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a b s t r a c t

This paper deals with some theoretical and numerical results for Volterra Integral
Algebraic Equations (IAEs) of index-1 with weakly singular kernels. This type of equations
typically has solutions whose derivatives are unbounded at the left endpoint of the
interval of integration. For overcoming this non-smooth behavior of solutions, using the
appropriate coordinate transformation the primary system is changed into a new IAEs
which its solutions have better regularity. An effective numerical method based on the
Chebyshev collocation scheme is designed and its convergence analysis is provided. Our
numerical experiments show that the theoretical results are in good accordancewith actual
convergence rates obtained by the given algorithm.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

In this paper, our aim is to present a numerical method for the solution of a mixed system of Volterra integral equations
of the first and second kind with weakly singular kernels which is known as Weakly Singular Integral Algebraic Equations
(WSIAEs). More precisely, we consider the following system of Volterra integral equations:

AX(t) = G(t) +

 t

0
(t − s)−αK(t, s)X(s)ds, 0 < α < 1, t ∈ I = [0, T ], (1.1)

where A =


1 0
0 0


is a singular matrix, 0 < α =

p
q < 1 (p, q ∈ N, p < q), and

K(t, s) =


K11(t, s) K12(t, s)
K21(t, s) K22(t, s)


, X(t) = (y(t), z(t))T , G(t) = (f (t), g(t))T ,

such that the functions f , g and the kernels Kkl(·, ·) (k, l = 1, 2) are known smooth functions on I , respectively, and
D = {(t, s) : 0 ≤ s ≤ t ≤ T }. Throughout the paper we assume that the given functions g and K22 satisfy in the following
relations

g(0) = 0, |K22(t, t)| ≥ k0 > 0, t ∈ I.
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Under these conditions, the system (1.1) is called the weakly singular integral algebraic equations of index-1.
A good source on applications of IAEs with weakly singular kernels is the initial (boundary) value problems for the semi-

infinite strip and temperature boundary specification including two/three-phase inverse Stefanproblems [1–4], so that these
problems consist of a reconstruction of the function describing the coefficient of heat-transfer, when the positions of the
moving solid and liquid interfaces are well-known. Also, the monograph of Brunner [5] contains a wide ranging description
of IAEs arising in applications from memory kernel identification problems in heat conduction and viscoelasticity [6–8] to
the evolution of a chemical reaction within a small cell [9].

There have been a few works available in the literature which investigate the numerical methods for IAEs (see e.g.
[5,10–14]). However, as far as we know the numerical analysis of IAEs with weakly singular kernels is largely incomplete
and this is a new topic for research. The existence and uniqueness results for the solution of WSIAEs has been given in [15]
and most recently in [16]. The piecewise polynomial collocation method for IAEs (1.1) together the concept of tractability
index have also been considered by Brunner [5], so that he analyzed the regularity of the solutions using conditions that
hold for the first and second kind Volterra integral equations.

Generally, this type of IAEs typically has a solution whose derivatives are unbounded at t = 0 and we have to use a
suitable strategy to restore this difficulty. Here, we apply an approach like the idea of Li and Tang in [17]. We first consider
a suitable function transformation to change the system (1.1) into a new IAE such that its solutions have better regularity.
Then, we employ the Chebyshev collocation method to approximate solution of the resulting WSIAE. It is well-known that
the methods based on Chebyshev polynomials play a key role in the context of spectral methods. Their widespread use can
be traced back to a number of reasons. Not only are the polynomials given in a simple form but all the Gauss quadrature
nodes and the associatedweights are also given in closed form. Here, for computational purposes, we employ the Chebyshev
collocationmethod to obtaining high accuracy of the results and then a rigorous error analysis is provided in theweighted L2-
normwhich shows the spectral rate of convergence is attained. Finally, somenumerical exampleswith the aimof illustrating
the convergence behavior of the method are presented.

2. Some basic and auxiliary results

This section is devoted to discussing how theweakly singular IAEs can be changed to treat the problem. Furthermore, the
index concept forWSIAEswhich plays a fundamental role in both the analysis and the development of numerical algorithms
for IAEs is discussed.

2.1. The index for weakly singular IAEs

One of themain features of IAEs systems is their index,which reveals themathematical structure, potential complications
and their numerical solvability. Generally, the difficulties are arising in the theoretical and numerical analysis of IAEs
relevant to the index notion. There are several definitions of index in literature not all completely equivalent. For instance,
differentiation index [18], the left index [10] and the tractability index (see, e.g. Definition (8.1.7) from [5]).

