
Algorithms and data structures 
This course will examine various data structures for storing and accessing information together with 

relationships between the items being stored, and algorithms for efficiently finding solutions to various 

problems, both relative to the data structures and queries and operations based on the relationships 

between the items stored.  We will conclude by looking at some theoretical limitations of algorithms and 

what we can compute. 

1. Introduction and review 
We will start with a course introduction, a review of the relevant mathematical material students should 

have already seen in previous courses, an overview of C++ and a focus on mathematical induction. 

1.1 Introduction 

Often, we are faced with an issue of dealing with items in order of their priority relative to each other.  

Items waiting for a service will arrive at different times, but they must be serviced in order of the priority. 

1.2 Mathematical background 

Students must understand:  the floor and ceiling functions, l’Hôpital’s rule, logarithms (both that all 

logarithms are scalar multiples of each other and that logarithms grow slower than any polynomial n
d
 

where d > 0, the sums of arithmetic and geometric series, approximations to the sums of polynomial 

series, a general understanding of recurrence relations, the concept of weighted averages and the concept 

of a combination. 

1.3 C++ 

The C++ programming language is similar to C, Java and C#.  Where it differs from C# and Java are in its 

memory allocation model (explicitly having to deallocate memory as opposed to relying on a garbage 

collector), pointers explicitly recording the location in address in memory where an object is stored, and 

the concept of a pre-processor.  Where it differs from all three languages is the concept of templates:  

allowing the user of the class to specify types.  C++ also uses namespaces to prevent collisions on large 

projects.  We will use the std namespace of the standard template library (STL). 

1.4 Mathematical induction 

A proof by induction attempts to show that a statement f(n) is true for all values n ≥ n0 by first showing that 

f(n0) is true, and then then showing that f(n) → f(n + 1); that is, if we assume that f(n) is true, it follows 

that f(n + 1) is also true. 

  



2. Algorithm analysis 
We describe containers to store items, relationships between items we may also want to record, the 

concept of abstract data types, data structures and algorithms that will implement these structures and 

solve problems, and the asymptotic analysis we will use to analyze our algorithms. 

2.1 Containers, relations and abstract data types (ADTs) 

All problem solving on a computer involves storing, accessing, manipulating and erasing data on a 

computer.  Now, there are operations that we may want to perform on containers (taking the union of two 

containers, finding the intersection, emptying a container, determining the number of objects in the 

container, etc.)  Usually, however, we want to store more than just data:  we also want to store 

relationships between the items.  In this case, we may also want to either make queries or perform 

operations based on those relationships.  In general, we do not need to perform all possible operations in 

all situations.  When we come across a description of a container and relevant set of instructions that is 

used very often, we can describe this as an abstract data type.  The relationships we are interested in are 

linear orderings, hierarchical orderings, partial orderings, equivalence relations, weak orderings (a linear 

ordering of equivalence relations), and adjacency relations.  We look at examples of all of these.  We 

consider how relationships can be defined.  In some cases, there is a global mechanism for comparing any 

two objects (3.5412 < 5.2793); in others, the relationship is locally defined (Ali’s manager is Bailey).  We 

quickly described two abstract data types:  the List ADT and the Sorted List ADT. 

2.2 Data structures and algorithms 

The allocation of space for storing information in computer memory may be described as either 

contiguous (as in arrays) or node based (as in linked lists).  A third form is index based, where an array 

points to a sequence at different locations in memory.  We look at how a tree could be defined in a 

manner similar to that of a linked list, only with multiple possible successors.  We consider graphs and 

the Unix inode as examples of hybrid structures.  We consider how some operations may be slow or fast 

given the underlying data structure, and we ask whether or not such descriptions of the run time can be 

described quantitatively as opposed to qualitatively. 

2.3 Asymptotic analysis 

We will look consider the growth of functions without regard to the coefficients of the leading terms.  For 

the functions we will be interested in, we will consider the limit of the ratio 
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finite, or infinite, we will say f(n) = o(g(n)), f(n) = (g(n)) or f(n) = (g(n)), respectively; that is, either 

f(n) grows significantly slower, at the same rate, or significantly faster, respectively.  We observe that this 

defines a weak ordering on the functions we have an interest in where 1 = o(ln(n)), ln(n) = o(n
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may have a collection of functions, some of which are o(g(n)) while others are (g(n)).  In this case, we 

could say that the collection of functions is O(g(n)).  We have a similar definition for (g(n)). 

