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In the present study, we mainly investigate the nature of entropy function in non-flat
Kaluza-Klein universe. We prove that the first and generalized second laws of gravita-
tional thermodynamics are valid on the dynamical apparent horizon.
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1. Introduction

Recently, Planck collaboration [1] have observed that the matter in our universe

is dominated by two mysterious components: 68.3 percent dark energy and 26.8

percent dark matter. It is hypothesized that the Universe is flat, homogeneous and

isotropic over large scale and the dark components put the Universe into the phase

of accelerated expansion [1–5].

Many cosmologists commonly think that extra-dimension may be a useful candi-

date to explain the dark part of universe. Although there are many suggestions such

as Tachyon [6], K-essence [7], quintom [8], phantom [9], quintessence [10], Chaplygin

gas [11], Polytropic gas [12], modified gravity [13,14] and reconstruction in modified

theories [15] for the explanation of dark universe, the dark nature of our universe

is completely unknown [16]. The cosmological constant has been assumed to be

the best and simplest instrument to investigate the dark energy and dark mat-

ter. Actually, it is the earliest theoretical candidate, but it gives some difficulties

like cosmic-coincidence puzzle and fine-tuning [17]. The current value of cosmolog-

ical constant is about 10−55cm−2, but the corresponding value in particle physics

is 10120 times grater than this factor [18, 19]. This is the difficulty known as the

fine-tuning. On the other hand, the cosmic-coincidence problem comes forward due

to the comparison of dark matter and dark energy in the present expanding uni-

verse [18]. The recent observations have indicated that multi-dimensional theories

can give satisfying answers for such problems.
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The scheme of study is the following. In the next section, we take the 5D

Friedmann-Robertson-Walker spacetime as representation of our universe as a first

step, then we introduce the selected dark energy scenario, calculate the density

of extended holographic dark energy and formulate the corresponding generalized

Friedmann and continuity equations. In the third section, we present the analysis

of the validity of the first and generalized second laws of gravitational thermody-

namics to investigate the Kaluza-Klein nature of universal entropy function. The

last section is devoted to final remarks.

2. Dark Energy Scenario in Kaluza-Klein Universe

Kaluza [20] and Klein [21] assumed an extra dimension in general relativity to unify

the gravity and electromagnetism into one theory. In the present study, we use the

five-dimensional (5D) Kaluza-Klein model and investigate the nature of universal

entropy function. Here, the following Kaluza-Klein type metric [22] is considered

ds2 = −dt2 + a2(t)

[
dr2

1− kr2
+ r2(dθ2 + sin2 θdϕ2) + (1− kr2)dψ2

]
, (1)

where a(t) is the scale factor and k denotes the curvature parameter. Note that

the values of curvature parameter 0, −1 and +1 corresponds to the flat, closed and

open spacetime models, respectively. We also assume the Universe to be filled with

dark energy and dark matter and the five-dimensional energy-momentum tensor of

a perfect dark fluid is represented by [23]

Tµν = (ρ+ P )UµUν − gµνP, (µ, ν = 0, 1, 2, 3, 5), (2)

where ρ, P and Uµ are the energy density, the pressure of dark fluid and the 5-

velocity vector, respectively. Note that ρ = ρm + ρe and P = Pm + Pe where the

subscripts m and e denote the dark matter and dark energy, respectively. Here, we

also have UµU
µ = 1.

The Einstein’s field equations are defined by

Rµν − 1

2
gµνR = 8πGTµν , (3)

where Rµν , gµν , R and G are the Ricci tensor, the metric tensor, the curvature

scalar and the gravitational cosntant, respectively. Using equations (2) and (3) it

can be written

Rµν − 1

2
gµνR = 8πG [(ρ+ P )UµUν − gµνP ] . (4)

On the other hand, we consider that the dark fluid is a mixture of dark matter and

dark energy, thence it can be defined that P = Pm+Pe and ρ = ρm+ ρe. This field

equation with the line-element (1) yields two independent equations

H2 +
k

a2
=

4πG

3
ρ, (5)



September 18, 2015 10:44 WSPC/INSTRUCTION FILE KK.Nature.S

Kaluza-Klein Nature of Entropy Function 3

2H2 + Ḣ +
k

a2
= −8πG

3
P, (6)

where H = ȧ
a is the Hubble parameter. Next, the continuity equation gives

ρ̇+ 4H(ρ+ P ) = 0. (7)

Besides, considering the Gamma law equation

P = (γ − 1)ρ, (8)

one can write the continuity equation in another nice form:

ρ̇+ 4Hγρ = 0, (9)

where γ is the state parameter. In this dark scenario, using the fractional densities,

Ωm =
4πGρm
3H2

, Ωe =
4πGρe
3H2

, Ωk = − k

H2a2
, (10)

we may rewrite the Friedmann equation (5) in a very elegant form:

3∑
i=1

Ωi = 1, (11)

where i = m, e, k.

