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1. Introduction

A butterfly flaps its wings, and a hurricane hits somewhere many
miles away. Can these two events possibly be related? This is an
adage known to many but understood by few. That fact is based on
the di�culty of the mathematics behind the adage. Now, it must be
stated that, in fact, the flapping of a butterfly’s wings is not actually
known to be the reason for any natural disasters, but the idea of it does
get at the driving force of Chaos Theory. The common theme among
the two is sensitive dependence on initial conditions.

This is an idea that will be revisited later in the paper, because we
must first cover the concepts necessary to frame chaos. This paper will
explore one, two, and three dimensional systems, maps, bifurcations,
limit cycles, attractors, and strange attractors before looking into the
mechanics of chaos. Once chaos is introduced, we will look in depth at
the Lorenz Equations.

2. One Dimensional Systems

We begin our study by looking at nonlinear systems in one dimen-
sion. One of the important features of these is the nonlinearity. Non-
linearity in an equation evokes behavior that is not easily predicted
due to the disproportionate nature of inputs and outputs. Also, the
term “system” is often a misnomer because it often evokes the idea of
a system of equations. This will be the case as we move our focus o↵
of one dimension, but for now we do not want to think of a system of
equations. In this case, the type of system we want to consider is a
first-order system of a single equation. This is an equation of the form

ẋ = f(x)

The dot above the x in this equation represents di↵erentiation, and
will be used throughout this paper. In this case and in most others,
the di↵erentiation is done with respect to a time variable, t. Often, the
f(x) will be a function that one can easily interpret, but sometimes
these functions are di�cult to conceptualize. For our purposes, let us
consider something simple, f(x) = cos(x). In order to analyze this in
a meaningful way, we can attempt to find an implicit solution to this
di↵erential equation.
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dt = dx
cos(x)

t =
R
sec(x)dx

t = ln | tan(x) + sec(x)|+ c

where c is the integration constant. To find the solution, we must now
find c. To do this, we consider an initial condition for x, namely x = x

0

.
Setting t = 0, we find that c = � ln | tan(x

0

)+ sec(x
0

)|. As follows, our
implicit solution is then

t = ln

����
tan(x)+sec(x)

tan(x0)+sec(x0)

����

We use this example to introduce the idea of fixed points. Fixed
points are aptly named in that they are points in a system that remain
fixed—they exhibit no change as t increases. In this system, we can
think of fixed points as values of x at which the derivative is equal to
0, i.e. the change in x with respect to time is 0. If the change in x with
respect to time is 0, then x does not move from its starting position.
Hence, the fixed points for this system are x = ⇡

2

, 3⇡
2

, 5⇡
2

, . . . , n⇡
2

for odd
n 2 Z.

Fixed points comprise a major part of nonlinear dynamics. As such,
it is important that we understand how they work. There are three
types of fixed points; stable, unstable, and half-stable. Stability is de-
termined by identifying the behavior of the flow at a given value of x.

Stable Fixed Points
It is important to make the distinction between stable fixed points

and attracting fixed points. Both of these classifications are technically
considered to be stable, but they exhibit slightly di↵erent behavior. An
attracting fixed point is one near which the flow is inwards (that is, to-
ward the fixed point) on both the right and the left of the point. This
is the case when the sign of the derivative ẋ changes from positive to
negative. A stable fixed point that is not attracting is generally seen
when the derivative is 0 for more than one point consecutively. For an
easy-to-see example, consider ẋ = 0. This is a horizontal line on the
x-axis, which we now know is a line entirely comprised of fixed points.
Since they are consecutive, all of these fixed point are called stable
fixed points.
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Unstable Fixed Points
Unstable fixed points are, as one might guess, the opposite of stable

fixed points. On both the right and left of the point, the flow is out-
wards (away from the fixed point). This happens when the sign of the
derivative ẋ changes from negative to positive.

Half-Stable Fixed Points
Half-stable fixed points occur when the sign of the derivative ẋ does

not change, but its value reaches 0 at a single point. This means that
the flow is inwards on one side of the fixed point and outwards on the
other.