Here, we use the concept of the differentiation index which measures, loosely speaking, how far the main WSIAE is
apart from a regular system of VIEs. This notion for WSIAEs discusses by means of the study of the ranks of certain
Jacobian associated sub-matrices. In other words, the number of analytical differentiations of the system (1.1) until it can
be formulated as a regular system of Volterra integral equations is called differentiation index.

Let us consider the index-1 WSIAE (1.1). Using the classical theory of Volterra integral equations with weakly singular
kernels from [10, p. 353], if we multiply both sides of the second equation of (1.1) by the factor dt

(u−t)1−α and integrate with
respect to t , the following first kind Volterra integral equation with regular bounded kernels will be obtained

0 =

 t

0
H21(t, s)y(s)ds +

 t

0
H22(t, s)z(s)ds + Gα(g), (2.1)

where

H21(t, s) =

 1

0

K21(s + (t − s)ν, s)
να(1 − ν)1−α

dν, H22(t, s) =

 1

0

K22(s + (t − s)ν, s)
να(1 − ν)1−α

dν,

and

Gα(g) =

 t

0
(t − s)α−1g(s)ds.

Also, differentiation the Eq. (2.1), gives the following second kind integral equation:

0 = H21(t, t)y(t) + H22(t, t)z(t) +

 t

0

∂H21(t, s)
∂t

y(s)ds +

 t

0

∂H22(t, s)
∂t

z(s)ds + G′

α(g), (2.2)
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where H2j(t, t) =
sin(απ)

π
K2j(t, t) (j = 1, 2) and G′

α(g) can be obtained using integration by parts to Gα(g) with g(0) = 0, as

G′

α(g) =

 t

0
(t − s)α−1g ′(s)ds.

Since |K22(t, t)| ≥ k0 > 0, we have |H22(t, t)| > 0, then (2.2) together with the first equation of (1.1) is a system of
regular Volterra integral equation.

However, it has to be pointed out this reduction (differentiation) is NOT practical from a numerical point of view and
such a definition may be useful for understanding the underlying mathematical structure of a WSIAE, and hence choosing
an appropriate numerical method for their solutions.

2.2. Smoothness of the solution

Let us assume that the Hölder space C0,β([0, T ]) = Cβ([0, T ]) is defined as a subspace of C([0, T ]) that consists of
functions which are Hölder continuous with the exponent β . More generally, for k ∈ Z+ and β ∈ (0, 1], we define the
Hölder space

Ck,β([0, T ]) =

f ∈ Ck([0, T ]) | Dν f ∈ C0,β([0, T ]) ∀ν, |ν| = k


.

In [19], it is shown that this space is a Banach space with the following norm:

∥f ∥Ck,β ([0,T ]) = ∥f ∥Ck([0,T ]) +


|ν|=k

sup


|Dν f (x) − Dν f (y)|
|x − y|β

 x, y ∈ [0, T ], x ≠ y


.

Consider the following system of index-1 WSIAEs:
y(t) = f (t) +

 t

0
(t − s)−αK11(t, s)y(s)ds +

 t

0
(t − s)−αK12(t, s)z(s)ds,

0 = g(t) +

 t

0
(t − s)−αK21(t, s)y(s)ds +

 t

0
(t − s)−αK22(t, s)z(s)ds,

(2.3)

where 0 < α < 1 and t ∈ I = [0, T ].
Here, smooth forcing given functions lead to a solution which has typically unbounded derivatives at t = 0. The degree

of regularity of y and z follows essentially from the corresponding discussions in [5], for the first and second kind weakly
singular Volterra integral equations. (See e.g. Theorems 8.1.8, 6.1.6 and 6.1.14 from [10, pp. 346, 354, 478].) In [5], it is shown
that the solutions y(t) and z(t) lie in the Hölder spaces C1−α(I) and Cα(I), respectively. This indicates that for any positive
integerm, the solutions y(t) and z(t) do not belong to Cm(I). In order to overcome this drawback, we may apply a strategy,
like the idea of Li and Tang in [17]. This is done by introducing the following transformations

t = uq, u =
q√t, s = wq, w =

q√s, (2.4)

to change (2.3) to the following system
ŷ(u) = f̂ (u) +

 u

0
(u − w)−α K̂11(u, w)ŷ(w)dw +

 u

0
(u − w)−α K̂12(u, w)ẑ(w)dw,

0 = ĝ(u) +

 u

0
(u − w)−α K̂21(u, w)ŷ(w)dw +

 u

0
(u − w)−α K̂22(u, w)ẑ(w)dw, u ∈ [0, q√T ],

(2.5)

where f̂ (u) = f (uq), ĝ(u) = g(uq), ŷ(u) = y(uq), ẑ(u) = z(uq) and

K̂ij(u, w) = qwq−1(uq−1
+ uq−2w · · · + wq−1)−αKij(uq, wq) (i, j = 1, 2).