2.4 Algorithm analysis 

Determining the run time of code requires us to consider the various components.  All operators in C++ 

run in (1) time.  If two blocks of code run in O(f(n)) and O(g(n)) time, respectively, if they are run in 

series, the run time is O(f(n) + g(n)).  Therefore, any finite and fixed set of operators run serially may also 



be said to run in (1) time.  A loop that cycles n times will run in (n) time if the body is (1), but if 

there is the possibility of finishing early, we would say it runs in O(n) time.  If the body of the loop also 

has a run time depending on n, the run time is O(n f(n)).  If, however, the body of the loop iterates over 

the sequence a ≤ k ≤ b, and the run time of the body depends on k, say O(f(k)), the run time may be 

calculated as   O
b

k a
f k

 .  If a function is called and we are not aware of its run time, we may 

represent it by a placeholder T.  If we are aware that the run time depends on a parameter, we may write 

T(n).  In some cases, we may simply determine that the run time of a function S(n) = O(n) + T(n).  For 

example, one function may iterate through an array of size n and then call another function.  When a 

function calls itself, however, we call that a recursive function.  For example, T(n) = T(n – 1) + (1) or 

S(n) = S(n/2) + (1) when n > 1.  In general, we assume that T(1) = (1); that is, the time it takes to 

solve a trivial sized problem is (1).  In the case of these two examples, we can solve the recurrence 

relations to determine that T(n) = (n
2
) while S(n) = (ln(n)).  



3. Lists, stacks and queues 
We will now look at data structures for storing items linearly in an order specified by the programmer (an 

explicitly defined linear order).   

3.1 Lists 

There are numerous occasions where the programmer may want to specify the linear order.  Operations 

we may want to perform on a list are insert an object at particular location, move to the previous or next 

object, or remove the object at that location.  Both arrays and singly linked lists are reasonable for some 

but not all of these operations.  We introduce doubly linked lists and two-ended arrays to reduce some of 

the run times but at a cost of more memory.  We observe that in general, it is often possible to speed up     

If the objects being linearly ordered are selected from a finite and well defined alphabet, the list is 

referred to as a string.  This includes text but also DNA where the alphabet is comprised of four amino 

acids adenine, thymine, guanine and cytosine (A, T, G and C). 

3.2 Stacks 

One type of container we see often is a last-in—first-out container:  items may be inserted into the 

container (pushed onto the stack) in any order, but the item removed (popped) is always the one that has 

most recently been pushed onto the stack.  The last item pushed onto the stack is at the top of the stack.  

This defines an abstract stack or Stack ADT.  This is simple to implement efficiently (all relevant 

operations are (1)) with a singly linked list and with a one-ended (standard) array.  Stacks, despite being 

trivial to implement, are used in parsing code (matching parentheses and XML tabs), tracking function 

calls, allowing undo and redo operations in applications, in reverse-Polish operations, and is the format 

for assembly language instructions.  With respect to the array-based implementation, we focus on the 

amortized effect on the run time if the capacity is doubled when the array is full, and when we increase 

the capacity by a constant amount.  In the first case, operations have an amortized run time of (1) but 

there is O(n) unused memory, while in the second the amortized run-time is O(n) while the unused 

memory is (1). 

3.3 Queues 

Another type of container we see often is a first-in—first-out container, a behavior desirable in many 

client-server models where clients waiting for service enter into a queue (pushed onto the back of the 

queue) and when a server becomes reading, it begins servicing the client that has been waiting the longest 

in the queue (the client is popped off the front of the queue).  This defines an abstract queue or Queue 

ADT.  This can be implemented efficiently (all relevant operations are (1)) with either a singly linked 

list or a two-ended cyclic array.  With respect to the array-based implementation, we focus on the 

characteristics of a cyclic array, including the requirement for doubling the capacity of the array when 

full. 

3.4 Deques 

A less common container stores items as a contiguous list but only allows insertions and erases at either 

end (pushes and pops at the front and back).  This defines an abstract doubly ended queue or abstract 

deque or Deque ADT.  This can be implemented efficiently using a two ended array but requires a doubly 

linked list for an efficient implementation using a linked list.  For this data structure, we look at the 

concept of an iterator:  an object that allows the user to step through the items in a container without 

gaining access to the underlying data structure. 



4. Trees and hierarchical orders 
We will now look at data structures for storing items linearly in an order specified by the programmer (an 

explicitly defined linear order).  However, to start, we will first look at trees and their obvious purpose:  to 

store hierarchical orders. 

4.1 The tree data structure 

A tree is a node-based data structure where there is a single root node, and each node can have an 

arbitrary number of children (the degree of a node being the number of children it has).  Nodes with no 

children are leaf nodes while others are internal nodes.  The concepts of ancestors and descendants is 

defined and a node and all its descendants is considered to be a sub-tree within a tree.  We define paths 

within a tree and the lengths of paths, the depth of a node, and the height of a tree.  We look at how the 

tree structure can be used to define markups in HTML and how XML, in general, defines a tree structure. 

4.2 Abstract trees 

An abstract tree stores nodes within a hierarchical ordering.  Questions we may ask include determining 

children and parents, and getting references to either the parent or iterating through the children.  

Operations include adding and removing sub-trees.  To implement this, we consider a class which stores a 

value and a reference to the parent.  In addition, children are stored in a linked list of references to 

children.  If the linked list is empty, the node is a leaf node.  We observe how we can implement the 

various queries and operations defined above on such a data structure.  We also look at how hierarchies 

are almost always locally defined:  at the very least, either every node must specify its parent, or each 

node must store its children. 