An example of a function f(x) for which the system ẋ = f(x) would
exhibit a half-stable fixed point is f(x) = x3. At x = 0, the derivative
changes from positive on the left to 0, and then back to positive on
the right. This means that on either side of x = 0 the flow is in the
same direction. In this case, the fixed point would be stable on the left
and unstable on the right. It is worth noting that the negative of that
function, f(x) = �x3, also exhibits a half-stable fixed point. This is
the opposite case as the last, meaning that it is unstable on the left
and stable on the right. These two cases show the di↵erent ways in
which a half-stable fixed point can occur, but in both cases they are
considered the same.

We have mentioned the idea of the flow at a certain point. A way
of interpreting this flow is by imagining how a particle will move over
time. In this context we can think of a particle at a fixed point not
being moved at all, because there is no flow at a fixed point. It is useful
to interpret fixed points in this context because, not only does it tell us
about the behavior at a fixed point, but it also tells us what happens
near a fixed point.

Consider a particle placed just to the left of a fixed point. Depending
on the stability of the point, we can easily find out what happens to
this particle. If the fixed point is attracting, the flow is inwards, so the
particle moves toward it. Once it reaches the fixed point, it stays fixed.
If the fixed point is unstable, the flow is outwards, and so the particle
will follow the flow away from the fixed point.

Now, if the fixed point is half-stable, the behavior depends on which
side of the fixed point exhibits which type of behavior. This is easiest
to think about if we consider again the two cases of f(x) = x3 and
f(x) = �x3. In the first case, the left half is the stable half, so the
particle would move toward the fixed point. In the second case, the
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left half is the unstable half, and so the particle would move away from
the fixed point.

It is important to keep in mind that, no matter what first-order equa-
tion we look at, any given trajectory will always exhibit one of three
types of behavior. If the initial position of a trajectory is at a fixed
point, it will not move. Otherwise, it will approach a fixed point or it
will continue flowing to infinity. (Strogatz 1995, 28). It is this simple
fact that rules out any chance for a solution to a one-dimensional, au-
tonomous equation to oscillate. The only points at which the direction
of the flow changes are stable and unstable fixed points, but by defini-
tion, no trajectory can ever actually cross these points.

Bifurcations
Now that we have an understanding of fixed points and their role

in one dimensional systems, we can begin to look at bifurcations .
A bifurcation is a type of change in the actual dynamics of a system.
Much like fixed points, there are various types of bifurcations. Ac-
tually, it turns out that bifurcations are entirely dependent on fixed
points! This is true for one dimension, and we will have to amend the
previous statement as we explore higher dimensions, but for now we
keep our focus on fixed points.

Saddle-Node Bifurcations
One of the more intuitive examples of a bifurcation is a saddle-node

bifurcation. It is a bifurcation that occurs when two fixed points co-
alesce and mutually annihilate. This sounds like a mouthful, but an
example of a saddle-node bifurcation will make this definition clear.

Consider the first-order equation
ẋ = x3 � 27x+ r

where r is a parameter that we manually shift to give rise to a bifurca-
tion. If we set r = 0, we see that ẋ has a minimum at (�3, 54) and a
maximum at (3,�54). See Figure 1 for a graph of this function.

Next, we increase r to r = 54, since the value of ẋ is -54 at the
minimum. As r ! 54, the stable fixed point and the right unstable
fixed point approach one another, and then coalesce into one half-stable
fixed point at x = 3. See Figure 2 for a representation of this.

It follows that the left half of the half-stable fixed point is the stable
half since, of the two fixed points that coalesced, the left-most one was
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Figure 1. A graph of ẋ = x3 � 27x. Notice that there
are three fixed points, two of which are unstable and one
that is stable.