The existence and uniqueness results and the smoothness behavior of solutions ŷ, ẑ of the system (2.5) may be obtained
from the corresponding discussions of the classical theory of Volterra integral equations with weakly singular kernels
from [5] (see e.g. Theorems 6.1.6 and 6.1.14 for further details).

3. The numerical treatments

3.1. Description of the numerical method

We now turn our attention to obtaining a Chebyshev spectral method for the system (2.5) on the standard interval
[−1, 1]. Hence, we employ the transformation

x =
2
q√T

w − 1, −1 ≤ x ≤ υ, υ =
2
q√T

u − 1, −1 ≤ υ ≤ 1, (3.1)
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to rewrite the system (2.5) as follows
ỹ(υ) = f̃ (υ) +

 υ

−1
(υ − x)−α K̃11(υ, x)ỹ(x)dx +

 υ

−1
(υ − x)−α K̃12(υ, x)z̃(x)dx,

0 = g̃(υ) +

 υ

−1
(υ − x)−α K̃21(υ, x)ỹ(x)dx +

 υ

−1
(υ − x)−αK̃22(υ, x)z̃(x)dx,

(3.2)

where ỹ(υ) = ŷ(
q√T
2 (υ + 1)), z̃(υ) = ẑ(

q√T
2 (υ + 1)), f̃ (υ) = f̂ (

q√T
2 (υ + 1)), g̃(υ) = ĝ(

q√T
2 (υ + 1)) and

K̃ij(υ, x) =


q√T
2

1−α

K̂ij


q√T
2

(υ + 1),
q√T
2

(x + 1)


.

It is well-known that, in the Chebyshev collocation method we seek the solutions ỹN and z̃N of the form

ỹN = IN(ỹ(υ)) =

N
k=0

ỹ(υk)Lk(υ),

z̃N = IN(z̃(υ)) =

N
k=0

z̃(υk)Lk(υ),

(3.3)

where υk = − cos( (2k+1)π
2N+2 ), (k = 0, 1, . . . ,N) are the Gauss quadrature points and Lk are the interpolating Lagrange

polynomials

Lk(υ) =
TN+1(υ)

(υ − υk)T ′

N+1(υ)
, k = 0, 1, . . . ,N, (3.4)

such that TN+1 is the (N + 1)th-order Chebyshev polynomial.
We now fix the value of x for general kernels K̃ij(υ, x) and choose x = υk, then the kernels K̃ij(υ, x) can be approximated

by univariate Lagrange interpolating polynomial as follows:

IN(K̃ij(υ, x)) =

N
k=0

K̃ij(υ, υk)Lk(x), ∀i, j = 1, 2. (3.5)

Substituting the relations (3.3) and (3.5) into (3.2) and inserting the collocation points υk in the obtained equation, lead
to the following system of linear equations with 2N + 2 unknown values ỹ(υ0), . . . , ỹ(υN) and z̃(υ0), . . . , z̃(υN)

ỹ(υk) = f̃ (υk) +

 υk

−1
(υk − x)−α IN(K̃11(υk, x))ỹN(x) +

 υk

−1
(υk − x)−α IN(K̃12(υk, x))z̃N(x)dx,

0 = g̃(υk) +

 υk

−1
(υk − x)−α IN(K̃21(υk, x))ỹN(x)dx +

 υk

−1
(υk − x)−α IN(K̃22(υk, x))z̃N(x)dx.

(3.6)

Solving the linear system (3.6), the approximate solution of system (3.2) is determined at the collocation points as well
as at the arbitrary points in the interval [−1, 1] by (3.3).

3.2. Convergence phenomenon

Before giving our strategy for convergence phenomenon in theweighted L2-norm,we first introduce some lemmaswhich
are usually required to obtain the convergence results:

Lemma 1 (From [20,21]). Let IN be a linear operator from Ck,β([−1, 1]) to PN , then for any non-negative integer k and
β ∈ [0, 1], there exists a positive constant Ck,β > 0, such that

∀f ∈ Ck,β([−1, 1]), ∃IN f ∈ PN , s.t, ∥f − IN f ∥L∞ ≤ Ck,β N−(k+β)
∥f ∥Ck,β ([−1,1]).