4.3 Tree traversals 

In stepping through all the entries in an array or linked list, one need only walk through the n entries.  In a 

tree, this is more difficult.  We have already seen how we can perform a breadth-first traversal of a tree 

using a queue.  Another approach is a depth-first traversal where a node is visited, and then the children 

are visited in order using the same depth-first traversal order.  Operations at any node may be performed 

before the children are visited or after, depending on whether calculations are required for the sub-trees, 

or whether the children are returning information that is to be used by the node.  Operations that must be 

performed prior to visiting the children are referred to as pre-order and those that require information 

from the children are post-order.  We look at how this can be used to print a directory hierarchy in a 

standard format, and how to calculate the total memory used by a directory and all its sub-directories 

including the files in those directories. 

  



5. Ordered trees 
We will look at trees where there are a fixed number of children, and the order of the children is relevant.  

We will start with binary trees and then look at N-ary trees. 

5.1 Binary trees 

A binary tree is where each node has two named children:  left and right children forming left and right 

sub-trees.  We define an empty node or null sub-tree as any child which does not exist.  A full node is a 

node with two children.  A full binary tree is a binary tree where every internal node is full.  The 

implementation of such a structure is quite straight-forward, and recursive algorithms can be used to make 

various calculations such as determining the size and height of trees.  As one application, we consider 

ropes:  full binary trees where each child is either a string or is itself another rope.  The rope defines a 

string formed by the concatenation of the children. 

5.2 Perfect binary trees 

A perfect binary tree of height h = 0 is a single leaf node.  A perfect binary tree of height h > 0 is a tree 

which has two sub-trees, both of which are perfect binary trees of height h – 1.  Similarly, you can define 

a perfect binary tree as a tree where all internal nodes are full and all leaf nodes are at the same depth.  

The number of nodes is n = 2
h + 1

 – 1 and the height is lg(n + 1) – 1 = (ln(n)).  There are 2
h
 leaf nodes, so 

over half the entries are leaf nodes and the average depth of a node is approximately h – 1.  This will be 

the ideal case for all other binary trees. 

5.3 Complete binary trees 

A complete binary tree is one that is filled in breadth-first traversal order.  The height of such a tree is still 

   lgh n n     .  The benefit of such an ordering is that the tree can be represented not using nodes, 

but as an array filled through a breadth-first traversal order.  In this case, if the root is at index k = 1, then 

the parent of the node at index k is / 2k    while the children are at 2k and 2k + 1.  We observe that for a 

general tree, the memory use of such a representation would be O(2
n
). 

5.4 N-ary trees 

An N-ary tree binary tree is where each node has N identifiable children.  We define an empty node or 

null sub-tree as any child which does not exist.  A full node is a node with N children.  A full N-ary tree is 

an N-ary tree where every internal node is full.  The implementation of such a structure is quite straight-

forward, and recursive algorithms can be used to make various calculations such as determining the size 

and height of trees.  One application we consider are tries, 26-ary trees where each branch represents 

another character in a word being stored.  The root represent the empty string, and characters are added to 

this string as one steps down the tree. 

  



5.5 Balanced trees 

The heights of perfect and complete binary trees is (ln(n)), while in general the height of binary tree is 

O(n).  In general, operations that must access leaf nodes would require us to traverse down the tree, so 

any such operations would be O(n).  We will look at various definitions of balance.  In general, if a tree is 

balanced, it will be shown that the height of the tree is o(n).  Usually, this will be (ln(n)).  Height-

balancing such as AVL balancing (which we will see) has us restrict the difference in heights of the two 

sub-trees to at most one.  The null-path-length of a tree is the shortest distance to a null sub-tree.  Null-

path-length balancing has us restrict the difference in the null-path-lengths between the two sides, as is 

shown in red-black trees.  Finally, the weight of a tree is the number of null sub-trees.  Consequently, a 

weight-balanced tree restricts the ratio of the weights of the two sub-trees to a maximum amount.  All of 

these restrictions apply to all nodes within the tree, not just the root. 

  



6. Binary search trees 
Next we look at using trees for storing linearly ordered data.  We will use ordered trees to themselves 

define a linear order on the node and their children. 

6.1 Binary search trees 

A binary search tree is defined where anything less than the current node appears in the left sub-tree, 

while anything greater than the current node appears in the right sub-tree.  Operations can be performed 

recursively to find, for example, the smallest object, the largest object, and finding an object.  Inserting a 

new node is performed by following the same path one would follow to find that node, and the new node 

replaces the null sub-tree found.  Erase is more difficult in the case of erasing a full node.  In this case, 

either the minimum entry from the right sub-tree or the maximum entry of the left sub-tree can be copied 

up and that object is recursively removed from the appropriate tree.  We discussed how we could 

implement operations such as find next and accessing the k
th
 entry quickly.  All these operations are O(h).  

Consequently, in the worst case, the operations are O(n); however, if we can restrict the height of the tree 

to (ln(n)), all these operations will be performed in logarithmic time. 

