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Abstract

We seek accurate, fast and reliable computations of the confluent and Gauss hyper-

geometric functions 1F1(a; b; z) and 2F1(a, b; c; z) for different parameter regimes within the

complex plane for the parameters a and b for 1F1 and a, b and c for 2F1, as well as different

regimes for the complex variable z in both cases. In order to achieve this, we implement a

number of methods and algorithms using ideas such as Taylor and asymptotic series com-

putations, quadrature, numerical solution of differential equations, recurrence relations, and

others. These methods are used to evaluate 1F1 for all z ∈ C and 2F1 for |z| < 1. For 2F1,

we also apply transformation formulae to generate approximations for all z ∈ C. We discuss

the results of numerical experiments carried out on the most effective methods and use these

results to determine the best methods for each parameter and variable regime investigated.

We find that, for both the confluent and Gauss hypergeometric functions, there is no

simple answer to the problem of their computation, and different methods are optimal for

different parameter regimes. Our conclusions regarding the best methods for computation of

these functions involve techniques from a wide range of areas in scientific computing, which

are discussed in this dissertation. We have also prepared MATLAB code that takes account

of these conclusions.
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1 Introduction

The computation of the hypergeometric function pFq, a special function encountered in

a variety of applications, is frequently sought. However, aside from the most basic hyper-

geometric functions, this is an extremely difficult task in practice. The reason for this is

that the non-trivial structure of the series that defines the function creates many numerical

issues such as cancellation and round-off error, which become especially significant for cer-

tain ranges of the parameters and the variable. This results in many methods of numerical

computation being ineffective for all but the simplest parameter and variable ranges.

We focus in this dissertation on computing the two most commonly used hypergeomet-

ric functions, the confluent hypergeometric function 1F1(a; b; z) and the Gauss hypergeo-

metric function 2F1(a, b; c; z), which both suffer from these problems. The program which

will be used to compute these functions will be MATLAB, which employs double precision

arithmetic, so it is especially important for effective methods to be found to overcome the

numerical issues involved.

The goal of this project is to carry out a comprehensive survey of methods for computing

1F1 and 2F1, and to determine how to choose appropriate methods for different parameter

and variable ranges, resulting in reliable and fast computation for as large a range of the

parameters (a, b for 1F1 and a, b, c for 2F1) and variable z as possible. The algorithms used

are required to be accurate, fast and robust for specific parameter and variable regions for

which they have been selected.

In this dissertation, we will test a large variety of approaches, such as a range of se-

ries methods, ways of numerically solving the differential equations that the hypergeometric

functions satisfy and quadrature methods, as well as employing recurrence relations to at-

tempt to use computations of relatively simple cases to obtain computations for extreme

parameter cases. We will also test asymptotic series for 1F1. For 2F1, we also explore the use

of transformation formulae and expansions for special parameter cases. We aim to combine

techniques that work for specific parameter regimes in order to compile a package of methods

that is effective for as large a part of the complex plane for each parameter and variable as

possible.
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This dissertation will explain the more successful methods tested for each function, with

details of other methods implemented or analysed discussed in Appendices G and H. Details

will be given of the background to these methods, how they were implemented, and the

results obtained from test cases taken from a wide range of examples in the complex plane.

An explanation will be provided as to why the methods might be successful, and a conclusion

reached as to which methods should be used in what part of the complex plane. The

conclusions will be based partly on the review of the author(s) who proposed the method

and partly on results and observations from our implementation of them.

2 Background on hypergeometric functions

In this section, we will introduce properties of the generalized hypergeometric function

that will be exploited in this project. The motivation for computing hypergeometric functions

will be discussed, with details given of some of the practical applications of these functions

(with further examples given in Appendix J). We will also discuss the numerical issues that

make the problem of their computation a difficult one.

2.1 Relevant properties of hypergeometric functions

The hypergeometric function pFq is defined in [37] as follows for a1, ..., ap, b1, ..., bq, z ∈ C:

pFq(a1, ..., ap; b1, ..., bq; z) =
∞∑
j=0

(a1)j...(ap)j
(b1)j...(bq)j

zj

j!
, (2.1)

where, for some parameter µ, the Pochhammer symbol (µ)j is defined as

(µ)0 = 1, (µ)j = µ(µ+ 1)...(µ+ j − 1), j = 1, 2, ... .

For the remainder of this dissertation, the values of aj, bj, z will be complex unless other-

wise specified. However, the hypergeometric function is not defined if any bj, j = 1, ..., q are

real and equal to a non-positive integer, and there are numerical issues in its computation if

one or more values of bj are close to a non-positive integer.

The generalized hypergeometric function pFq is known to satisfy the following differential

equation [64]:[
z

d

dz

[(
z

d

dz
+ b1 − 1

)
...

(
z

d

dz
+ bq − 1

)]
− z

(
z

d

dz
+ a1

)
...

(
z

d

dz
+ ap

)]
w = 0. (2.2)

2



A great number of common mathematical functions are expressible in terms of hyperge-

ometric functions. For example, as detailed in [3, 37],

pFp(a1, ..., ap; a1, ..., ap; z) = ez, p ∈ Z+ ∪ {0}, (2.3)

1F0(a; ; z) = (1− z)−a,

2F1

(
1

2
,
1

2
;
3

2
; z

)
=

1

z
sin−1 z,

where Z+ denotes the set of positive integers.

A number of other special functions are also expressible in terms of hypergeometric

functions. For example, as noted in [43],

Jν(x) =
∞∑
j=0

(−1)j

j!Γ(j + ν − 1)

(x
2

)2j+ν

=

(
x
2

)ν
Γ(ν + 1)

0F1

(
; ν + 1;−x

2

4

)
, (2.4)

where Jν(x) is the Bessel function of the first kind with parameter ν, and the Gamma

function Γ(x) is defined in [57] as

Γ(x) =

∫ ∞
0

tx−1e−tdt (2.5)

for Re(x) > 0, and by the reflection formula

Γ(x) =
π

Γ(1− x) sin(π(1− x))
(2.6)

for Re(x) ≤ 0.

We note that, in the above notation, there are empty spaces between the two semi-colons

in 1F0(a; ; z) and before the first semi-colon in 0F1

(
; ν + 1;−x2

4

)
due to the fact that,

respectively, q = 0 and p = 0 in these cases, in the notation of (2.1).

The derivative of the hypergeometric function pFq(a1, ..., ap; b1, ..., bq; z) is given by

d

dz
[pFq(a1, ..., ap; b1, ..., bq; z)] =

a1...ap
b1...bq

pFq(a1 + 1, ..., ap + 1; b1 + 1, ..., bq + 1; z), (2.7)

and the n-th derivative is given by

dn

dzn
[pFq(a1, ..., ap; b1, ..., bq; z)] =

(a1)n...(ap)n
(b1)n...(bq)n

pFq(a1 + n, ..., ap + n; b1 + n, ..., bq + n; z).

An important property that we will need to use is the convergence criteria of the hyper-

geometric functions depending on the values of p and q. The radius of convergence of a
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series of a variable z is defined as a value rc such that the series converges if |z − dc| < rc and

diverges if |z − dc| > rc, where dc, in this case 0, is the centre of the disc of convergence. For

the hypergeometric function, provided aj and bj are not non-positive integers for any j, the

relevant convergence criteria stated below can be derived using the ratio test, which deter-

mines the absolute convergence of the series using the limit of the ratio of two consecutive

terms, and are detailed in [37].

• If p ≤ q, then the ratio of coefficients of zk in the Taylor series of the hypergeometric

function pFq tends to 0 as k → ∞; so the radius of convergence is ∞, so that the

series converges for all values of |z|. Hence, pFq is entire. In particular, the radius of

convergence for 0F1 and 1F1 is ∞.

• If p = q + 1, the ratio of coefficients of zk tends to 1 as k → ∞, so the radius of

convergence is 1, so that the series converges only if |z| < 1. In particular the radius

of convergence of 2F1 is 1.

• If p > q + 1, the ratio of coefficients of zk tends to ∞ as k → ∞, so the radius of

convergence is 0, so that the series does not converge for any value of |z|.

We will seek approximations to the relevant hypergeometric functions for |z| within the

radii of convergence, and then apply analytic continuation to compute them in the rest of

the complex plane where appropriate. For p = q + 1, as stated in [37] there is a further

restriction for convergence on the unit disc; the series only converges absolutely at |z| = 1 if

Re(
∑q

j=1 bj −
∑p

j=1 aj) > 0, so the selection of values for aj and bj must reflect that.

In Figure 1, plots are shown of 1F1 and 2F1 for real z, and for a selection of parameter

values.

2.2 Motivation for the computation of hypergeometric functions

The computation of the hypergeometric function is frequently sought due to the wide

range of practical problems in which it appears. It arises, for example, in photon scattering

from atoms [27], networks [54], Coulomb wave functions [10], binary stars [56], finance [13]

and many others. Some examples from practical applications are detailed in Appendix J.

Due to this wide range of applications, it is useful to provide a survey of work carried out on

4
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Figure 1: Graphs of 1F1(a; b; z), generated using MATLAB, for real z ∈ [−5, 5] with
(a, b) = (0.1, 0.2) (dark blue), (a, b) = (−3.8, 1.5) (red) and (a, b) = (−3,−2.5) (green),
and 2F1(a, b; c; z) for real z ∈ [−1, 1] with (a, b, c) = (0.1, 0.2, 0.4) (black), (a, b, c) =
(−3.6,−0.7,−2.5) (purple) and (a, b, c) = (−5, 1.5, 6.2) (sky blue).

computing hypergeometric functions, and to discuss which methods are likely to work well for

particular parameter regimes, as well as to supply information on how to test the reliability

of a routine, test cases that a routine might have difficulty computing (as described in

Appendices B and C), and how to evaluate other special functions required for computation

of hypergeometric functions (as detailed in Appendix I). Research of this form will be useful

in many ways. Firstly, the Numerical Algorithms Group who sponsored this project, will

benefit from research on computing hypergeometric functions being carried out, to help them

achieve their goal of writing a package for the NAG Library. Secondly, programmers working

with software which does not have an built-in hypergeometric function evaluator may be able

to use the theory of computing these functions to write such a program for themselves.

Another important reason why research into this area is desirable is that the state-of-

the-art software currently used for special functions has not yet been perfected. This is

illustrated by a number of cases when MATLAB R2008b is asked to compute the function

2F1(a, b; c; z) for certain values of a, b, c and z. Firstly, although the MATLAB routine

for computing hypergeometric functions, ‘hypergeom’, is generally slow but tolerable for all

parameter and variable values (MATLAB usually took around 10–15 seconds to compute

a confluent or Gauss hypergeometric function the first time after loading the program on

the processor used), the problem can sometimes be serious. For example, when the com-

mand hypergeom([1,0.9],2,exp(1i*pi/3)) is used, over 5 minutes is taken for MATLAB

5



to compute the solution on the processor used (an Intel(R) Atom(TM) CPU N270, with

processor speed 1.60GHz). This problem will be resolved by making use of an analytic

continuation formula discussed in Section 4.7.

Secondly, there is a major issue with the MATLAB routine in some cases where c is close

to a negative integer. For example, when hypergeom([-1,-1.5],-2.000000000000001,0.5)

is called, a set of parameters for which the Gauss hypergeometric series has only 2 non-zero

terms, the answer returned using 16 digit arithmetic is 0.621859216769114, giving only 2

digit accuracy on the correct answer of 0.625000000000000, which can be found by manual

calculation. This motivates the need for research into effective methods that will compute

hypergeometric functions accurately. Many methods considered in this project, such as those

discussed in Sections 4.2 and 4.3, will be able to assist with this particular computation.

There are also problems that arise when computing 1F1(a; b; z) in MATLAB. When

hypergeom(1,200,1) is called, the answer obtained is 6.69×10299 to 3 significant figures. By

examination of (3.1), we can see that each term of the power series of 1F1(1; 200; 1) is a smaller

positive real number than each term of 1F1(1; 1; 1), for example, and so the value 1F1(1; 200; 1)

is smaller than that of 1F1(1; 1; 1). From (2.3), we can see that 1F1(1; 1; 1) = e = 2.72 to 3

significant figures, and hence MATLAB’s evaluation of 1F1(1; 200; 1) is incorrect. Further-

more, Mathematica will not generate an evaluation for 1F1(1; 200; 1) either. The methods

used by MATLAB and Mathematica are not publicly known, so it is important to devise a

package of routines that do not suffer from these problems.

3 Computation of the confluent hypergeometric func-

tion 1F1(a; b; z)

In this section, we discuss the most powerful methods implemented to accurately and

efficiently evaluate the confluent hypergeometric function, before providing recommendations

as to the most effective approaches for each parameter regime. Other methods that we have

implemented or analysed are discussed in Appendix G.
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3.1 Properties of 1F1(a; b; z)

The confluent hypergeometric function 1F1(a; b; z), also denoted by M(a; b; z), is

defined as

M(a; b; z) =
∞∑
j=0

(a)j
(b)j

zj

j!
, (3.1)

which converges for any z ∈ C, and is defined for any a ∈ C, b ∈ C\{Z− ∪ {0}}, where Z−

denotes the set of negative integers.

It should be noted that M(a; b; 0) = 1 for any a and b /∈ Z− ∪ {0}. If b = n ∈ Z− ∪ {0},
the series is not defined. On the other hand, if a = n ∈ Z− ∪ {0}, then this series is given

by a polynomial of degree −n in z.

The function M(a; b; z) satisfies the following differential equation, derived from (2.2):

z
d2w

dz2
+ (b− z)

dw

dz
− aw = 0, (3.2)

for all b apart for when b ∈ Z− ∪ {0}; this case is resolved by the fact that, as noted in [51],

the following is a solution, including when b is a negative integer:

M(a; b; z) =
∞∑
j=0

(a)j
Γ(b+ j)

zj

j!
. (3.3)

When b /∈ Z− ∪ {0}, then the following expression holds:

M(a; b; z) = Γ(b)M(a; b; z).

Now, M(a; b; z) is closely related to another standard solution U(a; b; z), which is defined

as the solution to (3.2) with the property

U(a; b; z) ∼ z−a, z →∞, |arg z| ≤ 3

2
π − δ, (3.4)

with 0 < δ � 1 (i.e. δ is an arbitrary small positive constant), as discussed in [37]. The

function U(a; b; z) also has the expression

U(a; b; z) = 2F0

(
a, 1 + a− b; ;−1

z

)
,

as stated in [3], where the space between the two colons is due to the fact that q = 0 in the

notation of (2.1).
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As explained in [3], U(a; b; z) has a branch point at z = 0, with a branch cut in the

z-plane along the interval (−∞, 0]; when m ∈ Z, the set of integers, the following expression

holds:

U(a; b; ze2πim) =
2πie−πibm sin(πbm)

Γ(1 + a− b) sin(πb)
M(a; b; z) + e−2πibmU(a; b; z).

Hence, as discussed in [3, 68], M(a; b; z) and U(a; b; z) are related by

U(a; b; z) =
Γ(1− b)

Γ(1 + a− b)
M(a; b; z) +

Γ(b− 1)

Γ(a)
z1−bM(1 + a− b; 2− b; z), b /∈ Z, (3.5)

M(a; b; z) =
Γ(b)e∓aπi

Γ(b− a)
U(a; b; z) +

Γ(b)e±(b−a)πi

Γ(a)
ezU(b− a; b; e±πiz), b /∈ Z, (3.6)

so methods for computing U(a; b; z) are also useful for computing 1F1.