Figure 2. A graph of ẋ = x3 � 27x + 54. It appears
as though one fixed point has disappeared. What has
actually happened is that the two right-most fixed points
have combined into one for this specific r-value.

stable and the right-most one was unstable.
Now, what happens as we increase r beyond r = 54? For this we

should first look at the graphical representation of it. To illustrate the
point clearly, let’s choose r = 70 since 70 is well beyond this special
point of r = 54. See Figure 3 for the graphical representation of this.
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Figure 3. A graph of ẋ = x3 � 27x + 70. Notice that
there is only one fixed point. Two of the original three
have seemed to completely disappear.

So, what happened? The system went from having one fixed point,
then to two, and lastly to one. The two points that came together
annihilated! This behavior is what we were referring to when we first
defined a saddle-node bifurcation. That special value of r, r = 54, is
called the bifurcation value.

If these events were to occur in the opposite order (that is, if two
fixed points were created and move away from one another as a param-
eter is varied), we would still refer to it as a saddle-node bifurcation.

Pitchfork Bifurcation
The next type of bifurcation we will look at is strikingly similar to

the saddle-node bifurcation in that it is a situation in which fixed points
can appear or disappear. Again, this type of bifurcation is easiest to
understand with graphical representations, so let us consider an exam-
ple. In this case, instead of letting the parameter have degree 0, we
put the parameter into the first degree x-term. That is, we let

ẋ = x3 � rx
where r is the aforementioned parameter.

As one can see, as r is varied, the heights of the maximum and the
minimum change. Let us first consider when r is negative (choose r=50
to best demonstrate the point).
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Figure 4. A graph of ẋ = x3 � 50x. Starting with a
negative r-value, there are three fixed points. The outer
two are unstable while in inner one is stable.

Now we vary r from a positive number to 0. This reduces the equa-
tion to be just ẋ = x3. This indicates that the cubic function loses
much of its concavity on either side of the origin, and so it only inter-
sect the x-axis at one point. As such, it is easy to conclude that two
of the original three fixed points must have disappeared. Hence, by
definition, we have reached our bifurcation value.

Figure 5. A graph of ẋ = x3. This is just a simple
cubic function, so it only crosses the x-axis at one place,
indicating that there is only one fixed point for the equa-
tion.
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Note that the fixed point at (0, 0) remains where it is, but changes
stability. It moves from being an attracting fixed point to an unstable
fixed point. Again, if we change the order of events, the bifurcation is
still considered a pitchfork bifurcation. In fact, if we plot the location
of the fixed point (its x-value) as a function of r, it produces a dia-
gram called a bifurcation diagram. This diagram is the reason for which
this type of bifurcation is named a ”pitchfork bifurcation”. To show
this, we can simultaneously show that varying r in the opposite direc-
tion also produces the same type of bifurcation. So, if we vary r from a
negative value to a positive value, the bifurcation diagram is as follows:

Figure 6. This is a bifurcation diagram for the first-
order equation ẋ = x3 � rx. The solid line indicates
a stable or attracting fixed point, and the dashed line
indicates an unstable fixed point. (Strogatz 1995, 56)

Bifurcations are an extremely important part of nonlinear dynamics,
and will play a large role in the study of chaos. More types of bifur-
cations exist, but it is not particularly important to go over them in
great detail.
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3. Two Dimensional Systems

Now, we can use the more common definition of the word system to
describe a system of equations in two dimensions. By this, we mean a
system of the form

ẋ = ax+ by

ẏ = cx+ dy

where a, b, c, and d are parameters (Strogatz 1995, 123). This
equation is linear, meaning that any linear combination of a solution to
the system is also a solution. An important feature of these systems is
the vector field that is associated with each system. In one dimension,
the vector field was what we called the flow on the line. It describes
the direction that a trajectory would take given an initial condition at
a coordinate (x, y).