6.2 AVL trees 

By requiring that the height of the two sub-trees differs by at most one, the height will be no worse than 

log(n) – 1.3277 = (ln(n)).  After an insertion or erase, as one traverses back to the root node, it is 

necessary to check each node as to whether or not it is balanced.  If it is not, there is one of four possible 

cases, represented by the insertion of 3, 2, 1; 3, 1, 2; 1, 2, 3; and 1, 3, 2 into an empty binary search tree.  

Each of these can be, with a fixed number of assignments be corrected to be a perfect binary tree of height 

h = 1.  Applying these corrections requires at most (1) time for insertions and O(ln(n)) time for erases; 

neither changing the run time of the original operation. 

6.3 Multiway search trees 

Suppose an ordered trees contains references to N sub-trees interspaced with N – 1 elements.  In this case, 

if the N – 1 elements are linearly ordered, we can require that all the entries in the k
th
 sub-tree fall between 

the two surrounding elements, while the left-most sub-tree contains elements less than the left-most 

element, and the right-most sub-tree contains elements greater than the right-most element.  If such a tree 

is perfect, it allows us to store objects in a tree of height h = logN(n + 1) – 1 = (ln(n)).  While such a tree 

is more complex than a binary search tree, it has the potential to have a height that is a factor of log2N 

times shorter than a corresponding binary tree. 

6.4 B+ trees 

A B+ tree is a tree that is used as an associative container.  Each leaf node contains up to L objects 

including keys and the associated information.  Internal nodes are multi-way trees where the intermediate 

values are the smallest entries in the leaf nodes of the second through last sub-trees.  If a B+ tree has no 

more than L entries, those entries are stored in a root node that is a leaf node.  Otherwise, we require that 

leaf nodes are at least half full and all at the same depth,  internal nodes are multiway nodes that, too, are 

at least half full, and the root node is a multiway node that is at least half full.  When an insertion occurs 

into leaf node that is filled, it is split in two, and a new node is added to the parent.  If parent is already 

full, it too is split.  This recurses possibly all the way back to the root, in which case, the root node will 

have to be split and a new root node will be created. 



7. Priority queues 
In this topic, we will examine the question of storing priority queues.  We will look at the abstract data 

type and we will then continue to look at binary min-heaps.  While there are numerous other data 

structures that could be used to store a heap, almost all are node-based.  Given the emphasis on node-

based data structures in the previous topics, we will now focus on an array-based binary min-heap.  

Students are welcome to look at other implementations (leftist heaps, skew heaps, binomial heaps and 

Fibonacci heaps). 

7.1 Priority queue abstract data type 

Often, we are faced with an issue of dealing with items in order of their priority relative to each other.  

Items waiting for a service will arrive at different times, but they must be serviced in order of the priority. 

7.2 Binary min-heaps 

We require an array-based data structure that can implement the operations relevant to a priority queue in 

an efficient manner.  Storing a min-heap structure (where the children are greater than the parent) allows 

us to use a complete tree, which has an elegant array-based representation.  However, to achieve stability 

(guaranteeing that two items with the same priority are serviced according to their arrival time) requires 

(n) additional memory by creating a lexicographical linear ordering based on an arrival-order-counter 

and the actual priority. 

  



8. Sorting algorithms 
Given an array of unordered entries, we would like to sort the entries so that they are located relative to 

their linear ordering. 

8.1 Introduction to sorting 

Given an unsorted list of items that are linearly or weakly ordered, it is often necessary to order the items 

based on their relative linear ordering.  We will assume that the items are stored in an array, and we will 

define a sorting algorithm to be in-place if it uses (1) additional memory (a few local variables).  In 

some cases, in-place is defined if the additional memory is o(n). There are six sorting design techniques 

we will consider:  insertion, selection, exchange, merging, and distribution.  We also define a measure of 

the unsortedness of a list, namely, the number of inversions.  We look at a very brief overview of a proof 

that if a sorting algorithm uses comparison to perform the sort, the binary decision tree must contain n! 

items, and the minimum average depth of nodes in a binary tree with N nodes is ln(N); consequently, the 

average number of operations is therefore (n ln(n)). 

8.2 Insertion sort 

In order to sort a list, we start with a list of size 1—which is, by definition, sorted—and then given a list 

of size k, it inserts the next item into the list by placing it into the correct location.  Naïvely, the algorithm 

may appear to be O(n
2
); however, a better description is (n + d) where d is the number of inversions.  

The number of comparisons is exactly n + d. 

8.3 Bubble sort 

While having a name catchy name and using a simple idea that appears to be related to insertion sort, 

bubble sort performs significantly worse than insertion sort.  A naïve implementation of the algorithm has 

a runtime of (n
2
), and while various modifications to the algorithm, including alternating between 

bubbling up and sinking down, restricting the search space, etc., the run time can be reduced to (n + d) 

where d is the number of inversions, but unlike insertion sort, the number of comparisons is n + 1.5d. 

