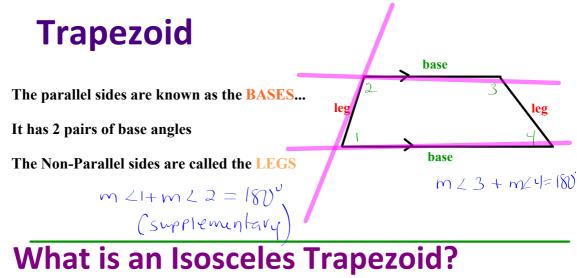


U4 L6 Trapezoids



Trapezoid Common Core Definition

A Quadrilateral with @ least one pair of parallel sides.

The old way...

By definition, A Trapezoid is a quadrilateral with exactly one pair of parallel sides.

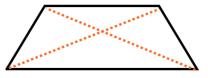
An Isosceles Trapezoid is a trapezoid with congruent legs.

If a Trapezoid is ISOSCELES, then each pair of base angles are congruent

All 4 \$5 A any grad = 360

The converse is also true!

If a Trapezoid has a pair of congruent base angles, then it is an ISOSCELES Trapezoid



Also, consecutive angles that are NOT base angles are supplementary.

(In any trapezoid)

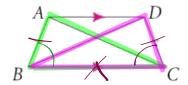
Another Trapezoid Theorem

A Trapezoid is ISOSCELES if and only if the diagonals are congruent

This means-

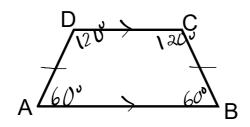
If a trapezoid has congruent diagonals then it's an isosceles trapezoid.

AND

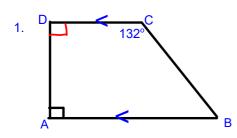

If a trapezoid is an isosceles trapezoid, then it has congruent diagonals.

Prove the theorem that states that the diagonals of an isosceles trapezoid are congurent:

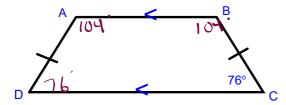
10


Given: Isosceles trapezoid ABCD with $\overline{AB} \cong \overline{DC}$

Prove: $\overline{AC} \cong \overline{DB} \subset P \subset T \subset$

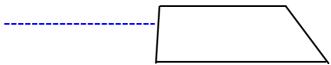

_	Statements		Reasons	
1)Isosc	eles trapezoid $ABCD$ with $\overline{AB} \cong \overline{DC}$	1)	given .	plan
	$C \stackrel{\sim}{\sim} \overline{CB}$ $ABC \cong \angle DCB$	2)	Replexive Base xs 1505. Trap. ane =	AABC € ADCB
	AB C \(\frac{1}{2}\) DCB		SAS CPCIC	
J) H	C = DD	5)		

Given isosceles trapezoid ABCD, if the m<A = 60 degrees, find the remaining angles.



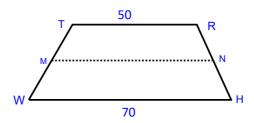
Examples:

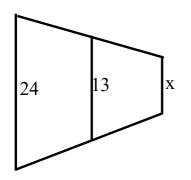
Find the angle measures of ABCD



2.

Recall a midsegment for triangles..... We will do this on Monday 1/7.

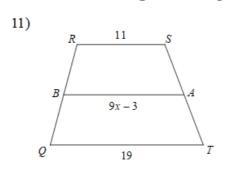

Definition of Midsegment/Median of a Trapezoid: the segment connecting the midpoints of the two non-parallel sides.



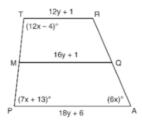
Theorem:

The midsegment or median for a trapezoid is parallel to each base and is one-half the sum of the bases.

1) Find the length of the midsegment (median) $\overline{\text{MN}}$.



2) Find the value of x, knowing that the picture contains a trapezoid with its midsegment.


#11 from last nights HW

Solve for x. Each figure is a trapezoid.

Old Regents Question!