The following transformations are also useful when certain values of a or b prove difficult

computationally:

M(a; b; z) = ezM(b− a; b; z), (3.7)

U(a; b; z) = z1−bU(a− b+ 1; 2− b; z). (3.8)

As detailed in [3, 5, 40], the confluent hypergeometric function is related to various

elementary and special functions as follows:

M(a; a; z) = ez,

M

(
ν +

1

2
; 2ν + 1; 2z

)
=

(z
2

)−ν
ezIν(z), (3.9)

M(1; a+ 1; z) = az−aezγ(a, z),

M

(
1

2
;
3

2
;−z2

)
=

√
π

2z
erf(z),

where the modified Bessel function Iν(z), incomplete gamma function γ(a, z) and error func-

tion erf(z) are defined by, respectively,

Iν(z) = i−νJν(iz) = i−ν
∞∑
j=0

1

j!Γ(ν + j + 1)

(
iz

2

)2j+ν

, (3.10)

γ(a, z) =

∫ z

0

ta−1e−tdt, (3.11)

erf(z) =
2√
π

∫ z

0

e−t
2

dt.
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3.2 Taylor series

The simplest method for computing the confluent hypergeometric function, and the first

method we try, is using the basic power series definition. There are two methods we employ

to compute the power series

M(a; b; z) =
∞∑
j=0

(a)j
(b)j

1

j!︸ ︷︷ ︸
Aj

zj. (3.12)

These methods used for computing the basic terms in the series Aj are detailed below.

Method (a): Computation can be carried out using the following procedure:

A0 = 1, S0 = A0,

Aj+1 = Aj ×
a+ j

b+ j
× z

j + 1
, Sj+1 = Sj + Aj+1, j = 0, 1, 2, ... ,

where here, Aj represents the (j + 1)-st term of the power series, and Sj represents the sum

of the first (j + 1) terms.

When programming in MATLAB, a stopping criterion needs to be specified. A com-

mon stopping criterion is to stop computing terms when |AN+1|
|SN |

< tol for some tol and some

N and to return SN , our approximation of M(a; b; z), as the solution (as in [44]). This is

equivalent to truncating the series

S∞ =
∞∑
j=0

(a)j
(b)j

zj

j!
. (3.13)

However, our investigation has shown that this is not sufficient in all cases. For example,

we consider an example of 1F1(a; b; z) where a is very close to a negative integer −m (by

which we mean, as a guide, where the modulus of the difference between a and −m is O(tol)).

In this case, the (m + 2)-nd term in the series, equal to (a+m)
(b+m)

zm

m!
, is likely to be very small

compared to the sum of the previous terms, but the subsequent terms might still contribute

significantly to the solution. The stopping criterion we use is therefore met when |AN+1|
|SN |

< tol

and |AN |
|SN−1|

< tol. In other words, we need two consecutive terms to be small compared to

the sum already computed.
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Method (b): The following recurrence relation deducing the next approximation in

terms of the previous two [44],

S−1 = S0 = 1, S1 =
a

b
z,

rj =
a+ j − 1

j(b+ j − 1)
, j = 2, 3, ... ,

Sj = Sj−1 + (Sj−1 − Sj−2)rjz, j = 2, 3, ... .

By the same reasoning as for method (a), the stopping criterion is to truncate the series

when |SN+1−SN |
|SN |

< tol and |SN−SN−1|
|SN−1|

< tol for some tol and some N , and to return SN . As in

Method (a), this is equivalent to truncating the series (3.13).

For both of these methods, and for every other series method that will be discussed in

this project unless otherwise specified, we instructed MATLAB to terminate the computation

when 500 terms had been computed if the stopping criterion had not been satisfied already.

In all tables in this project, when this case arose, ‘500 terms computed’ is specified. For the

remainder of this project, we take tol = 10−15, motivated by our desire for accuracy of 15

decimal places, and the fact that the smallest number that MATLAB is able to compute,

eps, is equal to roughly 2.2× 10−16.

From Table 1, it can be deduced that, for the most part, methods (a) and (b) generate

similar results, and the same number of terms for most computations. However, we find that

the second method is in general more effective when carrying out computations involving

small parameters, for example in the second row in the table.

Both methods appear to be successful for large values of |b|; this is fairly unsurprising as

this would mean that, by examining (3.1), the coefficients of the powers of zj would decay

fast as j becomes large, so few terms are required to obtain an accurate computation for

M(a; b; z). However, this is not the case for large values of |a| when |b| is small, as shown

by Table 1, as the series does not converge as quickly as for small |a|, so computation would

be more susceptible to round-off error. Therefore, recurrence relations, which we discuss in

Section 3.8, will have to be used in order to obtain a computation of acceptable accuracy,

(we will usually treat 10 digit accuracy as ‘acceptable’, motivated by the work in [12]). It
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Case (a,b,z) Correct M(a; b; z) Time Method (a) and (b) (tol = 10−15) Acc. N Time

1 (0.1,0.2,0.5) 1.317627178278510 11.164293s 1.317627178278510 16 15 0.032802s
1.317627178278510 16 15 0.051618s

6 (10−8,10−12, 0.999999000000000 9.930426s 0.999999000088899 11 3 0.028194s
−10−10 + 10−12i) +0.000000010000000i +0.000000010000000i

0.999999000000000 16 3 0.046520s
+0.000000010000000i

9 (500,511,10) 1.779668553337393×10−4 11.528364s 1.779668553337393×10−4 16 46 0.046847s
1.779668553337393×10−4 16 46 0.077375s

10 (8.1,10.1,100) 1.724131075992688×1041 10.388182s 1.724131075992686×1041 15 188 0.066285s
1.724131075992686×1041 15 188 0.082231s

13 (−60,1,10) 10.04854112964948 11.359146s −35.241346779094869 0 58 0.058127s
−13.585500872106090 0 58 0.088579s

15 (60,1,−10) −6.713066845459067× 10−4 11.769413s 1.608258431433813×105 0 97 0.054126s
4.161733968914763×105 0 96 0.078579s

19 (500,1,-5) 0.001053895943365 11.891125s 1.669453216927715×1026 0 128 0.061397s
1.319078645590728×1026 0 128 0.107982s

21 (20,−10 + 10−9, 8.857934344815256×109 10.971249s 8.857934347919209×109 9 49 0.053288s
−2.5) 8.857934341268038×109 9 49 0.080028s

30 (2 + 8i,−150 + i, −9.853780031496243× 10135 11.731429s −9.853780031496170× 10135 13 409 0.078265s
150) +3.293888962100131× 10136i +3.293888962100122× 10136i

−9.853780031496204× 10135 14 409 0.112663s
+3.293888962100115× 10136i

32 (−5,2,−100 + 1000i) 7.196140446954445×1011 12.019623s 7.196140446954443×1011 15 7 0.031462s
−1.233790613611111× 1012i −1.233790613611111× 1012i

7.196140446954445×1011 16 7 0.069256s
−1.233790613611111× 1012i

Table 1: Results obtained from programming the above algorithms into MATLAB, for a
selection of test cases from Appendix B. Shown is the value obtained from the routine
‘hypergeom’ in MATLAB, and verified in Mathematica 7, and the time taken to arrive
at this result in MATLAB. Also shown are the computations obtained using Taylor series
methods (a) and (b), the number of digits of accuracy generated (denoted as Acc. above),
as well as the number of terms N taken before the stopping criterion was applied, and the
time taken for each computation. The results for all test cases are shown in Appendix E.

should also be noted that the results are generated at least 100 times faster than they are

generated using ‘hypergeom’.

As the fourth row in Table 1 shows, the Taylor series method can provide accurate

computation for up to and beyond |z| = 100 (although the approximation becomes less

accurate as |z| → ∞), providing that, as in this case, the value of |b| is at least as large as

|a|. As |z| becomes large, another feature of the Taylor series method is the increase in the

number of terms of the Taylor series required for the computation of 1F1, as illustrated by

Figure 2.

One notable case for which both Taylor series methods are very inefficient is when Re(a)

and Re(z) are of reasonably large magnitude (i.e. of order at least 10), but are of different

signs. This problem is illustrated in particular in the fifth and sixth rows in Table 1, for
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(a, z) = (−60, 10) and (60,−10), for which both Taylor series methods produce results that

are not even of the same order as the correct answer, whereas each method works very well

for (a, z) = (60, 10) and (−60,−10), as shown in Appendix E. This problem can be resolved

by exploiting the use of Buchholz polynomials, which we discuss in Section 3.4.
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Figure 2: Number of terms computed using Taylor series method (a) for computing

1F1(a; b; z) for real z ∈ [1, 100], when a = 2, b = 3 (red), a = 2 + 10i, b = 10 + 5i (green) and
a = 20, b = 15 (blue). We carried out the computation of 1F1 for these parameters with 15
digit accuracy.

3.3 Writing the confluent hypergeometric function as a single frac-
tion

As illustrated by the performance of the Taylor series method (a) on test case 6, which

has a relatively small number of terms that require computation, the methods of Section

3.2 can be vulnerable in particular to parameter values with small modulus, even when the

computation should be fairly straightforward. The method discussed in this section aims to

provide an alternative method to those in Section 3.2 that is also based on the basic series

definition (3.1) of the confluent hypergeometric function.

This method, explained in [45, 46], expresses the hypergeometric series of 1F1(a; b; z) as

a single fraction, rather than a sum of many fractions. The sum Sj of the first j+ 1 terms of

12



the hypergeometric series up to the term in zj can be expressed, for j = 0, 1, 2, 3, as follows:

S0 =
0 + 1

1
,

S1 =
b+ az

b
,

S2 =
(b+ az)(2)(b+ 1) + a(a+ 1)z2

2b(b+ 1)
,

S3 =

α3︷ ︸︸ ︷
[(b+ az)(2)(b+ 1) + a(a+ 1)z2] +

β3︷ ︸︸ ︷
a(a+ 1)(a+ 2)z3

(2)(3)b(b+ 1)(b+ 2)︸ ︷︷ ︸
γ3

,

where α3, β3 and γ3 can be calculated using (3.14)–(3.16) below. Taking α0 = 0, β0 =

1, γ0 = 1, ζ0 = 1, and defining ζj to be the j-th approximation, we can apply the following

recurrence relations:

αj = (αj−1 + βj−1)× j × (b+ j − 1), (3.14)

βj = βj−1 × (a+ j − 1)× z, (3.15)

γj = γj−1 × j × (b+ j − 1), (3.16)

ζj =
αj + βj
γj

, (3.17)

for j = 1, 2, ... . We program this method into MATLAB in order to generate a sequence of

approximations to M(a; b; z), {ζj, j = 1, 2, ...}, using the stopping criterion, similar to that

described in Section 3.2, that for the series to be terminated,
|ζj+1−ζj |
|ζj | and

|ζj−ζj−1|
|ζj−1| must be

less than the prescribed tolerance tol = 10−15.

The motivation behind this method is the fact that significant round-off error in divi-

sion is produced by computing the individual terms of M(a; b; z) using a number of other

methods. Therefore, applying a method that only requires a single division to compute an

approximation to M(a; b; z) can be potentially advantageous.

From Table 2, one can conclude that the methods of Section 3.2 are more successful in

generating accurate computations of M(a; b; z) for a wide range of the parameters and the

variable than the method described in this section. One possible explanation for this is that,

in particular when the modulus of the parameter values are increasingly large, the numerator

and denominator of ζj become very large for a relatively small j, and so the round-off error

13



Case (a,b,z) Correct M(a; b; z) Acc. 1/2 Single fraction (tol=1e-15) Acc. N Time taken

1 (0.1,0.2,0.5) 1.317627178278510 16/16 1.317627178278509 14 15 0.042757s
6 (10−8,10−12, 0.999999000000000 11/16 0.999999000000000 16 3 0.028864s

−10−10 + 10−12i) +0.000000010000000i +0.000000010000000i
9 (500,511,10) 1.779668553337393×10−4 16/16 1.779668553337394×10−4 15 45 0.050234s
13 (−60,1,10) 10.04854112964948 0/0 −19.30658974826999 0 58 0.065559s
15 (60,1,−10) −6.713066845459067× 10−4 0/0 6.748784369464462×104 0 97 0.073657s
19 (500,1,-5) 0.001053895943365 0/0 −4.223914178002353× 1032 0 90 0.061492s
21 (20,−10 + 10−9,−2.5) 8.857934344815256×109 9/9 8.857934344315682× 109 10 49 0.074883s
30 (2 + 8i,−150 + i, −9.853780031496243× 10135 13/14 500 terms computed N/A N/A N/A

150) +3.293888962100131× 10136i
32 (−5,2,−100 + 1000i) 7.196140446954445×1011 15/16 7.196140446954445× 1011 16 7 0.041258s

−1.233790613611111× 1012i −1.233790613611111× 1012i

Table 2: Table showing the accuracy of Taylor series methods (a) and (b), denoted as Acc.
1/2 above, as explained in Section 3.2, as well as the results of the single fraction method
of this section and its accuracy. Also shown are the number of terms required to generate
the solution using the single fraction method described in this section, and the time taken
to do so. The label ‘500 terms computed’ means that the stopping criterion for this method
had not been satisfied after 500 terms have been computed. The results from applying this
method on all test cases are shown in Appendix E.

will become significant when carrying out the division. Also, relatively few approximations

will be able to be carried out before either the numerator or the denominator becomes very

large.

Unsurprisingly however, the method is useful if the value of |b| is small (especially when

|b| . 1), provided |a| is not too large. If Taylor series methods are applied when |b| is

small, the round-off error in division may well become costly if a large number of terms

are significantly large. Therefore, a method with a single division is likely to aid accurate

computation in this case, as the effect of round-off error is reduced; this hypothesis is verified

by the results for this method.

3.4 Buchholz polynomials

In this Section, we discuss three methods based on Buchholz polynomials. One of these

methods in particular is very effective when Re(a) and Re(z) have opposite signs, which will

prove useful when compiling our package for computing M(a; b; z).

As stated in [1, 2], M(a; b; z) has the following known expansion in terms of Buchholz
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polynomials pj(b, z):

M(a; b; z) = Γ(b)ez/22b−1

∞∑
j=0

pj(b, z)
Jb−1+j(

√
z{2b− 4a})

(z{2b− 4a}) 1
2

(b−1+j)
, (3.18)

where Jν denotes the Bessel function of the first kind as defined in (2.4), and

pj(b, z) =
(iz)j

j!

b j2c∑
s=0

(
j
2s

)
fs(b)gj−2s(z), (3.19)

with

f0(b) = 1, fs(b) = −
(
b

2
− 1

) s−1∑
j=0

(
2s− 1

2j

)
4s−j

∣∣B2(s−j)
∣∣

s− j
fj(b), s = 1, 2, ... ,

g0(z) = 1, gs(z) = −iz
4

b s−1
2 c∑
j=0

(
s− 1

2j

)
4j+1

∣∣B2(j+1)

∣∣
j + 1

gs−2j−1(z), s = 1, 2, ... .

The coefficients Bj denote the Bernoulli numbers, which are defined as the sequence of

numbers such that

z

ez − 1
=
∞∑
j=0

Bj
zj

j!
.

As explained in [2], (3.18) can also be written as

M(a; b; z) = Γ(b)ez/22b−1

∞∑
j=0

Djz
j Jb−1+j(

√
z{2b− 4a})

(z{2b− 4a}) 1
2

(b−1+j)
, (3.20)

where the coefficients Dj are

D0 = 1, D1 = 0, D2 =
b

2
,

jDj = (j − 2 + b)Dj−2 + (2a− b)Dj−3, j = 3, 4, ... , (3.21)

giving an expression for the coefficients Cj in terms of a recurrence relation.

The expressions in (3.18) and (3.20) provide expansions for the confluent hypergeometric

function, which is known to be difficult to compute, in terms of Bessel functions, which are

much easier to compute.