8.4 Heap sort 

In order to sort a list, we could consider using a priority queue.  For example, inserting n items into a 

binary min-heap using their value to represent their priority requires, at worst,     
1
ln ln

n

k
n n n


  

time, and taking those same n items out again takes the same amount of time.  However, the items will 

come out of the heap in order of their values; consequently, the items will come out in linear order.  The 

only issue is that this requires (n) additional memory.  Instead, converting the array of unsorted items 

into a binary max-heap, popping the top n times, and placing the popped items into the vacancy left as a 

result of the pop allows us to sort the list in place. 

8.5 Merge sort 

Another approach to sorting a list would be to split the list into two, sort each of the halves, and then 

merge the two sorted lists back into one complete sorted list.  Merging two lists of size n/2 requires (n) 

time.  If merge sort is applied recursively, we may describe the run time as T(n) = 2T(n/2) + (n) when 

n > 1, but this has the additional consequence that the run time is now (n lg(n)) = (n ln(n)).  We will 

consider exactly why the runtime is reduced to this amount when we consider the master theorem in our 



topic on divide-and-conquer algorithms.  Unfortunately, the merging process requires an additional (n) 

memory over-and-above the original array. 

8.6 Quicksort 

The most significant issue with merge sort is that it requires (n) additional memory.  Instead, another 

approach would be to find the median element and then rearrange the remaining entries based on whether 

they are less than or greater than the median.  We can do this in-place in (n) time, in which case, the 

run-time would be equal to that of merge sort.  Unfortunately, selecting the median is difficult at best.  

We could randomly choose a pivot, but this would have a tendency of dividing the interval in a ratio of 

1:3, on average.  There would also be a higher likelihood of  

  



9. Hash tables and relation-free storage 

9.1 Introduction to hash tables 

When we store linearly ordered data that we intend to both access and modify at arbitrary locations, this 

requires us to use a tree structure that ultimately requires most operations to run in O(ln(n)) time—the  

linear ordering prevents us from having run-times that are o(ln(n)).  If, however, we don’t care about the 

relative order (What comes next?  What is the largest?), we don’t need the tree structure.  Instead, we just 

need a simple formula—a hash value—that tells us where to look in an array to find the object.  The issue 

is, it is very difficult to find hash functions that generate unique hash values on a small range from 0 to 

M – 1, so we must deal with collisions.  Our strategy will be to find (1) functions that first map the 

object onto a 32-bit number (our hash value), this hash value is mapped to the range 0, …, M – 1, and 

then deal with collisions. 

9.2 Hash functions 

We are going to define hash functions as functions that take an object that deterministically takes us to a 

32-bit value.  For example, the address of an object is a 32-bit value which is fine so long as different 

objects are considered to be different under our definition.  On the other hand, it is also possible to simply 

assign each newly created object a unique hash value in the constructor.  For certain objects, two 

instances may be equal under a specific definition (two strings both containing the characters “Hi!”), in 

which case, the hash function must be an arithmetic function of the properties of the object that 

distinguish it in such a way that two equal objects have the same hash value. 

9.3 Mapping down to 0, …, M – 1 

We are storing objects in an array of size M; consequently, we must map the hash value to that range.  

Just taking the value modulo M is sub-optimal for a number of reasons.  Instead, if we restrict ourselves to 

arrays that are powers of two (M = 2
m
), it is better to multiply the hash value by a large prime, and then 

take the middle m bits.   

9.4 Chained hash table 

The easiest way to deal with collisions in a hash table is to associate each of the n bin with a linked list or 

other container.  All operations insertion, access, modifications, and erases are performed on the 

individual containers associated with the possible hash values.  Thus, if the operations on the original 

were, for example, O(n), the corresponding operations on the individual items would be O(), where  is 

the load factor. 

9.6 Open addressing 

One issue with using, for example, chained hash tables or scatter tables is that they require (m + n) 

additional memory over-and-above memory required to store the items.  This is because an explicit 

indicator is being used to store a reference to the next bin.  Alternatively, an implicit rule could be used to 

indicate the next location to search. 

9.7 Linear probing 

The easiest rule to follow is to check successive cells in order.  In this case, determining membership 

requires us to also follow the same rule until we find the object, find an empty cell, or (in the worst case) 

iterate through the entire array.  Each bin must be marked as either OCCUPIED or UNOCCUPIED.  When 

erasing, bins cannot be left empty if there is an object where the empty bin lies on the search path 



between the original bin and the bin it is currently stored in.  One issue with linear probing is that it leads 

to primary clustering:  once clusters start growing, they accelerate in their growth leading to longer run 

times. 

9.9 Double hashing 

One solution to the issue of primary clustering seen with linear probing is to give each object a different 

jump size.  The easiest way to do this is to calculate for each object a second hash value.  This jump size 

must be co-prime (relatively prime) with the array size.  For array sizes that are powers of two, this 

requires the jump size to be odd.  One issue with such a scheme is that it is no longer possible to 

efficiently determine during an erase what other objects may be appropriately placed into a particular bin.  

