves an inhomogeneous system. 

In[34]:= A = 887, -8<, 85, -5<<;

In[35]:= B = 8E^Ht ê 10L, t<;

In[36]:= X@t_D = 8x@tD, y@tD<;

In[37]:= system = MapThread@Ò1 ã Ò2 &, 8X'@tD, A.X@tD + B<D

Out[37]= 9x£@tD ã ‰të10 + 7 x@tD - 8 y@tD, y£@tD ã t + 5 x@tD - 5 y@tD=
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In[38]:= sol = DSolve@system, 8x, y<, tD

Out[38]= ::x Ø FunctionB8t<,

-4 ‰t C@2D Sin@2 tD + ‰t C@1D HCos@2 tD + 3 Sin@2 tDL - 4 ‰t Sin@2 tD
500

481
‰-9 të10 Cos@2 tD -

1

50
‰-t H18 + 70 tL Cos@2 tD +

225

481
‰-9 të10 Sin@2 tD -

1

50
‰-t H-26 + 10 tL Sin@2 tD +

‰t HCos@2 tD + 3 Sin@2 tDL
510

481
‰-9 të10 Cos@2 tD -

4

25
‰-t H4 + 10 tL Cos@2 tD +

470

481
‰-9 të10 Sin@2 tD -

2

25
‰-t H-6 + 10 tL Sin@2 tD F,

y Ø FunctionB8t<, ‰t C@2D HCos@2 tD - 3 Sin@2 tDL +
5

2
‰t C@1D Sin@2 tD +

‰t HCos@2 tD - 3 Sin@2 tDL
500

481
‰-9 të10 Cos@2 tD -

1

50
‰-t H18 + 70 tL Cos@2 tD +

225

481
‰-9 të10 Sin@2 tD -

1

50
‰-t H-26 + 10 tL Sin@2 tD +

5

2
‰t Sin@2 tD

510

481
‰-9 të10 Cos@2 tD -

4

25
‰-t H4 + 10 tL Cos@2 tD +

470

481
‰-9 të10 Sin@2 tD -

2

25
‰-t H-6 + 10 tL Sin@2 tD F>>

Particular  solutions  to  the  system can  be  obtained  by  assigning  values  to  the  constants  C@1D

and C@2D. 

Here is a plot of the solution for one choice of parameters.

In[39]:= particularsol = 8x@tD, y@tD< ê. sol@@1DD ê. 8C@1D Ø -1, C@2D Ø 2<;

In[40]:= Plot@Evaluate@particularsolD, 8t, 0, Pi<D

Out[40]=
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-20

20

40

60

80
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Nonlinear Systems of ODEs

Following are two examples of nonlinear systems of ODEs that can be solved symbolically using

DSolve. 

The first three equations in this system of four nonlinear ODEs can be solved independently 
because none of their right-hand sides depend on p, q, r, or s.

In[1]:= system =
8p'@xD == 1, q'@xD == x, r'@xD == 0, s'@xD == r@xD ê Hp@xD + 4 * q@xD * r@xDL<;
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In[2]:= sol = DSolve@system, 8p, q, r, s<, xD

Out[2]= ::p Ø Function@8x<, x + C@1DD, q Ø FunctionB8x<,
x2

2
+ C@2DF,

r Ø Function@8x<, C@3DD, s Ø FunctionB8x<,

2 ArcTanB 1+4 x C@3D

-1+8 C@1D C@3D+32 C@2D C@3D2
F C@3D

-1 + 8 C@1D C@3D + 32 C@2D C@3D2
+ C@4DF>>

In[3]:= system ê. sol êê Simplify

Out[3]= 88True, True, True, True<<

This system of two nonlinear ODEs is autonomous, in the sense that the right-hand sides of the 
equations do not depend on x.

In[4]:= system = 8u'@xD ã 1 ê Sqrt@v@xDD, v'@xD ã u@xD<;

In[5]:= sol = DSolve@system, 8u, v<, xD@@1DD

Out[5]= :v Ø FunctionB8x<,
1

16
4 C@1D2 + 4 C@1D

6 µ 21ë3 C@1D

-324 x + 23328 C@1D3 + H-324 x - 81 C@2DL2 - 81 C@2D
1ë3

-

-324 x + 23328 C@1D3 + H-324 x - 81 C@2DL2 - 81 C@2D
1ë3

3 µ 21ë3

2

+

6 µ 21ë3 C@1D

-324 x + 23328 C@1D3 + H-324 x - 81 C@2DL2 - 81 C@2D
1ë3

-

-324 x + 23328 C@1D3 + H-324 x - 81 C@2DL2 - 81 C@2D
1ë3

3 µ 21ë3

4

F,

u Ø FunctionB8x<,
6 µ 21ë3 C@1D

-324 x + 23328 C@1D3 + H-324 x - 81 C@2DL2 - 81 C@2D
1ë3

-

-324 x + 23328 C@1D3 + H-324 x - 81 C@2DL2 - 81 C@2D
1ë3

3 µ 21ë3
F>

In[6]:= system ê. sol êê Simplify êê PowerExpand êê Simplify

Out[6]= 8True, True<

The previous two examples demonstrate that the solutions to fairly simple systems are usually

complicated expressions of the independent variable. In fact, the solution is often available only

in implicit form and may thus contain InverseFunction objects or unevaluated Solve objects.
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The previous two examples demonstrate that the solutions to fairly simple systems are usually

complicated expressions of the independent variable. In fact, the solution is often available only

in implicit form and may thus contain InverseFunction objects or unevaluated Solve objects.

Lie Symmetry Methods for Solving Nonlinear ODEs

Around  1870,  Marius  Sophus  Lie  realized  that  many  of  the  methods  for  solving  differential

equations could be unified using group theory. Lie symmetry methods are central to the mod-

ern approach for studying nonlinear ODEs. They use the notion of symmetry to generate solu-

tions in a systematic manner. Here is a brief introduction to Lie’s approach that provides some

examples that are solved in this way by DSolve. 

A  key  notion  in  Lie’s  method  is  that  of  an  infinitesimal  generator  for  a  symmetry  group.  This

concept is illustrated in the following example. 

Here is the well-known transformation for rotations in the x-y plane. This is a one-parameter 
group of transformations with parameter t. 

In[1]:= m = x * Cos@tD + y * Sin@tD;

In[2]:= n = -x * Sin@tD + y * Cos@tD;

For a fixed value of t, the point Hm, nL (in blue) can be obtained by rotating the line joining Hx, yL

(in red) to the origin through an angle of t in the counterclockwise direction.

In[3]:= Show@
8Graphics@88Red, PointSize@0.04D, Point@83 * Cos@1 ê 4D, 3 * Sin@1 ê 4D<D<, 8Blue,

PointSize@0.04D, Point@83 * Cos@H1 ê 4L + HPi ê 3LD, 3 * Sin@H1 ê 4L + HPi ê 3LD<D<,
8Green, Line@880, 0<, 83 * Cos@1 ê 4D, 3 * Sin@1 ê 4D<<D<,
8Green, Line@880, 0<, 83 * Cos@H1 ê 4L + HPi ê 3LD, 3 * Sin@H1 ê 4L + HPi ê 3LD<<D<<D,

ParametricPlot@83 * Cos@tD, 3 * Sin@tD<, 8t, 0, 2 Pi<,
DisplayFunction Ø Identity D<,

AspectRatio Ø 1, ImageSize Ø 200, Axes Ø TrueD

Out[3]=
-3 -2 -1 1 2 3

-3

-2

-1

1

2

3
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A rotation through t can be represented by the matrix

Mt =
cosHtL sinHtL
-sinHtL cosHtL

.

This shows that the set of all rotations in the plane satisfies the properties for forming a group.

In[3]:= M@t_D := 88Cos@tD, Sin@tD<, 8-Sin@tD, Cos@tD<<

In[4]:= Simplify@M@a + bD == M@aD.M@bDD

Out[4]= True

In[5]:= M@aD.M@0D == M@0D.M@aD == M@aD

Out[5]= True

In[6]:= M@0D == IdentityMatrix@2D

Out[6]= True

In[7]:= M@aD.M@-aD == M@-aD.M@aD == IdentityMatrix@2D êê Simplify

Out[7]= True

The  Lie  symmetry  method  requires  calculating  a  first-order  approximation  to  the  expressions

for the group. This approximation is called an infinitesimal generator.

This expands the expressions for m and n in a series with respect to t and around the origin 0 to 
obtain linear approximations.

In[8]:= Series@m , 8t, 0, 1<D êê Normal

Out[8]= x + t y

In[9]:= Series@n , 8t, 0, 1<D êê Normal

Out[9]= -t x + y

The coefficients of the linear terms in t are y and -x, respectively. The infinitesimal generator 
for the rotation group in the plane is defined to be the following differential operator.

In[10]:= v = Hy * D@Ò, xD - x * D@Ò, yDL &;

Starting from the infinitesimal generator, the original group can be recovered by integrating the 
fundamental system of Lie equations. For the group of rotations, the Lie equations are given by 
the first argument to DSolve shown here.

In[11]:= DSolve@8x'@tD ã y@tD, y'@tD ã -x@tD<, 8x@tD, y@tD<, tD

Out[11]= 88x@tD Ø C@1D Cos@tD + C@2D Sin@tD, y@tD Ø C@2D Cos@tD - C@1D Sin@tD<<

The rotation group arises in the study of symmetries of geometrical objects; it is an example of

a  symmetry  group.  The  infinitesimal  generator,  a  differential  operator,  is  a  convenient  local

representation for this symmetric group, which is a set of matrices.
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The rotation group arises in the study of symmetries of geometrical objects; it is an example of

a  symmetry  group.  The  infinitesimal  generator,  a  differential  operator,  is  a  convenient  local

representation for this symmetric group, which is a set of matrices.

An  expression  that  reduces  to  0  under  the  action  of  the  infinitesimal  generator  is  called  an

invariant of the group. 

Here is an invariant for this group.

In[12]:= invariant = x^2 + y^2;

This states that the distance from the origin to Hx, yL, x2 + y2 , is preserved under rotation.

In[13]:= v@invariantD

Out[13]= 0

In the following examples, these ideas are applied to differential equations.

This is an example of a Riccati equation, from page 103 of [I99].

In[14]:= Riccatiequation = y'@xD + y@xD^2 - 1 ê x^2 ã 0;

The equation is invariant under the following scaling transformation.

In[15]:= m = x * E^t;

In[16]:= n = y * E^H-tL;

The infinitesimal generator for this one-parameter group of transformations is found as before.

In[17]:= Series@m, 8t, 0, 1<D êê Normal

Out[17]= x + t x

In[18]:= Series@n, 8t, 0, 1<D êê Normal

Out[18]= y - t y

In[19]:= v = Hx * D@Ò, xD - y * D@Ò, yDL &;

Now, the Riccati equation depends on three variables: x, y = y@xD, and p = y£@xD. Hence, the infinites-

imal generator v must be prolonged to act on all three variables in this first-order equation.

It turns out that the required prolongation is as follows.

In[20]:= prolongedv = Hx * D@Ò, xD - y * D@Ò, yD - 2 p * D@Ò, pD L &;
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This shows that the expression for the Riccati equation in the Hx, y, pL coordinates is indeed 
invariant under prolongedv.

In[21]:= Riccatiexpression = p + y^2 - H1 ê x^2L;

In[22]:= prolongedv@RiccatiexpressionD ê. 8p Ø H1 ê x^2L - y^2< êê Together

Out[22]= 0

Depending on the order of the given equation, the knowledge of a symmetry (in the form of an

infinitesimal generator) can be used in three ways.

† If the order of the equation is 1, it gives an integrating factor for the ODE that makes the
equation exact and hence solvable.

† It gives a set of canonical coordinates in which the equation has a simple (integrable) form.

† It reduces the problem of solving an ODE of order n to that of solving an ODE of order n - 1,
which is typically a simpler problem.

The DSolve function checks for certain standard types of symmetries in the given ODE and uses

them to return a solution. Following are three examples of ODEs for which DSolve uses such a

symmetry method.

Here is a nonlinear first-order ODE (equation 1.120, page 315 of [K59]).

In[23]:= FirstOrderODE = x * y'@xD ã y@xD * Hx * Log@x^2 ê y@xDD + 2L;

This ODE has a symmetry with the following infinitesimal generator.

In[24]:= v = H-2 * Exp@-xD * yL * D@Ò, yD &;

The presence of this symmetry allows DSolve to calculate an integrating factor and return the 
solution.

In[25]:= sol = DSolve@FirstOrderODE, y, xD

Out[25]= 99y Ø FunctionA8x<, ‰-2 ‰-x C@1D x2E==

This verifies the solution.

In[26]:= FirstOrderODE ê. sol@@1DD ê. 8x Ø RandomReal@D, C@1D Ø RandomReal@D< êê Simplify êê
Chop

Out[26]= True

Here is a second-order nonlinear ODE, based on equation 6.93 on page 213 of [K59].

In[27]:= SecondOrderODE = x^3 * y''@xD ã 6 * Hx * y'@xD - y@xDL^2;
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This equation is invariant under the following scaling transformation.

In[28]:= m = x * E^t;

In[29]:= n = y * E^t;

The presence of this scaling symmetry allows DSolve to find new coordinates in which the 
independent variable is not explicitly present. Hence the problem is solved easily.

In[30]:= sol = DSolve@SecondOrderODE, y, xD

Solve::ifun : Inverse functions are being used by Solve, so some
solutions may not be found; use Reduce for complete solution information. à

Out[30]= ::y Ø FunctionB8x<, -
1

6
x LogB6 -

C@1D

x
- C@2D FF>>

This verifies the solution.

In[31]:= SecondOrderODE ê. sol êê Simplify

Out[31]= 8True<

Finally, here is a system of two nonlinear first-order ODEs that can be solved by using a shift: 
u@xDØ u@xD - x. After the shift, the system becomes autonomous (it does not depend explicitly on 
x) and hence it can be solved by reduction to a first-order ODE for v as a function of u. The 
Solve::ifun message can be ignored; it is generated while inverting the expression for 
Exp@vD to give an expression in terms of Log.

In[32]:= Clear@u, vD

In[33]:= NonlinearSystem = 8u'@xD ã Exp@v@xDD + 1, v'@xD ã u@xD - x<;

In[34]:= sol = DSolve@NonlinearSystem, 8u, v<, xD

Solve::ifun : Inverse functions are being used by Solve, so some
solutions may not be found; use Reduce for complete solution information. à

Out[34]= ::v Ø FunctionB8x<, LogBC@1D + C@1D TanB
1

2
2 x C@1D + 2 2 C@1D C@2D F

2

FF,

u Ø FunctionB8x<, x + 2 C@1D TanB
1

2
2 x C@1D + 2 2 C@1D C@2D FF>>

In[35]:= NonlinearSystem ê. sol êê Simplify

Out[35]= 88True, True<<

In[36]:= Clear@m, n, u, vD

This concludes the discussion of ordinary differential equations. 
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Partial Differential Equations (PDEs)

Introduction to Partial Differential Equations (PDEs)

A partial differential equation (PDE) is a relationship between an unknown function uHx1, x2, …, xnL

and its derivatives with respect to the variables x1, x2, …, xn. 

Here is an example of a PDE.