To actually see the more long-term behavior for a given trajectory,
we look to the phase portrait for a system. This portrait is meant to
be a representation of the general behavior of a system, but can also be
used to analyze specific cases. Another tool used for a similar purpose
is the direction field. It shows the direction of the flow at any point,
but does not show the ‘strength’ of the flow. Shown in Figures 7 & 8
is an example of a direction field, and an example of a phase portrait
overlaid onto the same direction field for the system

ẋ = 2x+ 2y

ẏ = 5x� y

To find the solutions to systems like this, it is easiest to consider the
system in matrix form


ẋ
ẏ

�
=


2 2
5 �1

� 
x
y

�

This matrix then has eigenvalues �
1

= �3 and �
2

= 4. Now, to find
the eigenvectors, we consider vector v = (v

1

, v
2

) which satisfies

0
0

�
=


2� � 2
5 �1� �

� 
v
1

v
2

�
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Figure 7. An example of a direction field. This fig-
ure was created using the phase plane plotter tool at
http://comp.uark.edu/ aeb019/pplane.html

For �
1

, we find that

v1 =


2
�5

�

and for �
2

,

v2 =


1
1

�

Hence, our general solution to the system is

(1) x(t) = c
1


2
�5

�
e�3t + c

2


1
1

�
e4t
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Figure 8. An example of a phase portrait. This fig-
ure was created using the phase plane plotter tool at
http://comp.uark.edu/ aeb019/pplane.html

Inserting (x
0

, y
0

) = (�3, 4) while t = 0, we find c
1

= �1 and c
2

= �1.
Now, if we substitute this back into the general solution, we obtain

x(t) = �2e�3t � e4t

(2) y(t) = 5e�3t � e4t

and thus, we have found a solution to the two-dimensional system.
In two dimensions, thanks to the additional degree of freedom, we

see far more variety in the behavior of systems. For example, if we see
that the eigenvalues of a system are complex, the fixed points can be
spirals or centers. Much like in one dimension, there are di↵erent types
of stability for some of these new types of fixed points. For example,
spirals can be unstable or stable. This stability is again related to the
direction of the flow in relation to the fixed point. A stable spiral is a
spiral toward which trajectories move and an unstable spiral is a spiral
away from which trajectories move. A center is a fixed point around
which we see a family of closed orbits. A closed orbit is a trajectory
that, starting at an initial condition, returns to itself and repeats.

For real eigenvalues, we see stable nodes, unstable nodes, and sad-
dle points. Additionally, for particular trace and determinant value
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combinations, we can see interesting fixed points such as stars and de-
generate nodes. We call these borderline cases and they occur along
the line ⌧ 2 � 4� = 0 in the trace-determinant plane.

The Existence and Uniqueness Theorem
The existence and uniqueness theorem in two dimensions states that,

for an initial value problem ẋ = f(x) where x(0) = x
0

, if f is contin-
uous and its derivatives are continuous, then the system will have a
solution and the solution will be unique. This has some interesting
consequences in the phase plane. Since a solution is unique, no two
trajectories can intersect. So what does this mean for trajectories that
are bounded within a space? If the space contains one or more fixed
points, trajectories in the space may eventually approach one. Other-
wise, if there is no fixed point, the Poincaré-Bendixson Theorem
states that it will eventually approach a closed orbit.

The Poincaré-Bendixson Theorem is an important theorem in the
field of nonlinear dynamics, and it is provides us with some interesting
results that we will look at more later on. The theorem is as follows:
If R is a closed, bounded subset of the plane with no fixed points, and
ẋ = f(x) is a continuously di↵erentiable vector field on an open set
containing R, and if there exists a trajectory C confined in R, then C
is a closed orbit or spirals toward a closed orbit (Strogatz 1995, 203).
One of the more poignant implications of this theorem is that any R
satisfying the conditions will contain a closed orbit.

An important type of closed orbit that we will look at is a limit
cycle. A limit cycle is a closed orbit that is isolated, meaning that
the trajectories surrounding the closed orbit are not closed. They ei-
ther approach the limit cycle or move away. An example of a closed
orbit that is not a limit cycle is a closed orbit within a system that has
a center fixed point. The trajectories surrounding the orbits are also
closed, thus not fulfilling the criteria of a limit cycle.