Now, we obtain an expression for the extended holographic dark energy model in

the Kaluza-Klein theory. On this purpose, first, we consider the mass-radius relation

of (N+1)-dimensional Schwarzschild black hole [24] given by

M =
(N − 1)AN−1R

N−2
H

16πG
, (12)

where AN−1 is the area of unit N -sphere, Rh represents the black hole horizon scale

and G stands for the gravitational constant in (N+1) dimensions. The gravitational

constant is related withMN+1 which denotes (N +1)-dimensional Planck mass and

usual 4D Planck mass Mpl as [25]

8πG =M1−N
N+1 =M−2

pl VN−3, (13)

where VN−3 describes the volume of extra-dimensional space. Hence, the mass re-

lation (12) becomes

M =
(N − 1)AN−1R

N−2
H M2

pl

2VN−3
. (14)

The extended holographic dark energy density in terms of the quantities given above

is defined as [26]

L3ρe ∼
(N − 1)AN−1L

N−2M2
pl

2VN−3
, (15)

which implies

ρe =
β2(N − 1)AN−1L

N−5M2
pl

2VN−3
, (16)
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where β is a constant parameter. In the Kaluza-Klein theory, choosing N = 4 gives

ρe =
3β2A3

2L
, (17)

where L is the infrared cutoff of the Universe. Using A3 = 2π2L3 (the area of

4-sphere), we obtain

ρe = 3β2π2L2. (18)

The dynamical apparent horizon in the Friedmann-Robertson-Walker (FRW) uni-

verse is given by [27,28]

Rh =

[
H2 +

k

a2

]− 1
2

. (19)

For the flat FRW spacetime k = 0, it becomes the Hubble horizon Rh = 1
H . The

infrared cutoff in terms of dynamical apparent horizon is defined as L = 1/Rh and

it yields

ρe = 3β2π2

[
H2 +

k

a2

]
, (20)

which describes the extended holographic dark energy model. Assuming k → 0 gives

us the original well-known holographic dark energy model:

lim
k→0

ρe = ρh = 3β2π2H2. (21)

3. Thermodynamics in Kaluza-Klein Theory

Here, we check the validity of laws of universal thermodynamics on the dynamical

apparent horizon to discuss the nature of cosmological entropy function.

At this step, we use the Gibb’s law of thermodynamics [29]

ThdSI = PdV + dEI , (22)

where SI , P , EI and Th are the internal entropy, the pressure, the internal energy

and the temperature of system, respectively. Here, we also assume that the sys-

tem is in equilibrium which implies all components of this system have the same

temperature [30]. The internal energy in the system is given by

EI = ρV, (23)

where V is the extra-dimensional volume and defined as

V =
1

2
π2L4. (24)

We know that all fluids in our universe acquire the same temperature after es-

tablishing of equilibrium [31], otherwise the energy flow would deform the geom-

etry [29, 32]. The temperature of dynamical apparent horizon Th is related to its

radius Rh [32–34]

Th = (2πRh)
−1. (25)
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We also consider the dynamical apparent horizon as the infrared cutoff Rh = L.

Next, the entropy of the dynamical apparent horizon is written as [35]

Sh =
A

4G
, (26)

where A = 2π2L3 is the area of 4-sphere. Taking time derivative of equation (26)

gives

dSh

dt
=

3π2

2G
L2L̇ =

3π2

2G
R2

hṘh =
3Hπ2

2G
R5

h

(
k

a2
− Ḣ

)
. (27)

After multiplying both sides of this relation with a factor Th = 1
2πRh

, we obtain

ThdSh =
3Hπ

4G
R4

h

(
k

a2
− Ḣ

)
dt. (28)

The first law of gravitational thermodynamics on the dynamical apparent horizon

is defined as

−dEI = ThdSh. (29)

Besides, the measure of energy crossing on the dynamical apparent horizon is de-

scribed by using the following relation [36]

−dEI = 2π2R4
hHTµνU

µUνdt = 2π2R4
hH(ρ+ P )dt = −3π

4
HḢL4dt. (30)

Inserting L in this relation yields

dEI =
3Hπ

4G
R4

h

(
Ḣ − k

a2

)
dt. (31)

Hence, we explore that the first law of gravitational thermodynamics valid on the

dynamical apparent horizon for all kinds of energies as it is independent of dark

energy. In literature, Sharif and Saleem investigated the first law of thermodynamics

for the flat FRW universe in Kaluza-Klein theory [23], and they found that

−dEI =
1

π
ThdSh, (32)

which means

−dEI ̸= ThdSh. (33)

Namely the first law is not valid in the Kaluza-Klein universe with a non-flat FRW.