In[1]:= equation1 =
∂uHx, yL

∂x
+ x

∂uHx, yL

∂ y
 sinHxL;

PDEs occur naturally in applications; they model the rate of change of a physical quantity with

respect to both space variables and time variables. At this stage of development, DSolve  typi-

cally only works with PDEs having two independent variables.

The order of a PDE is the order of the highest derivative that occurs in it. The previous equation

is a first-order PDE.

A function uHx, yL is a solution to a given PDE if u and its derivatives satisfy the equation. 

Here is one solution to the previous equation.

In[2]:= sol = u ê. DSolve@equation1, u, 8x, y<D@@1DD ê. C@1D@t_D Ø t

Out[2]= FunctionB8x, y<, -Cos@xD +
1

2
I-x2 + 2 yMF

This verifies the solution.

In[3]:= equation1 ê. 8u Ø sol<

Out[3]= True

Here are some well-known examples of PDEs (clicking a link in the table will bring up the rele-

vant  examples).  DSolve  gives  symbolic  solutions  to  equations  of  all  these  types,  with  certain

restrictions, particularly for second-order PDEs.
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name of equation general form classification

transport equation
∂u
∂x

+ c ∂u
∂y

 0 with c constant linear first-order PDE

Burgers’ equation
∂u
∂t

+ u ∂u
∂x

 0 quasilinear first-order PDE

eikonal equation J
∂u
∂x
N
2
+ J

∂u
∂y
N
2
 1 nonlinear first-order PDE

Laplace’s equation
∂2u
∂x2

+ ∂2u
∂y2

 0 elliptic linear second-order PDE

wave equation
∂2u
∂x2

= c2 ∂2u
∂t2

 where c is the speed of light hyperbolic linear second-order 
PDE

heat equation
∂2u
∂x2

= k ∂u
∂t

 where k is the thermal 

diffusivity

parabolic linear second-order PDE

Recall  that  the general  solutions to PDEs involve arbitrary functions  rather than arbitrary con-

stants. The reason for this can be seen from the following example.

The partial derivative with respect to y does not appear in this example, so an arbitrary function 
C@1D@yD can be added to the solution, since the partial derivative of C@1D@yD with respect to x 
is 0.

In[4]:= DSolve@D@u@x, yD, xD ã 1, u@x, yD, 8x, y<D

Out[4]= 88u@x, yD Ø x + C@1D@yD<<

If  there are several arbitrary functions in the solution, they are labeled as C@1D,  C@2D,  and so

on.

First-Order PDEs

Linear and Quasi-Linear PDEs

First-order  PDEs  are  usually  classified  as  linear,  quasi-linear,  or  nonlinear.  The  first  two types

are discussed in this tutorial.

A first-order PDE for an unknown function uHx, yL is said to be linear if it can be expressed in the

form

aHx, yL
∂uHx, yL

∂x
+ bHx, yL

∂uHx, yL

∂y
+ cHx, yL uHx, yL dHx, yL.

The PDE is said to be quasilinear if it can be expressed in the form
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The PDE is said to be quasilinear if it can be expressed in the form

aHx, y, uHx, yLL
∂uHx, yL

∂x
+ bHx, y, uHx, yLL

∂uHx, yL

∂y
 cHx, y, uHx, yLL.

A PDE which is neither linear nor quasi-linear is said to nonlinear.

For  convenience,  the  symbols  z,  p,  and  q  are  used  throughout  this  tutorial  to  denote  the

unknown function and its partial derivatives.

z = uHx, yL; p =
∂uHx, yL

∂x
; q =

∂uHx, yL

∂y

Here is a linear homogeneous first-order PDE with constant coefficients. 

In[1]:= z := u@x, yD

In[2]:= p := D@u@x, yD, xD

In[3]:= q := D@u@x, yD, yD

In[4]:= eqn = 2 * p + 3 * q + z ã 0;

The  equation  is  linear  because  the  left-hand  side  is  a  linear  polynomial  in  z,  p,  and  q.  Since

there is no term free of z, p, or q, the PDE is also homogeneous. 

As mentioned earlier, the general solution contains an arbitrary function C@1D of the argument 
1
2
H2 y - 3 xL.

In[5]:= sol = DSolve@eqn, u, 8x, y<D

Out[5]= ::u Ø FunctionB8x, y<, ‰-xë2 C@1DB
1

2
H-3 x + 2 yLFF>>

This verifies that the solution is correct.

In[6]:= eqn ê. sol@@1DD êê Simplify

Out[6]= True

Particular solutions of the homogeneous PDE are obtained by specifying the function C@1D. 

In[7]:= particularsolution = u@x, yD ê. sol@@1DD ê. C@1D@a_D Ø Sin@aD

Out[7]= ‰-xë2 SinB
1

2
H-3 x + 2 yLF
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Here is a plot of the surface for this particular solution.

In[8]:= Plot3D@particularsolution, 8x, -2, 2<, 8y, -7, 7<, PlotPoints Ø 30D

Out[8]=

The  transport  equation  is  a  good  example  of  a  linear  first-order  homogeneous  PDE  with  con-

stant coefficients. 

In this transport equation, c = 1 for convenience.

In[9]:= DSolve@D@u@x, yD, xD + D@u@x, yD, yD  0, u@x, yD, 8x, y<D

Out[9]= 88u@x, yD Ø C@1D@-x + yD<<

Note  that  the  solution  to  the  transport  equation  is  constant  on  any  straight  line  of  the  form

y  x + a in the plane. These straight lines are called the base characteristic curves. The equation

y  x + a defines a plane in three dimensions. The intersections of these planes with the solution

surface are  called  characteristic  curves.  Since the characteristic  curves  are  solutions  to  a  sys-

tem of ODEs, the problem of solving the PDE is reduced to that of solving a system of ODEs for

xHtL, yHtL, and uHtL, where t is a parameter along the characteristic curves. These ODEs are called

characteristic ODEs.

The solution to an inhomogeneous PDE has two components: the general solution to the homo-

geneous PDE and a particular solution to the inhomogeneous PDE.

This is a linear inhomogeneous PDE of the first order.

In[10]:= eqn = 7 * p + 3 * q + z ã x + y;
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The first part of the solution, -10 + x + y, is the particular solution to the inhomogeneous PDE. 
The rest of the solution is the general solution to the homogenous equation.

In[11]:= sol = u@x, yD ê. DSolve@eqn, u@x, yD, 8x, y<D@@1DD êê Expand

Out[11]= -10 + x + y + ‰-xë7 C@1DB
1

7
H-3 x + 7 yLF

Here is a linear homogeneous PDE with variable coefficients.

In[12]:= eqn = Sin@xD * p + E^x * q ã 0;

In[13]:= sol = DSolve@eqn, u, 8x, y<D

Out[13]= ::u Ø FunctionB8x, y<, C@1DBy + H1 + ÂL ‰H1+ÂL x Hypergeometric2F1B
1

2
-

Â

2
, 1,

3

2
-

Â

2
, ‰2 Â xFFF>>

This verifies the solution.

In[14]:= eqn ê. sol@@1DD êê Simplify

Out[14]= True

Here is a linear inhomogeneous PDE with variable coefficients.

In[15]:= eqn = p + x * q ã Cos@xD;

The solution is once again composed of the general solution to the homogeneous PDE and a 
particular solution, Sin@xD, to the inhomogeneous PDE.

In[16]:= sol = DSolve@eqn, u, 8x, y<D

Out[16]= ::u Ø FunctionB8x, y<, Sin@xD + C@1DB
1

2
I-x2 + 2 yMFF>>

Now consider some examples of first-order quasi-linear PDEs. 

This PDE is quasi-linear because of the term z2 on the right-hand side.

In[17]:= eqn = p + x * q ã z^2 + 5;

In[18]:= sol = DSolve@eqn, u, 8x, y<D

Solve::ifun : Inverse functions are being used by Solve, so some
solutions may not be found; use Reduce for complete solution information. à

Out[18]= ::u Ø FunctionB8x, y<, 5 TanB 5 x + 5 C@1DB
1

2
I-x2 + 2 yMFFF>>

This verifies the solution.

In[19]:= eqn ê. sol@@1DD êê Simplify

Out[19]= True

Burgers’ equation is an important example of a quasi-linear PDE. 
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Burgers’ equation is an important example of a quasi-linear PDE. 

∂uHx, yL

∂x
+ uHx, yL

∂uHx, yL

∂y
 0

 It can be written using the notation introduced earlier. 

In[20]:= BurgersEquation = p + z q ã 0;

 The term z q makes this equation quasi-linear.

This solves the equation. 

In[21]:= sol = DSolve@BurgersEquation, u, 8x, y<D

Out[21]= Solve@C@1D@u@x, yD, y - x u@x, yDD ã 0, u@x, yDD

This verifies the solution to Burgers' equation.

In[22]:= p1 = p ê. Solve@D@sol@@1DD, xD, pD@@1DD;

In[23]:= q1 = q ê. Solve@D@sol@@1DD, yD, qD@@1DD;

In[24]:= p1 + z * q1

Out[24]= 0

A  practical  consequence  of  quasi-linearity  is  the  appearance  of  shocks  and  steepening  and

breaking of solutions. Thus, although the procedures for finding general solutions to linear and

quasi-linear PDEs are quite similar, there are sharp differences in the nature of the solutions.

Nonlinear PDEs

The general first-order nonlinear PDE for an unknown function uHx, yL is given by

FHu, p, qL 0.

Here F is a function of u = uHx, yL, p =
∂uHx,yL
∂x

, and q =
∂uHx,yL
∂y

.

The term “nonlinear” refers to the fact  that F  is  a nonlinear function of  p  and q.  For instance,

the eikonal equation involves a quadratic expression in p and q.

The general solution to a first-order linear or quasi-linear PDE involves an arbitrary function. If

the PDE is nonlinear, a very useful solution is given by the complete integral. This is a function

of  uHx, y, C@1D, C@2DL,  where  C@1D  and  C@2D  are  independent  parameters  and  u  satisfies  the

PDE for all values of HC@1D, C@2DL in an open subset of the plane. The complete integral can be

used to find a general solution for the PDE as well as to solve initial value problems for it. 
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The general solution to a first-order linear or quasi-linear PDE involves an arbitrary function. If

the PDE is nonlinear, a very useful solution is given by the complete integral. This is a function

of  uHx, y, C@1D, C@2DL,  where  C@1D  and  C@2D  are  independent  parameters  and  u  satisfies  the

PDE for all values of HC@1D, C@2DL in an open subset of the plane. The complete integral can be

used to find a general solution for the PDE as well as to solve initial value problems for it. 

Here is a simple nonlinear PDE. 

In[1]:= z := u@x, yD

In[2]:= p := D@u@x, yD, xD

In[3]:= q := D@u@x, yD, yD

In[4]:= eqn = p * q ã 1;

The complete integral depends on the parameters C@1D and C@2D. Since DSolve returns a 
general solution for linear and quasi-linear PDEs, a warning message appears before a complete 
integral is returned.

In[5]:= sol = DSolve@eqn, u, 8x, y<D

DSolve::nlpde :
Solution requested to nonlinear partial differential equation. Trying to build a special solution. à

Out[5]= ::u Ø FunctionB8x, y<, C@1D +
x

C@2D
+ y C@2DF>>

This verifies the solution.

In[6]:= eqn ê. sol

Out[6]= 8True<

If  the  values  of  C@1D  and  C@2D  are  fixed,  the  previous  solution  represents  a  plane  in  three

dimensions. Thus, the complete integral for this PDE is a two-parameter family of planes, each

of which is a solution surface for the equation.

Next, the envelope of a one-parameter family of surfaces is a surface that touches each mem-

ber of the family. If the complete integral is restricted to a one-parameter family of planes, for

example  by  setting  C@2D = 5 C@1D,  the  envelope  of  this  family  is  also  a  solution  to  the  PDE

called a general integral. 
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This finds the envelope of the one-parameter family given by setting C@2D = 5 C@1D in the 
complete integral for the preceding PDE p * q == 1.

In[7]:= oneparametersol = u@x, yD ã Hu@x, yD ê. sol@@1DD ê. C@2D Ø 5 * C@1DL

Out[7]= u@x, yD ã
x

5 C@1D
+ C@1D + 5 y C@1D

In[8]:= oneparameterenvelope =
Eliminate@8oneparametersol, D@oneparametersol, C@1DD<, 8C@1D<D

Out[8]= 5 u@x, yD2 ã x H4 + 20 yL

This verifies that the envelope surface is a solution to the PDE.

In[9]:= p1 = D@u@x, yD, xD ê. Solve@D@oneparameterenvelope, xD, D@u@x, yD, xDD@@1DD

Out[9]=
2 H1 + 5 yL

5 u@x, yD

In[10]:= q1 = D@u@x, yD, yD ê. Solve@D@oneparameterenvelope, yD, D@u@x, yD, yDD@@1DD

Out[10]=
2 x

u@x, yD

In[11]:= FullSimplify@p1 * q1, 8oneparameterenvelope<D

Out[11]= 1

Like  nonlinear  ODEs,  some nonlinear  PDEs  also  have  a  singular  solution  (or  singular  integral)

that  is  obtained  by  constructing  the  envelope  of  the  entire  two-parameter  family  of  surfaces

represented by the complete integral.

Here is an example of such a construction, (equation 6.4.13, page 429 of [K00]).

In[12]:= sol = DSolve@4 z + p^2 + q^2 ã 4, u, 8x, y<D

DSolve::nlpde :
Solution requested to nonlinear partial differential equation. Trying to build a special solution. à

Out[12]= ::u Ø FunctionB8x, y<,
1 - y2 - 2 x y C@1D + C@1D2 - x2 C@1D2 - 2 y C@2D - 2 x C@1D C@2D - C@2D2

1 + C@1D2
F>>

In[13]:= twoparameterfamily = u@x, yD ã Hu@x, yD ê. sol@@1DDL

Out[13]= u@x, yD ã
1 - y2 - 2 x y C@1D + C@1D2 - x2 C@1D2 - 2 y C@2D - 2 x C@1D C@2D - C@2D2

1 + C@1D2

In[14]:= envelopeoftwoparameterfamily =
Eliminate@8twoparameterfamily, D@twoparameterfamily, C@1DD,

D@twoparameterfamily, C@2DD<, 8C@1D, C@2D<D
Out[14]= u@x, yD ã 1

Thus, the singular integral for this PDE is a plane parallel to the x-y plane.
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Thus, the singular integral for this PDE is a plane parallel to the x-y plane.

To summarize, the complete integral for a nonlinear PDE includes a rich variety of solutions.

† Every member of the two-parameter family gives a particular solution to the PDE.

† The envelope of any one-parameter family is a solution called a general integral of the PDE.

† The envelope of the entire two-parameter family is a solution called the singular integral of
the PDE.

† The  complete  integral  is  not  unique,  but  any  other  complete  integral  for  the  PDE  can  be
obtained from it by the process of envelope formation.

These remarkable properties account for the usefulness of the complete integral in geometrical

optics,  dynamics,  and  other  areas  of  application.  Following  are  various  examples  of  nonlinear

PDEs that show different kinds of complete integrals.

Here is the complete integral for the eikonal equation.