Much like a fixed point, a limit cycle has a stability feature. The
three possibilities for stability are stable, unstable, and half-stable.
Also similar to fixed points, the stability is determined in the same
fashion. A stable limit cycle is a limit cycle around which the neigh-
boring trajectories spiral toward it—both on the inside of the cycle
and the outside of the cycle. Unstable limit cycles are the opposite;
trajectories surrounding the limit cycle spiral away from it. Half-stable
limit cycles can occur in two ways; outer trajectories spiraling toward
the cycle with inner trajectories spiraling away, or outer trajectories
spiraling away from the cycle with inner trajectories spiraling toward.
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Figure 9. A schematic for the stability of limit cycles.
(Strogatz 1995, 196)

One of the techniques for using the Poincaré-Bendixson Theorem is
to construct a trapping region to find a confined orbit. This is a re-
gion of any shape on the boundaries of which the vector field is always
pointing inward. If the vector field is pointing inwards, that means that
any trajectory in the region and near the boundaries will move more
inwards, i.e. it will not leave the region. We can extend this to saying
that all trajectories in the region will not leave because, to get out of
the region, a trajectory must first approach a boundary, and then we
can apply the rule stated above. This method is useful because it is far
easier to construct a trapping region than it is to find a closed orbit,
and so we use this tool to satisfy all four conditions of the Poincaré-
Bendixson Theorem.

The Hopf Bifurcation
The Hopf bifurcation is the most subtle of bifurcations. There are

two main types; supercritical and subcritical. A supercritical Hopf bi-
furcation occurs when the stability of a spiral changes from stable to
unstable, and a limit cycle appears surrounding the unstable spiral. A
subcritical Hopf bifurcation occurs when an unstable limit cycle shrinks
around a stable fixed point, rendering it unstable, thus the trajectories
near the fixed point spiral away from it toward another attractor of
some form or toward infinity. These bifurcations are very important as
we move from two dimensions into three and even higher. See Figure
10 for a drawn interpretation of supercritical and subcritical Hopf bi-
furcations.



14

Figure 10. A diagram to show the process by which
a Hopf bifurcation happens both in the subcritical and
supercritical case. (Marsden and McCracken 1976, 148)

4. Three Dimensions and the Lorenz
System

Now that we have worked through one and two dimensions, we have
the necessary tools to move to three dimensions and look at chaos. We
begin with the Lorenz equations. The system is as follows

ẋ = �(y � x)
ẏ = rx� y � xz
ż = xy � bz

where �, r, b > 0 are parameters. This system was the first system in
which chaos was observed. It is named after Ed Lorenz, who created
the system of equations while studying convection rolls in the atmo-
sphere.

We want to learn about Lorenz equations in the way that they were
discovered, so we consider the versions of these parameters that relate
to convection rolls.
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� is the Prandtl number, which is defined as follows:

(3) � =
⌫

↵
=

viscous di↵usion rate

thermal di↵usion rate

(Coulson, J. M.; Richardson, J. F. 1999)
where ⌫ is the momentum di↵usivity, measured in m2/s, and ↵ is the
thermal di↵usivity, also measured in m2/s. From this, we can easily
see that this parameter is a dimensionless one.

r is the Rayleigh number, which is defined as follows:

(4) r = GrxPrx

where Prx is the Prandtl number discussed above, and Grx is the
Grashof number, another dimensionless number that describes the
approximate relation between the buoyancy of a fluid and the viscous
force acting on said fluid (Turcotte, D.; Schubert, G. 2002, Bird, R.
Byron, Warren E Stewart, and Edwin N Lightfoot. Transport Phe-
nomena. New York: J. Wiley, 2002)

The third parameter, b does not have a name, but its significance in
the convection problem is its relation to the height of the fluid layer in
question (Strogatz 1995, 301).

The Lorenz equations describe a complex system, but this system
exhibits a number of basic properties that are ubiquitously true across
all instances of the system.

Nonlinearity
The first and most basic of these properties is its nonlinearity. The

Lorenz sytem is, after all, a system of nonlinear di↵erential equations.
The nonlinear terms appear in the second and third equations in the
system; xz in the second and xy in the third. The nonlinearity of this
system makes it so that any change in input is not directly proportional
to the change in output it is related to.