An alternative expression given in [2] is

M(a; b; z) = ez/2
∞∑
j=0

pj(b, z)
0F1( ; b+ j;χ)

2j(b)j
, χ = z

(
a− b

2

)
, (3.22)

15



providing an expansion of 1F1 in terms of a simpler hypergeometric function 0F1.

For the rest of this section, we will denote method 1 as the method of computing (3.18),

method 2 the method of calculating (3.20) and method 3 as the method of computing (3.22).

For methods 1 and 3, no more than 170 terms were used to approximate the series of (3.18)

and (3.22) respectively. Instances where this many terms have been computed without the

individual terms becoming sufficiently small (10−15 multiplied by the sum of the previous

terms), are indicated in Table 3 and Appendix E.

Case (a,b,z) Correct M(a; b; z) Time taken Method 1/2/3 (tol = 10−15) Acc. N Time taken

1 (0.1,0.2,0.5) 1.317627178278510 11.164293s 170 terms computed N/A N/A N/A
500 terms computed N/A N/A N/A
1.317839415371721 4 11 0.302097s

2 (−0.1, 0.2, 0.5) 0.695536565102261 11.048696s 0.695742258430131 4 11 0.080502s
0.695536565102262 15 12 0.163154s
0.695742258430129 4 11 0.184786s

4 (1 + i, 1 + i, 1− i) 1.468693939915885 11.125681s 1.469314879177899 14 3 0.160053s
−2.287355287178842i −2.286400529446476i

1.468693939915586 15 15 0.281738s
−2.287355287178842i
1.469314879177899 14 3 0.302023s
−2.286400529446476i

12 (100,1.5,2.5) 2.748892975858683× 1012 11.791825s 2.748923904028464× 1012 4 10 0.112482s
2.748892975858687× 1012 15 19 0.262816s
2.748923904028461× 1012 4 10 0.306804s

13 (−60, 1, 10) −10.04854112964948 11.359146s 170 terms computed N/A N/A N/A
−10.04895411296490 14 41 0.260854s
170 terms computed N/A N/A N/A

15 (60, 1,−10) −6.713066845459067× 10−4 11.769413s 170 terms computed N/A N/A N/A
−6.713066845459049× 10−4 14 37 0.160246s
2.771191610071790 0 18 0.190572s

19 (500, 1,−5) 0.001053895943365 11.891125s 0.001053940354303 7 3 0.132031s
0.001053895943365 16 24 0.164947s
1.905228957818582× 1024 0 9 0.178824s

25 (−5, (−5 + 10−9) 0.507421537454510 11.231796s 0.507423640026765 4 19 0.128643s
+(−5 + 10−9)i,−1) +0.298577267504408i +0.298580648127604i

0.50742153745410 15 15 0.283771s
+0.298577267504408i
0.507423641026765 4 7 0.299613s
+0.298580648127604i

Table 3: Table showing the MATLAB result and time taken to generate it for a selection of
test cases from Appendix B, the results from each of the three Buchholz polynomial methods
detailed in this section, their accuracy, the number of terms N computed and computation
times. A complete set of results for these methods is shown in Appendix E.

As illustrated by the selection of results in Table 3, method 2 seems to be the most

effective out of the three methods described in this section, giving the greatest accuracy.

One exception is the case where b = 2a, as illustrated by the first row of Table 3, which is

due to the division by powers of
√
z(2b− 4a) in (3.18) and (3.20). In such cases however,
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we can make use of recurrence relations, as discussed in Section 3.8. Methods 1 and 3 above

do not perform well, only giving results of at least 10 digit accuracy for very simple cases,

possibly due to the many computations involved in estimating the values of the Buchholz

polynomials in (3.19). We therefore focus the rest of the discussion in this section on method

2.

Method 2 is especially valuable for moderate values of a, z (10 . |a| , |z| . 100, say),

where the real parts of a and z have opposite signs. The Taylor series methods discussed in

Section 3.2 and the single fraction method of Section 3.3 do not give accurate computations

with these cases, but method 2 of this section performs very well as shown in the fifth and

sixth rows of Table 3. A very accurate result is even obtained for a large value of |a| (a = 500)

in the seventh row (case 19), with real z of opposite sign. It should be noted however that

the method works substantially less well when |z| is large, as illustrated in Appendix E.

Nonetheless, the performance of this method for a large range of parameter values makes

this a very worthwhile approach for certain parameter regimes when computing M(a; b; z).

3.5 Asymptotic series

We have found that the methods discussed in Sections 3.2, 3.3 and 3.4 were not at all

effective for large values of |z| (typically the methods cease to be effective for |z| & 100,

although this depends on the precise parameter values used). In this Section, we aim to

address this issue by introducing the theory of asymptotics for computing the confluent

hypergeometric function.

The following expansions for the hypergeometric function M(a; b; z) as |z| → ∞, which

can be derived by considering Watson’s Lemma [18], are stated in [3]:

M(a; b; z) ∼ Γ(b)

Γ(a)
ezza−b

∞∑
j=0

(b− a)j(1− a)j
j!

z−j (3.23)

+
1

Γ(b− a)
eπiaz−a

∞∑
j=0

(a)j(1 + a− b)j
j!

(−z)−j, − 1

2
π + δ ≤ arg z ≤ 3

2
π − δ,

M(a; b; z) ∼ Γ(b)

Γ(a)
ezza−b

∞∑
j=0

(b− a)j(1− a)j
j!

z−j (3.24)

+
1

Γ(b− a)
e−πiaz−a

∞∑
j=0

(a)j(1 + a− b)j
j!

(−z)−j, − 3

2
π + δ ≤ arg z ≤ 1

2
π − δ,
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for a, b ∈ C, and for an arbitary parameter δ such that 0 < δ � 1.

We computed these series in MATLAB using the same two techniques as for the Taylor

series method in Section 3.2. These are firstly by computing each term using the previous

one and summing them until the terms become small, and secondly by finding each term

iteratively in terms of the previous two and then summing them. We denote these two

techniques for the rest of this section as methods (a) and (b). The results from this are

shown in Table 4.

Case (a,b,z) Correct M(a; b; z) Time taken Methods (a) and (b) (tol = 10−15) Acc. N Time taken

8 (1,3,10) 4.403093158961343×102 11.513977s 4.403093158961344×102 15 2/2 0.128202s
4.403093158961344×102 15 2/3 0.147024s

10 (8.1,10.1,100) 1.724131075992688×1041 10.388182s 1.724131075992683×1041 15 10/2 0.139237s
1.724131075992683×1041 15 11/3 0.195584s

11 (1,2,600) 6.288367168216566×10257 11.892762s 6.288367168216566×10257 16 2/2 0.149720s
6.288367168216566×10257 16 2/2 0.176241s

18 (10−3,1,700) 1.46135307199289×10298 11.761425s 1.46135307199288×10298 15 7/4 0.179830s
1.46135307199288×10298 15 8/5 0.203889s

26 (4,80,200) 3.448551506216654×1027 12.043978s 3.448551506216226×1027 13 4/34 0.166389s
3.448551506216226×1027 13 5/35 0.198278s

28 (5,0.1,−2 + 300i) 7.208553632163922×1010 12.231468s 7.208553632163907×1010 13 5/13 0.182537s
−1.550289119122414× 1010i −1.550289119122399× 1010i

7.208553632163907×1010 13 5/13 0.219843s
−1.550289119122399× 1010i

Table 4: Table showing the true solution according to Mathematica and MATLAB along with
the time taken to compute the solution using MATLAB, the solution obtained by methods
(a) and (b) as described in this section, their accuracy, the number of terms required to
compute each of the two series of (3.23) or (3.24), and the time taken to do so. Full results
are shown in Appendix E.

As with the Taylor series method, there is a considerable similarity between the results

obtained using methods (a) and (b). Both methods work well for large z and moderate

values of the parameters a and b, meaning in this case b not extremely close to 0 and the

real or imaginary parts of a not exceeding roughly 100. For the case where a or b is very

close to zero, a variant of the method described in Section 3.3, where each series is written

as a single fraction, could be used.

However, as the asymptotic series are expressed in terms of hypergeometric series of the

form 2F0 instead of 1F1, there is no longer a (b)j term in the denominator of the terms of the

series, so that parameter regimes involving b with large modulus can no longer be treated

in a straightforward manner. The cases tested suggest that the methods cope reasonably

well whether Re(a) > Re(b) or Re(b) > Re(a), provided neither |a| nor |b| is very large (as
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a guide, the computations can become less accurate if |a| or |b| is greater than 50, although

this depends on the value of z). For these cases, recurrence relations will need to be applied,

as explained in [45, 46], and detailed in Section 3.8.

In [70], it is suggested that the asymptotic relations should be used if |z| > 30 + |b| on

the basis of numerical experiments conducted by the authors, and it is suggested in [44],

using experimental evidence, that they should be used if |z| > 50; it seems in fact that the

range in which using the asymptotic approximations is valid can be wider still, as long as the

values of |a| or |b| are not large also. If |a| or |b| are large, recurrence relations as described

in Section 3.8 can be applied.

3.6 Quadrature methods

So far in this dissertation, all the methods we have considered for computing the

confluent hypergeometric function have been based on series methods. In this section, we

introduce another class of methods for computing M(a; b; z) using its integral representation

for Re(b) > Re(a) > 0, and discuss its effectiveness. Other methods for computing this

integral are discussed in Appendix G.

As stated in [3], the function M(a; b; z) has the following integral representation:

M(a; b; z) =
Γ(b)

Γ(a)Γ(b− a)

∫ 1

0

eztwa,b(t)dt, Re(b) > Re(a) > 0, (3.25)

where

wa,b(t) = (1− t)b−a−1ta−1.

Applying the transformation t 7→ 1
2
t̃+ 1

2
and using Jacobi parameters α̃ = b−a−1, β̃ = a−1,

as in [26], we find that∫ 1

0

eztwa,b(t)dt =
1

2b−1

∫ 1

−1

ez(
1
2
t̃+ 1

2)(1− t̃)b−a−1(1 + t̃)a−1dt̃

=
ez/2

2b−1

Nmesh∑
j=1

wGJj ezt
GJ
j /2 + ENmesh(a; b; z),

where tGJj and wGJj are the Gauss-Jacobi nodes and weights on [−1, 1]. In [59], tGJj are

defined as the roots of the j-th Jacobi polynomial,

P
(α̃,β̃)
j (z) =

Γ(α̃ + j + 1)

j!Γ(α̃ + β̃ + j + 1)

j∑
k=0

(
j
k

)
Γ(α̃ + β̃ + j + k + 1)

Γ(α̃ + k + 1)

(
z − 1

2

)k
, j = 1, 2, ..., Nmesh,
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and wGJj are defined as

wGJj =
2α̃+β̃+1Γ(α̃ +Nmesh + 1)Γ(β̃ +Nmesh + 1)

Γ(Nmesh + 1)Γ(α̃ + β̃ +Nmesh + 1)(1− xGJj )2[P
(α̃,β̃)
Nmesh

]2
, j = 1, 2, ..., Nmesh.

This method is known as Gauss-Jacobi quadrature. In theory, the error for this method

ENmesh can be controlled by the number of mesh points Nmesh. This is shown for real a and

b using a result shown in [26]:

Nmesh ≥
e |z|

8
× t
(

4

e |z|

[
x+ + (3− 2b) log 2 + log

(
1

ENmesh

)])
, x+ =

{
x if x ≥ 0,
0 if x < 0,

(3.26)

where x = Re(z). Here, t denotes the inverse of the function s = t log t. Low-order approxi-

mations are stated in [25] for different real values of s. For example,

t(s) ≈ 1

e
+
e− 1√
e

(
x+

1

e

) 1
2

, − 1

e
≤ s ≤ 0; t(s) ≈ s

log s
(

1− log log s
1+log s

) , s ≥ 2. (3.27)

This should give an idea as to the required number of points to generate a specified accuracy.

For example, if b = −15, z = 100 and the error EN is desired to be less than 10−10, then

s = 4
e|z|

[
x+ + (3− 2b) log 2 + log

(
1
EN

)]
≈ 2.14694, t(s) ≈ 2.43802 using (3.27), so using

(3.26), we deduce that roughly 83 points are desired to generate the required accuracy. The

routines used to carry out Gauss-Jacobi quadrature were gaussq.m and qrule.m from [72],

and were obtained from the MathWorks website.

Case (a,b,z) Correct M(a; b; z) Time taken Gauss-Jacobi (Nmesh = 200) Acc. Ncrit Time taken

1 (0.1,0.2,0.5) 1.317627178278510 11.164293s 1.317627178278510 16 10 0.299203s
8 (1,3,10) 4.403093158961343× 102 11.513977s 4.403093158961341× 102 15 10 0.314343s
10 (8.1,10.1,100) 1.724131075992688× 1041 10.388182s 1.724131075992687× 1041 15 30 0.316557s
11 (1,2,600) 6.288367168216566× 10257 11.892762s 6.288367168215225× 10257 12 70 0.392941s
18 (10−3, 1, 700) 1.461353307199289× 10298 11.761425s 1.461353307199045× 10298 13 70 0.422357s
26 (4,80,200) 3.448551506216654× 1027 12.043978s 6.470060431231330× 1028 0 N/A N/A

Table 5: Table showing the true value of M(a; b; z) for a selection of test cases and the time
taken to compute this using ‘hypergeom’. Also shown is the result obtained using Gauss-
Jacobi quadrature with 200 mesh points, the critical number of mesh points Ncrit required
to obtain 10 digit accuracy (where Nmesh is increased by increments of 10 until 10 digit
accuracy is obtained), and the computation time with Ncrit mesh points. When ‘N/A’ is
written, 5000 mesh points were not sufficient to give 10 digit accuracy. Full results are given
in Appendix E.
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Gauss-Jacobi quadrature is a natural choice due to the form of the integrand in (3.25)

and the fact that the integrand blows up at the end-points of the integral. As illustrated

by Table 5 and Appendix E, we find that the method of Gauss-Jacobi quadrature deals

with most values of |z| (small or large), provided z does not have an imaginary part with

magnitude greater than roughly 100. The third, fourth and fifth rows of Table 5 illustrate

this, but as shown by the sixth row (case 26), a problem arises when either |a| or |b| becomes

fairly large. The number of mesh points required to generate 10 digit accuracy for the cases

above seems to correspond to the number of mesh points predicted by (3.26).

For small values of |a| and |b| (usually up to 30–40), the method of Gauss-Jacobi quadra-

ture is extremely useful for evaluating the confluent hypergeometric function when Re(b) >

Re(a) > 0, and should play a part in any package for this reason.

Other methods implemented for computing the integral (3.25) are detailed in Appendix

G.5.

3.7 Solving the confluent hypergeometric differential equation

Another class of methods for computing M(a; b; z) is based on solving the differential

equation (3.2). We wish to explore the effectiveness of computations involving the use of the

RK4 method, a 4th order accurate Runge-Kutta method. Further methods for solving

the problem using (3.2) are discussed in Appendix G.6.

As stated in [3], a fundamental pair of solutions of (3.2) near the origin is

M(a; b; z), z1−bM(a− b+ 1; 2− b; z).

We note that U(a; b; z) is a linear combination of these two solutions, and that the second

solution is only valid if b /∈ Z. Solutions for the case b ∈ Z are discussed in [22], but the

solutions do not take the form of a standard hypergeometric function as discussed, which

renders the differential equation method less suitable in this case.