In[15]:= Eikonal = D@u@x, yD, xD^2 + D@u@x, yD, yD^2 == 1;

In[16]:= sol = DSolve@Eikonal, u, 8x, y<D

DSolve::nlpde :
Solution requested to nonlinear partial differential equation. Trying to build a special solution. à

Out[16]= ::u Ø FunctionB8x, y<, C@1D + y C@2D - x 1 - C@2D2 F>,

:u Ø FunctionB8x, y<, C@1D + y C@2D + x 1 - C@2D2 F>>

This  complete integral  is  a  two-parameter  family  of  planes.  This  type of  solution arises when-

ever the PDE depends explicitly only on p and q, but not on u@x, yD, x, or y. For a fixed value of

u@x, yD, it is a line in the plane at a distance of C@1D units from the origin that makes an angle of

ArcCos@C@2DD with the x axis. This is the familiar picture of wave-front propagation from geo-

metrical optics.

This verifies the solution for the eikonal equation.

In[17]:= Eikonal ê. sol

Out[17]= 8True, True<

This is an example of a Clairaut equation (z = p x + q y + f Hp, qL). 

In[18]:= Clairaut = z ã x * p + y * q + 2 p * q * Sqrt@1 - p^2D;
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Once again, the complete integral is a family of planes.

In[19]:= sol = DSolve@Clairaut, u, 8x, y<D

DSolve::nlpde :
Solution requested to nonlinear partial differential equation. Trying to build a special solution. à

Out[19]= ::u Ø FunctionB8x, y<, x C@1D + y C@2D + 2 C@1D 1 - C@1D2 C@2DF>>

This verifies the solution.

In[20]:= Clairaut ê. sol

Out[20]= 8True<

In the following equation, the variables can be separated; that is, the PDE can be written in the 
form f Hx, pL gHy, qL. Hence, the equation can be integrated easily.

In[21]:= Separable = p^2 + a * q ã x + 3 y;

In[22]:= sol = DSolve@Separable, u, 8x, y<D

DSolve::nlpde :
Solution requested to nonlinear partial differential equation. Trying to build a special solution. à

Out[22]= ::u Ø FunctionB8x, y<,
3 y2

2 a
-
2

3
Hx - C@1DL3ë2 +

y C@1D

a
+ C@2DF>,

:u Ø FunctionB8x, y<,
3 y2

2 a
+
2

3
Hx - C@1DL3ë2 +

y C@1D

a
+ C@2DF>>

This verifies the solution.

In[23]:= Separable ê. sol êê Simplify

Out[23]= 8True, True<

In this example (equation 6.49, page 202 of [K74]), the independent variables x and y are not 
explicitly present.

In[24]:= MissingIndependentVariables = a * p^2 + b * p * q ã c * z^2;

In[25]:= sol = DSolve@MissingIndependentVariables, u, 8x, y<D

DSolve::nlpde :
Solution requested to nonlinear partial differential equation. Trying to build a special solution. à

Out[25]= ::u Ø FunctionB8x, y<, ‰

-
Â c y

-b CA1E-a CA1E2

-
Â c x CA1E

-b CA1E-a CA1E2

-
Â c CA2E

-b CA1E-a CA1E2

F>>

64     Differential Equation Solving with DSolve



This verifies the solution.

In[26]:= MissingIndependentVariables ê. sol êê Simplify

Out[26]= 8True<

Often  a  coordinate  transformation  can  be  used  to  cast  a  given  PDE  into  one  of  the  previous

types. The expression for the complete integral  will  then have the same form as for the stan-

dard types.  Here are some examples of  nonlinear PDEs for  which DSolve  applies a coordinate

transformation to find the complete integral.

This PDE (equation 6.47, page 201 of [K74]) can be reduced to the form f Hp, qL 0 using the 
transformation X = logHxL and Y = logHyL. 

In[27]:= DSolve@x * y * p * q ã 1, u@x, yD, 8x, y<D

DSolve::nlpde :
Solution requested to nonlinear partial differential equation. Trying to build a special solution. à

Out[27]= ::u@x, yD Ø C@2D + C@1D Log@xD +
Log@yD

C@1D
>>

This PDE (equation 6.93, page 213 of [K74]) can be solved easily in a polar coordinate system, 
in which the variables are separable.

In[28]:= DSolve@Hy * p - x * qL^2 + a * Hx * p + y * qL ã b, z, 8x, y<D

DSolve::nlpde :
Solution requested to nonlinear partial differential equation. Trying to build a special solution. à

Out[28]= ::u@x, yD Ø -ArcTanB
y

x
F C@1D + C@2D +

b LogB x2 + y2 F

a
-
C@1D LogB x2 + y2 F

a
>>

This equation (equation 6.36, page 196 of [K74]) can be transformed into a linear PDE using a 
Legendre transformation.

In[29]:= LegendreTransformable = y * p * q - z * p + a * q ã 0;

In[30]:= sol = DSolve@LegendreTransformable, u, 8x, y<D

DSolve::nlpde :
Solution requested to nonlinear partial differential equation. Trying to build a special solution. à

Out[30]= ::u Ø FunctionB8x, y<,

1

4 C@1D
-y H-2 x + 2 C@2DL - y2 H-2 x + 2 C@2DL2 + 8 a C@1D Ix2 - 2 x C@2D + C@2D2M F>, :u Ø

FunctionB8x, y<,
1

4 C@1D
-y H-2 x + 2 C@2DL + y2 H-2 x + 2 C@2DL2 + 8 a C@1D Ix2 - 2 x C@2D + C@2D2M F>>
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This verifies the solution.

In[31]:= LegendreTransformable ê. sol êê Simplify

Out[31]= 8True, True<

It  should  be  noted  that  there  is  no  general  practical  algorithm for  finding  complete  integrals,

and that the answers are often available only in implicit form.

The solution to this example (problem 2, page 66 of [S57]) is in implicit form.

In[32]:= sol = DSolve@H1 + q^2L * z ã p * x, u, 8x, y<D

DSolve::nlpde :
Solution requested to nonlinear partial differential equation. Trying to build a special solution. à

Solve::tdep:
The equations appear to involve the variables to be solved for in an essentially non-algebraic way. à

Solve::tdep:
The equations appear to involve the variables to be solved for in an essentially non-algebraic way. à

Out[32]= SolveB
1

2
C@1D LogB-C@1D + C@1D2 - 4 u@x, yD2 F + C@1D2 - 4 u@x, yD2 ã y + C@2D + C@1D Log@xD, u@x, yDF

The solution can be verified as follows.

In[33]:= p = D@u@x, yD, xD ê. Solve@D@sol@@1DD, xD, D@u@x, yD, xDD@@1DD

Out[33]=

C@1D C@1D - C@1D2 - 4 u@x, yD2

2 x u@x, yD

In[34]:= q = D@u@x, yD, yD ê. Solve@D@sol@@1DD, yD, D@u@x, yD, yDD@@1DD

Out[34]=
C@1D - C@1D2 - 4 u@x, yD2

2 u@x, yD

In[35]:= H1 + q^2L * z - p * x êê Simplify

Out[35]= 0

Second-Order PDEs

The general form of a linear second-order PDE is 

a
∂2 u

∂x2
+ b

∂2 u

∂x∂y
+ c

∂2 u

∂y2
+ d

∂u

∂x
+ e

∂u

∂y
+ f u  g.

Here u = uHx, yL, and a, b, c, d, e, f , and g are functions of x and y only~they do not depend on u.

If g = 0, the equation is said to be homogeneous.
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Here u = uHx, yL, and a, b, c, d, e, f , and g are functions of x and y only~they do not depend on u.

If g = 0, the equation is said to be homogeneous.

The first three terms containing the second derivatives are called the principal part of the PDE.

They determine the  nature  of  the  general  solution  to  the  equation.  In  fact,  the  coefficients  of

the principal part can be used to classify the PDE as follows.

The PDE is said to be elliptic if b2 - 4 a c < 0. The Laplace equation has a = 1, b = 0, and c = 1 and is

therefore an elliptic PDE.

The PDE is said to be hyperbolic if b2 - 4 a c > 0. The wave equation has a = 1, b = 0, and c = -1 and

is therefore a hyperbolic PDE.

The PDE is said to be parabolic if b2 - 4 a c = 0. The heat equation has a = 1, b = 0, and c = 0 and is

therefore a parabolic PDE.

DSolve  can find the general solution for a restricted type of homogeneous linear second-order

PDEs; namely, equations of the form

a
∂2 u

∂x2
+ b

∂2 u

∂x∂y
+ c

∂2 u

∂y2
= 0.

Here  a,  b,  and  c  are  constants.  Thus,  DSolve  assumes  that  the  equation  has  constant  coeffi-

cients and a vanishing non-principal part.

Following  are  some examples  of  the  three  basic  types  (elliptic,  hyperbolic,  and parabolic)  and

an explanation of their significance.

Here is the general solution for Laplace’s equation, an elliptic PDE.

In[1]:= LaplaceEquation = D@u@x, yD, 8x, 2<D + D@u@x, yD, 8y, 2<D ã 0;

In[2]:= DSolve@LaplaceEquation, u@x, yD, 8x, y<D

Out[2]= 88u@x, yD Ø C@1D@Â x + yD + C@2D@-Â x + yD<<

This general solution contains two arbitrary functions, C@1D and C@2D. The arguments of these

functions,  y + Â x  and  y - Â x,  indicate  that  the  solution  is  constant  along  the  imaginary  straight

line  y = -Â x + a  when  C@2D ã 0  and  along  y = Â x + a  when  C@1D ã 0  .  These  straight  lines  are

called  characteristic  curves  of  the  PDE.  In  general,  elliptic  PDEs  have  imaginary  characteristic

curves.
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Here is another elliptic PDE.

In[3]:= a = 3; b = 1; c = 5; b^2 - 4 a * c

Out[3]= -59

In[4]:= eqn = a * D@u@x, yD, 8x, 2<D + b * D@u@x, yD, x, yD + c * D@u@x, yD, 8y, 2<D ã 0;

Note the imaginary characteristic curves for the equation. 

In[5]:= sol = DSolve@eqn, u, 8x, y<D

Out[5]= ::u Ø FunctionB8x, y<, C@1DB
1

6
-1 + Â 59 x + yF + C@2DB

1

6
-1 - Â 59 x + yFF>>

The solution is verified as follows.

In[6]:= eqn ê. sol êê Simplify

Out[6]= 8True<

This finds the general solution of the wave equation, a hyperbolic PDE. The constant c in the 
wave equation represents the speed of light and is set to 1 here for convenience.

In[7]:= WaveEquation = D@u@x, tD, 8x, 2<D - D@u@x, tD, 8t, 2<D ã 0;

In[8]:= DSolve@WaveEquation , u@x, tD, 8t, x<D

Out[8]= 88u@x, tD Ø C@1D@-t + xD + C@2D@t + xD<<

The  characteristic  lines  for  the  wave  equation  are  x = k + t  and  x = k - t  where  k  is  an  arbitrary

constant. Hence the wave equation (or any hyperbolic PDE) has two families of real characteris-

tic curves. If initial conditions are specified for the wave equation, the solution propagates along

the characteristic lines. Also, any fixed pair of characteristic lines determine the null cone of an

observer sitting at their intersection.

Here is another example of a hyperbolic PDE.

In[9]:= a = 2; b = 7; c = -1; b^2 - 4 a * c

Out[9]= 57

In[10]:= eqn = a * D@u@x, yD, 8x, 2<D + b * D@u@x, yD, x, yD + c * D@u@x, yD, 8y, 2<D ã 0;

Notice that the equation has two families of real characteristics.

In[11]:= sol = DSolve@eqn, u, 8x, y<D

Out[11]= ::u Ø FunctionB8x, y<, C@1DB-
1

4
7 + 57 x + yF + C@2DB-

1

4
7 - 57 x + yFF>>

The solution can be verified as follows.
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The solution can be verified as follows.

In[12]:= eqn ê. sol êê Simplify

Out[12]= 8True<

Finally, here is an example of a parabolic PDE.

In[13]:= a = 3; b = 30; c = 75; b^2 - 4 a * c

Out[13]= 0

In[14]:= eqn = a * D@u@x, yD, 8x, 2<D + b * D@u@x, yD, x, yD + c * D@u@x, yD, 8y, 2<D ã 0;

In[15]:= sol = DSolve@eqn, u, 8x, y<D

Out[15]= 88u Ø Function@8x, y<, C@1D@-5 x + yD + x C@2D@-5 x + yDD<<

The  equation  has  only  one  family  of  real  characteristics,  the  lines  y = 5 x + a.  In  fact,  any

parabolic PDE has only a single family of real characteristics. 

The solution can be verified as follows.

In[16]:= eqn ê. sol êê Simplify

Out[16]= 8True<

The heat equation is parabolic, but it is not considered here because it has a nonvanishing non-

principal part, and the algorithm used by DSolve is not applicable in this case.
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Differential-Algebraic Equations (DAEs)

Introduction to Differential-Algebraic Equations 
(DAEs)

The systems of equations that govern certain phenomena (in electrical circuits, chemical kinet-

ics, etc.) contain a combination of differential equations and algebraic equations. The differen-

tial  equations  are  responsible  for  the  dynamical  evolution  of  the  system,  while  the  algebraic

equations serve to constrain the solutions to certain manifolds. It is therefore of some interest

to study the solutions of such differential-algebraic equations (DAEs).

Here is a simple example of a DAE. The first equation is an ODE for the function x@tD, while the 
second equation constrains the functions x@tD and y@tD to lie in a submanifold (a straight line) in 
8x, y< space. 

In[1]:= dae = 8x'@tD ã y@tD, x@tD + y@tD ã 1<;

These tutorials are restricted to linear DAEs, which are defined as systems of equations of the

following type.

A.x£HtL + B.xHtL F

Here A and B are matrix functions of the independent variable t, F is a vector function of t, and

xHtL  is  the vector of unknowns. If  the matrix A  is  nonsingular (that is,  invertible) then this is a

system of ODEs. Thus, the system is a DAE if the matrix A is singular.

If F  0, then the system is said to be homogeneous. As for ODEs, the general solution to a DAE

is composed of the general solution to the corresponding homogeneous problem and a particu-

lar solution to the inhomogeneous system.

DSolve can find the solutions to all DAEs in which the entries of the matrices A and B are con-

stants.  Such  DAEs  are  said  to  have  constant  coefficients.  The  algorithm  used  by  DSolve  is

based on decomposing both A and B into a nonsingular and nilpotent part. This decomposition is

used  to  calculate  a  generalized  inverse  for  A  and  B,  which  effectively  reduces  the  problem to

solving a system of ODEs.

It is important to realize that the initial values for a DAE must be prescribed carefully to guaran-

tee  a  solution  for  the  problem.  This  can  be  seen  by  considering  the  following  system  of

equations.
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It is important to realize that the initial values for a DAE must be prescribed carefully to guaran-

tee  a  solution  for  the  problem.  This  can  be  seen  by  considering  the  following  system  of

equations.

8x1HtL + x2£HtL 0, x2HtL 0, x1H0L 1, x2H0L 0<

This gives

x2HtL 0ïx2£HtL 0ïx1HtL 0.

Hence the only solution is

x1HtL 0 and x2HtL 0.

But this solution is inconsistent with the initial condition x1H0L 1.

DSolve can solve DAEs with constant coefficients; see "Examples of DAEs".

Examples of DAEs

This is a simple homogeneous DAE with constant coefficients.

In[1]:= eqns = 8x'@tD - y@tD ã 0, x@tD + y@tD == 0<;

This finds the general solution. It has only one arbitrary constant because the second equation 
in the system specifies the relationship between x@tD and y@tD.