Symmetry
The Lorenz system has symmetry across a change in sign of the x

and y variables. That is, if the point (x, y, z) is a solution to the sys-
tem, so is (�x,�y, z).

Volume Contraction
This is one of the more important properties of the system because

it essentially says that solutions to the Lorenz system will always stay
within a finite set. The property itself states that volumes in phase
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space contract, i.e. that any given volume in phase space, over any
length of time, will shrink to a smaller volume.

Fixed Points
The Lorenz system has two types of fixed points. First, for any given

parameters, the origin is a fixed point. Next, for r > 1, a symmetric
pair of fixed points is brought about. This pair of fixed points is de-
scribed by (x⇤, y⇤, z⇤) = (±

p
b(r � 1),±

p
b(r � 1), r � 1). As r ! 1

from the right (i.e. as r decreases to 1), the two fixed points coalesce
with the origin to form a pitchfork bifurcation. We call this symmetric
pair C+ and C�.

Linear Stability of the Origin
The linearized system about the origin is defined as follows:
ẋ = �(y � x), ẏ = rx� y, ż = �bz.

The equation for z depends only on z, hence z(t) ! 0 exponentially
fast. The behavior in the x and y directions is determined by the
system:


ẋ
ẏ

�
=


�� �
r �1

� 
x
y

�

Global Stability of the Origin
For r < 1, every trajectory approaches the origin as t ! 1 (this

implies that the origin is globally stable). To show this, we construct
a Lyapunov function (a smooth positive function that decreases along
trajectories (Strogatz 1995, 315)).

Consider V (x, y, z) = 1

�
x2+y2+z2. This creates concentric ellipsoids

around the origin. We want to show that V̇ < 0 along trajectories. To
do this, we must calculate V̇ . By implicit di↵erentiation, we find

1

2

V̇ = 1

�
xẋ+ yẏ + zż

= (yx� x2) + (ryx� y2 � xzy) + (zxy � bz2)
= (r + 1)xy � x2 � y2 � bz2

Now, we group terms to extract squares
1

2

V̇ = �[x� r+1

2

y]2 � [1� ( r+1

2

)2]y2 � bz2.
If r < 1 and (x, y, z) 6= (0, 0, 0), the right hand side is strictly neg-

ative, since we have three squares with negative coe�cients. Hence, if
V̇ = 0, then (x, y, z) = (0, 0, 0). Otherwise, V̇ < 0, as desired (Strogatz
1995, 315).

Now, we consider the stability of the fixed points C+ and C�. For
1 < r < rH , the symmetric pair are linearly stable.
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The value rH = �(�+b+3)

��b�1

is representative of the r value for which
the pair lose stability in a Hopf bifurcation.

Of course, this then raises the question of what happens as we in-
crease r to a value just past rH .The bifurcation is subcritical, meaning
that the limit cycles are unstable and disappear for r > rH . Determin-
ing the nature of this bifurcation requires an extremely long calculation,
which essentially shows that the third derivative of a displacement func-
tion is greater than zero, implying that the bifurcation is subcritical.
The large calculation is compressed by Marsden and McCracken (1976)

into V 000(0) = (A
1

+A
2

)⇠, where ⇠ = 3⇡(��b�1)

2

2�b(�+1)

3!2

q
2b(��b�1)

�(�+1)

. In this case,

A
1

and A
2

are the names Marsden and McCracken gave to extremely
large terms. They wrote that, since ⇠ > 0, the orbits from the bifurca-
tion are stable if (A

1

+A
2

) < 0, and unstable if (A
1

+A
2

) > 0. In the
case they presented, for example, � = 10, b = 8

3

, so A
1

⇡ 1.63 ⇥ 109,
A

2

⇡ 0.361 ⇥ 109, so A
1

+ A
2

⇡ 1.99 ⇥ 1010. Hence, A
1

+ A
2

> 0, so
the Hopf bifurcation is subcritical.