As noted in [51], a fundamental pair of solutions of (3.2) in the neighbourhood of infinity

is

U(a; b; z), ezU(b− a; b; e−πiz), − 1

2
π ≤ arg z <

3

2
π.
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We now consider whether it is more efficient and accurate to solve an initial value prob-

lem or a boundary value problem. By examining and differentiating the Taylor series for

M(a; b; z) in (3.1), we can see that the following two initial conditions can be used:

w(0) = 1, w′(0) =
a

b
, (3.28)

and we can integrate along outward rays from the origin to the value of z where the compu-

tation is desired to generate an approximation of M(a; b; z). Although solving a boundary

value problem is in general more accurate (methods for solving boundary value problems are

detailed in [73]), it can only be done in a region between the origin and another point where

the hypergeometric function has already been calculated. As we are not necessarily able to

calculate M(a; b; z) at another point, we focus for the remainder of this section on solving

the initial value problem satisfied by M(a; b; z).

We found that the RK4 method was the most effective way of solving the differential

equation out of those tested. We recall that for k = 0, 1, 2, ..., the RK4 method is defined as

zk+1 = zk + h, (3.29)

wk+1 = wk +
1

6
h(k1 + 2k2 + 2k3 + k4), (3.30)

where

k1 = f(zk,wk),

k2 = f

(
zk +

1

2
h,wk +

1

2
hk1

)
,

k3 = f

(
zk +

1

2
h,wk +

1

2
hk2

)
,

k4 = f(zk + h,wk + hk3),

with z0 taken to be 0 so that the initial conditions can be applied, w = (w1, w2)T = (w,w′)T ,

w0 = (1, a
b
)T , and f(z) = (w2,−1

z
{(b− z)w2 − aw1})T .

We tested the RK4 method, along with the Dormand-Prince method which is detailed

in Appendix G.6. Also to provide a better insight into the differential equation method, we

tested three built-in MATLAB solvers: ‘ode45’, a method that is most suitable for non-

stiff problems and generates medium accuracy; ‘ode113’, which is another non-stiff solver
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generating low to high accuracy; and ‘ode15s’, a stiff solver that generates low-to-medium

accuracy. The disadvantage of using these three methods is that MATLAB will not generate

a solution to the differential equation (3.2) with initial conditions (3.28) because there is

a singular point where the initial conditions are located. Instead, we integrated (3.2) from

z = 10−3 for all cases tested, (as shown in Table 6), except for case 5, which we integrated

from z = 10−15, and case 17, which we integrated from z = 10−8. The settings ‘RelTol’ and

‘AbsTol’ were both taken to be 10−15.

Case (a,b,z) RK4 (Nmesh = 500) Acc. Ncrit Time taken ode45/ode113/ode15s Acc. N

1 (0.1,0.2,0.5) 1.317627178272184 12 100 0.461925s 1.317627126236872 8 41
1.317627885961121 7 13
1.318321919289360 3 12

2 (−0.1, 0.2, 0.5) 0.695536565117007 10 250 0.679498s 0.695536686554347 6 41
0.695536602807524 6 13
0.696313392446649 2 12

5 (10−8, 10−8, 10−10) 1.000000000100030 14 50 0.433277s 1.000000000100001 15 41
1.000000000100001 15 11
1.000000000100001 15 11

10 (8.1,10.1,100) 1.722537193851716× 1041 3 18650 16.459445s 1.725041594930256× 1041 3 393
1.711843732591705× 1041 2 158
1.285670097530191× 1041 1 217

17 (1000, 1, 10−3) 2.279929853883460 11 350 0.701499s 2.279933221635035 5 41
2.279969898504121 5 15
2.361501968192591 1 14

22 (20, 10− 10−9, 2.5) 98.353133200849229 8 1500 2.231877s 98.354028221444111 4 97
98.290032237005732 2 40
1.28232933799147× 102 0 22

36 (1,−1 + 10−12i, 1) −5.5333556053310802× 10−1 2 N/A N/A −5.537120346107741× 10−1 2 69
+2.718218662119980× 1012i +2.718129726676962× 1012i

−5.531273187639527× 10−1 2 26
+2.718163893880989× 1012i
−1.258764325129202 0 33
+2.697519329272323× 1012i

Table 6: Table showing the true value of M(a; b; z) for a selection of test cases, the result
obtained using the RK4 method with 500 mesh points, the critical number of mesh points
Ncrit required to obtain 10 digit accuracy (increasing the Nmesh by increments of 50 until 10
digit accuracy was obtained), and the computation time with Ncrit mesh points; here ‘N/A’
is written when 20000 mesh points were not sufficient to give 10 digit accuracy. Also stated
are the results using ‘ode45’, ‘ode113’ and ‘ode15s’, their accuracy and the number of points
N that MATLAB uses to produce the solution vector. Full results are detailed in Appendix
E.

Table 6 illustrates that although the RK4 method generates fairly accurate results when

|z| is sufficiently close to zero (less than about 5 when 500 mesh points are used, although

this depends on the precise values of |a| and |b|), the method struggles greatly when |z| is far

away from zero, as illustrated powerfully by the fourth row of the table (case 10). It seems
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that even the built-in MATLAB solvers struggle to solve this problem, possibly due to the

fact that we instructed the solvers to start the numerical integration from a point close to

the singular point at z = 0. Therefore, we conclude that the differential equation method

does not work as well as a number of others previously discussed for computing 1F1, due to

its poor performance when |z| is far away from 0.

3.8 Recurrence relations

Frequently, the robustness of a method for computing the confluent hypergeometric

function is greatly reduced by its poor performance as |Re(a)| or |Re(b)| gets larger. This

section details the recurrence relation techniques, which can reduce the problem of compu-

tation with these large parameter values to a simpler problem of computing M(a; b; z) with

values of Re(a) and Re(b) whose modulus is much closer to 0. Another method can then be

applied to solve the simpler problem, usually with much greater success, as our results so

far have shown.

It is known from [30] that the function M(a; b; z) satisfies the following recurrence rela-

tions:

M(a+ n; b; z)− 2n+ 2a+ z − b
n+ a

M(a; b; z) +
a+ n− b
n+ a

M(a− n; b; z) = 0, (3.31)

M(a; b+ n; z) +

(
1− b− n

z
− 1

)
M(a; b; z) +

b+ n− a− 1

z
M(a; b− n; z) = 0, (3.32)

M(a+ n; b+ n; z) +
b+ n− z − 1

(a+ n)z
M(a; b; z)− 1

(a+ n)z
M(a− n; b− n; z) = 0. (3.33)

A solution fn of a recurrence relation

yn+1 + bnyn + anyn−1 = 0 (3.34)

is said to be a minimal solution if there is a linearly independent solution gn (called a

dominant solution) such that

lim
n→∞

fn
gn

= 0.

We use the following theorem, discussed in [29, 30, 62], in our subsequent investigation of

recurrence relations.
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Poincaré’s Theorem: Consider the recurrence relation (3.34), where limb→+∞ bn = b∞

and limn→+∞ an = a∞. Denote the zeros of the equation t2 + b∞t + a∞ = 0 by t1 and t2.

Then if |t1| 6= |t2|, the recurrence relation (3.34) has two linearly independent solutions fn,

gn such that:

lim
n→+∞

fn
fn−1

= t1, lim
n→+∞

gn
gn−1

= t2,

and if |t1| = |t2|, then

lim sup
n→+∞

|yn|1/n = |t1|

for any non-trivial solution yn of (3.34).

Further, when |t1| 6= |t2|, the solution whose ratio of consecutive terms tends to the root

of smallest modulus is always the minimal solution.

Now, we consider the three recurrence relations (3.31)–(3.33), discussed in [29, 62], and

denoted as (+0), (0+) and (++) respectively for the rest of this section. Stated below are

the two solutions of (3.31), (3.32) and (3.33) respectively, along with known relations as

n→ +∞, as discussed in [30]:

fn = Γ(1 + a+ n− b)U(a+ n; b; z), gn = M(a+ n; b; z),
fn
gn
∼ e−4

√
nz, (3.35)

fn =
Γ(b+ n− a)M(a; b+ n; z)

Γ(b+ n)
, gn = U(a; b+ n; z),

fn
fn−1

∼ 1,
gn+1

gn
∼ n

z
, (3.36)

fn =
M(a+ n; b+ n; z)

Γ(b+ n)
, gn = (−1)nU(a+ n; b+ n; z),

fn
fn−1

∼ 1

n
,

gn
gn−1

∼ −1

z
. (3.37)

Hence, using (3.35)–(3.37), the definition of a minimal solution, and Poincaré’s Theorem,

one can deduce that the minimal solutions of the above three relations (+0), (0+) and (++)

are, respectively,

Γ(1 + a+ n− b)U(a+ n; b; z),
Γ(b+ n− a)M(a; b+ n; z)

Γ(b+ n)
,
M(a+ n; b+ n; z)

Γ(b+ n)
. (3.38)

As we are considering the computation of M(a; b; z), we will consider recurrence relations

(0+) and (++) for the remainder of this section.
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Suppose we seek the solution of the general three term recurrence relation (3.34). The

following algorithm, called Miller’s algorithm [30], aims to compute numerical approxi-

mations f̃n, n = 0, ..., k to fn, the minimal solution of (3.34). The values that need to be

specified are some tolerance tol, an initial value f0, and a number k.

Miller’s Algorithm: Choose a value N � k such that:∣∣∣∣yk/yk−1

fk/fk−1

− 1

∣∣∣∣ < tol

yN = 1, yN−1 = 0

for n = N − 1, ..., 1

yn−1 = − 1

an
(yn+1 + bnyn)

for n = 0, ..., k

f̃n =
f0

y0

yn.

As explained in [30], the motivation for Miller’s algorithm is that if we choose N � k

then the ratio yk
yk−1

will approach fk
fk−1

due to the minimality of fn, so f̃n = f0

y0
yn represents

a good approximation to fn.

We therefore have two methods that we can potentially exploit: firstly, we can take the

minimal solution to (0+) or (++) and apply the recurrence relations backwards; secondly,

we can start with the minimal solutions and apply the recurrence relations forwards using

Miller’s algorithm.

Table 7 illustrates that the technique of using recurrence relations can be used to effec-

tively compute test cases on which previous methods have not performed well. The ideas

introduced in this section can be extended to compute recurrence relations with large |Re(a)|.
For instance, if we wish to compute M(100.2; 0.1; 1), we could compute M(0.2; 0.1; 1) and

M(0.2;−0.9; 1) using methods discussed in Sections 3.2 and 3.3, apply Miller’s algorithm

with k = 100 on (++) to both of these to obtain M(100.2; 100.1; 1) and M(100.2; 99.1; 1)

respectively, and then apply backward recursion of (0+) using these two results to compute

(100.2; 0.1; 1).

It should be noted however that due to the fact that the minimal solutions (3.38) involve

Gamma functions, the effectiveness of this method is restricted by the fact that MATLAB

is unable to handle the Gamma function of a variable with large modulus (for example,
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Function desired Method and function(s) used Correct solution Recurrence solution Acc.

M(0.3;−79.3; 2.5) Backward recursion of (0+) 0.990733787354197 0.990733787354306 12
M(0.3; 0.7; 2.5)/M(0.3;−0.3; 2.5)

M(0.9;−119.8;−5) Backward recursion of (0+) 1.039128783613421 1.039128783613467 15
M(0.9; 0.2;−5)/M(0.9;−0.8;−5)

M(−149.5; 149.2; 6) Backward recursion of (++) 4.084281216374062× 102 4.084281216374482× 102 13
M(0.5; 0.8; 6)/M(−0.5;−0.2; 6)

M(−44.25;−44.7;−1) Backward recursion of (++) 0.371559897558854 0.371559897558854 16
M(0.75; 0.3;−1)/M(−0.25;−0.7;−1)

M(0.8; 65.7; 4) Forward recursion of (0+) (M) 1.051488516006696 1.051488516006697 15
M(0.8; 0.7; 4)

M(0.85; 90.5; 5.5) Forward recursion of (0+) (M) 1.054701645960524 1.054701645960513 14
M(0.85; 0.5; 5.5)

M(70.3; 70.9; 1) Forward recursion of (++) (M) 2.695530979957562 2.695530979957563 15
M(0.3; 0.9; 1)

M(90.4; 90.9;−30.25) Forward recursion of (++) (M) 8.913072834489234× 10−14 8.913072834488962× 10−14 12
M(0.4; 0.9;−30.25)

Table 7: Table showing a variety of examples of the application of the recurrence relation
techniques of this section. Shown is the function we wish to compute, the easily computable
functions we need to compute to generate the solution, the method used to obtain the
solution from these results, the solution we obtain, the actual solution, and the number of
digits accuracy we obtain by using our method. The designation (M) in the second column
denotes that Miller’s algorithm was used.

Γ(171) is finite according to MATLAB but Γ(172) is infinite). It is therefore ideal to apply

the technique of using recurrence relations to software which can compute Gamma functions

with variable of larger modulus.

3.9 Summary and analysis of results

For 1F1(a; b; z), the methods we have implemented and analysed have included series

methods as in Sections 3.2, 3.3, 3.4 and 3.5, as well as the use of quadrature (Section 3.6),

numerical solution of differential equations (Section 3.7) and recurrence relations (Section

3.8), along with other, less effective methods that we detail in Appendix G.

For the most part, the series methods analysed seemed to generate the most accurate re-

sults, and with very fast computation times in comparison to the built-in MATLAB function

‘hypergeom’. For values of |a| and |z| less than around 50 and |b| not too close to zero, the

Taylor series methods described in Section 3.2, and the method of expressing 1F1 as a single

fraction as in Section 3.3 seem to be sufficiently robust (although when |b| < 1 we recommend

that only the latter be used). In other instances, we note that for all cases tested, whenever

the Taylor series methods and the single fraction method generated the same answer to 10
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or more digits, both methods generated the correct answer, and conversely whenever the two

solutions were different, they were both incorrect. This suggests that, as these two methods

are of the same ‘family’ (they both compute the power series expression of 1F1(a; b; z) but

in different ways), it would be useful to apply both methods for this parameter regime, so

that each might check the validity of the solution generated by the other.

We also found that, when Re(b) > Re(a) > 0, the method of Gauss-Jacobi quadrature

was successful, providing the values of |a|, |b| were less than about 30. For 1F1 at least, we

found the method of solving the differential equation (3.2) to be ineffective, due to its poor

performance for large |z|. If |Re(a)| or |Re(b)| > 50, we can apply the ideas of recurrence

relations detailed in Section 3.8 to reduce the problem to one of computing hypergeometric

functions with parameter values that have real parts of smaller absolute value.

One parameter regime in which both these classes of methods fail when we would expect

them to succeed is when |a| and |z| are roughly between 10 and 100 with their real parts

of opposite signs, in which case we recommend the use of the method involving Buchholz

polynomials discussed in Section 3.4. We can deal with another important case, that of large

|z|, by applying the asymptotic expansions of Section 3.5. Expansions with exponentially-

improved accuracy, known as hyperasymptotic expansions, are detailed in Appendix G.4.

As MATLAB is unable to compute the incomplete gamma function Γ($, z) for complex or

negative real parameter $, we were unable to examine the simplest such expansion, which

is detailed in [52, 53]. However, if software with high precision and programs that could

compute the incomplete gamma function were available, we conclude from the literature that

the use of hyperasymptotic expansions could be a viable alternative for the computation of

1F1 for large |z|.
To provide a guide to the most effective methods we investigated, a list of recommenda-

tions is shown in Table 8.