In[2]:= sol = DSolve@eqns, 8x, y<, tD

Out[2]= ::x Ø FunctionB8t<,
1

4
‰-t C@1DF, y Ø FunctionB8t<, -

1

4
‰-t C@1DF>>

This verifies the solution.

In[3]:= eqns ê. sol êê Simplify

Out[3]= 88True, True<<

Here is an inhomogeneous system derived from the previous example.

In[4]:= eqns = 8x'@tD - y@tD ã Sin@tD, x@tD + y@tD == 1<;
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The general solution is composed of the general solution to the corresponding homogeneous 
system and a particular solution to the inhomogeneous equation.

In[5]:= sol = 8x@tD, y@tD< ê. DSolve@eqns, 8x@tD, y@tD<, tD@@1DD êê Expand

Out[5]= :1 +
1

4
‰-t C@1D -

Cos@tD

2
+
Sin@tD

2
, -

1

4
‰-t C@1D +

Cos@tD

2
-
Sin@tD

2
>

This solves an initial value problem for the previous equation.

In[6]:= eqns = 8x'@tD - y@tD ã Sin@tD, x@tD + y@tD == 1, x@PiD == 1 ê 2<;

In[7]:= sol = DSolve@eqns, 8x, y<, tD

Out[7]= ::x Ø FunctionB8t<, -
1

2
‰-t I2 ‰p - 2 ‰t + ‰t Cos@tD - ‰t Sin@tDMF,

y Ø FunctionB8t<,
1

2
‰-t I2 ‰p + ‰t Cos@tD - ‰t Sin@tDMF>>

Here is a plot of the solution and the constraint (algebraic) condition.

In[8]:= Plot@8x@tD ê. sol, y@tD ê. sol, Hx@tD + y@tDL ê. sol<, 8t, 3, 8<D

Out[8]=

4 5 6 7 8

-0.5

0.5

1.0

1.5

In this DAE, the inhomogeneous part is quite general. 

In[9]:= Clear@x, y, z, f, g, h, tD

In[10]:= eqns = 8x@tD + y'@tD ã f@tD, 2 y@tD + z'@tD ã g@tD, 5 z@tD ã h@tD<;

Note that there are no degrees of freedom in the solution (that is, there are no arbitrary con-
stants) because z@tD  is given algebraically, and thus x@tD  and y@tD  can be determined uniquely 
from z@tD  using differentiation.

In[11]:= sol = DSolve@eqns, 8x, y, z<, tD

Out[11]= ::x Ø FunctionB8t<, f@tD -
g£@tD

2
+
h££@tD

10
F, y Ø FunctionB8t<,

g@tD

2
-
h£@tD

10
F, z Ø FunctionB8t<,

h@tD

5
F>>

In[12]:= eqns ê. sol êê Simplify

Out[12]= 88True, True, True<<

In this example, the algebraic constraint is present only implicitly: all three equations contain 
derivatives of the unknown functions.
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In this example, the algebraic constraint is present only implicitly: all three equations contain 
derivatives of the unknown functions.

In[13]:= Clear@x1, x2, x3, t, eqnsD

In[14]:= eqns = 8x2@tD + 2 x3@tD + x1£@tD - 2 x3£@tD == 0,
-27 x1@tD - 22 x2@tD - 17 x3@tD - x1£@tD + 2 x3£@tD == 0,
18 x1@tD + 14 x2@tD + 10 x3@tD + 2 x1£@tD + 3 x2£@tD + 2 x3£@tD == 0<;

The Jacobian with respect to the derivatives of the unknown functions is singular, so that it is 
not possible to solve for them.

In[15]:= A = D@eqns@@All, 1DD, 88x1'@tD, x2'@tD, x3'@tD<<D

Out[15]= 881, 0, -2<, 8-1, 0, 2<, 82, 3, 2<<

In[16]:= Det@AD

Out[16]= 0

The differential-algebraic character of this problem is clear from the smaller number of arbitrary 
constants (two rather than three) in the general solution.

In[17]:= sol = DSolve@eqns, 8x1, x2, x3<, tD

Out[17]= ::x1 Ø FunctionB8t<, -C@1D - 3 ‰2 të3 C@2D +
3

2
I-1 + ‰2 të3M C@2DF,

x2 Ø FunctionB8t<, -9 ‰2 të3 C@2D + 2 C@1D -
3

2
I-1 + ‰2 të3M C@2D F,

x3 Ø FunctionB8t<, -C@1D + 18 ‰2 të3 C@2D +
3

2
I-1 + ‰2 të3M C@2DF>>

Systems of  equations with  higher-order  derivatives  are solved by reducing them to first-order

systems.

Here is the general solution to a homogeneous DAE of order two with constant coefficients.

In[18]:= eqns = 8x''@tD == y@tD, x@tD + 4 y@tD == 0<;

In[19]:= sol = DSolve@eqns, 8x, y<, tD

Out[19]= ::x Ø FunctionB8t<,
176

125
C@2D CosB

t

2
F -

1

2
C@1D SinB

t

2
F +

16

125
C@1D CosB

t

2
F + 2 C@2D SinB

t

2
F F,

y Ø FunctionB8t<, -
44

125
C@2D CosB

t

2
F -

1

2
C@1D SinB

t

2
F -

4

125
C@1D CosB

t

2
F + 2 C@2D SinB

t

2
F F>>

In[20]:= eqns ê. sol êê Simplify

Out[20]= 88True, True<<

This inhomogeneous system of ODEs is based on the previous example.

In[21]:= eqns = 8x''@tD == y@tD, x@tD + 4 y@tD == 6 Sin@tD<;
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In[22]:= sol = DSolve@eqns, 8x, y<, tD

Out[22]= ::x Ø FunctionB8t<,
176

125
C@2D CosB

t

2
F -

1

2
C@1D SinB

t

2
F +

1

16
H-8 Cos@tD - 22 Sin@tDL +

16

125
C@1D CosB

t

2
F + 2 C@2D SinB

t

2
F +

1

8
H44 Cos@tD - 4 Sin@tDL F,

y Ø FunctionB8t<, -
44

125
C@2D CosB

t

2
F -

1

2
C@1D SinB

t

2
F +

1

16
H-8 Cos@tD - 22 Sin@tDL -

4

125
C@1D CosB

t

2
F + 2 C@2D SinB

t

2
F +

1

8
H44 Cos@tD - 4 Sin@tDL +

3 Sin@tD

2
F>>

In[23]:= eqns ê. sol êê Simplify

Out[23]= 88True, True<<

Here is an initial value problem for the previous system of equations.

In[24]:= eqns = 8x''@tD == y@tD, x@tD + 4 y@tD == Sin@tD, x@PiD == 1, x'@PiD == 0<;

In[25]:= sol = DSolve@eqns, 8x, y<, tD

Out[25]= ::x Ø FunctionB8t<,
1

3
2 CosB

t

2
F + 3 SinB

t

2
F - Sin@tD F,

y Ø FunctionB8t<,
1

12
-2 CosB

t

2
F - 3 SinB

t

2
F + 4 Sin@tD F>>

Here is a plot of the solution.

In[26]:= Plot@8x@tD ê. sol, y@tD ê. sol<, 8t, -7, 7<D

Out[26]=
-6 -4 -2 2 4 6

-1.5

-1.0

-0.5

0.5

1.0

Finally, here is a system with a third-order ODE. Since the coefficients are exact quantities, the 
computation takes some time.

In[27]:= Clear @p, q, rD

In[28]:= eqns = 8p'''@tD - q@tD + r@tD - Sin@tD, p''@tD - r@tD - Cos@tD,
p'@tD - q@tD + 4, p@0D - 1, p'@0D - 1, p''@0D - 1<;

74     Differential Equation Solving with DSolve



In[29]:=
Timing@sol = DSolve@HÒ1 == 0 &L êü eqns, 8p, q, r<, tDD

Out[29]= :9.156,

::p Ø FunctionB8t<, -
1

5 J-1 + 5 N J1 + 5 N

4 -410 - 17 ‰
1

2
-1- 5 t

+ 9 5 ‰
1

2
-1- 5 t

- 17 ‰
1

2
-1+ 5 t

-

9 5 ‰
1

2
-1+ 5 t

+ 440 ‰
t

2
+

5 t

2
+
1

2
-1- 5 t

+ 20 t - 34 Cos@tD +

33 ‰
t

2
+

5 t

2
+
1

2
-1- 5 t

Cos@tD - 118 Sin@tD + 121 ‰
t

2
+

5 t

2
+
1

2
-1- 5 t

Sin@tD F,

q Ø FunctionB8t<,
1

5
20 + 14 ‰

1

2
-1- 5 t

- 4 5 ‰
1

2
-1- 5 t

+ 14 ‰
1

2
-1+ 5 t

+ 4 5 ‰
1

2
-1+ 5 t

-

20 ‰
t

2
+

5 t

2
+
1

2
-1- 5 t

- 3 ‰
t

2
+

5 t

2
+
1

2
-1- 5 t

Cos@tD - ‰
t

2
+

5 t

2
+
1

2
-1- 5 t

Sin@tD F,

r Ø FunctionB8t<,
1

5
3 ‰

1

2
-1- 5 t

- 5 5 ‰
1

2
-1- 5 t

+ 3 ‰
1

2
-1+ 5 t

+ 5 5 ‰
1

2
-1+ 5 t

-

5 Cos@tD - ‰
t

2
+

5 t

2
+
1

2
-1- 5 t

Cos@tD + 3 ‰
t

2
+

5 t

2
+
1

2
-1- 5 t

Sin@tD F>>>

In[30]:= eqns ê. sol êê Simplify

Out[30]= 880, 0, 0, 0, 0, 0<<

The symbolic solution of DAEs that are nonlinear or have non-constant coefficients is a difficult

problem.  Such  systems  can  often  be  solved  numerically  with  the  Mathematica  function

NDSolve. 
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Initial and Boundary Value Problems

Introduction to Initial and Boundary Value Problems

DSolve  can  be  used  for  finding  the  general  solution  to  a  differential  equation  or  system  of

differential  equations.  The  general  solution  gives  information  about  the  structure  of  the  com-

plete solution space for the problem. However, in practice, one is often interested only in particu-

lar solutions that satisfy some conditions related to the area of application. These conditions are 

usually of two types.

† The solution xHtL and/or its derivatives are required to have specific values at a single point,
for  example,  xH0L 1  and  x£H0L 2.  Such  problems  are  traditionally  called  initial  value  prob-
lems (IVPs) because the system is assumed to start evolving from the fixed initial point (in
this case, 0).

† The solution xHtL is required to have specific values at a pair of points, for example, xH0L 3
and  xH1L 5.  These  problems  are  known  as  boundary  value  problems  (BVPs)  because  the
points 0 and 1 are regarded as boundary points (or edges) of the domain of interest in the
application.

The symbolic solution of both IVPs and BVPs requires knowledge of the general solution for the

problem. The final step, in which the particular solution is obtained using the initial or boundary

values, involves mostly algebraic operations, and is similar for IVPs and for BVPs.

IVPs and BVPs for linear differential equations are solved rather easily since the final algebraic

step involves the solution of linear equations. However, if the underlying equations are nonlin-

ear,  the  solution  could  have  several  branches,  or  the  arbitrary  constants  from  the  general

solution  could  occur  in  different  arguments  of  transcendental  functions.  As  a  result,  it  is  not

always possible to complete the final algebraic step for nonlinear problems. Finally, if the under-

lying equations have piecewise  (that is, discontinuous) coefficients, an IVP naturally breaks up

into simpler IVPs over the regions in which the coefficients are continuous. 
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Linear IVPs and BVPs

To begin, consider an initial value problem for a linear first-order ODE.

This is a linear first-order ODE.

In[1]:= linearequation = y'@tD - 3 * t * y@tD ã 1;

Notice that the general solution is a linear function of the arbitrary constant C@1D.

In[2]:= generalsolution = DSolve@linearequation, y@tD, tD

Out[2]= ::y@tD Ø ‰
3 t2

2 C@1D + ‰
3 t2

2

p

6
ErfB

3

2
tF>>

This finds a particular solution for the initial condition y@0D == 4.

In[3]:= particularsolution = DSolve@8linearequation, y@0D ã 4<, y, tD

Out[3]= ::y Ø FunctionB8t<,
1

6
‰

3 t2

2 24 + 6 p ErfB
3

2
tF F>>

This verifies that the solution satisfies both the equation and the initial condition.

In[4]:= linearequation ê. particularsolution@@1DD

Out[4]= True

In[5]:= y@0D ê. particularsolution@@1DD

Out[5]= 4

Here is the solution to the same problem with the general initial condition y@0D == a.

In[6]:= particularsolution = DSolve@8linearequation, y@0D ã a<, y, tD

Out[6]= ::y Ø FunctionB8t<,
1

6
‰

3 t2

2 6 a + 6 p ErfB
3

2
tF F>>
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This plots several integral curves of the equation for different values of a. The plot shows that 
the solutions have an inflection point if the parameter a lies between -1 and 1, while a global 
maximum or minimum arises for other values of a.

In[7]:= Plot@Evaluate@Table@y@tD ê. particularsolution@@1DD ê. a Ø i, 8i, -2, 2, 0.6<DD,
8t, -1.8, 1.8<, PlotRange Ø 8-4, 4<D

Out[7]=
-1.5 -1.0 -0.5 0.5 1.0 1.5

-4

-2

2

4

Here is the solution to a linear second-order equation with initial values prescribed for x@tD and 
x£@tD at t == 0.

In[8]:= linearsecondorderODE = x''@tD + 5 * x'@tD + 6 * x@tD ã 0;

In[9]:= generalsolution = DSolve@linearsecondorderODE, x, tD

Out[9]= 99x Ø FunctionA8t<, ‰-3 t C@1D + ‰-2 t C@2DE==

In[10]:= particularsolution = DSolve@8linearsecondorderODE, x@0D ã 1, x'@0D ã 1<, x, tD

Out[10]= 99x Ø FunctionA8t<, ‰-3 t I-3 + 4 ‰tME==

This verifies that the solution satisfies the equation and the initial conditions.

In[11]:= linearsecondorderODE ê. particularsolution@@1DD êê Simplify

Out[11]= True

In[12]:= x@0D ê. particularsolution@@1DD

Out[12]= 1

In[13]:= x'@0D ê. particularsolution@@1DD

Out[13]= 1
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Here is a plot of the solution.

In[14]:= Plot@x@tD ê. particularsolution, 8t, -1 ê 3, 2<D

Out[14]=

0.5 1.0 1.5 2.0

-0.2

0.2

0.4

0.6

0.8

1.0

To get more information about the solutions for the problem, set x£@0D == x0.

In[15]:= particularsolution = DSolve@8linearsecondorderODE, x@0D ã 1, x'@0D ã x0<, x, tD

Out[15]= 99x Ø FunctionA8t<, ‰-3 t I-2 + 3 ‰t - x0 + ‰t x0ME==

Here is a plot of the solutions for different initial directions. The solution approaches -¶ or ¶ as 
t Ø-¶ according to whether the value of x0 is less than or greater than -2, which is the largest 
root of the auxiliary equation for the ODE.