Chaos on a Strange Attractor

Before we dive into chaos, it is important to first define attractors

and strange attractors. Firstly, an attractor is defined as a closed set
with the following properties:

(1) The set is invariant, meaning that any and all trajectories that
begin in the set remain in the set forever.

(2) The set attracts an open set of initial conditions (Strogatz 1995,
324). This means that, for trajectories within a set S of which
the attractor is a subset, those trajectories are attracted toward
the attracting set. The requirement for S is that it is su�ciently
small such that trajectories starting within it are su�ciently
close to the attractor to be pulled toward it. The largest S is
named the basin of attraction to A where A is the attracting
set.

(3) The set isminimal meaning that there does not exist any proper
subset of the attractor that satisfies the first two conditions.

The third condition follows intuitively because it is simply saying
that the attracting set does not contain any smaller attracting sets. If
one thinks about the attractor as a piece of paper, the smallest set that
satisfies the first two conditions can be cut out, and what remains can
be considered part or all of the open set of initial conditions S.

Now, defining a strange attractor is very simple; a strange attractor
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is an attractor (a set satisfying the above conditions) that also exhibits
sensitive dependence on initial conditions.

Next, it is important to actually define chaos. Chaos is defined as
aperiodic behavior over time of a deterministic system that exhibits
sensitive dependence on initial conditions (Strogatz 1995, 323). It is
important to note that, for chaotic systems, trajectories cannot escape
to infinity.

Now, equipped with this definition, we can look at an example of
chaos in the Lorenz system. To do this, we consider the set of pa-
rameters used by Lorenz: � = 10, b = 8

3

, and r = 28. This r-value
is significant because it is slightly past the rH value rH = 24.74 for
the system involving � = 10 and b = 8

3

. What comes out of plotting
this system is something truly exceptional. The system creates a set of
zero volume but has infinite surface area. Such a phenomenon is made
possible by the fact that, in the Lorenz Attractor, there are infinitely
many two dimensional (flat) layers. Since they are two dimensional,
they have zero volume, but still have surface area. Hence, the entire
set still has zero volume while having infinite surface area.

This set is an attractor. It is invariant - no trajectories within the set
ever leave it, it is attracting—the distance between the set and nearby
trajectories approaches 0 as t ! 0, and it is minimal—this set is the
smallest set that satisfies condition one and condition two. In this case,
we actually have a strange attractor—the Lorenz system certainly ex-
hibits sensitive dependence on initial conditions.

To show this more mathematically, we consider two trajectories in
the set that begin close to one another, one beginning at x(t) and the
other beginning at x(t) + �

0

, where �
0

is the initial separation of the
trajectories. In observing the Lorenz system, one will find that

k �(t) k⇠k �
0

k e�t

where � ⇡ 0.9 for this system. The exponential term implies that
the separation increases exponentially quickly. Hence, trajectories that
begin very close together separate rapidly. From here we can logically
conclude that the system exhibits sensitive dependence on initial con-
ditions.

Something important to note in the previous calculation is �. In this
instance, � is called the Lyapunov Exponent. This exponent is very
important to chaotic systems because it provides us with an avenue to
calculating just how far we can accurately predict outputs in chaotic
systems. The value of time for which prediction breaks down is called
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the time horizon. The equation for this is

t
horizon

⇠ O

✓
1

�
ln

a

k �
0

k

◆

where a is a term representing a tolerance for error, meaning that he
or she who is calculating the time horizon must decide at what distance
of separation prediction breaks down. e.g. if �(t) = 3 ⇥ 10�10 is too
large, he or she would input a = 3⇥ 10�10.

5. Chaos in One-Dimensional Maps

In this section, we shift our focus from three dimensions and higher
to just one dimension. Everything up to this point has implied that
chaos does not happen in one dimension, but this is not the case. If
we consider a function defined by a map instead of a di↵erential equa-
tion, we can actually find examples of chaos. Maps are discrete-time
dynamical systems that define the point n+1 using the previous point,
n. The general form of a map is as follows

(5) xn+1

= f(xn)

The important aspect of maps that we need to take note of is the
consistent discontinuity exhibited by maps. Since here time is discrete,
the only points defined on the map tend to be a certain distance away
from the previous point. This is the feature of maps that allows for
chaos to exist! So what happens if a point maps back to itself?