Lemma 2 (From [22]). Assume that {Lj(x)}Nj=0 be Lagrange interpolation polynomials with the Chebyshev Gauss/Gauss–
Radau/Gauss–Lobatto points {xj}Nj=0, then

∥IN∥L∞ = max
x∈(−1,1)

N
i=0

|Li(x)| = O(logN).
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We denote the collocation error functions by

e1(υ) = (ỹN(υ) − ỹ(υ)), e2(υ) = (z̃N(υ) − (z̃(υ))).

Rewriting the first equation of system (3.6) yields:

ỹ(υk) = f̃ (υk) +

N
n=0

N
l=n

(anl + bnl)Wnl(υk), (3.7)

where

anl =


ỹn(K̃11)n, n = l,
ỹn(K̃11)l + ỹl(K̃11)n, n ≠ l,

bnl =


z̃n(K̃12)n, n = l,
z̃n(K̃12)l + z̃l(K̃12)n, n ≠ l,

and

(K̃ij)n = K̃ij(υk, υn), (i, j = 1, 2), ỹn = ỹ(υn),

Wnl(υk) =

 υk

−1
(υk − x)−αLn(x)Ll(x)dx.

With these notations, the Eq. (3.7) can be written as:

ỹ(υk) = f̃ (υk) +

 υk

−1
(υk − x)−α


K̃11(υk, x)e1(x) + K̃12(υk, x)e2(x)


dx

+

 υk

−1
(υk − x)−α


K̃11(υk, x)ỹ(x) + K̃12(υk, x)z̃(x)


dx + Z1(υk) + Z2(υk), (3.8)

such that

Z1(υk) =

N
n=0

N
l=n

anlWnl(υk) −

 υk

−1
(υk − x)−αK̃11(υk, x)IN(ỹ(x))dx,

Z2(υk) =

N
n=0

N
l=n

bnlWnl(υk) −

 υk

−1
(υk − x)−α K̃12(υk, x)IN(z̃(x))dx.

(3.9)

If we multiply the Eq. (3.8) by Lk(υ) and sum up from 0 to N , we obtain

ỹN(υ) = f̃N(υ) +

 υ

−1
(υ − x)−α


K̃11(υ, x)e1(x) + K̃12(υ, x)e2(x)


dx


N

+

 υ

−1
(υ − x)−α


K̃11(υ, x)ỹ(x) + K̃12(υ, x)z̃(x)


dx


N
+ IN(Z1(υ)) + IN(Z2(υ)). (3.10)

Subtracting (3.10) from the first equation of (3.2), we get

e1(υ) =

 υ

−1
(υ − x)−α


K̃11(υ, x)e1(x) + K̃12(υ, x)e2(x)


dx


N

+W1 + W2 + W3 + IN(Z1(υ)) + IN(Z2(υ)), (3.11)

where

W1 =

 υ

−1
(υ − x)−αK̃11(υ, x)ỹ(x)dx


N

−

 υ

−1
(υ − x)−α K̃11(υ, x)ỹ(x)dx,

W2 =

 υ

−1
(υ − x)−αK̃12(υ, x)z̃(x)dx


N

−

 υ

−1
(υ − x)−α K̃12(υ, x)z̃(x)dx,

W3 = f̃N(υ) − f̃ (υ).

The Eq. (3.11) may be rewritten as follows:

e1(υ) =

 υ

−1
(υ − x)−α


K̃11(υ, x)e1(x) + K̃12(υ, x)e2(x)


dx

+W1 + W2 + W3 + W4 + W5 + IN(Z1(υ)) + IN(Z2(υ)), (3.12)



Author's personal copy

126 S. Pishbin et al. / Journal of Computational and Applied Mathematics 245 (2013) 121–132

where

W4 =

 υ

−1
(υ − x)−α K̃11(υ, x)e1(x)dx


N

−

 υ

−1
(υ − x)−α K̃11(υ, x)e1(x)dx,

W5 =

 υ

−1
(υ − x)−α K̃12(υ, x)e2(x)dx


N

−

 υ

−1
(υ − x)−α K̃12(υ, x)e2(x)dx.