Consequently, each bin must be marked as OCCUPIED, UNOCCUPIED or ERASED. 

  



10. Equivalence relations and disjoint sets 
An equivalence relation allows one to break a larger set into equivalence classes.  If the larger class is 

finite, an equivalence class breaks the set into finite disjoint sets.  We look at how it is possible to 

represent a set broken into disjoint subsets. 

10.1 Disjoint sets 

If we want to break a finite set of n objects into disjoint sets, the easiest data structure is a parental forest 

where one states that two objects are in the same set if the they have the same root.  Two disjoint sets are 

joined to form a single set by making the shorter tree a sub-tree of the other.  Now, all objects in both 

trees have the same root.  On average, given random insertions, the height is essentially (1), but in the 

worst case, the height is O(ln(n)). 

  



11. Graph algorithms 
A graph stores adjacency relations, where two nodes are considered connected or not.  We describe 

graphs, mechanisms for storing graphs, and algorithms for solving problems related to graphs. 

11.1 Graph theory and graph ADTs 

A graph is a collection of vertices V and edges E (the number of vertices and edges is denoted by |V| and 

|E|).  In an undirected graph, edges are ordered pairs of unique vertices.  Therefore, the maximum number 

of edges is 
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 .  If a vertex is one of the two end-points of an edge, that 

vertex is said to be coincident with the edge.  We define sub-graphs and vertex-induced sub-graphs, paths, 

simple paths, cycles, and simple cycles.  We define weighted graphs, were each edge has a weight 

associated with it.  We describe how a graph can be a tree or a forest and the concept of an acyclic 

graph—one with no cycles.  We then define directed graphs and modify the definitions seen previously 

for undirected graphs.  We then quickly cover the means of storing graphs and some general questions 

that may be asked of abstract graph. 

11.2 Graph data structures 

A graph can be stored efficiently as either an adjacency matrix or an adjacency list.  An undirected graph 

can also be stored as a lower-triangular matrix.  A sparse matrix format may be useful in storing an 

adjacency matrix if the number of edges is O(|V|). 

11.4 Topological sorts 

A directed acyclic graph is a representation of a partial ordering on a finite number of vertices.  A 

topological sorting of the vertices in a directed acyclic graph is one such that v1 < v2 in the topological sort 

whenever v1 ≺ v2 in the partial ordering.  In fact, a graph is a DAG if and only if it has a topological 

sorting and this is based on the fact that every DAG has at least one vertex of in-degree zero.  The 

algorithm for generating a topological sorting is similar:  sequentially remove vertices that have in-degree 

zero.  Initialize an array of in-degrees, and place all objects with in-degree zero into a queue.  Then, pop 

the vertices from the queue and decrement the in-degrees of each adjacent neighbor.  Any neighbor that 

has its in-degree decremented to zero is also placed into the queue.  After |V| iterations, we have a 

topological sorting and the run time is (|V| + |E|) requiring (|V|) memory. 

11.5 Minimum spanning trees 

A minimum spanning tree of a connected graph is a collection of |V| – 1 edges such that the sub-graph 

containing those edges is still connected.  Removing an edge from a spanning tree produces an 

unconnected graph.  Adding an edge to a spanning tree produces a cycle.  If a graph is not connected, it is 

possible to find a minimum spanning forest, where there is a minimum spanning tree for each connected 

sub-graph.  Minimum spanning trees can be used, for example, in power distribution, both on chips as 

well as high-voltage power transmission.  While two algorithms are common, Kruskal’s and Prim’s, we 

will focus on the latter. 

11.5a Prim’s algorithm 

Prim’s algorithm finds a minimum spanning tree by starting with a vertex.  Then, given a sub-graph for 

which we have found a minimum spanning tree (which we have with just a single vertex), it considers all 

edges where one vertex is in the sub-graph and the other is not.  Of all of these edges, the edge with 



minimum weight is added and the corresponding vertex is added to the sub-graph.  After |V| iterations, the 

minimum spanning tree is generated.  If at some point, there are no edges touching the sub-graph, the 

original graph was not connected.  The algorithm starts with three arrays with one entry per vertex:  the 

first is a Boolean array with each entry initialized to false (the vertex has not yet been visited), the second 

is a distance array with each entry initialized to infinity with the exception of the initial vertex which has 

this entry set to 0, and the third array is a reference to another vertex where each is initialized to null. 

Then we iterate:  find a vertex v that has not been visited.  Mark v as visited and for each adjacent vertex 

w, check if the edge between v and w is less than the current distance associated with w.  If it is less, 

update the distance to that value and set the vertex reference of w to v.  If at some point all vertices are 

visited, we are done and we have a minimum spanning tree.  If at some point every unvisited vertex has 

distance infinity, the graph is unconnected.  The array of references to vertices forms a parental tree.  The 

run-time of the algorithm is (|E| ln(|V|)) and it requires (|V|) memory.   