Two cases where we found that none of the methods we tried generated 10 digit accuracy

reliably were the cases of large Im(z) and the cases where the parameters a and b have large

imaginary parts. The latter is a problem because unlike for the cases of large |Re(a)| or

|Re(b)|, the recurrence relation ideas of Section 3.8 cannot be applied. A major element

of future work on this subject area could involve finding more effective methods for these

parameter and variable regimes, as discussed in Section 5.
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Regions for a, b, z Recommended method(s) Relevant sections
|a| , |z| < 50, |b| > 1, sign(Re(a))=sign(Re(z)) Taylor series methods 3.2

Single fraction method 3.3
Gauss-Jacobi quadrature, 3.6
if Re(b) > Re(a) > 0, |a| , |b| . 30

|a| < 20, |z| < 50, |b| > 1, sign(Re(a))=sign(Re(z)) Taylor series methods 3.2
Single fraction method 3.3

|a| , |z| < 30, |b| < 1 Single fraction method 3.3
|a| , |z| < 50, |b| < 50, sign(Re(a))=−sign(Re(z)) Buchholz polynomial method 2 3.4

|z| > 100, |a| , |b| < 50 Asymptotic expansions 3.5
Hyperasymptotic expansions Appendix G.4

|z| > 100, |a| > 50 or |b| > 50 Recurrence relations 3.8
then asymptotic expansions 3.5

|Re(a)| or |Re(b)| > 50 Recurrence relations 3.8
then another method

Table 8: Recommendations as to methods that should be used for computation of the con-
fluent hypergeometric function for different parameter and variable regimes, and the sections
where they are discussed. Here, the ‘sign’ function is defined to be 1 if the (real) argument
is greater than 0, −1 if the argument is less than 0, and 0 if the argument is equal to 0.

4 Computation of the Gauss hypergeometric function

2F1(a, b; c; z)

In this section, we discuss the best methods we found to compute the Gauss hyper-

geometric function 2F1(a, b; c; z) accurately and quickly, before providing recommendations

as to the most effective methods for each parameter and variable regime. We implement

ideas of similar form to those used for the confluent hypergeometric function, such as those

in Sections 3.2, 3.3, 3.6 and 3.7, as well as methods that are only applicable to 2F1. Other

methods that we have implemented or analysed are shown in Appendix H.

4.1 Properties of 2F1

The Gauss hypergeometric function 2F1(a, b; c; z) is defined as the series

2F1(a, b; c; z) =
∞∑
j=0

(a)j(b)j
(c)j

zj

j!
, (4.1)

when z is in the radius of convergence of the series |z| < 1, which we deduce from the theory

in Section 2.1. This series is defined for any a ∈ C, b ∈ C, c ∈ C\{Z− ∪ {0}}. For z outside
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this range, 2F1(a, b; c; z) is defined by analytic continuation formulae, as detailed in Section

4.7. This will allow us to consider the computation of 2F1 for any z ∈ C.

It should be noted that 2F1(a, b; c; 0) = 1 for any a, b and c /∈ Z− ∪ {0}. If c = n,

n ∈ Z− ∪ {0}, then this series is given by a polynomial of degree −n in z. As noted in [3],

on the unit disc |z| = 1, the series in (4.1) converges absolutely when Re(c − a − b) > 0

(converging to the value Γ(c)Γ(c−a−b)
Γ(c−a)Γ(c−b) at z = 1, as stated in [58]), converges conditionally when

−1 < Re(c− a− b) ≤ 0 apart from at z = 1, and does not converge if Re(c− a− b) ≤ −1.

As explained in [3], the Gauss hypergeometric function satisfies the differential equation

z(1− z)
d2w

dz2
+ [c− (a+ b+ 1)z]

dw

dz
− abw = 0 (4.2)

whenever none of a, b or c differ pairwise by an integer, and when c ∈ Z− ∪ {0}. When

c ∈ Z− ∪ {0}, the case is resolved by the fact that the following is a solution for |z| < 1 and

any c ∈ C:

F(a, b; c; z) =
∞∑
j=0

(a)j(b)j
Γ(c+ j)

zj

j!
=

2F1(a, b; c; z)

Γ(c)
. (4.3)

The differential equation (4.2) has three singular points: z = 0, z = 1 and z =∞. Other

solutions near these singular points are discussed in Section 4.5.

As discussed in [51], there is a branch cut between z = 1 and z = +∞; the branch in the

sector |arg(1− z)| < π is defined as the principle branch, and we shall aim to compute

2F1 in the principle branch.

As noted in [51], if z is replaced by z
b

with |b| → ∞, and c is replaced by b, then we

obtain the confluent hypergeometric differential equation (3.2). Consequently, as noted in

[61],

1F1(a; c; z) = lim
|b|→∞

2F1

(
a, b; c;

z

b

)
,

so that for large |b|, the Gauss hypergeometric function could in theory be computed using

methods for computing the confluent hypergeometric function.
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It is known that 2F1(a, b; c; z) satisfies the following recurrence relations [29]:

(c− a− n)2F1(a− n, b; c; z) + (2a− c+ 2n+ (b− a)z)2F1(a, b; c; z)

+ (a+ n)(z − 1)2F1(a+ n, b; c; z) = 0,

(c+ n)(c+ n− 1)(z − 1)2F1(a, b; c− n; z)

+ (c+ n)(c+ n− 1− (2c− a− b+ 2n− 1)z)2F1(a, b; c; z)

+ (c− a+ n)(c− b+ n)z 2F1(a, b; c+ n; z) = 0,

which can prove useful in this project, as detailed in Section 4.8.

The following transformation, stated in [3], is also useful when certain values of a, b, c

prove difficult computationally:

2F1(a, b; c; z) = (1− z)c−a−b 2F1(c− a, c− b; c; z). (4.4)

This can provide a useful transformation of parameters for computational purposes.

4.2 Taylor series

In this section, we aim to carry out computations of the Gauss hypergeometric function

using its basic Taylor series representation (4.1) and analyse their accuracy for different

parameter regimes.

As with 1F1(a; b; z) in Section 3.2, we used two methods to compute the power series of

2F1(a, b; c; z) itself,

2F1(a, b; c; z) =
∞∑
j=0

(a)j(b)j
(c)j

1

j!︸ ︷︷ ︸
Cj

zj. (4.5)

Method (a): We compute

C0 = 1, S0 = C0,

Cj+1 = Cj ×
(a+ j)(b+ j)

c+ j
× z

j + 1
, Sj+1 = Sj + Cj+1, j = 0, 1, 2, ... ,

where Cj denotes the (j + 1)-st term of the Taylor series (4.1) and Sj denotes the sum of

the first j + 1 terms.
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We stop the summation when |CN+1|
|SN |

< tol, |CN |
|SN−1|

< tol and |CN−1|
|SN−2|

< tol for some tol and

some N , and SN is returned as the solution. The reason for the more stringent stopping

criterion than that discussed in Section 3.2 for computing 1F1(a; b; z) is that if both a and b

are close to negative integers −m and −m+ 1 say, then the (m+ 1)-st and (m+ 2)-nd terms

are likely to be very small compared to the size of the previous terms, but the subsequent

terms might make a substantial contribution to the solution. Therefore a stopping criterion

should involve three terms having a relatively small modulus rather than two as for 1F1.

Method (b): Similarly to the recommended method of [44] discussed in Section 3.2,

a recurrence relation deducing the next approximation in terms of the previous two can be

computed as follows:

S−1 = S0 = 1, S1 =
ab

c
z,

rj =
(a+ j − 1)(b+ j − 1)

j(c+ j − 1)
, j = 2, 3, ... ,

Sj = Sj−1 + (Sj−1 − Sj−2)rjz, j = 2, 3, ... .

The summation is stopped when |SN+1−SN |
|SN |

< tol, |SN−SN−1|
|SN−1|

< tol, and |SN−1−SN−2|
|SN−2|

< tol for

some tol and some N , and SN is returned as the solution.

Methods (a) and (b) are both equivalent to truncating the series

S∞ =
∞∑
j=0

(a)j(b)j
(c)j

zj

j!
. (4.6)

As shown in Table 9, Taylor series methods (a) and (b) work very similarly for computing

2F1(a, b; c; z) in terms of accuracy and number of terms required for computation. Both

methods work very successfully for cases with small magnitudes of parameter values, such as

rows 1–4 in Table 9. The time taken is substantially less than the time taken by the built-in

MATLAB program, but the larger number of terms that need to be computed before the

stopping criterion can be applied relative to similar cases tested on Taylor series methods for

computing 1F1 (such as those in rows 1 and 3 in Table 1) illustrate that computing 2F1 is a

much more difficult problem in this regard. The number of points required for computation

for three test cases and real z ∈ [−1, 1] is shown in Figure 3, illustrating that many more

points are required for computation the closer z is to the unit disc.
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Case (a,b,c,z) Correct 2F1(a, b; c; z) Time Method (a) and (b) Acc. N Time

1 (0.1,0.2,0.3,0.5) 1.046432811217352 10.471900s 1.046432811217352 16 41 0.034263s
1.046432811217351 15 41 0.055681s

4 (10−8,10−8,10−8,10−6) 1.000000000000010 9.971552s 1.000000000000010 16 3 0.041208s
1.000000000000010 16 3 0.047378s

8 (2 + 8i,3− 5i,
√

2− πi,0.75) 6.882463762011614× 103 10.771072s 6.882463762011581× 103 13 163 0.066219s
−6.596555778724484× 103i −6.596555778724495× 103i

6.882463762011582× 103 13 163 0.079952s
−6.596555778724483× 103i

12 (−1,−1.5,−2− 10−15,0.5) 0.625000000000000∗ 10.997514s 0.625000000000000 16 2 0.018291s
0.625000000000000 16 2 0.046936s

15 (−1000,−2000,−4000.1,−0.5) 5.233580403196932× 1094 13.034198s 5.233580403196953× 1094 14 293 0.067488s
5.233580403196921× 1094 14 293 0.068359s

18 (5,−300,10,0.5) 1.661006238211309× 10−7 11.922410s 4.628142177960427× 1029 0 199 0.071125s
3.698084043503173× 1028 0 201 0.109863s

20 (2 + 200i,5,10,0.6) 1.499739394713933× 10−7 11.418625s −8.206946157063342× 1031 0 399 0.086884s
+5.771450716812297× 10−7i +8.961768586845500× 1031i

3.168834584274869× 1032 0 396 0.152469s
+5.250473854631711× 1031i

21 (2 + 200i,5− 100i, −4.103442641430799 11.226622s −4.102898902166944 3 146 0.070058s
10 + 500i,0.8) +6.013632243569482i +6.016364243229925i

−4.100998516155065 3 146 0.160582s
+6.017586881185369i

22 (2,5,10− 500i,−0.8) 0.999450314116122 11.844837s 0.999450314116122 16 9 0.034498s
−0.015980509652011i −0.015980509652011i

0.999450314116122 16 9 0.084371s
−0.015980509652011i

Table 9: Table showing a variety of test cases from Appendix C, their correct solution and
the time taken to generate them using MATLAB, the solution computed using Taylor series
methods (a) and (b), the number of digits of accuracy they have, the number of terms
computed N , and the time taken using that method. Full results are shown in Appendix F.
Note that for case 12, MATLAB did not generate the correct result, as deatiled in Section
2.2, and the correct result is instead shown in this table.

The function is computed very accurately for the cases in rows 1–5 and 9, which include

cases with large real parameter values (with c < a < b < 0) and one with a large imaginary

part for c. However, rows 6–8 in Table 9 illustrate that the Taylor series method struggles

greatly in cases in which either |a| or |b| is much greater than |c|; for these cases, other

methods such as recurrence relations (explained in Section 4.8) should be used. We conclude

that the region in which the Taylor series methods seem to be effective is |z| . 0.9.
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Figure 3: Graph showing the number of terms which need to be computed using Taylor series
method (a) for evaluating 2F1(a, b; c; z) for real z ∈ [−0.95, 0.95], when a = 1.5, b = 1 + 2i,
c = 4.5 + 5i (red), a = 0.15, b = 0.2, c = 1.1 (green) and a = 3, b = 2, c = 6.5 (blue). We
generated 14 digit accuracy when computing 2F1 for these parameters and for values of z
shown in this graph.

4.3 Writing the Gauss hypergeometric function as a single fraction

In this section, we aim to compute the Gauss hypergeometric function by representing it

as a single fraction. We will analyse the accuracy and robustness of this approach, outlining

any specific parameter regimes for which it is particularly effective.

As discussed for the confluent hypergeometric function in Section 3.3 and in reference

[46], the goal of this method is to express 2F1(a, b; c; z) as a single fraction by using recurrence

relations. The recurrence relation on this occasion reads α0 = 0, β0 = 1, γ0 = 1, ζ0 = 1,

and for j = 1, 2, ... :

αj = (αj−1 + βj−1)× j × (c+ j − 1),

βj = βj−1 × (a+ j − 1)× (b+ j − 1)× z,

γj = γj−1 × j × (c+ j − 1),

ζj =
αj + βj
γj

, (4.7)

This generates a sequence of approximations, {ζj, j = 1, 2, ...}, to 2F1(a, b; c; z). The stop-

ping criterion we use is that, for some j,
|ζj+1−ζj |
|ζj | ,

|ζj−ζj−1|
|ζj−1| and

|ζj−1−ζj−2|
|ζj−2| must be less than
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the prescribed tolerance tol.

Case (a,b,c,z) Correct 2F1(a, b; c; z) Time taken Single fraction (tol = 10−15) Acc. N Time taken

1 (0.1,0.2,0.3,0.5) 1.046432811217352 10.471900s 1.046432811217352 16 42 0.128695s
4 (10−8,10−8,10−8,10−6) 1.000000000000010 9.971552s 1.000000000000010 16 3 0.070016s
5 (10−8,−10−6,10−12, 1.000000000001000 10.031475s 1.000000000001000 16 3 0.084714s

−10−10 + 10−12i) +0.000000010000000i +0.000000010000000i
7 (1,−1 + 10−12i,1,−0.8) 1.800000000000000 10.507413s 1.800000000000000 16 10 0.115477s

−0.000000000001058i −0.000000000001058i
10 (2 + 10−9,3,5,−0.75) 0.492238858852651 11.833417s 0.492238858852701 13 97 0.148518s
15 (−1000,−2000,−4000.1,−0.5) 5.233580403196932× 1094 13.034198s 3.206764029878514× 1055 0 53 0.172314s
19 (10,5,−300.5,0.5) −3.852027081523919× 1032 11.941827s 0.921182716632848 0 12 0.092340s

Table 10: Table showing the result of using ‘hypergeom’ for a variety of test cases and
the times taken, the results from the single fraction method described in this section, the
number of digits of accuracy, the number of terms computed and the time taken. Full
numerical results are shown in Appendix F.

The method of expressing the Gauss hypergeometric function as a single fraction is, as

shown in Table 10, much faster than the built-in MATLAB function, and works well for

small values of the parameters and variable (for example, |a| , |b| , |c| . 20, |z| . 0.95 as a

guide). In particular, for the same reason that the method is successful for computing 1F1

for small |b| or b close to −m, m ∈ Z+∪{0}, as explained in Section 3.3, the method is more

successful for computing 2F1 the smaller |c| is or the closer c is to an integer.

However, this method does struggle more than the Taylor series methods when either a

or b has large magnitude (roughly greater than 50), due to greater risk of overflow (meaning

the computer is attempting to compute values that are larger than it is able to compute)

due to the potentially large numerators and denominators in (4.7). For these cases, other

methods, including the use of recurrence relations as described in Section 4.8, should be

applied.

4.4 Quadrature methods

As discussed for M(a; b; z) in Section 3.6, we now explore applying the method of Gauss-

Jacobi quadrature to compute 2F1(a, b; c; z), when Re(c) > Re(b) > 0, |arg(1− z)| < π. As

stated in [3], the function 2F1(a, b; c; z) has a known integral representation,

2F1(a, b; c; z) =
Γ(c)

Γ(b)Γ(c− b)

∫ 1

0

(1− zt)−awb,c(t)dt, Re(c) > Re(b) > 0, (4.8)

35



valid for |arg(1− z)| < π, where

wb,c(t) = (1− t)c−b−1tb−1.