Now, from the second equation of (3.2), we get υ

−1
(υ − x)−α


K̃21(υ, x)ỹ(x) + K̃22(υ, x)z̃(x)


dx


N
= −g̃N(υ). (3.13)

For the second equation of (3.6), we proceed a similar procedure as outlined for obtaining the relation (3.10), and then
insert (3.13) into the resulting equation, so we obtain

0 =

 υ

−1
(υ − x)−α


K̃21(υ, x)e1(x) + K̃22(υ, x)e2(x)


dx + W6 + W7 + IN(Z3(υ)) + IN(Z4(υ)), (3.14)

where

W6 =

 υ

−1
(υ − x)−α K̃21(υ, x)e1(x)dx


N

−

 υ

−1
(υ − x)−α K̃21(υ, x)e1(x)dx,

W7 =

 υ

−1
(υ − x)−α K̃22(υ, x)e2(x)dx


N

−

 υ

−1
(υ − x)−α K̃22(υ, x)e2(x)dx,

and

Z3(υk) =

N
n=0

N
l=n

cnlWnl(υk) −

 υk

−1
(υk − x)−αK̃21(υk, x)IN(ỹ(x))dx,

Z4(υk) =

N
n=0

N
l=n

dnlWnl(υk) −

 υk

−1
(υk − x)−α K̃22(υk, x)IN(z̃(x))dx,

such that

cnl =


ỹn(K̃21)n, n = l,
ỹn(K̃21)l + ỹl(K̃21)n, n ≠ l,

dnl =


z̃n(K̃22)n, n = l,
z̃n(K̃22)l + z̃l(K̃22)n, n ≠ l.

Using a similar manner which is applied in Section 2 for obtaining (2.1), the Eq. (3.14) can be written as:

0 =

 υ

−1
H̃21(υ, x)e1(x)dx +

 υ

−1
H̃22(υ, x)e2(x)dx + Gα(F), (3.15)

where F = W6 + W7 + IN(Z3(υ)) + IN(Z4(υ)), and

Gα(F) =

 υ

−1
(υ − x)α−1F(x)dx.

Differentiation (3.15) with respect to υ , yields a second kind integral equation as follows:

H̃21(υ, υ)e1(υ) − H̃22(υ, υ)e2(υ) =

 υ

−1


∂H̃21(υ, x)

∂υ
e1(x) +

∂H̃22(υ, x)
∂υ

e2(x)


dx + G′

α(F), (3.16)

where G′
α(F) can be obtained using integration by parts to Gα(F) and F(−1) = 0

G′

α(F) =

 υ

−1
(υ − x)α−1F ′(x)dx. (3.17)

In this position, to obtain a matrix representation of the resulting equations, we rewrite the Eq. (3.16) as

− H̃21(υ, υ)e1(υ) − H̃22(υ, υ)e2(υ) =

 υ

−1
(υ − x)−α


(υ − x)α

∂H̃21(υ, x)
∂υ

e1(x)


dx

+

 υ

−1
(υ − x)−α


(υ − x)α

∂H̃22(υ, x)
∂υ

e2(x)


dx + G′

α(F), (3.18)
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and denote

H(υ, υ) =


1 0

−H̃21(υ, υ) −H̃22(υ, υ)


,

R(υ, x) =

 K̃11(υ, x) K̃12(υ, x)

(υ − x)α
∂H̃21(υ, x)

∂υ
(υ − x)α

∂H̃22(υ, x)
∂υ

 ,

E(υ) =


e1(υ)
e2(υ)


, M =


W1 + W2 + W3 + W4 + W5 + IN(Z1(υ)) + IN(Z2(υ))

G′

α(F)


.

With these notations, the corresponding matrix representation of the Eqs. (3.12) and (3.18) is given by

H(υ, υ)E(υ) =

 υ

−1
(υ − x)−αR(υ, x)E(x)dx + M. (3.19)

Following [10, Theorem (8.1.8)], we have |K̃22(υ, υ)| ≥ k0 > 0 on [−1, 1], moreover, from (2.2), H̃21(υ, υ) =
sin(απ)

π
K̃21(υ, υ) and H̃22(υ, υ) =

sin(απ)

π
K̃22(υ, υ), so the matrix H(υ, υ) is invertible and its inverse can be set in the form

H−1(υ, υ) =

 1 0
−K̃21(υ, υ)

K̃22(υ, υ)

−π

sin(απ)K̃22(υ, υ)

 .

Multiplying the Eq. (3.19) by H−1(υ, υ), gives

|E(υ)| ≤ Φ

 υ

−1
(υ − x)−α

|E(x)|dx + |N|, (3.20)

where Φ = max−1≤x<υ≤1 |H−1(υ, υ)R(υ, x)| andN = H−1(υ, υ)M.
Employing the generalized Gronwall inequality [23], we can write

|E(υ)| ≤ Φ

 υ

−1
(υ − x)−α

|N(x)|dx + |N|. (3.21)

It can be seen from the generalized Hardy’s inequality (see e.g. Lemma (3.8) from [23]) that

∥E∥L2ω(−1,1) ≤ C∥N∥L2ω(−1,1). (3.22)

It remains to derive a bound for the global error and obtain the order of convergence of the proposed method. In the
continuation of the paper, for simplifying the expressions, we denote ∥ · ∥L2ω(−1,1) by ∥ · ∥ and try to obtain the error bounds
step by step:

Step 1: In this position we use some previously given lemmas and also some known lemmas and inequalities from [24,
23] to achieve the error bounds forWi, (i = 1, . . . , 5).