15 Trapezoid TRAP, with median \overline{MQ} , is shown in the diagram below. Solve algebraically for x and y.

$$\begin{array}{r}
 331 + 2 &= 301 + 7 \\
 -301 &= 301 \\
 31 + 2 &= 7 \\
 31 + 2 &= 7 \\
 31 &= 5 \\
 \hline
 (7 &= 5) \\
 \hline
 (9 &= 5) \\
 \hline
 (9 &= 5) \\
 \end{array}$$

Quick and easy Proof:

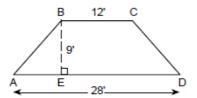
 $\overline{DE} \hspace{0.1cm} \big| \hspace{0.1cm} \big| \hspace{0.1cm} \overline{AV}$ given: $\Delta DAV \cong \Delta EVA$

prove: DAVE is an Isosceles Trapezoid

Statements

Reasons

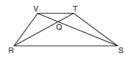
1. $\overline{DE} \mid \overline{AV}$ $\Delta DAV \cong \Delta EVA$ 1. Given


Homework

U4 L6 Trapezoid HW
Online

U4 L4 More Trapezoids

10 The cross section of an attic is in the shape of an isosceles trapezoid, as shown in the accompanying figure. If the height of the attic is 9 feet, BC = 12 feet, and AD = 28 feet, find the length of \overline{AB} to the nearest foot.

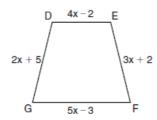


U4 L4 Trapezoid HW

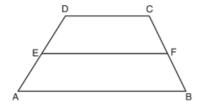
1 If the diagonals of a quadrilateral do not bisect each other, then the quadrilateral could be

- rectangle
- 2) rhombus
- 3) square
- 4) trapezoid

2 In trapezoid RSTV with bases \overline{RS} and \overline{VT} , diagonals \overline{RT} and \overline{SV} intersect at Q.

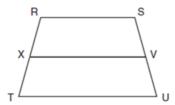

If trapezoid RSTV is not isosceles, which triangle is equal in area to \(\Delta RSV ? \)

- ∆RQV
- △RST
- ∆RVT
- 4) △SVT


3 Isosceles trapezoid ABCD has diagonals \overline{AC} and \overline{BD} . If AC = 5x + 13 and BD = 11x - 5, what is the value of x?

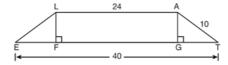
- 1) 2
- $^{2)}$ $_{10}\frac{3}{4}$
- 3) 3
- 4) 1/2

4 In the diagram below of isosceles trapezoid $DEFG_{2}$, $\overline{DE} \parallel \overline{GF}$, DE = 4x - 2, EF = 3x + 2, FG = 5x - 3, and GD = 2x + 5. Find the value of x.

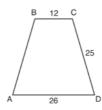

5 In the diagram below, \overline{EF} is the median of trapezoid ABCD.

If AB = 5x - 9, DC = x + 3, and EF = 2x + 2, what is the value of x?

- 1) 5
- 2) 2
- 3) 7
- 4) 8

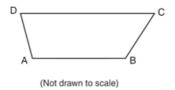

6 In the diagram below of trapezoid $RSUT_{*}\overline{RS} \| \overline{TU}, X$ is the midpoint of \overline{RT} , and V is the midpoint of \overline{SU} .

If RS = 30 and XV = 44, what is the length of \overline{TU} ?


- 1) 37
- 2) 58
- 3) 74
- 4) 118

7 In the diagram below, LATE is an isosceles trapezoid with $\overline{LE} \cong \overline{AT}$, LA = 24, ET = 40, and AT = 10. Altitudes \overline{LF} and \overline{AG} are drawn.

What is the length of \overline{LF} ?


- 1) 6
- 2) 8 3) 3 4) 4
- 8 In the diagram below of isosceles trapezoid $ABCD_{*}AB = CD = 25$, AD = 26, and BC = 12.

What is the length of an altitude of the trapezoid?

- 1) 7
- 2) 14 3) 19
- 4) 24

12 In the diagram below, \overline{AB} and \overline{CD} are bases of trapezoid ABCD.

If $m\angle B = 123$ and $m\angle D = 75$, what is $m\angle C$? 1) 57 2) 75 3) 105 4) 123