Fixed Points for Maps
Since a point in a map is defined by the previous point, it is easy

to see that if a point maps to itself, it will happen again and again,
thereby causing the values of the map to remain at that point for all
time.

Cobwebbing
Cobwebbing is a tool we use to get an idea of how a map behaves

in general. The way that it works is, given a function f(x) we draw a
vertical line from the initial x-value, x

0

, to the function, and once it
intersects, connect that line to the diagonal (y = x) with a horizontal
line. Next, we draw a vertical line from the diagonal back to the func-
tion. The height of the first intersection is then defined as x

1

and the
second is x

2

. Thus, starting at n = 0 we have obtained xn, xn+1

and
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xn+2

.

The Logistic Map
The Logistic Map is defined by the equation

(6) xn+1

= rxn(1� xn)

The graph of the map is unimodal, and has a maximum at (1
2

, r
4

).
If we restrict r to 0  r  4, then the interval 0  x  1 maps onto
itself (Strogatz 1995, 353). If we fix r, we can see that as the map
iterates, the xn’s actually become periodic. For small values of r, the
map exhibits a fixed point. As we increase r, the periodicity doubles,
and we can see period-2 cycles. If we increase r even more, we find a
period-4 cycle, and this trend, known as period doubling, continues as
we increase r more and more until we reach r1. After this value, we
see chaos!

Orbit Diagrams
Orbit diagrams have become a poster child for chaos. They plot x-

values of attractors versus the parametric r-values and exhibit extreme
complexity. However, this complexity is quite well ordered. Each point
on the diagram represents an x-value of an attractor for a given r-value,
meaning that, for a given r, the diagram exhibits every value of x that
the map ‘hits’. See Figure 11 for the orbit diagram for both the sine
map and the logistic map.

These orbit diagrams show just how di�cult it is to interpret some-
thing that is chaotic. However, the empty strips in the diagram repre-
sent periodic windows. These windows highlight values of r for which
the maps exhibit periodicity, i.e. that the map ‘hits’ only a certain
number of x-values. For example, a period-4 cycle would have only 4
x-values plotted for a given r value. So, even in chaos there is some
shelter from the storm. What is also interesting is the apparent simi-
larity between these two graphs. This is due to the fact that the sine
map is also unimodal. The di↵erence across these maps, though, is
the horizontal scale. The sine map’s orbit diagram goes from r = 0 to
r = 1. This di↵erence comes from the fact that the maximum for the
sine graph occurs at r, versus r

4

(Strogatz 1995, 370).
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Figure 11. The orbit diagrams for the sine map (top)
and the logistic map (bottom) (Strogatz 1995, 371).
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6. Conclusions

We have now gone in-depth through nonlinear dynamics in one through
three dimensions. In doing this, we gathered tools that help us to get
a fundamental understanding of nonlinear systems and their idiosyn-
crasies. One dimensional systems taught us the basics of fixed points
and bifurcations, and then we used two dimensions to learn about Hopf
bifurcations and limit cycles. Next, in three dimensions, we were able
to look at the Lorenz equations and an example of chaos, along with a
strange attractor. Since we have these tools, we can now understand
how chaos both arises and how it works. Despite the counterintuitive
nature of one-dimensional chaos, it is still possible through the use of
maps. All of these subjects form a very interesting and important field
in the real world, as well.

Chaos is seen in natural systems like weather patterns and tra�c
patterns. Having this knowledge is important because it enables us to
create better prediction tools for weather, or design roads in a more
e�cient way. Unfortunately, chaos has not always been the forefront of
mathematical attention, and so it has not always been considered when
implementing systems (in the colloquial sense) of this nature. This is
still an open field and more remains to be done if we want to broaden
our understanding both of the Lorenz equations and of chaotic systems
in general.
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