In[16]:= Show@GraphicsArray@Partition@
Table@Plot@Evaluate@x@tD ê. particularsolution@@1DD ê. x0 Ø iD, 8t, -1, 3<,

PlotStyle Ø 8Red<, PlotLabel Ø StringJoin@"x0= ", ToString@iDD,
Ticks Ø NoneD, 8i, -4, 1<D, 83<D, ImageSize Ø 400DD

Out[16]=

x0= -4 x0= -3 x0= -2

x0= -1 x0= 0 x0= 1

Here is a BVP for an inhomogeneous linear second-order equation.

In[17]:= inhomogeneousequation = y''@xD + y@xD ã E^x;

In[18]:= generalsolution = DSolve@inhomogeneousequation, y, xD

Out[18]= ::y Ø FunctionB8x<, C@1D Cos@xD + C@2D Sin@xD +
1

2
‰x ICos@xD2 + Sin@xD2MF>>
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In[19]:= DSolve@8inhomogeneousequation, y@0D ã 1, y@1D ã 1 ê 2<, y, xD

Out[19]= ::y Ø FunctionB8x<,
1

2
ICos@xD + ‰x Cos@xD2 - Cot@1D Sin@xD -

‰ Cos@1D Cot@1D Sin@xD + Csc@1D Sin@xD - ‰ Sin@1D Sin@xD + ‰x Sin@xD2MF>>

It should be noted that, in contrast to initial value problems, there are no general existence or

uniqueness  theorems  when  boundary  values  are  prescribed,  and  there  may  be  no  solution  in

some cases.

This problem has no solution because the term with C@2D in the general solution vanishes at 
both x  0 and x  p. Hence there are two inconsistent conditions for the parameter C@1D and 
the solution is an empty set.

In[20]:= DSolve@8inhomogeneousequation, y@0D ã 1, y@PiD ã 6<, y, xD

DSolve::bvnul :
For some branches of the general solution, the given boundary conditions lead to an empty solution. à

Out[20]= 8<

The previous discussion of linear equations generalizes to the case of higher-order linear ODEs

and linear systems of ODEs.

Here is the solution to an Initial Value Problem (IVP) for a linear ODE of order four.

In[21]:= fourthorderODE = y''''@xD + 2 * y''@xD + y@xD ã Cos@xD;

In[22]:= sol = DSolve@8fourthorderODE, y@0D ã 1, y'@0D ã 6, y''@0D ã 3, y'''@0D ã -1<, y, xD

Out[22]= ::y Ø FunctionB8x<,
1

16
I11 Cos@xD - 40 x Cos@xD - 2 x2 Cos@xD +

4 Cos@xD3 + Cos@xD Cos@2 xD + 136 Sin@xD + 34 x Sin@xD + 3 Sin@xD Sin@2 xDMF>>

This verifies the solution and the initial conditions.

In[23]:= 8fourthorderODE, y@0D, y'@0D, y''@0D, y'''@0D< ê. sol êê Simplify

Out[23]= 88True, 1, 6, 3, -1<<

Since this is a fourth-order ODE, four independent conditions must be specified to find a particu-
lar solution for an IVP. If there is an insufficient number of conditions, the solution returned by 
DSolve may contain some of the arbitrary parameters, as follows.

In[24]:= DSolve@8fourthorderODE, y@0D ã 1, y'@0D ã 6<, y, xD

Out[24]= ::y Ø FunctionB8x<,
1

16
I11 Cos@xD + 96 x Cos@xD - 2 x2 Cos@xD - 16 x C@3D Cos@xD + 4 Cos@xD3 +

Cos@xD Cos@2 xD + 4 x Sin@xD + 16 C@3D Sin@xD + 16 x C@4D Sin@xD + 3 Sin@xD Sin@2 xDMF>>
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Finally, here is the solution of an IVP for a linear system of ODEs.

In[25]:= Clear@x, y, z, tD

In[26]:= linearsystem = 8x'@tD ã x@tD - 4 * y@tD + 1, y'@tD ã 4 * x@tD + y@tD, z'@tD ã z@tD<;

In[27]:= initialvalues = 8x@0D ã 2, y@0D ã -1, z@0D ã 1<;

In[28]:= sol = DSolve@Join@linearsystem, initialvaluesD, 8x, y, z<, tD

Out[28]= ::x Ø FunctionB8t<,
1

17
I35 ‰t Cos@4 tD - Cos@4 tD2 + 21 ‰t Sin@4 tD - Sin@4 tD2MF,

y Ø FunctionB8t<,
1

17
I-21 ‰t Cos@4 tD + 4 Cos@4 tD2 + 35 ‰t Sin@4 tD + 4 Sin@4 tD2MF,

z Ø FunctionA8t<, ‰tE>>

This verifies that the solution satisfies the system and the initial conditions.

In[29]:= 8linearsystem, initialvalues< ê. sol@@1DD êê Simplify

Out[29]= 88True, True, True<, 8True, True, True<<

The solutions x@tD, y@tD, and z@tD are parametrized by the variable t and can be plotted separately 
in the plane or as a curve in space.

In[30]:= Plot@Evaluate@8x@tD, y@tD, z@tD< ê. solD, 8t, -2, 1<D

Out[30]=
-2.0 -1.5 -1.0 -0.5 0.5 1.0

-4

-2

2

4
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In[31]:= ParametricPlot3D@Evaluate@8x@tD, y@tD, z@tD< ê. solD,
8t, -7, -3<, PlotRange Ø AllD

Out[31]=
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0.250.00
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Nonlinear IVPs and BVPs

Many  real-world  applications  require  the  solution  of  IVPs  and  BVPs  for  nonlinear  ODEs.  For

example, consider the logistic equation, which occurs in population dynamics.

This is the logistic equation.

In[1]:= LogisticEquation = y'@tD ã r H1 - Hy@tD ê KLL * y@tD;

The right-hand side of the equation can be expanded to a quadratic polynomial in y@tD. Hence, 
the logistic equation is simply a Riccati equation, and its general solution can be easily found.

In[2]:= DSolve@LogisticEquation, y, tD

Out[2]= ::y Ø FunctionB8t<,
‰r t+K C@1D K

-1 + ‰r t+K C@1D
F>>

This sets the intrinsic growth rate r to 1 ê 2 and the saturation level K to 4 and solves the initial 
value problem. The warning message from Solve is issued while solving for the arbitrary 
constant C@1D from the general solution.

In[3]:= DSolve@8LogisticEquation ê. 8r Ø H1 ê 2L, K Ø 4<, y@0D ã 1<, y, tD

Solve::ifun :
Inverse functions are being used by Solve, so some solutions may not be found; use Reduce for

complete solution information. à

Out[3]= ::y Ø FunctionB8t<,
4 ‰të2

3 + ‰të2
F>>
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This solves the initial value problem for the logistic equation with symbolic parameters r  and K.

In[4]:= sol = DSolve@8LogisticEquation, y@0D ã a * K<, y, tD

Solve::ifun :
Inverse functions are being used by Solve, so some solutions may not be found; use Reduce for

complete solution information. à

Out[4]= ::y Ø FunctionB8t<,
a ‰r t K

1 - a + a ‰r t
F>>

This verifies that the solution satisfies the equation and the initial condition.

In[5]:= 8LogisticEquation, y@0D< ê. sol@@1DD êê Simplify

Out[5]= 8True, a K<

Here is a plot of the solution for different values of r  and K.

In[6]:= Plot@Evaluate@Table@y@tD ê. sol@@1DD ê. 8K Ø 4, a Ø i, r Ø H1 ê 3L<,
8i, 2, 1 ê 10, -1 ê 3<DD, 8t, 0, 8<, PlotRange Ø AllD

Out[6]=
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Here is an example of an IVP for a second-order nonlinear ODE whose general solution can be 
obtained in explicit form.

In[7]:= eqn = y''@xD - H1 ê 2L * Hy'@xD^2 ê y@xDL + 1 ê H2 * y@xDL ã 0;

In[8]:= sol = DSolve@8eqn, y@0D ã 1, y'@0D ã 2<, y, xD

Out[8]= ::y Ø FunctionB8x<,
1

4
I4 + 8 x + 3 x2MF>>

This verifies that the solution satisfies the equation and the initial conditions.

In[9]:= 8eqn, y@0D, y'@0D< ê. sol@@1DD êê Simplify

Out[9]= 8True, 1, 2<

Finally, here is a boundary value problem for a nonlinear second-order ODE. The solution is 
required to satisfy boundary conditions at 0 and infinity. The Solve::ifun message is gener-
ated while finding the general solution in terms of JacobiSN, the inverse of EllipticF. The 
DSolve::bvlim messages are given because the limit required for satisfying the condition 
y£@InfinityD ã 0 cannot be calculated for either branch of the general solution. However, the 
solution for the boundary value problem is found using an alternative method to determine the 
values of the constants C@1D and C@2D in the general solution.
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Finally, here is a boundary value problem for a nonlinear second-order ODE. The solution is 
required to satisfy boundary conditions at 0 and infinity. The Solve::ifun message is gener-
ated while finding the general solution in terms of JacobiSN, the inverse of EllipticF. The 
DSolve::bvlim messages are given because the limit required for satisfying the condition 
y£@InfinityD ã 0 cannot be calculated for either branch of the general solution. However, the 
solution for the boundary value problem is found using an alternative method to determine the 
values of the constants C@1D and C@2D in the general solution.

In[10]:= generalsolution = DSolve@8y''@xD ê 2 ã y@xD^3 - y@xD<, y@xD, xD

Solve::ifun :
Inverse functions are being used by Solve, so some solutions may not be found; use Reduce for

complete solution information. à

Out[10]= ::y@xD Ø Â -
1

1 - 1 - C@1D

JacobiSNB x2 + x2 1 - C@1D + 2 x C@2D + 2 x 1 - C@1D C@2D + C@2D2 + 1 - C@1D C@2D2 ,

1 - 1 - C@1D

1 + 1 - C@1D
F - Â -

1

1 - 1 - C@1D
1 - C@1D

JacobiSNB x2 + x2 1 - C@1D + 2 x C@2D + 2 x 1 - C@1D C@2D + C@2D2 + 1 - C@1D C@2D2 ,

1 - 1 - C@1D

1 + 1 - C@1D
F>, :y@xD Ø -Â -

1

1 - 1 - C@1D

JacobiSNB x2 + x2 1 - C@1D + 2 x C@2D + 2 x 1 - C@1D C@2D + C@2D2 + 1 - C@1D C@2D2 ,

1 - 1 - C@1D

1 + 1 - C@1D
F + Â -

1

1 - 1 - C@1D
1 - C@1D JacobiSNB

x2 + x2 1 - C@1D + 2 x C@2D + 2 x 1 - C@1D C@2D + C@2D2 + 1 - C@1D C@2D2 ,
1 - 1 - C@1D

1 + 1 - C@1D
F>>

In[11]:= sol =
DSolve@8y''@xD ê 2 == y@xD^3 - y@xD, y@0D == 0, y'@InfinityD == 0<, y@xD, xD

Solve::ifun :
Inverse functions are being used by Solve, so some solutions may not be found; use Reduce for

complete solution information. à

DSolve::bvlim :
For some branches of the general solution, unable to compute the limit at the given points.

Some of the solutions may be lost. à

DSolve::bvlim :
For some branches of the general solution, unable to compute the limit at the given points.

Some of the solutions may be lost. à

Out[11]= ::y@xD Ø -TanhB x2 F>, :y@xD Ø TanhB x2 F>>
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In[12]:= Plot@8y@xD ê. sol@@2DD, 1<, 8x, -2, 2<, PlotRange Ø AllD

Out[12]=

-2 -1 1 2

0.2

0.4

0.6

0.8

1.0

It  may  not  always  be  possible  to  obtain  a  symbolic  solution  to  an  IVP  or  BVP  for  a  nonlinear

equation. Numerical methods may be necessary in such cases.

IVPs with Piecewise Coefficients

The  differential  equations  that  arise  in  modern  applications  often  have  discontinuous  coeffi-

cients. DSolve can handle a wide variety of such ODEs with piecewise coefficients. Some of the

functions used in these equations are UnitStep, Max, Min, Sign, and Abs. These functions and

combinations of them can be converted into Piecewise objects. 

This converts the given expression into a Piecewise expression.

In[1]:= PiecewiseExpand@UnitStep@xD + Max@x, x^2DD

Out[1]=

x2 x < 0
1 + x 0 § x § 1

1 + x2 True

Here is the general solution to a first-order ODE that contains UnitStep.

In[2]:= DSolve@y'@xD ã UnitStep@xD, y, xD

Out[2]= 88y Ø Function@8x<, C@1D + x UnitStep@xDD<<

Here is the solution to the same ODE with an initial condition.

In[3]:= eqn = 8y'@xD ã UnitStep@xD, y@0D ã 1<;

In[4]:= sol = DSolve@eqn, y, xD

Out[4]= 88y Ø Function@8x<, 1 + x UnitStep@xDD<<
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The solution can be plotted in the usual way. Note that the solution is continuous but not 
differentiable at x = 0.

In[5]:= Plot@y@xD ê. sol, 8x, -3, 3<D

Out[5]=

-3 -2 -1 1 2 3

1.5

2.0

2.5

3.0

3.5

4.0

This verifies the solution.

In[6]:= Simplify@eqn ê. sol@@1DD, x > 0 »» x < 0D

Out[6]= 8True, True<

Here is a piecewise ODE that has Max in its coefficients.

In[7]:= sol = DSolve@ 8y'@xD + Max@x, 1D y@xD ã 0, y@0D ã 1<, y@xD, x D

Out[7]= ::y@xD Ø
‰-x x § 1

‰
-
1

2
-
x2

2 True
>>

In[8]:= Plot@y@xD ê. sol, 8x, -3, 3<D

Out[8]=

-3 -2 -1 1 2 3

5

10

15

20

A piecewise ODE can be thought of as a collection of ODEs over disjoint intervals such that the

expressions  for  the  coefficients  and  the  boundary  conditions  change  from  one  interval  to

another. Thus, different intervals have different solutions, and the final solution for the ODE is

obtained by patching together the solutions over the different intervals.

For this piecewise ODE, the expression for FinalSol is obtained by patching together 
SolFromMinusInfinityToTwo and SolFromTwoToInfinity. The boundary condition for 
the interval H-Infinity, 2D is simply y@0D = 1, while the initial condition for the interval 
@2, InfinityL is y@2D ‰2 (given by the final value for the solution over the first interval).
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For this piecewise ODE, the expression for FinalSol is obtained by patching together 
SolFromMinusInfinityToTwo and SolFromTwoToInfinity. The boundary condition for 
the interval H-Infinity, 2D is simply y@0D = 1, while the initial condition for the interval 
@2, InfinityL is y@2D ‰2 (given by the final value for the solution over the first interval).

In[9]:= FinalSol = DSolve@ 8y'@tD ã If@ t § 2, y@tD, -y@tD ê 2D , y@0D ã 1<, y, tD

Out[9]= ::y Ø FunctionB8t<,
‰t t § 2

‰
3-

t

2 True
F>>

In[10]:= SolFromMinusInfinityToTwo = DSolve@8y'@tD ã y@tD, y@0D ã 1<, y, tD

Out[10]= 99y Ø FunctionA8t<, ‰tE==

In[11]:= SolFromTwoToInfinity = DSolve@8y'@tD ã -y@tD ê 2, y@2D ã E^2<, y, tD

Out[11]= ::y Ø FunctionB8t<, ‰
3-

t

2F>>

If  there are a large number of  discontinuities  in  a problem, it  is  convenient  to use Piecewise

directly in the formulation of the problem.