We note that in (4.8), the parameters a and b can be interchanged due to the basic series

definition (4.1). Transforming t 7→ 1
2
t̃+ 1

2
, with Jacobi parameters α̃ = c− b− 1, β̃ = b− 1,

as recommended in [26], we obtain∫ 1

0

(1− zt)−awb,c(t)dt̃ =
1

2c−1

∫ 1

−1

(
{1− 1

2
z} − 1

2
zt̃

)−a
(1− t̃)c−b−1(1 + t̃)b−1dt

=

Nmesh∑
j=1

wGJj

(
{1− 1

2
z} − 1

2
ztGJj

)−a
+ ENmesh(a; b; z),

where tGJj and wGJj are the Gauss-Jacobi nodes and weights on [−1, 1] as defined in Section

3.6, and Nmesh is the number of mesh points. Error bounds for this method are discussed in

[26].

We note that if Re(c) > Re(a) > 0, then the parameters a and b can be switched in

the definition of 2F1(a, b; c; z), and the method of Gauss-Jacobi quadrature can be applied.

As was the case for 1F1, the integrand in (4.8) blows-up at the end-points of the integral,

which motivates the choice of Gauss-Jacobi quadrature to perform the required integration

numerically.

Case (a,b,c,z) Correct 2F1(a, b; c; z) Time taken Gauss-Jacobi (Nmesh = 200) Acc. Ncrit Time taken

1 (0.1,0.2,0.3,0.5) 1.046432811217352 10.471900s 1.046432811217352 16 10 0.226160s
9 (100, 200, 350, i) 5.686708048303445× 10155 12.194382s NaN+NaNi 0 N/A N/A

+4.471204020179333× 10155i
10 (2 + 10−9, 3, 5,−0.75) 0.492238858852651 11.833417s 0.492238858852651 16 10 0.239335s
18 (5,−300, 10, 0.5) 1.661006238211309× 10−7 11.922410s 1.661006238211367× 10−7 14 40 0.269030s

25 (1, 0.9, 2, eiπ/3) 0.932633569241998 > 5 minutes 0.932633569241997 14 10 0.261462s
+0.475200538581622i +0.475200538581622i

28 (4, 1.1, 2, −0.470097672835090 104.287255s −0.470097672835091 15 20 0.287255s

0.5 + (0.5
√

3− 0.01)i) +0.500986178581549i +0.500986178581549i

Table 11: Table showing the true value of 2F1(a, b; c; z) for a range of test cases and the time
taken to compute this using ‘hypergeom’, the result obtained using Gauss-Jacobi quadrature
with 200 mesh points, the critical number of mesh points Ncrit required to obtain 10 digit
accuracy (where Nmesh is increased by increments of 10 until 10 digit accuracy is obtained),
and the computation time with Ncrit mesh points. Where ‘N/A’ is written, 5000 mesh points
were not sufficient to give 10 digit accuracy. Full results are in Appendix F.

The results from Table 11 illustrate that the method of applying Gauss-Jacobi quadrature

to the integral in (4.8) is a useful method for computing the Gauss hypergeometric function
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when Re(c) > Re(b) > 0, apart from parameter values with modulus at least 50–100. The

method works well near the points e±iπ/3, which are difficult for computational purposes as

explained in Sections 4.6 and 4.7, as shown by the fifth and sixth rows of Table 11.

Therefore, as for 1F1 (as detailed in Section 3.6), applying Gauss-Jacobi quadrature for

computing 2F1 is an extremely useful method when the parameters do not have too large a

modulus.

4.5 Solving the hypergeometric differential equation

We now aim to solve the differential equation (4.2) numerically, and analyse their effective-

ness for the computation of the Gauss hypergeometric function. As discussed for 1F1(a; b; z)

in Section 3.7, the function 2F1(a, b; c; z) is known to satisfy a differential equation; this is the

hypergeometric differential equation stated in (4.2). Solving this differential equation

is the primary method, apart from using the Taylor series (4.1), that is recommended in [57]

for computing the function 2F1.

As detailed in [3, 8], when none of c, c−a−b or a−b is equal to an integer, two fundamental

solutions are known for z near each of the three singular points of the differential equation.

Near the singular point z = 0, the two fundamental solutions are

2F1(a, b; c; z), z1−c
2F1(a− c+ 1, b− c+ 1; 2− c; z); (4.9)

near the singular point z = 1, the fundamental solutions are

2F1(a, b; a+ b+ 1− c; 1− z), (1− z)c−a−b 2F1(c− a, c− b; c− a− b+ 1; 1− z); (4.10)

and near z =∞, the two fundamental solutions are given by

z−a 2F1

(
a, a− c+ 1; a− b+ 1;

1

z

)
, z−b 2F1

(
b, b− c+ 1; b− a+ 1;

1

z

)
. (4.11)

The above 6 solutions can be transformed using the transformation formulae detailed

in Section 4.6 to obtain 18 further solutions. These 24 solutions are known as Kummer’s

solutions to (4.2), as discussed in [3, 9].

The case where a, c− a− b or a− b are equal to an integer are discussed in [3]. For the

purposes of computing the Gauss hypergeometric function, solving the differential equation
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is not a suitable method in this case due to the relative complexity of determining the

solutions.

For other values of a, b, c, we consider the differential equation method for z such that

|z| ≤ 1. It is expected that, if the value of the hypergeometric function is required near z = 0,

the differential equation (4.2) could be numerically integrated along outward rays from the

origin, using initial conditions found from the series definition (4.1) of 2F1(a, b; c; z),

w(0) = 1, w′(0) =
ab

c
, (4.12)

in order to find an approximation to 2F1(a, b; c; z) near z = 0. This is the method we pursue

in this section.

We find that this method starts to fail when the numerical integration passes through

points that are close to z = 1, which is explained by the fact that the differential equation

(4.2) has different fundamental solutions near z = 1 from those near z = 0. In this case, one

can use the following known result for Re(c− a− b) > 0 stated in [58]:

2F1(a, b; c; 1) =
Γ(c)Γ(c− a− b)
Γ(c− a)Γ(c− b)

,

and the limiting cases discussed in [6],

lim
z→1−

2F1(a, b; c; z)

log
(
1− 1

z

) =
Γ(c)

Γ(a)Γ(b)
, lim

z→1−

2F1(a, b; c; z)

(1− z)c−a−b
=

Γ(c)Γ(a+ b− c)
Γ(a)Γ(b)

,

for Re(c− a− b) = 0 and Re(c− a− b) < 0 respectively.

For example, for the case Re(c − a − b) > 0, the following substitutions can be made,

which are motivated by the first fundamental solution near z = 1 given in (4.10):

z = 1− ẑ, a = â, b = b̂, c = â+ b̂+ 1− ĉ ⇔ ĉ = a+ b+ 1− c.

Then, the following boundary conditions for the differential equation (4.2) can be found

using (2.7):

w(ẑ = 0) = w(z = 1) =
Γ(c)Γ(c− a− b)
Γ(c− a)Γ(c− b)

=
Γ(â+ b̂+ 1− ĉ)Γ(1− ĉ)
Γ(b̂+ 1− ĉ)Γ(â+ 1− ĉ)

, (4.13)

w′(ẑ = 0) = w′(z = 1) =
ab

c
× Γ(c+ 1)Γ(c− a− b− 1)

Γ(c− a)Γ(c− b)

=
âb̂

â+ b̂+ 1− ĉ
× Γ(â+ b̂+ 2− ĉ)Γ(2− ĉ)

Γ(b̂+ 1− ĉ)Γ(â+ 1− ĉ)
. (4.14)
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These are then used to solve the differential equation

ẑ(1− ẑ)
d2w

dẑ2
− [ĉ− (â+ b̂+ 1)ẑ]

dw

dẑ
− âb̂w = 0. (4.15)

For each case, the RK4 method detailed in (3.29)–(3.30) can be applied with z0 = 0,

w = (w,w′)T , w0 = (1, ab
c

)T and f(z) = (w2,− 1
z(1−z){[c− (a+ b+ 1)z]w2 − abw1})T .

Case (a,b,c,z) RK4 (Nmesh = 500) Acc. Ncrit Time ode45/ode113/ode15s Acc. N

1 (0.1,0.2,0.3,0.5) 1.046432811211848 12 150 0.417635s 1.046432754293317 7 41
1.046431632552768 6 13
1.046556420197934 4 13

2 (−0.1, 0.2, 0.3, 0.5) 0.95643421097278 10 250 0.474317s 0.956434253273899 7 41
0.956433620931461 5 13
0.956431095172177 5 14

4 (10−8, 10−8, 10−8, 10−6) 1.000000000000000 14 50 0.344963s 1.000000000000011 15 41
1.000000000000011 15 11
1.000000000000011 15 11

8 (2 + 8i, 3− 5i, 6.882465637979511× 103 6 4800 3.858745s 6.869602468684762× 103 2 85√
2− πi,0.75) −6.596556746271624× 103i −6.584405220506018× 103i

6.992518366536974× 103 1 36
−6.464586065423973× 103i
6.443566948572507× 103 1 57
−6.856945927744196× 103i

10 (2 + 10−9, 3, 5,−0.75) 0.492238858850299 11 250 0.466852s 0.493421438461613 2 73
0.493420802980853 2 28
0.515594065014172 0 37

18 (5,−300, 10, 0.5) 1.660425565716309× 10−7 3 16850 17.931442s 1.664060389193657× 10−7 3 397
1.661875913325594× 10−7 4 194
1.537384779497713× 10−7 1 90

20 (2 + 200i, 5, 10, 0.6) 1.486356299813440× 10−7 2 N/A N/A 1.574766444934557× 10−7 1 737
+5.756173666779157× 10−7i +5.841973382083921× 107i

1.810879448347993× 10−7 1 335
+5.627011113641864× 10−7i
1.426772970328000× 10−7 1 420
+5.656148380810558× 10−7i

Table 12: Table showing the true value of 2F1(a, b; c; z) for a selection of test cases, the
results obtained using the RK4 method with 500 mesh points, the number of mesh points
required to obtain 10 digit accuracy (where we increased Nmesh by increments of 50 until 10
digit accuracy was obtained), and the computation time with Ncrit mesh points; here ‘N/A’
is written when 20000 mesh points were not sufficient to give 10 digit accuracy. Also stated
are the results using ‘ode45’, ‘ode113’ and ‘ode15s’, their accuracy and the number of points
N that MATLAB uses to produce the solution vector. Full results are detailed in Appendix
F.

As was the case for the function 1F1, we found the RK4 method to be the most effective

method for solving the differential equation out of those tested; details of another method

tried are included in Appendix H.2. We applied the RK4 method to (4.2), with results shown

in Table 12 and Appendix F. Also in Table 12 are results obtained by applying the three
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built-in MATLAB solvers ode45, ode113 and ode15s to the problem, integrating from 10−3,

apart from case 4 when we integrated from 10−11 and case 10 where we integrated from

−10−3.

Using the results shown in Table 12, we deduce that the RK4 method is more effective

for computing 2F1(a, b; c; z) than it is for computing 1F1(a; b; z) due to the fact that we only

need to apply the method in the region |z| ≤ 1. Figure 4 shows three cases and the profile

of their errors on z ∈ [−1, 1] for real z. We conclude from this graph and the other results

obtained that the RK4 method is useful provided |a| , |b| , |c| ≤ 5 if 500 mesh points are used,

although if more mesh points are used, the method should work over a larger set of values

of a, b and c.

Table 12 shows results generated when we tried to compute the first solution of (4.9).

However using the method described by the equation (4.15) and boundary conditions (4.13)

and (4.14), we can generate solutions close to z = 1. For example, this method produced

10 digit accuracy when computing 2F1(0.2, 0.3; 0.4; 0.9) using 450 mesh points. We therefore

find that computing solutions near z = 1 using the RK4 method is also a viable method.
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Figure 4: Graph showing the profile of relative error (which we define as the magnitude of
the difference between exact and computed solutions divided by the magnitude of the exact
solution) when applying the RK4 method over real z ∈ [−1, 1] for (a, b, c) = (1, 2.5, 3.75)
(blue), (12.5, 8.25, 10) (red) and (0.1, 0.2, 0.4) (green) using 200 mesh points.
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4.6 Transformation formulae

As the Gauss hypergeometric series (4.1) converges only for |z| < 1, and as it converges

more rapidly the smaller |z| is, it is important to use transformation formulae that reduce

the problem of carrying out a computation for a value of |z| close to or greater than 1 to a

problem of computing the series for a new variable w, where the value of |w| is much smaller.

We describe such transformation formulae in this section.

The idea of these transformations is to map as large a region of the complex plane as

possible onto discs |w| ≤ ρ, for a positive real number 0 < ρ ≤ 1, preferably as close to

0 as possible. This is desirable because the function 2F1 can be computed faster and more

accurately when |z| is close to 0. If we can find representations of 2F1 which allow us to carry

out the computation in terms of the new variable w, we are likely to obtain more accurate

results than we obtained using methods previously described. For real z, transformation

formulae are written in Table 13, which map any z ∈ R to a new variable w ∈ [0, 1
2
], in other

words a special case where the variable z is real, and with ρ = 1
2
.

Case Interval Transformation

1 −∞ < z < −1 w = 1
1−z

2 −1 ≤ z < 0 w = z
z−1

3 0 ≤ z ≤ 1
2

w = z
4 1

2
< z ≤ 1 w = 1− z

5 1 < z ≤ 2 w = 1− 1
z

6 2 < z < +∞ w = 1
z

Table 13: List of transformations of z ∈ R, stated in [24], for which 0 ≤ w ≤ ρ = 1
2
.

From Table 13, we observe that, for real variable z, we can compute the hypergeometric

function in terms of hypergeometric functions of a new real variable w with |w| ≤ ρ = 1
2

using (4.16)–(4.20), which we hope will ensure faster convergence than using the original

variable z.

However, for complex z, the problem is more complicated. In Figure 5, we show plots of

|w| = ρ for each of the 6 expressions for w shown in Table 13 for ρ = 0.6 and ρ = 0.8. If we

wish to apply one of the 6 transformations of Table 13, we require that |w| < ρ be satisfied

for at least one representation of w in the table. The region in Figure 5 in which none of the
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Figure 5: Illustrations of the curves |z| = ρ (dark blue),
∣∣1
z

∣∣ = ρ (black), |1− z| = ρ (red),∣∣ 1
1−z

∣∣ = ρ (purple),
∣∣ z
z−1

∣∣ = ρ (sky blue) and
∣∣1− 1

z

∣∣ = ρ (green), along with the points

z = e±iπ/3, for ρ = 0.6 (left) and ρ = 0.8 (right). [Adapted from illustrations in [28, 30].]

representations of w satisfy |w| < ρ is the region around the points z = e±iπ/3 = 1
2
(1± i

√
3),

which are marked as dots. As ρ is increased towards 1, the region in which none of the

transformations satisfy |w| < ρ gets smaller, but remains around the points z = e±iπ/3 due

to the fact that the set {eiπ/3, e−iπ/3} is mapped to itself by each of the 6 transformations of

Table 13. The case z ≈ e±iπ/3 is discussed in Section 4.7.

Now that we have established the regions in which transformations can be applied, we

consider the known transformations (4.16)–(4.20) and their regions of validity, discussed in

[3, 22, 24, 70]. These correspond to cases 1,2,4,5 and 6 in Table 13 respectively.