11.6 Single-source shortest path 

Given a vertex v in a graph, we may want to find the shortest distance from that vertex to every other 

vertex in the same connected component of that graph.  This is a slightly simpler problem than that of 

finding the distance from each vertex to every other vertex. 

11.6a Dijkstra’s algorithm 

Dijkstra’s algorithm finds the minimum distance to each node by starting out with finding the closest 

node to the source, and then asking whether or not it is possible to get to any other nodes more quickly 

through that node.  Then, given a sub-graph of vertices for which the algorithm has found the minimum 

distance to all vertices within the graph, it considers the distances to all neighboring vertices by adding up 

the distance to the vertex in the sub-graph plus the weight of the connecting edge.  Of all of these edges, 

the vertex with the minimum distance chosen and it has been determined that the minimum distance from 

the source to that vertex has been found.  After |V| iterations, the distance to all vertices is found.  If at 

some point, there are no edges touching the sub-graph, the original graph was not connected.  The 

algorithm starts with three arrays with one entry per vertex:  the first is a Boolean array with each entry 

initialized to false (the vertex has not yet been visited), the second is a distance array with each entry 

initialized to infinity with the exception of the initial vertex which has this entry set to 0, and the third 

array is a reference to another vertex where each is initialized to null. Then we iterate:  find a vertex v that 

has not been visited.  Mark v as visited and for each adjacent vertex w, add the distance to v and add to 

that the weight of the edge between v and w.  Let this be the distance to w through the vertex v.  If it is 

less than what is currently recorded, update the distance to that value and set the vertex reference of w to 

v.  If at some point all vertices are visited, we are done and we have a minimum spanning tree.  If at some 

point every unvisited vertex has distance infinity, the graph is unconnected.  The array of references 

forms a parental tree with the initial vertex at the root.  The run-time of the algorithm is (|E| ln(|V|)) and 

it requires (|V|) memory. 

 

 

  



12. Algorithm design 
We have now seen a number of algorithms that solve various problems.  We will now look at trying to 

describe the strategies used to solve these problems. 

12.1 Algorithm design 

Problems may have only one solution or perhaps many possible solutions.  In general, a solution may be 

comprised of numerous components that together constitute the complete solution.  For example, 

directions from Waterloo to Ottawa include solutions bring one from one decision point to the next—a 

decision point being a location where one must choose one of two or more possible paths; for example, 

intersections.  A partial solution is a combination of components that could be extended to be a solution.  

A feasible solution is one that satisfies all possible requirements for the solution.  An optimal solution 

would be defined as the best feasible solution according to some metric. 

12.2 Greedy algorithms 

A greedy algorithm is one where we use a very simple rule to extend a partial solution, usually starting 

with a null solution—one that contains no components toward a feasible solution.  At each step, a 

relatively simple algorithm is used to extend the partial solution.  The goal is that the sequence of partial 

solutions leads to a feasible solution.  If there are numerous feasible solutions together with an optimality 

condition, the goal is that the sequence of partial solutions will lead to either an optimal or near optimal 

solution.  Examples include Prim’s algorithm, Kruskal’s algorithm and  Dijkstra’s algorithm.  In the 0/1 

knapsack problem, any partial solution that does not exceed the maximum weight is a feasible solution.  

A greedy algorithm in this case can be shown to not necessarily lead to the optimal solution.  The function 

deciding which is the next item to be put into the knapsack will also affect the result, with a density 

function being better than focusing only on the value or the constraining factor.  We looked at this using 

the analogy of a project management problem.  Another case where a greedy algorithm is optimal is 

minimizing the overall wait time of a number of processes by scheduling the shortest job next.  Similarly, 

finding the maximal number of intervals that can be chosen so that none overlap may be found using a 

earliest-deadline-next greedy algorithm; however, if the intervals have weights, no greedy algorithm is 

known that will maximize the total weight of the chosen intervals. 

12.3 Divide-and-conquer 

Often, a problem can be solved by breaking a problem into smaller sub-problems, finding solutions those 

smaller sub-problems, and then recombining the results to produce a solution for the overall problem.  

Two questions are:  Can we determine when it is beneficial to use a divide-and-conquer algorithm?  What 

approaches should we be using to increase the efficiency of a divide-and-conquer strategy?  In finding the 

maximum entry of a sorted square matrix, a divide-and-conquer algorithm is sub-optimal when contrasted 

with a linear search.  When multiplying two n-digit numbers, Karatsuba’s algorithm reduces the problem 

to multiplying three sets of n/2-digit numbers, yielding a significant reduction in run time.  When 

multiplying two n × n matrices, Strassen’s algorithm reduces the problem to multiplying seven pairs of 

n/2 × n/2 matrices.  A naïve divide-and-conquer algorithm for matrix-vector multiplication reduces the 

product to four products of n/2 × n/2 matrices with n/2-dimensional vectors.  This does not reduce the run 

time—it is still (n
2
); however, in the special case of the Fourier transform, the matrix is such that the 

matrix-vector product can be reduced to two products of n/2 × n/2 matrices with n/2-dimensional vectors 

resulting in a run time of (n ln(n)).  The master theorem allows us to write 
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k
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, the run times may be determined to be 
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12.4 Dynamic programming 