This second-order ODE contains a Piecewise term.

In[12]:= eqn = 8y''@tD + y@tD ã Piecewise@88-1, t < 0<, 81, t < 1<, 8Sin@tD, t < 2<<D,
y@0D ã 1, y'@0D ã 1<;

In[13]:= sol = DSolve@ eqn, y, t D

Out[13]= ::y Ø FunctionB8t<,

-1 + 2 Cos@tD + Sin@tD t §

1 + Sin@tD 0 <
1

4 ICos@1D2+Sin@1D2M

I4 Cos@1D Cos@tD + 2 Cos@1D2 Cos@tD - 2 t Cos@1D2 Cos@tD - 2 Cos@1D Cos@tD Sin@1D +

2 Cos@tD Sin@1D2 - 2 t Cos@tD Sin@1D2 + 6 Cos@1D2 Sin@tD - 2 Cos@1D2 Cos@tD2 Sin@tD +

4 Sin@1D Sin@tD + 4 Sin@1D2 Sin@tD - 2 Cos@tD2 Sin@1D2 Sin@tD +

Cos@1D2 Cos@tD Sin@2 tD + Cos@tD Sin@1D2 Sin@2 tDM

1 <

1

4 ICos@2D2+Sin@2D2M

I4 Cos@1D Cos@2D Cos@tD - 2 Cos@2D2 Cos@tD - Cos@tD Sin@2D + 2 Cos@2D Cos@tD Sin@2D +

4 Cos@tD Sin@1D Sin@2D - 2 Cos@tD Sin@2D2 + Cos@2D Sin@tD + 3 Cos@2D2 Sin@tD -

4 Cos@2D Sin@1D Sin@tD + 4 Cos@1D Sin@2D Sin@tD + 5 Sin@2D2 Sin@tDM

Tr ue  

F>>

This ODE contains the Clip function. The solutions are given in terms of Airy functions.

In[14]:= eqn = 8y''@xD - Clip@xD * y@xD ã 0, y@0D ã 0, y'@0D ã -1<;
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In[15]:= DSolve@eqn, y, xD

Out[15]= ::y Ø FunctionB8x<,

1

6 ICos@1D2+Sin@1D2M

J3 µ 31ë3 AiryAi@-1D Cos@1D Cos@xD GammaB 1

3
F - 35ë6 AiryBi@-1D Cos@1D Cos@xD GammaB 1

3
F +

3 µ 31ë3 AiryAiPrime@-1D Cos@xD GammaB 1

3
F Sin@1D - 35ë6 AiryBiPrime@-1D

Cos@xD GammaB 1

3
F Sin@1D + 3 µ 31ë3 AiryAiPrime@-1D Cos@1D GammaB 1

3
F Sin@xD -

35ë6 AiryBiPrime@-1D Cos@1D GammaB 1

3
F Sin@xD - 3 µ 31ë3 AiryAi@-1D GammaB 1

3
F Sin@1D Sin@xD +

35ë6 AiryBi@-1D GammaB 1

3
F Sin@1D Sin@xDN

x §

1

6
J3 µ 31ë3 AiryAi@xD GammaB 1

3
F - 35ë6 AiryBi@xD GammaB 1

3
FN -1 <

-
1

4 µ 32ë3
‰-1-x J-3 ‰2 AiryAi@1D - 3 ‰2 x AiryAi@1D +

3 ‰2 AiryAiPrime@1D - 3 ‰2 x AiryAiPrime@1D + 3 ‰2 AiryBi@1D +

3 ‰2 x AiryBi@1D - 3 ‰2 AiryBiPrime@1D + 3 ‰2 x AiryBiPrime@1DN GammaB 1

3
F

True 

F>>
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Working with DSolve~A User’s Guide

Introduction to Working with DSolve

The aim of these tutorials is to provide a self-contained working guide for solving different types

of problems with DSolve.

The first step in using DSolve is to set up the problem correctly. The next step is to use DSolve

to get an expression for the solution. Once the solution has been found, it can be verified using

symbolic  or  numerical  techniques,  or  it  can  be  plotted  using  a  Mathematica  function  such  as

Plot, Plot3D, or ContourPlot. Plots often reveal information about the solution that might not

be evident from its closed-form expression.

If no boundary conditions are specified for a problem, the output from DSolve is some form of a

general  solution  containing  arbitrary  parameters.  The  GeneratedParameters  option  can  be

used to label these arbitrary parameters.

In  many  applications,  differential  equations  contain  symbolic  parameters,  such  as  the  rate  of

growth in the logistic equation. A differential equation can also contain inexact quantities, such

as machine numbers arising from previous calculations. Both symbolic parameters and inexact

quantities are allowed by DSolve, but it is good to be aware of their presence and interpret the

solution correctly. 

When DSolve  makes any assumptions  or  encounters  difficulty  during a  calculation,  it  issues  a

warning  message  outlining  the  problem.  These  messages  can  usually  be  ignored,  but  some-

times they point to serious limitations in the answer given for the problem. 

It  is  helpful  to analyze the statement of  the problem for possible ambiguities~in other words,

to make sure that the problem is well posed~so that meaningful answers can be obtained from

DSolve.
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Setting Up the Problem

The  first  argument  given  to  DSolve  is  the  differential  equation,  the  second  argument  is  the

unknown function, and the last argument identifies the independent variable.

Here is the input for solving for a first-order linear ODE using DSolve. The variable sol identi-
fies the solution for use in further work. 

In[1]:= sol = DSolve@y'@xD + 5 y@xD ã 1, y@xD, xD

Out[1]= ::y@xD Ø
1

5
+ ‰-5 x C@1D>>

The output of DSolve is a list of solutions for the differential equation. The extra list is required

since  some  equations  have  multiple  solutions.  Here,  since  the  equation  is  of  order  1  and  is

linear,  there  is  only  one  solution:  y@xD Ø
1
5
+ ‰-5 x C@1D.  The  solution  has  an  undetermined

constant C@1D because no initial condition was specified. The solution can be extracted from the

list of solutions using a part specification. 

This extracts the solution. 

In[2]:= m = sol@@1DD

Out[2]= :y@xD Ø
1

5
+ ‰-5 x C@1D>

This form of the solution is useful for finding y@xD itself, but not for finding derivatives of y@xD or

the value of y@xD at a point.

This shows the value of y@xD given by the solution.

In[3]:= y@xD ê. m

Out[3]=
1

5
+ ‰-5 x C@1D

The solution does not apply to y£@xD or y@1D because the solution is a rule for y@xD only.

In[4]:= y'@xD ê. m

Out[4]= y£@xD

In[5]:= y@1D ê. m

Out[5]= y@1D

If  the solution will  be  used in  further  work,  it  is  best  to  specify  the unknown function using y

rather than y@xD. This gives the solution using pure functions of the type Function@x, exprD. 
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If  the solution will  be  used in  further  work,  it  is  best  to  specify  the unknown function using y

rather than y@xD. This gives the solution using pure functions of the type Function@x, exprD. 

Here, the unknown function is specified as y. The solution is a pure function.

In[6]:= sol = DSolve@y'@xD + 5 y@xD ã 1, y, xD

Out[6]= ::y Ø FunctionB8x<,
1

5
+ ‰-5 x C@1DF>>

When the solution is in the form of pure functions, expressions can be found for derivatives of y

and for the values of y at specific points.

This gives expressions for y@xD, y£@xD, and y@1D.
In[7]:= m = sol@@1DD

Out[7]= :y Ø FunctionB8x<,
1

5
+ ‰-5 x C@1DF>

In[8]:= y@xD ê. m

Out[8]=
1

5
+ ‰-5 x C@1D

In[9]:= y'@xD ê. m

Out[9]= -5 ‰-5 x C@1D

In[10]:= y@1D ê. m

Out[10]=
1

5
+
C@1D

‰5

When a problem has multiple solutions, you can pick out individual solutions from the solution

list or you can work directly with the list.

This solves a nonlinear first-order equation. There are two solutions.

In[11]:= sol = DSolve@y'@xD^2 ã x + 11, y, xD

Out[11]= ::y Ø FunctionB8x<, -
2

3
H11 + xL3ë2 + C@1DF>, :y Ø FunctionB8x<,

2

3
H11 + xL3ë2 + C@1DF>>

The solutions can be extracted using part specifications.

In[12]:= y@xD ê. sol@@1DD

Out[12]= -
2

3
H11 + xL3ë2 + C@1D
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In[13]:= y@xD ê. sol@@2DD

Out[13]=
2

3
H11 + xL3ë2 + C@1D

This returns a list of both expressions.

In[14]:= y@xD ê. sol

Out[14]= :-
2

3
H11 + xL3ë2 + C@1D,

2

3
H11 + xL3ë2 + C@1D>

To solve  a  system of  equations,  the  first  argument  to  DSolve  must  be  a  list  of  the  equations

and the second argument must be a list of the unknown functions. 

Here is an example of a system of first-order linear equations with three unknowns. Because 
this system is linear, there is only one solution.

In[15]:= sol = DSolve@
8x'@tD ã y@tD + z@tD, y'@tD + z@tD - x@tD ã 0, z'@tD + y@tD ã x@tD<, 8x, y, z<, tD

Out[15]= ::x Ø FunctionB8t<,
1

3
‰-2 t I1 + 2 ‰3 tM C@1D +

1

3
‰-2 t I-1 + ‰3 tM C@2D +

1

3
‰-2 t I-1 + ‰3 tM C@3DF,

y Ø FunctionB8t<,
1

3
‰-2 t I-1 + ‰3 tM C@1D +

1

3
‰-2 t I1 + 2 ‰3 tM C@2D -

1

3
‰-2 t I-1 + ‰3 tM C@3DF,

z Ø FunctionB8t<,
1

3
‰-2 t I-1 + ‰3 tM C@1D -

1

3
‰-2 t I-1 + ‰3 tM C@2D +

1

3
‰-2 t I1 + 2 ‰3 tM C@3DF>>

Each solution to the system is a list of replacement rules for the unknown functions. The expres-

sions for the unknown functions can be extracted as in previous examples.

This gives a list of the expressions for the unknown functions. Simplify is used to return the 
expressions in a compact form.

In[16]:= 8x@tD, y@tD, z@tD< ê. sol@@1DD êê Simplify

Out[16]= :
1

3
‰-2 t II1 + 2 ‰3 tM C@1D + I-1 + ‰3 tM HC@2D + C@3DLM,

1

3
‰-2 t II-1 + ‰3 tM C@1D + C@2D + 2 ‰3 t C@2D + C@3D - ‰3 t C@3DM,

1

3
‰-2 t II-1 + ‰3 tM C@1D + C@2D - ‰3 t C@2D + C@3D + 2 ‰3 t C@3DM>

If  initial  conditions are prescribed for  the problem, some or  all  of  the undetermined constants

can be eliminated.

Here the value of the unknown function and its derivative are both prescribed at the initial point.

In[17]:= DSolve@8y''@xD + y@xD ã 5, y@0D ã 1, y'@0D ã 7<, y@xD, xD

Out[17]= 88y@xD Ø 5 - 4 Cos@xD + 7 Sin@xD<<

If only the initial value is specified, then the solution still contains an arbitrary constant.
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If only the initial value is specified, then the solution still contains an arbitrary constant.

In[18]:= DSolve@8y''@xD + y@xD ã 5, y@0D ã 1<, y@xD, xD

Out[18]= 88y@xD Ø 5 - 4 Cos@xD + C@2D Sin@xD<<

For  a  partial  differential  equation,  the  third  argument  to  DSolve  is  a  list  of  the  independent

variables for the equation.

This solves a PDE with independent variables x and y. C@1D represents an arbitrary function of 
y + Cos@y@xDD.

In[19]:= DSolve@D@u@x, yD, xD + Sin@xD * D@u@x, yD, yD ã 8, u, 8x, y<D

Out[19]= 88u Ø Function@8x, y<, 8 x + C@1D@y + Cos@xDDD<<

A differential-algebraic equation is specified in the same way as a system of ordinary differen-

tial equations.

Here is an example of a DAE with an initial condition.

In[20]:= DSolve@8x'@tD + y@tD ã Sin@tD, x@tD + y@tD ã 1, x@0D ã 4<, 8x, y<, tD

Out[20]= ::x Ø FunctionB8t<,
1

2
I2 + 7 ‰t - Cos@tD - Sin@tDMF, y Ø FunctionB8t<,

1

2
I-7 ‰t + Cos@tD + Sin@tDMF>>

Note that  it  is  not  always possible  to  give the solutions for  a  problem in  explicit  form. In this

case, the solution is given using an unevaluated Solve object or using InverseFunction.

The solution to this equation is not available explicitly. The output represents an implicit 
solution.

In[21]:= sol = DSolve@y'@xD + y@xD^3 + y@xD^2 ã 1, y@xD, xD

Solve::tdep:
The equations appear to involve the variables to be solved for in an essentially non-algebraic way. à

Solve::tdep:
The equations appear to involve the variables to be solved for in an essentially non-algebraic way. à

Out[21]= SolveBRootSumB-1 + Ò12 + Ò13 &,
Log@-Ò1 + y@xDD

2 Ò1 + 3 Ò12
&F ã -x + C@1D, y@xDF

The solution can be extracted as usual with a part specification.

In[22]:= sol@@1DD

Out[22]= RootSumB-1 + Ò12 + Ò13 &,
Log@-Ò1 + y@xDD

2 Ò1 + 3 Ò12
&F ã -x + C@1D

Differential Equation Solving with DSolve     93



The solutions to this equation are given as InverseFunction objects.

In[23]:= sol = DSolve@Derivative@2D@yD@xD + y@xD * Derivative@1D@yD@xD^4 == 0, y, xD

Solve::tdep:
The equations appear to involve the variables to be solved for in an essentially non-algebraic way. à

Solve::tdep:
The equations appear to involve the variables to be solved for in an essentially non-algebraic way. à

Out[23]= ::y Ø FunctionB8x<,

InverseFunctionBC@1D LogBÒ1 + -2 C@1D + Ò12 F -
1

2
Ò1 -2 C@1D + Ò12 &F@x + C@2DDF>, :y Ø

FunctionB8x<, InverseFunctionB-C@1D LogBÒ1 + -2 C@1D + Ò12 F +
1

2
Ò1 -2 C@1D + Ò12 &F@x + C@2DDF>>

Each solution can be rewritten as an implicit equation by eliminating the InverseFunction 
object as follows.

In[24]:= soly = y@xD ê. sol@@1DD

Out[24]= InverseFunctionBC@1D LogBÒ1 + -2 C@1D + Ò12 F -
1

2
Ò1 -2 C@1D + Ò12 &F@x + C@2DD

In[25]:= implicitequation = H Head@solyD@@1DD@y@xDD == soly@@1DD L

Out[25]= C@1D LogBy@xD + -2 C@1D + y@xD2 F -
1

2
y@xD -2 C@1D + y@xD2 ã x + C@2D

Verification of the Solution

The  solution  given  by  DSolve  can  be  verified  using  various  methods.  The  easiest  method

involves  substituting  the  solution  back  into  the  equation.  If  the  result  is  True,  the  solution  is

valid.