2F1(a, b; c; z) = (1− z)−a
Γ(c)Γ(b− a)

Γ(b)Γ(c− a)
2F1

(
a, c− b; a− b+ 1;

1

1− z

)
(4.16)

+(1− z)−b
Γ(c)Γ(a− b)
Γ(a)Γ(c− b) 2F1

(
b, c− a; b− a+ 1;

1

1− z

)
,

|arg(1− z)| < π;

2F1(a, b; c; z) = (1− z)−a 2F1

(
a, c− b; c; z

z − 1

)
, z ∈ C; (4.17)

2F1(a, b; c; z) =
Γ(c)Γ(c− a− b)
Γ(c− a)Γ(c− b) 2F1(a, b; a+ b− c+ 1; 1− z) (4.18)

+(1− z)c−a−b
Γ(c)Γ(a+ b− c)

Γ(a)Γ(b)
2F1(c− a, c− b; c− a− b+ 1; 1− z),

|arg(1− z)| < π;
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2F1(a, b; c; z) = z−a
Γ(c)Γ(c− a− b)
Γ(c− a)Γ(c− b) 2F1

(
a, a− c+ 1; a+ b− c+ 1; 1− 1

z

)
(4.19)

+za−c (1− z)c−a−b
Γ(c)Γ(a+ b− c)

Γ(a)Γ(b)
2F1

(
c− a, 1− a; c− a− b+ 1; 1− 1

z

)
,

|arg z| < π, |arg(1− z)| < π;

2F1(a, b; c; z) = (−z)−a
Γ(c)Γ(b− a)

Γ(b)Γ(c− a)
2F1

(
a, a− c+ 1; a− b+ 1;

1

z

)
(4.20)

+(−z)−b
Γ(c)Γ(a− b)
Γ(a)Γ(c− b) 2F1

(
b− c+ 1, b; b− a+ 1;

1

z

)
,

|arg z| < π, |arg(1− z)| < π.

We tested these formulae on a large range of parameters and variable and found that

they succesfully computed 2F1 for a variable which is close to the unit disc or which has

modulus greater than 1, in terms of new variables with smaller magnitude. However, due

to the presence of Γ(a − b), Γ(b − a), Γ(c − a − b) and Γ(a + b − c) in the numerators of

(4.16)–(4.20), the cases b− a ∈ Z and c− a− b ∈ Z cannot be handled using these formulae.

These cases are discussed in Appendix A.

4.7 Analytic continuation formulae for z near e±iπ/3

A major problem when applying the transformation formulae of Section 4.6 is that this

is not a viable method for the region near the points z = e±iπ/3 = 1
2
(1 ± i

√
3). The reason

for this is that, whatever value 0 < ρ < 1 is taken for |z| < ρ, it is not possible to map

the points z = e±iπ/3 onto w within a disc of radius less than 1; the points are mapped to

themselves or each other when any of the 6 transformations in Table 13 is applied. As ρ is

increased and approaches 1, an increasing number of points close to z = e±iπ/3 are mapped

onto such a disc, but the points themselves can never be, and the points very close to them

will require a computation involving a prohibitively large value of ρ, for which the methods

discussed so far will not generate an accurate result.

In [14], an expansion is discussed that attempts to resolve this issue. This is given in the
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form of the continuation formula:

2F1(a, b; c; z)

Γ(c)
=

Γ(b− a)

Γ(b)Γ(c− a)
(z0 − z)−a

∞∑
j=0

dj(a, z0)(z − z0)−n (4.21)

+
Γ(a− b)

Γ(a)Γ(c− b)
(z0 − z)−b

∞∑
j=0

dj(b, z0)(z − z0)−n, |arg(z0 − z)| < π,

where b− a is not an integer, and dj is defined by

d−1(υ, z0) = 0, d0(υ, z0) = 1,

dj(υ, z0) =
j + υ − 1

j(j + 2υ − a− b)
[{(j + υ)(1− 2z0) + (a+ b+ 1)z0 − c}dj−1(υ, z0) (4.22)

+z0(1− z0)(j + υ − 2)dj−2(υ, z0)] , j = 1, 2, ... .

This series converges everywhere outside the disc |z − z0| = max{|z0| , |z0 − 1|}, so an

appropriate z0 must be chosen to carry out this method. The case noted in particular in [14]

is that of z0 = 1
2
, which would result in convergence outside the disc

∣∣z − 1
2

∣∣ = 1
2
, including

in particular, points close to e±iπ/3. At these points, as shown in Section 4.6, it is difficult

to compute 2F1 due to the ineffectiveness of applying transformation formulae.

Now, the above expansion is not valid if b−a is exactly equal to an integer. In particular,

if b− a were equal to a non-zero integer, one of the Gamma functions in the numerators of

the two terms in (4.21) would be infinitely large. An alternative formula is given for the case

b− a = 0 in [14]; this is

2F1(a, a; c; z)

Γ(c)
=

1

Γ(a)Γ(c− a)
(z0 − z)−a

∞∑
j=0

(a)j
j!

(z − z0)−j (4.23)

× [ej(a, z0){2ψ(1 + j)− ψ(a+ j)− ψ(c− a) + log(z0 − z)} − fj(z0)],

where ej and fj are defined as follows when we wish to compute the hypergeometric function

2F1(a, b; c; z):

e−1(υ, z0) = 0, e0(υ, z0) = 1,

jej(υ, z0) = [(j + υ)(1− 2z0) + (a+ b+ 1)z0 − c]ej−1(υ, z0) (4.24)

+ z0(1− z0)(j − 1 + 2υ − a− b)ej−2(υ, z0), j = 1, 2, ...,

f−1(z0) = 0, f0(z0) = 0,

jfj(z0) = [(j + a)(1− 2z0) + (2a+ 1)z0 − c]fj−1(z0) + z0(1− z0)(j − 1)fj−2(z0) (4.25)

+ (1− 2z0)ej−1(a, z0) + 2z0(1− z0)ej−2(a, z0), j = 1, 2, ... .
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Here, ψ(y) is the polygamma function, which is defined to be

ψ(y) =
Γ′(y)

Γ(y)
, (4.26)

and is discussed further in Appendix I.

This series is again defined outside |z − z0| = max{|z0| , |z0 − 1|}. The general case

b− a ∈ Z\{0} is discussed in [37] using a limiting process of the Gamma function, but due

to time constraints we did not implement it for this project.

Case (a,b,c,z) Correct M(a; b; z) Time taken Analytic cont. (tol = 10−15) Acc. N Time taken

25 (1, 0.9, 2, eiπ/3) 0.932633569241998 > 5 minutes 0.932633569242002 12 63 0.170717s
+0.475200538581623i +0.475200538581619i

29 (5, 2.2,−2.5, 1.084589030597025× 103 107.090833s 1.084589030597452× 103 11 125 0.180274s

0.49 + 0.5
√

3i) −5.115786480030682× 103i −5.115786480028667× 103i

30 ( 2
3
, 1, 4

3
, eiπ/3) 0.883319375142725 > 5 minutes 0.883319375142725 16 58 0.146477s

+0.509984679019064i +0.509984679019064i
– (5, 7.5, 2.5, 5) 1.738170683483183× 10−4 14.338713s 1.738170683483184× 10−4 15 27 0.147836s
– (1, 1.5, 3,−4 + 3i) 0.323077064587889 12.791476s 0.323077064587889 16 17 0.129981s

+0.130063349815216i +0.130063349815216i

Table 14: Table showing the true result for 2F1(a, b; c; z) for a number of test cases and the
time taken to generate the solution using ‘hypergeom’, the results obtained from the theory
of analytic continuation discussed in this section, the accuracy, the number of terms taken
and the time taken using this method.

The results in Table 14 show that using the expansion given in (4.21) generates excellent

accuracy in a region that methods previously discussed could not produce results of similar

accuracy in. The method is not only effective when z is equal or close to e±iπ/3, but also

when z lies outside the unit disc, as shown by the fourth and fifth rows of Table 14. The

method generally struggles with |a| or |b| & 30 or |c| & 70; this problem can be resolved by

applying recurrence relations as detailed in Section 4.8.

4.8 Recurrence relations

As for the confluent hypergeometric function in Section 3.8, we aim to overcome the lack

of accuracy that occurs when attempting to compute the Gauss hypergeometric function

when one or more of the values of |Re(a)|, |Re(b)| and |Re(c)| is large. We explain how this

problem can be addressed by using the technique of recurrence relations for this function.

Using these ideas, we can reformulate such a problem as one involving values of |Re(a)|,
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|Re(b)|, |Re(c)| closer to zero, which are computed much more accurately by most methods

implemented, as verified by results so far.

The 4 main recurrence relations involving the Gauss hypergeometric function 2F1(a, b; c; z)

discussed in literature such as [23, 28, 29, 32, 66], and the most basic hypergeometric func-

tions that are solutions of these relations, are shown below, in the notation of [28]:

1. Recurrence: (c− a− n)(c− b− n)(c− a− b− 2n− 1)yn−1

+ (c− a− b− 2n) [c(a+ b− c+ 2n) + c− 2(a+ n)(b+ n)

+ z{(a+ b+ 2n)(c− a− b− 2n) + 2(a+ n)(b+ n)− c+ 1}] yn

+ (a+ n)(b+ n)(c− a− b− 2n+ 1)(1− z)2yn+1 = 0,

Solution: yn = 2F1(a+ n, b+ n; c; z),

2. Recurrence: − (a− c+ 2n)(a− c+ 2n− 1)(b− c+ 2n− 1)(b− c+ 2n)zUyn−1

+ (c− n)(c1U + c2V + c3UV )yn

+ (a+ n)(b+ n)(c− n)(c− n− 1)(1− z)3V yn+1 = 0,

where: c1 = (1− z)(b− c)(b− 1)[a− 1 + z(b− c− 1)],

c2 = b(b+ 1− c)(1− z)[a+ z(b− c+ 2)],

c3 = c− 2b− (a− b)z,

U = z(a+ b− c+ 1)(a+ b− c+ 2) + ab(1− z),

V = (1− z)(1− a− b− ab) + z(a+ b− c− 1)(a+ b− c− 2),

Solution: yn = 2F1(a+ n, b+ n; c− n; z),

3. Recurrence: z(a− c+ 2n)(a− c+ 2n− 1)(b− c+ n)[a+ n+ z(b− c+ n+ 1)]yn−1

+ (c− n) [(a+ n− 1)(c− n− 1)(b− c+ n) + (a+ n)(a+ n− 1)

+ (a+ 3b− 4c+ 5n+ 2)z + (b− c+ n)(b− c+ n+ 1)(4a− c+ 5n− 1)z2

− (a− b+ n)(b− c+ n)(b− c+ n+ 1)z3]yn

−(a+ n)(c− n)[a+ n− 1 + z(b− c+ n)] (1− z)2yn+1 = 0,

Solution: yn = 2F1(a+ n, b; c− n; z),
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4. Recurrence: (c+ n)(c+ n− 1)(z − 1)yn−1 + (c+ n) [c+ n− 1

− {2(c+ n)− a− b− 1}z] yn + (c− a+ n)(c− b+ n)zyn+1 = 0,

Solution: yn = 2F1(a, b; c+ n; z).

However, the solutions of the recurrence relations that we are interested in, much as in

Section 3.8 for 1F1, are the minimal solutions. But, unlike for 1F1, the 4 recurrence relations

have different minimal solutions in different regions of the complex plane. The minimal

solutions of each of the above 4 recurrence relations, as stated in [29], are shown in Table

15.

Relation Region of C Minimal solution

1 C\{z ≤ 0} Γ(1+a−c+n)Γ(1+b−c+n)
Γ(1+a+b−c+2n) 2F1(a+ n, b+ n; 1 + a+ b− c+ 2n; 1− z)

2 Inside curve in Fig. 6 (left)
(

z
(z−1)3

)n Γ(b−c+1+2n)Γ(a−c+1+2n)
Γ(a+n)Γ(b+n)Γ(1−c+n)Γ(2−c+n) 2F1(1− a+ n, 1− b+ n; 2− c+ n; z)

2 Outside curve in Fig. 6 (left)
Γ(b−c+1+2n)Γ(a−c+1+2n)
Γ(1−c+n)Γ(1+a+b−c+3n) 2F1(a+ n, b+ n; 1 + a+ b− c+ 3n; 1− z)

3 Inside inner curve in Fig. 6 (right)
(
−z

(1−z)2

)n Γ(b−c+1+n)Γ(a−c+1+n)
Γ(a+n)Γ(1−c+n)Γ(2−c+n) 2F1(1− a+ n, 1− b; 2− c+ n; z)

3 Between curves in Fig. 6 (right)
Γ(b−c+1+n)Γ(a−c+1+2n)
Γ(1−c+n)Γ(1+a+b−c+2n) 2F1 (a+ n, b; 1 + a+ b− c+ 2n; 1− z)

3 Outside curves in Fig. 6 (right)
(
−z

(1−z)2

)n Γ(1+a−c+2n)
Γ(1−c+n)Γ(1+a−b+n) 2F1

(
1− b,−b+ c− n; 1 + a− b+ n; 1

z

)
4 Re(z) < 1

2 2F1(a, b; c+ n; z)

4 Re(z) > 1
2

(
z−1
z

)n Γ(c+n)
Γ(1−a−b+c+n) 2F1(1− a, 1− b; 1− a− b+ c+ n; 1− z)

Table 15: Minimal solutions of the 4 recurrence relations for 2F1(a, b; c; z) in different regions
of the complex plane for z, as stated in [29].

Figure 6 illustrates the relevant regions for determining the minimal solutions of recur-

rence relations 2 (left on figure) and 3 (right on figure), which are referred to in Table 16.

As detailed in [29], the curve described on the left of Figure 6 is defined to be the region

which satisfies, in polar coordinates,

r =

√
−9 + 6

√
3 cos θ, − π

6
≤ θ ≤ π

6
, and Re(

√
8z + 1) = 0,

together with the half-line z ≤ 1
8

for real z, and the region shown on the right of Figure 6 is

defined as follows in polar coordinates:

r = 2 + cos θ ±
√

cos2 θ + 4 cos θ + 3, − π < θ ≤ π.

Therefore, as for 1F1 in Section 3.8, we apply two different methods; firstly, we take

the minimal solutions of the 4 recurrence relations within specific regions and apply the
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Figure 6: Diagrams of the relevant regions for minimal solutions of recurrence relations 2
(left) and 3 (right).

recurrence relations backwards, and secondly, we use the minimal solutions of the recurrence

relations to apply the recurrence relations forwards using Miller’s algorithm. A selection of

results we obtained by carrying out these two methods is shown in Table 16.

Function desired Method and function(s) used Correct solution Recurrence solution N

2F1(55.3, 55.7; 111.6; 0.3) Recurrence 1 forward (M) 1.215235338639146× 104 1.215235338639048× 104 13

2F1(0.3, 0.7; 0.4; 0.7)

2F1(40.1, 40.4; 120.7; 0.5 + 0.5i) Recurrence 2 forward (M) −3.651039314091793× 102 −3.651039314091991× 102 13

2F1(0.1, 0.4; 0.8; 0.5 + 0.5i) +2.183535248985720× 102i +2.183535248985840× 102i

2F1(−59.9, 0.8; 61.2;−0.4) Recurrence 3 forward (M) 1.474715522389158 1.474715522388619 12

2F1(0.9, 0.2; 0.8;−0.4)

2F1(0.2, 0.3; 80.9; 0.4) Recurrence 4 forward (M) 1.00029782004629 1.00029782004027 13

2F1(0.2, 0.3; 0.9; 0.4)

2F1(0.5, 0.2;−79.3; 0.3 + 0.2i) Recurrence 4 backward 0.999622417465352 0.999622417465357 11

2F1(0.5, 0.2;−0.3; 0.3 + 0.2i)/ −0.000250483115171i −0.000250483115169i

2F1(0.5, 0.2; 0.7; 0.3 + 0.2i)

Table 16: Table showing a selection of functions we wished to compute using recurrence
relations, the functions and method we used to compute the solution, the computed solution
we obtained and the correct solution generated using MATLAB. The designation (M) in the
second column means that Miller’s algorithm was used.