Since IN indicates the interpolation operator, then we have

INφ(x) = φ(x), ∀φ(x) ∈ PN .

Now, we observe that

∥W4∥ = ∥INΓ e1 − Γ e1∥ = ∥INΓ e1 − IN(IN Γ e1) + IN Γ e1 − Γ e1∥
≤ ∥IN∥ ∥Γ e1 − IN Γ e1∥ + ∥IN Γ e1 − Γ e1∥
≤ (∥IN∥L∞ + 1)∥Γ e1 − IN Γ e1∥L∞ , (3.23)

where IN is defined in Lemma 1, and

Γ e1 =

 υ

−1
(υ − x)−α K̃11(υ, x)e1(x)dx.

In order to obtain a bound for (3.23), we first use Lemma 1 for k = 0 and Lemma 2. Then employing the Lemma (3.5)
from [23] and the inequality (5.5.28) from [24], give us:

∥W4∥ ≤ C(logN + 1)N−β
∥Γ e1∥C0,β ([−1,1]) ≤ C logNN−β

∥e1∥L∞

≤ C logNN
1
2 −β−m

|ỹ|Hm,N
ω (−1,1), (3.24)
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where

|ỹ|Hm,N
ω (−1,1) =


m

j=min(m,N+1)

∥ỹ(j)
∥
2
L2ω(−1,1)

 1
2

. (3.25)

As a similar manner

∥W5∥ ≤ C logNN
1
2 −β−m

|z̃|Hm,N
ω (−1,1).

It follows from (3.24) that

∥W1∥ ≤ C(logN + 1)N−β
∥Γ ỹ∥C0,β ([−1,1]) ≤ C logNN−β

∥ỹ∥L∞ ,

and

∥W2∥ ≤ C logNN−β
∥z̃∥L∞ .

Also, using the inequality (5.5.22) from [24], we have

∥W3∥ ≤ CN−m
|f̃ |Hm,N

ω (−1,1).

Step 2: In this step, our aim is to estimate IN(Z1(υ)) and IN(Z2(υ)) by using Lemma 2, appropriately

∥IN(Z1(υ))∥ ≤ max
0≤k≤N

|Z1(υk)| ∥IN∥L∞ ≤ max
0≤k≤N

|Z1(υk)| logN. (3.26)

Furthermore, from (3.9) we have

|Z1(υk)| =

 υk

−1
(υk − x)−α


IN

K̃11(υk, x)


− K̃11(υk, x)


ỹN(x)dx


≤ C∥IN


K̃11(υk, x)


− K̃11(υk, x)∥L∞ ∥ỹN∥L∞

 υk

−1
(υk − x)−αdx,

such that using the transformation (3.1), we can write υk

−1
(υk − x)−αdx = (υk + 1)(1−α)B(1 − α, 1),

where B(·, ·) denotes the Euler Beta function (see [5, p. 354]).
It follows from the inequality (5.5.28) from [24]

|Z1(τk)| ≤ (υk + 1)(1−α)B(1 − α, 1)N
1
2 −m

|K̃11(υk, x)|Hm,N
ω (−1,1)∥ỹN∥L∞ . (3.27)

Using (3.27), the following relation for (3.26) holds

∥IN(Z1(υ))∥ ≤ C logNN
1
2 −mΦ11∥ỹN∥L∞ , (3.28)

where

Φij = B(1 − α, 1) max
0≤k≤N

(υk + 1)(1−α)
|K̃ij(υk, x)|Hm,N

ω (−1,1), (i, j = 1, 2).

Consequently, we observe that

∥IN(Z2(υ))∥ ≤ C logNN
1
2 −mΦ12∥z̃N∥L∞ .

Step 3: Here, we should find a bound for |G′
α(F)| using the suitable inequalities as well as the previously obtained bounds.

For this purpose, we estimate the Eq. (3.17) as:

|G′

α(F)| ≤

 υ

−1
(υ − x)α−1

|F ′(s)|ds.