A divide-and-conquer algorithm is recursive.  In other cases, recursive algorithms may result in result in 

sub-problems that are repeatedly solved.  For example, in the definition of the Fibonacci numbers or in 

the definition of the coefficients of Newton polynomials, the naïve recursively defined functions run in 

exponential time.  However, because so many results are repeatedly calculated, if such intermediate 

calculations are temporarily stored so that they may be immediately returned upon subsequent calls, the 

run time drops to (n) and (n
2
), respectively.  Storing intermediate results is a process called 

memoization.  In these two examples, the algorithm is formulaic; in others, the recursive query may be 

asking to find an optimal solution for a specific sub-problem.  In such cases, memoization still provides a 

significant speed-up.  We considered matrix chain multiplications, interval scheduling with weights, and 

the knapsack problem.  Another observation is all of these algorithms using memoization are top-down.  

It is also possible to simply determine the simplest cases and build the solution up from simpler sub-

problems.  This describes a bottom-up approach.  Which is optimal depends on the problem at hand.  One 

interesting observation we made is that the matrix-chain multiplication problem and the optimal 

triangulation problem, while appearing to be different, are very similar problems and solving one allows 

one to solve the other. 
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12.5 Backtracking 

A brute-force search tends to be very expensive.  If the solutions can be hierarchically ordered, it may be 

possible to define a traversal which walks through the tree to find the optimal solution.  Such an algorithm 

would, again, be expensive; however, it may be possible to determine at a specific node that all 

descendants from that point are unfeasible solutions; in this case, we may disregard searching that entire 

sub-tree.  Depending on how quickly the traversal stops, it may be possible to significantly reduce the 

number of partial solutions that need to be checked to find an optimal solution.  We considered problems 

such as Sudoku, the n-queens problem, the knight’s tour problem, and parsing a string with respect to a 

grammar. 

12.6 Stochastic algorithms 

In some cases, it may be reasonable to use either random or pseudo-random to find or approximate 

solutions to problems.  First, we discuss random number generation, specifically the 48-bit class of 

random number generators including drand48(), lrand48() and mrand48().  We then discuss how random 

numbers that follow a standard normal can be calculated.  This is followed by an example of Monte Carlo 

integration, and how randomly assigning errors to circuit components can be useful in determine if a 

circuit is robust; that is, if small errors do not cause significant differences in the output.  Finally, we 

discuss skip lists, a data structure that combines the best characteristics of arrays and linked lists. 

 

 

  



13. Theory of computation 
We will now look at some of the theoretical aspects of algorithms to answer questions such as:  What can 

we solve?  Is there anything we cannot solve?  What can we solve efficiently? 

13.1 Theory of computation 

We have investigated many abstract data types (ADTs) and considered many implementations of these 

ADTs.  We have also investigated many problems that may be posed  

13.2 Turing completeness 

To answer the question “what can we solve?”, Alan Turing devised a simple machine that maintained a 

state from a finite set of states, that had a head that could read or write to a single tape divided into cells, 

and where each cell could contain a character from a finite alphabet.  The head can also move the tape 

one cell to the left or right.  This machine then looks up the state and the character currently located in the 

cell under the head, and from this reads off an instruction that indicates the new state, the letter to be 

written to the cell, and whether the head should remain over the current cell, move one cell to the right, or 

move one cell to the left.  Turing showed that this machine could be used to implement a broad spectrum 

of algorithms and the Church-Turing thesis says that anything that can be computed can be computed by a 

Turing machine.  While this has not been proven, no counter examples have yet been discovered.  Any 

machine that can perform at least the operations of a Turing machine is said to be Turing complete.  

Essentially, any computer with a register, linear memory, and instructions allowing both to be changed to 

reasonably arbitrary values is Turing complete. 

13.3 Decidability and the halting problem 

Are there questions we cannot decide?  To answer this in the affirmative, we pose the halting problem:  

“Is it possible to, given a function and arguments to be passed to that function, determine whether or not 

that function will terminate at some finite time in the future?”  If we assume that such a halting function 

exists, then we can create a function that, no matter what such a halting function returns, that returned 

value will be incorrect; consequently, showing that we cannot find such a function.  Therefore, yes, there 

are some questions which we will never be able to compute. 
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14. Other topics 
Other topics include a discussion on sparse matrices, searching algorithms and the standard template 

library (STL).  We will look only at the first. 

14.1 Sparse matrices 

A sparse M × N matrix is generally one that contains o(MN) entries, and usually (M + N) entries.  The 

old Yale sparse matrix format stores the entries in row-major order.  This allows us to store the n entries 

in an array of size n, with an indication of the column in another array of size n, together with an array of 

size M + 1 indicating the position in the array where the k
th
 row begins.  Access time is now (ln(n/M)). 

 

 

 

 

 