Using equations (28) and (31) with the limiting conditions k = 0 and G = 1 to

reduce our model into the one used in Ref. [23], it can be easily get

ThdSh = −3Hπ

4
R4

hḢdt = −3π

4

Ḣ

H3
dt, (34)

and

dEI =
3Hπ

4
R4

hḢdt =
3π

4

Ḣ

H3
dt. (35)
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Above results give us −dEI = ThdSh which means that the first law is valid in

the flat Kaluza-Klein universe. In other words, our results are not agree with those

obtained by Sharif and Saleem [23] and give us the expected outcome.

Furthermore, for the generalized second law of thermodynamics to be satisfied

for the dynamical apparent horizon, we investigate derivative of the total entropy

St = SI + Sh. Considering the Gibb’s law and using energy relation, we can write

ThdSI = (ρ+ P )(V̇ − 4HV )dt. (36)

Inserting the definition of volume of 4-sphere gives

ThdSI = 2π2R3
h(Ṙh −HRh)(ρ+ P )dt. (37)

Making use of equations (5) and (6), we obtain

Ḣ =
k

a2
− 8πG

3
(ρ+ P ), (38)

and this result yields

ThdSI =
3π

4G
R3

h(Ṙh −HRh)

(
k

a2
− Ḣ

)
dt, (39)

Next, collecting equations (28) and (39) gives

Thd(SI + Sh) =
3π

4G

(
k

a2
− Ḣ

)
R3

hṘhdt. (40)

Hence, we can write

ṠI + Ṡh =
3π2

2G

(
k

a2
− Ḣ

)
R4

hṘh. (41)

Equation (41) shows that the generalized second law of gravitational thermody-

namics is always satisfied throughout the history of universe. Furthermore, we take

again the limiting conditions k = 0 and G = 1 to reduce our model into the one

used in Ref. [23] and obtain

ṠI + Ṡh =
3π2

2

Ḣ2

H6
≥ 0, (42)

and, on the other hand, Sharif and Saleem [23] found that

ṠI + Ṡh =
3π2

8

[
4
Ḣ2

H6
− 3

Ḣ

H4

]
dt ≥ 0. (43)

Unlike the equation (43) obtained in Ref. [23], our result eqn. (42) describes the

validity of the generalized second law correctly. Furthermore, taking into account

the de Sitter scale factor a(t) ∼ eHt with H = constant in equation (42), we find

ṠI + ṠL = 0 which corresponds to a reversible adiabatic expansion of the Universe.

Furthermore, in another specific case, ṠI + ṠL may tend to infinity. Such condition

may happen for very large time, thence the entropy will behave very interesting and

reach its maximum value. Besides, this enigmatic behavior transforms all the usable
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energy in universe into an unusable form. This is the heat death scenario of a system

and one of the predicted fates of universe. At this stage, all the thermodynamic free

energy in our Universe will be derogated and the motion of life cannot sustain any

more [37].

4. Final Remarks

We have considered the five dimensional Kaluza-Klein spacetime in the thermal

equilibrium state and assumed that the Universe is filled with dark energy and dark

matter. Making use of these assumptions the validity of first and generalized second

laws of gravitational thermodynamics on the apparent horizon with the Hawking

temperature have been discussed to investigate the nature of universal entropy

function. We have calculated separately the variation of entropy function for each

dark fluid contents and for the apparent horizon itself. These cosmological laws

have been turned out to be independent of the fifth dimension and selected dark

energy model. According to these investigations, we have discussed also two special

conditions: (i) the reversible adiabatic expansion and (ii) the heat death scenario.

In addition, we have extended the results obtained by Sharif and Saleem for the

flat FRW spacetime [23] to those ones performed for the non-flat five dimensional

FRW universe. It has been shown that our results are not agree with those obtained

in Ref. [23]. We also want to mention here that our results are consistent with the

general relativity [38] and previous studies [39–44] published in literature.
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