Considering the generalized Hardy’s inequality, it can also be shown that

∥G′

α(F)∥ ≤ C∥F ′(s)∥ ≤ C

∥I ′N(Z3(υ))∥ + ∥I ′N(Z4(υ))∥ + ∥W ′

6∥ + ∥W ′

7∥


. (3.29)

Indeed, applying the inequality (5.5.25) from [24], we have

∥W ′

6∥ ≤ CN1−m
|Γ̃ e1|Hm,N

ω (−1,1),

where Γ̃ e1 =
 υ

−1(υ − x)−αK̃21(υ, x)e1(x)dx.
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Settingm = 1 in (3.25), we can write

∥W ′

6∥ ≤ C

∂Γ̃ e1
∂υ

 ,

such that by using integration by parts and the generalized Hardy’s inequality∂Γ̃ e1
∂υ

 ≤ C(∥e1∥ + ∥e′

1∥).

Now, utilizing the inequalities (5.5.22) and (5.5.25) from [24], we get the following result

∥W ′

6∥ ≤ C(N−m
+ N1−m)|ỹ|Hm,N

ω (−1,1).

As a similar manner,

∥W ′

7∥ ≤ C(∥e2∥ + ∥e′

2∥) ≤ C(N−m
+ N1−m)|z̃|Hm,N

ω (−1,1).

On the other hand, using the inequality (5.5.4) from [24] and the relation (3.28), we have

∥I ′N(Z3(υ))∥ ≤ CN2
∥IN(Z3(υ))∥ ≤ logNN

5
2 −mΦ21∥ỹN∥L∞ ,

and

∥I ′N(Z4(υ))∥ ≤ CN2
∥IN(Z4(υ))∥ ≤ logNN

5
2 −mΦ22∥z̃N∥L∞ .

Finally, the above estimates together with (3.22), lead to the following main theorem which reveals the convergence
results of the presented scheme:

Theorem 1. Consider the index-1 weakly singular integral algebraic equation (2.3) and its transformed representation (3.2). Let
D̃ = {(t, s) : −1 ≤ x ≤ υ ≤ T }, and suppose the following holds

(a) The given functions K̃1j (i, j = 1, 2) and f̃ in (3.2) belong to Cm(D̃) and Cm
[−1, 1], respectively.

(b) K̃2j ∈ Cm+1(D̃) (i, j = 1, 2) and g̃ ∈ Cm+1
[−1, 1] with g̃(−1) = 0.

(c) K̃22 satisfies the condition |K̃22(υ, υ)| > 0.
(d) (ỹN , z̃N) denotes the spectral collocation approximation for the exact solution (ỹ, z̃) of (3.2) based on the Chebyshev Gauss

collocation points which is given by (3.3) and (3.6).
Then for sufficiently large N,

∥ỹ − ỹN∥L2w(−1,1) ≃ O

N

1
2 −m logN


,

∥z̃ − z̃N∥L2w(−1,1) ≃ O

N

5
2 −m logN


.

4. Numerical experiments

In this section, we consider some numerical examples in order to illustrate the validity of the proposed technique.
Coordinate transformations (2.4) and variable transformations (3.1) are used to change the WSIAEs system into a new
system such that its solutions have better regularity. All the computations were performed using software Mathematica R⃝.
For analyzing the behavior of the error representations, we define the weighted L2-norm by

∥e∥L2w(−1,1) =

 1

−1
|e|2w(t)dt

 1
2

,

where w(t) =
1√
1−t2

is the Chebyshev weight function.

Example 1. Consider the following index-1 WSIAEs system

AX(t) = G(t) +

 t

0
(t − s)−

1
2 K(t, s)X(s)ds, t ∈ [0, 1],

where

A =


1 0
0 0


, K(t, s) =


t2 + 2 t + s3

s2 + 4 t2 + s4 + 1


,

X(t) =

y(t), z(t)

T
, G(t) =


f (t), g(t)

T
,
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Fig. 1. (a) Plot of error functions of ỹ for different values of N in Example 1. (b) Plot of error functions of z̃ for different values of N in Example 1.

Table 1
L2w errors for Example 1.

N 4 5 6 7 8 9

∥ỹ− ỹN∥L2w
1.64×10−4 3.63×10−5 9.43×10−6 4.92×10−7 2.74×10−7 5.54×10−8

∥z̃− z̃N∥L2w
1.71×10−3 2.60×10−4 8.08×10−5 4.42×10−6 9.01×10−7 3.08×10−7

and f , g are chosen such that the exact solution is

y(t) = arctan
√
t, z(t) =

exp t − 1
√
t

.