In this simple example, the solution is verified by substitution. Note that the first argument to 
DSolve is assigned to eqn for convenience in later work.

In[1]:= eqn = y'@xD ã x;

In[2]:= sol = DSolve@eqn, y, xD

Out[2]= ::y Ø FunctionB8x<,
x2

2
+ C@1DF>>

In[3]:= eqn ê. sol

Out[3]= 8True<
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In this example, the equation and an initial condition are verified by substitution.

In[4]:= eqn = 8y'@xD ã x, y@0D ã 1<;

In[5]:= sol = DSolve@eqn, y, xD

Out[5]= ::y Ø FunctionB8x<,
1

2
I2 + x2MF>>

In[6]:= eqn ê. sol

Out[6]= 88True, True<<

Sometimes the result of the substitution is more complicated than True  or False. Such exam-

ples can be verified by using Simplify  to simplify the result of the substitution. If the simplified

result is True, the solution is valid.

Here is the general solution for a second-order inhomogeneous equation.

In[7]:= eqn = y''@xD + 5 * y'@xD + 6 y@xD ã 1;

In[8]:= sol = DSolve@eqn, y, xD

Out[8]= ::y Ø FunctionB8x<,
1

6
+ ‰-3 x C@1D + ‰-2 x C@2DF>>

This substitutes the solution back into the equation.

In[9]:= eqn ê. sol

Out[9]= :9 ‰-3 x C@1D + 4 ‰-2 x C@2D + 5 I-3 ‰-3 x C@1D - 2 ‰-2 x C@2DM + 6
1

6
+ ‰-3 x C@1D + ‰-2 x C@2D ã 1>

The solution can be verified using Simplify.

In[10]:= Simplify@eqn ê. solD

Out[10]= 8True<

Here is a linear PDE whose solution can be verified using Simplify.

In[11]:= PDE = D@u@x, yD, xD + Sin@xD * D@u@x, yD, yD ã x^2;

In[12]:= sol = DSolve@PDE, u, 8x, y<D

Out[12]= ::u Ø FunctionB8x, y<,
1

3
Ix3 + 3 C@1D@y + Cos@xDDMF>>

In[13]:= Simplify@PDE ê. solD

Out[13]= 8True<

If  the  equation  involves  special  functions,  it  may be  necessary  to  use  FullSimplify  to  verify

the solution. 
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If  the  equation  involves  special  functions,  it  may be  necessary  to  use  FullSimplify  to  verify

the solution. 

Here is an example of this type involving Bessel’s functions.

In[14]:= eqn = x * y''@xD + y'@xD - y@xD ã 1;

In[15]:= sol = DSolve@eqn, y, xD

Out[15]= ::y Ø FunctionB8x<, -1 + BesselIB0, 2 x F C@1D + 2 BesselKB0, 2 x F C@2DF>>

In[16]:= FullSimplify@eqn ê. solD

Out[16]= 8True<

If  the solution is large or if  Simplify  and FullSimplify  do not succeed in verifying the solu-

tion,  a  numerical  check  can  be  made  by  using  RandomReal  or  RandomComplex  to  generate

values  for  all  the  variables  and  parameters  in  the  problem.  It  is  advisable  in  such  cases  to

repeat the check with several sets of random values. 

Here is an example where numerical verification is useful.

In[17]:= Clear@a, y, x, rD

In[18]:= eqn = y''@xD - Ha * x^6 + x^2L * y@xD;

In[19]:= sol = DSolve@eqn ã 0, y, xD

Out[19]= ::y Ø FunctionB8x<,

23ë8 ‰
a x4

4 Ix4M
3ë8

C@1D HypergeometricUB -1+3 a

8 a
, 3

4
, -

1

2
a x4F

x3ë2
+

23ë8 ‰
a x4

4 Ix4M
3ë8

C@2D LaguerreLB- -1+3 a

8 a
, -

1

4
, -

1

2
a x4F

x3ë2
F>>

In[20]:= Union@Flatten@Table@Chop@eqn ê. sol ê. 8x Ø RandomReal@D, a Ø RandomReal@D,
C@1D Ø RandomReal@D, C@2D Ø RandomReal@D<D, 8i, 1, 10<DDD

Out[20]= 80<

Although numerical checks cannot verify a solution with certainty, more rigorous checks can be

made by using higher precision or by allowing the variables to take complex values.

This verifies the previous solution with higher precision.

In[21]:= Chop@eqn ê. sol ê. 8x Ø RandomReal@ 81, 2<, WorkingPrecision -> 20D,
a Ø RandomReal@ 81, 2<, WorkingPrecision -> 20D,
C@1D Ø RandomReal@ 81, 2<, WorkingPrecision -> 20D ,
C@2D Ø RandomReal@ 81, 2<, WorkingPrecision -> 20D<D

Out[21]= 80<

This uses complex random values to verify the previous solution.
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This uses complex random values to verify the previous solution.

In[22]:= r := RandomComplex@D

In[23]:= Chop@N@eqn ê. sol ê. 8x Ø r, a Ø r , C@1D Ø r , C@2D Ø r<DD

Out[23]= 80<

The previous methods are of use only when the solution is available in explicit  form. The final

example shows how to verify the solution of a first-order ODE when it is given in implicit form.

This solves a first-order ODE.

In[24]:= eqn = y£@xD + 2 * x y@xD2 + y@xD3;

In[25]:= sol = DSolve@eqn ã 0, y, xD

InverseFunction::ifun : Inverse functions are being used. Values may be lost for multivalued inverses. à

InverseFunction::ifun : Inverse functions are being used. Values may be lost for multivalued inverses. à

InverseFunction::ifun : Inverse functions are being used. Values may be lost for multivalued inverses. à

General::stop : Further output of InverseFunction::ifun will be suppressed during this calculation. à

Solve::tdep:
The equations appear to involve the variables to be solved for in an essentially non-algebraic way. à

Out[25]= SolveB
-x AiryAiBx2 -

1

y@xD
F + AiryAiPrimeBx2 -

1

y@xD
F

-x AiryBiBx2 -
1

y@xD
F + AiryBiPrimeBx2 -

1

y@xD
F

+ C@1D ã 0, y@xDF

In[26]:= sol@@1DD

Out[26]=

-x AiryAiBx2 -
1

y@xD
F + AiryAiPrimeBx2 -

1

y@xD
F

-x AiryBiBx2 -
1

y@xD
F + AiryBiPrimeBx2 -

1

y@xD
F

+ C@1D ã 0

This verifies the solution by simplifying its derivative.

In[27]:= Simplify@Solve@D@sol@@1DD, xD, y'@xDDD

Out[27]= 99y£@xD Ø -y@xD2 H2 x + y@xDL==
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Plotting the Solution

A  plot  of  the  solution  given  by  DSolve  can  give  useful  information  about  the  nature  of  the

solution, for instance, whether it is oscillatory in nature. It can also serve as a means of solu-

tion verification if the shape of the graph is known from theory or from plotting the vector field

associated with the differential equation. A few examples that use different Mathematica graph-

ics functions follow.

Here is the general solution to a linear first-order equation.

In[1]:= sol = DSolve@y'@xD + x * y@xD ã Cos@x^2D, y, xD

Out[1]= ::y Ø FunctionB8x<, ‰
-
x2

2 C@1D +
1

2
‰
-
x2

2

p

10
1 + 2 Â ErfiB

1

2
- Â xF + 1 - 2 Â ErfiB

1

2
+ Â xF F>>

The solution can be plotted for specific values of the constant C@1D using Plot. The use of 
Evaluate reduces the time taken by Plot and can also help in cases where the solution has 
discontinuities.

In[2]:= Plot@Evaluate@y@xD ê. sol ê. 8C@1D Ø 1<D, 8x, -7, 7<, PlotRange Ø AllD

Out[2]=

-6 -4 -2 2 4 6

0.5

1.0

Here is the plot for a linear second-order ODE with initial values prescribed at 0.

In[3]:= sol = DSolve@8y''@xD ê y@xD ã -4 * Exp@-x ê 4D, y@0D ã 1, y'@0D ã 1 ê 2<, y, xD

Out[3]= ::y Ø FunctionB8x<, BesselJB0, 16 ‰-xë4 F BesselY@0, 16D - BesselJ@0, 16D BesselYB0, 16 ‰-xë4 F +

4 BesselJ@1, 16D BesselYB0, 16 ‰-xë4 F - 4 BesselJB0, 16 ‰-xë4 F BesselY@1, 16D ì

H4 HBesselJ@1, 16D BesselY@0, 16D - BesselJ@0, 16D BesselY@1, 16DLLF>>

In[4]:= Plot@Evaluate@y@xD ê. solD, 8x, 0, 30<D

Out[4]=
5 10 15 20 25 30

-6

-4

-2

2

This nonlinear equation has two solutions that can be plotted on the same graph.
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This nonlinear equation has two solutions that can be plotted on the same graph.

In[5]:= sol = DSolve@8y'@xD^2 ã x - x^3, y@0D ã 1<, y, xD

Out[5]= ::y Ø FunctionB8x<,
1

5 x 1 - x2
5 x 1 - x2 + 2 x3ë2 1 - x2 -x I-1 + x2M +

4 -x I-1 + x2M EllipticEBArcSinB x F, -1F - 4 -x I-1 + x2M EllipticFBArcSinB x F, -1F F>,

:y Ø FunctionB8x<,
1

5 x 1 - x2
5 x 1 - x2 - 2 x3ë2 1 - x2 -x I-1 + x2M -

4 -x I-1 + x2M EllipticEBArcSinB x F, -1F + 4 -x I-1 + x2M EllipticFBArcSinB x F, -1F F>>

In[6]:= Plot@Evaluate@y@xD ê. solD, 8x, 1 ê 100, 9 ê 10<D

Out[6]=

0.2 0.4 0.6 0.8

0.8

1.0

1.2

1.4

The solution to this Abel ODE is given in implicit form.

In[7]:= sol = DSolveBy£@xD ã -5 y@xD2 -
y@xD3

x
, y@xD, xF

Solve::tdep :
The equations appear to involve the variables to be solved for in an essentially non-algebraic way. à

Out[7]= SolveB-5 x ã
2 ‰

1

2
K-5 x+

1

y@xD
O
2

2 C@1D + 2 p ErfiB
-5 x+

1

y@xD

2

F

, y@xDF

A contour plot can be used to study the nature of the solution. Each contour line corresponds to 
a solution to the ODE for a fixed value of C@1D. 

In[8]:= expr = C@1D ê. Solve@sol@@1DD, C@1DD@@1DD ê. 8y@xD Ø y<

Out[8]= -

2 ‰
1

2
K-5 x+

1

y
O
2

+ 5 2 p x ErfiB
-5 x+

1

y

2

F

10 x
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In[9]:= ContourPlot@expr, 8x, -0.4, -0.1<, 8y, 1., 1.8<D

Out[9]=

Here is the plot of the solutions to a system of two linear ODEs. The WorkingPrecision 
option in Plot is required because the solution is fairly complicated.

In[10]:= sol =
DSolve@8x'@tD + t * y@tD ã 0, 2 y'@tD - 3 x@tD ã 0, x@0D ã 1, y@0D ã 3<, 8x, y<, tD

Out[10]= ::x Ø FunctionB8t<,

1

6
-3 31ë3 AiryAiPrimeB -

3

2

1ë3

tF GammaB
1

3
F + 35ë6 AiryBiPrimeB -

3

2

1ë3

tF GammaB
1

3
F + 9 H-1L1ë3 22ë3

AiryAiPrimeB -
3

2

1ë3

tF GammaB
2

3
F + 3 H-1L1ë3 22ë3 3 AiryBiPrimeB -

3

2

1ë3

tF GammaB
2

3
F F,

y Ø FunctionB8t<,
1

4
3 H-1L2ë3 21ë3 AiryAiB -

3

2

1ë3

tF GammaB
1

3
F - H-1L2ë3 21ë3 3 AiryBiB -

3

2

1ë3

tF

GammaB
1

3
F + 6 µ 32ë3 AiryAiB -

3

2

1ë3

tF GammaB
2

3
F + 6 µ 31ë6 AiryBiB -

3

2

1ë3

tF GammaB
2

3
F F>>

In[11]:= Plot@Evaluate@8x@tD, y@tD< ê. solD, 8t, -1, 10<, WorkingPrecision Ø 20D

Out[11]=
2 4 6 8 10

-4

-2

2

4
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The ParametricPlot function can be used to trace the solution curve 8x@tD, y@tD< in the plane.

In[12]:= ParametricPlot@Evaluate@8x@tD, y@tD< ê. solD, 8t, -1, 7<, WorkingPrecision Ø 20D

Out[12]=

-4 -2 2 4

-3

-2

-1

1

2

3

Here is the plot for the solution to a DAE. 

In[13]:= sol = DSolve@8x''@tD + 3 * y@tD ã UnitStep@tD,
x@tD - 5 * y@tD ã t^2, x@0D ã 1, x'@0D ã 1<, 8x, y<, tD

Out[13]= ::x Ø FunctionB8t<,
1

96
-430 - 90 t + 177 t2 + 526 CosB

3

5
tF +

62 15 SinB
3

5
tF - 160 UnitStep@-tD + 160 CosB

3

5
tF UnitStep@-tD F,

y Ø FunctionB8t<,
1

480
-430 - 90 t + 81 t2 + 526 CosB

3

5
tF + 62 15 SinB

3

5
tF -

160 UnitStep@-tD + 160 CosB
3

5
tF UnitStep@-tD F>>

In[14]:= Plot@Evaluate@8x@tD, y@tD, x@tD - 5 * y@tD< ê. solD, 8t, -2, 2<D

Out[14]=

-2 -1 1 2

1

2

3

4
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Here is the general solution to a linear PDE.

In[15]:= sol = DSolve@D@u@x, yD, xD + x^2 * D@u@x, yD, yD ã Exp@xD, u, 8x, y<D

Out[15]= ::u Ø FunctionB8x, y<, ‰x + C@1DB
1

3
I-x3 + 3 yMFF>>

Here is a plot of the solution surface for a particular choice of the arbitrary function C@1D.

In[16]:= Plot3D@Evaluate@u@x, yD ê. sol ê. 8C@1D@t_D Ø Sin@3 * tD<@@1DDD,
8x, -2, 2<, 8y, -2, 2<, Mesh Ø FalseD

Out[16]=

The GeneratedParameters Option

The  general  solution  to  a  differential  equation  contains  undetermined  coefficients  that  are

labeled C@1D, C@2D, and so on. 

This example has one undetermined parameter, C@1D.

In[1]:= DSolve@y‘@xD + y@xD ã 1, y@xD, xD

Out[1]= 99y@xD Ø 1 + ‰-x C@1D==

To change the name of the undetermined parameter, use the GeneratedParameters option.

This changes the name of the undetermined coefficient to P@1D.

In[2]:= DSolve@y‘@xD + y@xD ã 1, y@xD, x, GeneratedParameters Ø PD

Out[2]= 99y@xD Ø 1 + ‰-x P@1D==

The parameter C should be thought of as a pure function that acts on a set of indices to gener-

ate different constants C@iD.

This shows the behavior of C.
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This shows the behavior of C.