Due to the first derivatives of the exact solution

y′(t) =
t−

1
2

2(1 + t)
, z ′(t) = t−

1
2


exp t − 1

2t
+ exp t


,

we observe that y′
∼ t−

1
2 and z ′

∼ t−
1
2 at t → 0. Since α =

p
q =

1
2 , then employing the transformation t = u2 gives the

smooth solution ŷ = y(u2) and ẑ = z(u2). Inserting ŷ, ẑ in the WSIAE and using transformation (3.1) yield

AX(υ) =G(υ) +

 υ

−1
(υ − x)−

1
2K(υ, x)X(x)dx, υ ∈ [−1, 1], (4.1)

whereX(υ) = (ỹ, z̃)T , G(υ) = (f̃ , g̃)T and

K(υ, x) =

K11(υ, x) K12(υ, x)K21(υ, x) K22(υ, x)


.

LetXN = (ỹN , z̃N) denote the approximation of the exact solutionX = (ỹ, z̃) that is given by (3.3).We apply the proposed
Chebyshev collocation scheme for the system (4.1) and report the weighted L2-norm of errors for several values of N in
Table 1. The error behaviors on [−1, 1] for different values of N are also represented in Fig. 1.

Example 2.

AX(t) = G(t) +

 t

0
(t − s)−

1
3 K(t, s)X(s)ds, t ∈ [0, 1],

K(t, s) =


t + s + 2 ts
(t + s)2 1 + st2


,

X(t) =

y(t), z(t)

T
, G(t) =


f (t), g(t)

T
.

Let f , g be chosen such that the exact solution is y(t) = sinh t
2
3 , z(t) = t

1
3 . It is easy to check that y′

∼ t−
1
3 and z ′

∼ t−
2
3

at t → 0. So, according to the transformation (2.4) and α =
p
q =

1
3 , the smooth solutions ŷ = sinh t2 and ẑ = t are obtained.

The weighted L2-norm of errors and the error behaviors on [−1, 1] for different values of N are reported in Table 2 and
Fig. 2.



Author's personal copy

S. Pishbin et al. / Journal of Computational and Applied Mathematics 245 (2013) 121–132 131

Fig. 2. (a) Plot of error functions of ỹ for different values of N in Example 2. (b) Plot of error functions of z̃ for different values of N in Example 2.

Fig. 3. (a) Plot of error functions of ỹ for different values of N in Example 3. (b) Plot of error functions of z̃ for different values of N in Example 3.

Table 2
L2w errors for Example 2.

N 4 5 6 7 8 9

∥ỹ− ỹN∥L2w
2.90×10−3 1.91×10−3 5.57×10−4 4.44×10−5 3.54×10−6 6.85×10−8

∥z̃− z̃N∥L2w
2.73×10−3 1.24×10−3 1.10×10−3 8.30×10−5 6.38×10−6 1.09×10−7

Table 3
L2w errors for Example 3.

N 4 5 6 7 8 9

∥ỹ− ỹN∥L2w
5.00×10−3 1.92×10−3 1.84×10−4 9.19×10−5 5.61×10−6 2.41×10−7

∥z̃− z̃N∥L2w
1.94×10−2 1.05×10−2 1.13×10−3 7.78×10−4 5.19×10−5 1.61×10−6

Example 3. As a third test problem, consider the following system of index-1 WSIAEs

AX(t) = G(t) +

 t

0
(t − s)−

1
4 K(t, s)X(s)ds, t ∈ [0, 1],

K(t, s) =

e


s
1
2 +t


(t2 + s4 + 3) cos s

1
4 (t + s)

e


s
1
2 +t2+1


(t + s) sin


s
1
4 + 1


(st + 1)

 ,

X(t) =

y(t), z(t)

T
, G(t) =


f (t), g(t)

T
,

and f , g are chosen such that the exact solution is y(t) = exp(
√
t), z(t) = sin( 4

√
t).

Table 3 and Fig. 3 represent the error behaviors of the computed solutions using the proposed collocation method.
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5. Conclusion

This paper studied the theoretical and numerical treatments of weakly singular Volterra IAEs systems. We analyzed a
spectral Chebyshev collocation approximation for the WSIAEs with index-1. The convergence analysis was included and it
was shown that the numerical errors decay exponentially in the weighted L2-norm.

Here, we considered the case when the underling solutions of the WSIAEs were not sufficiently smooth. To overcome
this difficulty, we used some coordinate transformation to change the equations into a newWSIAEs. In our future work, we
will investigate the approximate solution of WSIAEs with non-smooth given functions.
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