In[3]:= parameter = C@ÒD &;

In[4]:= indexset = 81, 2, 3, 4<;

In[5]:= parameter@indexset@@1DDD

Out[5]= C@1D

In[6]:= parameter@indexset@@3DDD

Out[6]= C@3D

Internally,  the  use  of  a  pure  function  allows  DSolve  to  increment  the  argument  i  in  C@iD  cor-

rectly for higher-order ODEs and systems of ODEs. 

GeneratedParameters can be specified using a pure function.

In[7]:= DSolve@y''@xD + y@xD ã 1, y@xD, x, GeneratedParameters Ø Hconst@ÒD &LD

Out[7]= 88y@xD Ø 1 + const@1D Cos@xD + const@2D Sin@xD<<

Using a pure function is particularly useful if you want to begin indexing the parameters at any

value other than 1 (the default).

This uses a pure function to label the parameters in the previous example const@2D and 
const@3D.

In[8]:= DSolve@y''@xD + y@xD ã 1, y@xD, x, GeneratedParameters Ø Hconst@1 + ÒD &LD

Out[8]= 88y@xD Ø 1 + const@2D Cos@xD + const@3D Sin@xD<<

It is sometimes useful to display the solution using subscripts or other styles for the parameter

indices.

Here, the parameters are named using subscripted variables.

In[9]:= DSolve@y''@xD + y@xD ã 1, y@xD, x, GeneratedParameters Ø HcÒ1 &LD

Out[9]= 88y@xD Ø 1 + Cos@xD c1 + Sin@xD c2<<

Finally,  with  Module  variables,  you  can  get  names  for  the  parameters  that  are  unique  across

different invocations of DSolve.

Here the same DSolve call generates different parameter names.

In[10]:= DSolve@y''@xD + y@xD ã 1, y@xD, x, GeneratedParameters Ø Module@8C<, C@ÒD &DD

Out[10]= 88y@xD Ø 1 + Cos@xD C$102@1D + C$102@2D Sin@xD<<
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In[11]:= DSolve@y''@xD + y@xD ã 1, y@xD, x, GeneratedParameters Ø Module@8C<, C@ÒD &DD

Out[11]= 88y@xD Ø 1 + Cos@xD C$106@1D + C$106@2D Sin@xD<<

Symbolic Parameters and Inexact Quantities 

The differential equations that arise in practice are of two types.

† Equations in which the only variables are the independent and dependent variables.  Thus,
all the variables that appear in the first argument to DSolve are also in the second or third
arguments. 

† Equations  in  which  there  are  other  symbolic  quantities,  such  as  mass  or  the  spring  con-
stant. The solution in this case depends on the independent variables, the dependent vari-
ables, and the additional symbolic parameters.

Here is an example of the first type.

In[1]:= DSolve@y''@xD - 8 * x * y@xD ã 0, y, xD

Out[1]= 88y Ø Function@8x<, AiryAi@2 xD C@1D + AiryBi@2 xD C@2DD<<

Here is an example of the second type. This equation has a symbolic parameter k.

In[2]:= sol = DSolve@8y''@xD + k^2 * y@xD ã x^2, y@0D ã 3 k + 1, y'@0D ã k<, y, xD

Out[2]= ::y Ø FunctionB8x<,
-2 + k2 x2 + 2 Cos@k xD + k4 Cos@k xD + 3 k5 Cos@k xD + k4 Sin@k xD

k4
F>>

DSolve  is  equipped  to  deal  with  both  types  of  equations.  It  is  extremely  useful  to  have  the

solution available for all possible values of the parameters in the second type of equation. 

Here is a plot of the previous solution for different values of the parameter k.

In[3]:= Plot@Evaluate@Table@y@xD ê. sol ê. 8k Ø i<, 8i, 1, 5, 2<DD, 8x, -7, 7<D

Out[3]=

-6 -4 -2 2 4 6

-10

10

20

30

40

50

It  should  be  noted  that  the  presence  of  symbolic  parameters  can  lead  to  fairly  complicated

output.
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It  should  be  noted  that  the  presence  of  symbolic  parameters  can  lead  to  fairly  complicated

output.

This is seen in the following example (equation 2.14, page 401 of [K59]).

In[4]:= eqn = y''@xD - c * x^a * y@xD ;

In[5]:= sol = DSolve@eqn ã 0, y, xD

Out[5]= ::y Ø FunctionB8x<, H-1L
1

2+a H2 + aL
-

1

2+a c
1

2 I2+aM x
1-

1+
a

2

2+a BesselIB
1

2 + a
,
2 c x

2+a

2

2 + a
F C@2D GammaB1 +

1

2 + a
F +

H2 + aL
-

1

2+a c
1

2 I2+aM x

1+
a

2

2+a BesselIB
1

-2 - a
,
2 c x

2+a

2

2 + a
F C@1D GammaB

1

2 + a
+

a

2 + a
FF>>

However, for some special values of the parameters, the solution might be significantly simpler.

For these values of a and c, the solution is much more simple.

In[6]:= sol1 = y@xD ê. sol@@1DD ê. 8a Ø 0, c Ø 4<

Out[6]= C@1D Cosh@2 xD +
1

2
Â C@2D Sinh@2 xD

Occasionally, a solution is valid for most, but not all, values of the parameters.

Since the input in this example is not valid at a = 0, the solution has the same limitation.

In[7]:= sol = DSolve@8y'@xD ã x, y@0D ã 1 ê a<, y, xD

Out[7]= ::y Ø FunctionB8x<,
2 + a x2

2 a
F>>

Of course, there is a simple remedy in this case: setting k = 1
a
.

In[8]:= sol = DSolve@8y'@xD ã x, y@0D ã k<, y, xD

Out[8]= ::y Ø FunctionB8x<,
1

2
I2 k + x2MF>>

In  summary,  the ability  to  solve differential  equations with  symbolic  parameters  is  a  powerful

and  essential  feature  of  any  symbolic  solver  such  as  DSolve.  However,  the  following  points

should be noted.

† The solution might be complicated, and such calculations often require significant time and
memory.

† The answer might not be valid for certain exceptional values of the parameters.

† The solution might be easy to verify symbolically for some special values of the parameters,
but in the general case a numerical verification method is preferable.
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†

The solution might be easy to verify symbolically for some special values of the parameters,
but in the general case a numerical verification method is preferable.

Numerical  quantities  in  Mathematica  can  be  of  three  types:  infinite  precision,  machine  preci-

sion, or arbitrary precision. The first type of number is referred to as “exact”, while the remain-

ing two types represent incomplete information and are therefore called “inexact”. 

Here is a simple example showing all three kinds of numbers.

In[9]:= exactpi = Pi;

In[10]:= Precision@exactpiD

Out[10]= ¶

In[11]:= Hmachinepi = N@PiDL êê InputForm

Out[11]//InputForm= 3.141592653589793

In[12]:= Precision@machinepiD

Out[12]= MachinePrecision

In[13]:= highprecisionpi = N@Pi, 30D

Out[13]= 3.14159265358979323846264338328

In[14]:= Precision@highprecisionpiD

Out[14]= 30.

Since DSolve is a symbolic solver, the algorithms used by it are primarily based on the assump-

tion of  exact input.  However,  equations that contain inexact quantities are handled by DSolve

in the usual way. 

These equations contain the inexact number 3. and 3.`40, respectively.

In[15]:= DSolve@x'@tD ã 3. x@tD, x, tD

Out[15]= 99x Ø FunctionA8t<, ‰3. t C@1DE==

In[16]:= DSolve@x'@tD ã 3.`40 * x@tD, x, tD

Out[16]= 99x Ø FunctionA8t<, ‰3.00000000000000000000000000000000000000 t C@1DE==

Inexact input could arise, for example, when the coefficients in the equations are derived from

a previous calculation and are known only approximately. In such cases, it might not be practi-

cal to convert the equations to exact form, as this could slow down the calculation significantly.
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Here is a system of linear ODEs that all have exact coefficients. Note that even with a fairly 
small value of n, the calculation takes a long time to finish.

In[17]:= n = 8;
x0@t_D := 0;
xn@t_D := 1;
eqns = Table@8xi'@tD - H xi+1@tD - 2 xi@tD + xi-1@tDL, xi@0D - H1 ê nL<, 8i, n - 1<D;
vars = Table@xi, 8i, n - 1<D;
sol = DSolve@Map@Ò ã 0 &, Flatten@eqnsDD, vars, tD; êê Timing

Out[17]= 835.703, Null<

In[18]:= LeafCount@solD

Out[18]= 212851

This verifies the solution. Since the solution is complicated, a numerical verification method is 
used.

In[19]:= eqns ê. sol ê. 8t Ø RandomReal@ 80, 1<, WorkingPrecision Ø 200D< êê N êê Chop êê
Flatten êê Union

Out[19]= 80<

If a single inexact quantity is introduced (in the function x0@tD), the solution is returned more 
quickly.

In[20]:= n = 8;
x0@t_D := 0.;
xn@t_D := 1;
eqns = Table@8xi'@tD - H xi+1@tD - 2 xi@tD + xi-1@tDL, xi@0D - H1 ê nL<, 8i, n - 1<D;
vars = Table@xi, 8i, n - 1<D;
sol = DSolve@Map@Ò ã 0 &, Flatten@eqnsDD, vars, tD; êê Timing

Out[20]= 80.75, Null<

In[21]:= LeafCount@solD

Out[21]= 1563

In[22]:= eqns ê. sol ê. 8t Ø RandomReal@ 80, 1<D < êê N@ÒD & êê Chop êê Flatten êê Union

Out[22]= 80<

Thus,  it  is  often  desirable  to  continue  working  with  inexact  quantities  even  within  a  symbolic

function such as DSolve. However, it should be noted that the solution obtained in such cases

could have a certain amount of numerical error and should be checked carefully. It is therefore

recommended that if the problem size is not too large (for instance, if there are fewer than five

equations), the input should be converted to exact form using the Rationalize function.

This equation contains inexact quantities.

In[23]:= DSolve@8x'@tD ã 0.0001 * x@tD, x@0D ã 3.07<, x@tD, tD

Out[23]= 99x@tD Ø 3.07 ‰0.0001 t==

Here the equation is converted to exact form before being solved.
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Here the equation is converted to exact form before being solved.

In[24]:= DSolve@Rationalize@8x'@tD ã 0.0001 * x@tD, x@0D ã 3.07<, 0D, x@tD, tD

Out[24]= ::x@tD Ø
307 ‰të10000

100
>>

Is the Problem Well-Posed?

DSolve returns a general solution for a problem if no initial or boundary conditions are specified.

The general solution to this equation is returned.

In[1]:= DSolve@y'@xD ã 1 - y@xD, y, xD

Out[1]= 99y Ø FunctionA8x<, 1 + ‰-x C@1DE==

However,  if  initial  or  boundary  conditions  are  specified,  the  output  from  DSolve  must  satisfy

both the underlying differential equation as well as the given conditions.

Here is an example with a boundary condition.

In[2]:= eqns = 8y'@xD ã 1 - y@xD, y@3D ã 5<;

In[3]:= sol = DSolve@eqns, y, xD

Out[3]= 99y Ø FunctionA8x<, ‰-x I4 ‰3 + ‰xME==

In[4]:= eqns ê. sol

Out[4]= 88True, True<<

In such cases, it  is  useful  to check whether DSolve  has been asked a reasonable question~in

other words, to check whether the problem is well-posed. An initial or boundary value problem

is  said  to  be well-posed  if  a  solution for  it  is  guaranteed to  exist  in  some well-known class  of

functions (for example, analytic functions), if the solution is unique, and if the solution depends

continuously on the data. Given an ODE of order n (or a system of n first-order equations) and n

initial  conditions,  there  are  standard  existence  and  uniqueness  theorems  that  show  that  the

problem is well-posed under a specified set of conditions. The right-hand side of the first-order

linear  ODE  in  the  previous  example  is  a  polynomial  in  y@xD  and  hence  infinitely  differentiable.

This is sufficient to apply Picard’s existence and uniqueness theorem, which only requires that

the right-hand side be Lipschitz-continuous. 

Most problems that arise in practice are well-posed since they are derived from sound theoreti-

cal  principles.  However,  as a note of  caution,  the following are examples where DSolve  might

have difficulty finding a satisfactory solution to the problem.
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Most problems that arise in practice are well-posed since they are derived from sound theoreti-

cal  principles.  However,  as a note of  caution,  the following are examples where DSolve  might

have difficulty finding a satisfactory solution to the problem.

Here is the solution to a first-order ODE in which the right-hand side fails to satisfy the Lipschitz 
condition around 0.

In[5]:= generalsol = DSolve@8y'@xD ã 1 ê y@xD<, y, xD

Out[5]= ::y Ø FunctionB8x<, - 2 x + C@1D F>, :y Ø FunctionB8x<, 2 x + C@1D F>>

The general solution has two branches.

In[6]:= Plot@Evaluate@y@xD ê. generalsol ê. 8C@1D Ø 1<D, 8x, -1, 3<D

Out[6]=
-1 1 2 3

-2

-1

1

2

This initial value problem is well-posed in a region around the initial condition and hence 
DSolve succeeds in picking out the correct branch for the given initial condition. 

In[7]:= DSolve@8y'@xD ã 1 ê y@xD, y@0D ã 1<, y, xD

DSolve::bvnul :
For some branches of the general solution, the given boundary conditions lead to an empty solution. à

Out[7]= ::y Ø FunctionB8x<, 1 + 2 x F>>

Here is a second-order ODE. The boundary conditions do not allow any solution to this problem.

In[8]:= DSolve@8y''@xD + y@xD ã 0, y@0D ã 1, y@PiD ã 3<, y@xD, xD

DSolve::bvnul :
For some branches of the general solution, the given boundary conditions lead to an empty solution. à

Out[8]= 8<

In this example, DSolve returns a pair of solutions. As the table shows, the first solution is only 
valid for values of x greater than or equal to 2. 

In[9]:= eqn = y'@xD ã y@xD^H1 ê 2L;
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In[10]:= sol = DSolve@8eqn, y@0D ã 1<, y, xD

Out[10]= ::y Ø FunctionB8x<,
1

4
I4 - 4 x + x2MF>, :y Ø FunctionB8x<,

1

4
I4 + 4 x + x2MF>>

In[11]:= Table@eqn ê. sol ê. 8x Ø i<, 8i, 0, 5<D

Out[11]= 88False, True<, 8False, True<, 8True, True<, 8True, True<, 8True, True<, 8True, True<<

Finally, it is possible that a problem has a solution, but that DSolve fails to find it because the

general solution is in implicit form or involves higher transcendental functions. 

In this example, a solution is available only after inverting the roles of the dependent and 
independent variables.

In[12]:= DSolve@y'@xD ã 1 ê Hx - y@xDL && y@0D ã 1, y, xD

InverseFunction::ifun : Inverse functions are being used. Values may be lost for multivalued inverses. à

Solve::ifun : Inverse functions are being used by Solve, so some
solutions may not be found; use Reduce for complete solution information. à

DSolve::bvnul :
For some branches of the general solution, the given boundary conditions lead to an empty solution. à

Out[12]= 8<

In[13]:= DSolve@x'@yD ã Hx@yD - yL && x@1D ã 0, x, yD

Out[13]= ::x Ø FunctionB8y<,
‰ - 2 ‰y + ‰ y

‰
F>>

This  concludes  the  discussion  of  the  basic  principles  for  effectively  working  with  DSolve.  See

the list of "references" that were found to be useful either during the development of DSolve or

during the preparation of this documentation.
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