The results shown in Table 16 suggest that applying recurrence relations as detailed in

this section is a viable way of reducing problems of computing a hypergeometric function with

parameters whose real parts have large modulus to a simpler problem of computing one or

two hypergeometric functions whose real parts have smaller modulus. However, considering

the minimal solutions of recurrence relations 1–4, which are shown in Table 15, we can
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see that this method is restricted by MATLAB’s inability to compute the Gamma function

when its variable has large modulus (in the same way as the recurrence relation techniques

of Section 3.8 were restricted when computing 1F1). Nevertheless, the methods discussed in

this section were found to be useful for carrying out computations of 2F1 with arguments of

large real part.

4.9 Summary and analysis of results

For the purposes of computing 2F1(a, b; c; z), we have implemented and analysed methods

such as Taylor series methods in Section 4.2, the single fraction method in Section 4.3, and

quadrature and differential equation methods discussed in Sections 4.4 and 4.5 and Appendix

H. Also detailed in Appendix H are other methods that we found to be less effective. In

addition, we applied transformations and analytic continuation formulae as in Sections 4.6–

4.7 and Appendix A in order to find ways to compute 2F1 accurately and efficiently for all

z ∈ C.

We found that the series methods produced accurate results for computing 2F1 for certain

parameter regimes, specifically for values of |a| and |b| less than 50. We recommend that

the single fraction method is used particularly if |c| < 1 and |a| , |b| < 30. When Re(c) >

Re(b) > 0 or Re(c) > Re(a) > 0, the Gauss-Jacobi quadrature method is effective. For

z inside the unit disc, the RK4 method for numerically solving (4.2) is also seen to be an

effective method of computation for cases where |a|, |b| and |c| are relatively small (especially

for |a| , |b| , |c| . 5). All these methods seem to work well for the parameter values specified

and |z| . 0.9.

A problem arises when values of 2F1 are required outside the unit disc. On these occasions,

the transformation formulae of Section 4.6, or the formulae stated in Appendix A for the

special cases b− a ∈ Z or c− a− b ∈ Z can be applied. A further issue arises when |Re(a)|,
|Re(b)| or |Re(c)| is too large for a method to work effectively on its own (as a guide, when

any of these values exceeds 50). In this case, the recurrence relation techniques of Section

4.8 can be exploited.

As a summary, Table 17 states recommendations as to which of the methods we have

researched should be used for certain parameter regimes.
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Region of a, b, c, z Recommended method(s) Relevant section
|a| , |b| < 50, |c| > 1, |z| . 0.9 Taylor series methods 4.2

Single fraction method 4.3
Gauss-Jacobi quadrature, if Re(c) > Re(b) > 0 4.4
RK4 method, if |a| , |b| , |c| < 5 4.5

|a| , |b| < 30, |c| < 1, |z| . 0.9 Single fraction method 4.3
RK4 method, if |a| , |b| < 5 4.5

|a| , |b| < 50, z ≈ e±iπ/3 Analytic continuation 4.7
|a| , |b| < 50, |z| ≥ 0.9 Transformation methods 4.6, Appendix A

|Re(a)|, |Re(b)| or |Re(c)| > 50 Recurrence relations 4.8
then another method

Table 17: Recommendations as to methods that should be used for the computation of the
Gauss hypergeometric function for different parameter regimes and the sections where they
are discussed.

One major drawback was the computation of 2F1 for large values of |Im(a)| or |Im(b)|.
Unlike for large |Re(a)| or |Re(b)|, the techniques of computing recurrence relations cannot

be exploited, so further work on this problem will involve finding effective methods for

these parameter regimes. Research into transformations, analytic continuation formulae and

recurrence relations in particular was hampered by MATLAB’s lack of a Gamma function

package that can deal with complex or large real variable input, so it would be useful to

devise a routine to do this to advance our knowledge of computing 2F1. Details of how this

could be done are given in Appendix I.

5 Conclusions, Discussion and Future Considerations

Computing the hypergeometric function pFq is an important problem due to its wide

variety of applications in problems in mathematical and theoretical physics, networks, fi-

nance, and many other areas. However, as explained in Section 2.2, it is a difficult problem

in practice, and the state-of-the-art software has significant drawbacks. It is therefore im-

portant to conduct research into the computation of this class of functions, and provide

recommendations as to which methods are useful in order to overcome these problems.

In this project, we researched and implemented a large number of methods for computing

the confluent and Gauss hypergeometric functions 1F1 and 2F1, the two most commonly used

hypergeometric functions. These methods have come from a wide range of areas in numerical
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analysis, such as series computations, quadrature, numerical solution of differential equations

and recurrence relations. We can conclude that for both of these functions, there is no single

method that is optimal for their computation for all parameter and variable values; instead

a satisfactory package for computing hypergeometric functions will involve making use of a

variety of methods, as each is most effective for a specific parameter regime.

As detailed in Section 3.9, the most effective methods for computing 1F1(a; b; z) for

smaller values of |a| and |z| involve direct computation of the power series, either by one of

the two methods for computing the Taylor series detailed in Section 3.2, or by expressing 1F1

as a single fraction as in Section 3.3, the latter being more effective for small |b|. Applying

Gauss-Jacobi quadrature is also an effective method for Re(b) > Re(a) > 0, as is solving the

confluent hypergeometric differential equation (3.2) provided Re(z) and Im(z) are sufficiently

close to zero, and |a| and |b| are close to zero. For cases where Re(a) and Re(z) are moderately

large and of opposite sign, we conclude that using the expression (3.20) as in Section 3.4

is very effective. For more difficult cases where |Re(a)| or |Re(b)| are greater than about

50, we can use the techniques of computing recurrence relations introduced in Section 3.8

to reduce the problem to one where this is not the case, and apply another method to the

simpler problem.

For the problem of computing 2F1(a, b; c; z), one can similarly use Taylor series methods

and the method of expressing 2F1 as a single fraction, for regimes where |a|, |b| and |z| are

comparatively small, as detailed in Sections 4.2 and 4.3, as well as quadrature methods (when

Re(c) > Re(b) > 0) and solving the hypergeometric differential equation (4.2) numerically. A

combination of these methods will compute 2F1 accurately in most of the unit disc; in order

to carry out computation within the remainder of the unit disc and outside it, we may use

analytic continuation formulae as detailed in Section 4.7 (for computation near z = e±iπ/3)

and transformation formulae detailed in Section 4.6 and Appendix A. When |Re(a)|, |Re(b)|
or |Re(c)| exceed about 50, the recurrence relations techniques can be applied, as for 1F1.

All the methods recommended for 2F1, as well as 1F1, have much faster computation times

than the built-in MATLAB routine ‘hypergeom’.

We note that in order to make full use of the variety of methods available, it would be

useful to implement them using higher precision software, as this should generate accurate

results due to reduced effects of round-off error and overflow. We also recommend to the
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Numerical Algorithms Group that software be designed for computing the Gamma function

Γ(z), incomplete gamma functions γ(a, z) and Γ(a, z) and Bessel function Jν(z) for all pa-

rameter and variable values in the complex plane, as these were required for a large number

of the methods tested, and will be required to compute both the confluent and Gauss hy-

pergeometric functions with complex variable and parameters. We present ideas as to which

methods could be included in such software in Appendix I.

Apart from implementing the methods we have examined on higher precision software, the

major further work that one could undertake is handling parameter regimes where methods

discussed in this dissertation did not work universally. One important example of such a

regime is when there are large imaginary parts of the parameters a, b (and c for 2F1), for

which, unlike parameter values with large real parts, recurrence relation techniques cannot

be applied. Another regime for 1F1 that would merit further investigation is the case of

large Im(z) when computing 1F1; this was observed to be particularly vulnerable to round-

off error and other computational issues when the methods discussed in this project were

applied to it. Other further work in this wide subject area could involve applying the theory

and methods we have presented in this dissertation, and investigating new methods, to tackle

the problem of computing other hypergeometric functions, for example 2F2 and 3F2. The

techniques discussed could also be applied to devise a package for the effective computation

of a variety of other special functions with important practical applications.
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A Transformation formulae for 2F1(a, b; c; z) when b−a ∈
Z or c− a− b ∈ Z

This appendix provides information on research that aims to tackle a major computational

issue that occurs when trying to apply the transformation formulae in Table 13 of Section

4.6 when either b − a ∈ Z or c − a − b ∈ Z. The issue arises due to the fact that the

Gamma function Γ(x) has a singularity when x is equal to a non-positive integer, so when

applying the transformation formulae (4.16) and (4.20) (equivalent to transformations 1 and

6 respectively in Table 13) for b−a ∈ Z, or (4.18) and (4.19) (equivalent to transformations 4

and 5 respectively in Table 13) for c−a−b ∈ Z, the sum of the two terms of the tranformations

is finite, but each individual term is infinite. Transformations 2 and 3 from Section 4.6 do

not require this theory, as the second transformation, involving the variable z
z−1

of 2F1, does

not entail the computation of any Gamma functions and the third transformation simply

maps the variable z to itself.

In [3, 22], formulae are provided that avoid this issue when either b − a or c − a − b is

exactly equal to an integer. These may be computed using the same ideas detailed in Section

3.2. The appropriate formulae are stated below:

• When b−a = m ∈ Z+∪{0}, then an expression that serves the same purpose as (4.16)

(namely computing 2F1 in terms of variable 1
1−z rather than z) is given by

2F1(a, b; c; z) =
(1− z)−a

Γ(b)Γ(c− a)

m−1∑
j=0

(a)j(c− b)j(m− j − 1)!

j!
(z − 1)−j

+
(−1)m(1− z)−b

Γ(a)Γ(c− b)

∞∑
j=0

(b)j(c− a)j
j!(j +m)!

(1− z)−j (A.1)

× [log(1− z) + ψ(j + 1) + ψ(j +m+ 1)− ψ(b+ j)− ψ(c− a− j)],

for |z − 1| > 1, |arg(1− z)| < π, where ψ(y) is defined in (4.26).

If b − a = −m ∈ Z−, the parameters a and b are exchanged, and, using the fact that

2F1(a, b; c; z) = 2F1(b, a; c; z) by the basic series definition, (A.1) is again used.
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• When c− a− b = m ∈ Z+ ∪ {0}, then an alternative formulation for (4.18) is given by

2F1(a, b; c; z) =
1

Γ(c− a)Γ(c− b)

m−1∑
j=0

(a)j(b)j(m− j − 1)!

j!
(z − 1)j

+
(z − 1)c−a−b

Γ(a)Γ(b)

∞∑
j=0

(c− a)j(c− b)j
j!(j +m)!Γ(c− b− j)

(−1)jz−j−m (A.2)

× [log(1− z)− ψ(j + 1)− ψ(j +m+ 1) + ψ(c− a+ j) + ψ(c− b− j)],

for |z| < 1, |arg(1− z)| < π. If c− a− b = −m ∈ Z−, the transformation (4.4) can be

used to write

2F1(a, b; a+ b−m; z) = (1− z)c−a−b2F1(c− a, c− b; c; z) (A.3)

= (1− z)c−a−b2F1(b−m, a−m; a+ b−m), (A.4)

at which point (A.2) can be applied using the new parameters b − m, a − m and

a+ b−m.

• When c− a− b = m ∈ Z+ ∪{0}, then the equivalent formulation for (4.19) is given by

2F1(a, b; c; z) =
z−a

Γ(c− b)

m−1∑
j=0

(a)j(m− j − 1)!

j!Γ(c− a− j)

(
1− 1

z

)j
+

(z)−a

Γ(a)

∞∑
j=0

(c− b)j
j!(j +m)!Γ(b− j)

(−1)j
(

1− 1

z

)j+m
(A.5)

×
[
log

(
1− z
z

)
− ψ(j + 1)− ψ(j +m+ 1) + ψ(b− j) + ψ(c− b− j)

]
,

for Re(z) > 1
2
, |arg z| < π, |arg(1− z)| < π. If c − a − b = −m ∈ Z−, the transfor-

mation described by (A.3) and (A.4) should again be used before applying (A.5) with

the new parameters b−m, a−m and a+ b−m.

• When b− a = m ∈ Z+ ∪ {0}, then the equivalent formulation for (4.20) is given by:

2F1(a, b; c; z) =
(−z)−a

Γ(b)

m−1∑
j=0

(a)j(m− j − 1)!

j!Γ(c− a− j)
z−j

+
(−z)−a

Γ(a)

∞∑
j=0

(b)j
j!(j +m)!Γ(c− b− j)

(−1)jz−j−m (A.6)

× [log(−z) + ψ(j + 1) + ψ(j +m+ 1)− ψ(b+ j)− ψ(c− b− j)],
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for |z| > 1, |arg(−z)| < π. As above, if b− a = −m ∈ Z−, the parameters a and b are

exchanged, and (A.6) is again used.

There is also a numerical issue when either a−b or c−a−b is close to an integer (meaning

the real part is close to an integer and the imaginary part is close to 0), as the two terms in

(4.16), (4.18), (4.19) or (4.20) are both large due to the presence of Gamma functions with

variables close to negative integers. Therefore alternative expressions are required to avoid

large round-off error. Expressions for values of b−a or c−a−b close to an integer are stated

in [24] and detailed below:

• An alternative formulation for (4.16) in Section 4.6, if a− b = k+ ε with k ∈ Z+∪{0},
and |ε| small, reads as follows:

2F1(a, b; c; z) =
Γ(c)

Γ(a)Γ(c− b)

k−1∑
j=0

(b)j(c− a)jΓ(k − j + ε)(−1)j

j!

(
1

1− z

)b+j
(A.7)

+Γ(c)
∞∑
j=0

Γ(a+ j)Γ(c− a+ k + j + ε)Γ(−k − j − ε)(−1)j

Γ(a)Γ(b)Γ(c− a)Γ(c− b)j!

(
1

1− z

)a+j

+Γ(c)
∞∑
j=0

Γ(a+ j − ε)Γ(c− a+ k + j)Γ(−j + ε)(−1)j+k

Γ(a)Γ(b)Γ(c− a)Γ(c− b)(j + k)!

(
1

1− z

)a+j−ε

.

If Re(a − b) < 0, then the parameters a and b are again exchanged before (A.7) is

applied.

• An alternative formulation for (4.18) in Section 4.6, if c−a−b = k+ε with k ∈ Z+∪{0}
and |ε| small, is given by

2F1(a, b; c; z) =
Γ(c)

Γ(a)Γ(c− b)

k−1∑
j=0

(a)j(b)jΓ(k + ε− j)(−1)j

j!
(1− z)j (A.8)

+Γ(c)
∞∑
j=0

Γ(a+ j)Γ(c− a+ k + j + ε)Γ(−k − j − ε)(−1)j

Γ(a)Γ(b)Γ(c− a)Γ(c− b)j!
(1− z)a+j

+Γ(c)
∞∑
j=0

Γ(a+ j + k)Γ(b+ j + k)Γ(ε− j)(−1)j+k

Γ(a)Γ(b)Γ(c− a)Γ(c− b)(j + k)!
(1− z)a+j−ε.

55



On the other hand, if c− a− b = −k + ε with k ∈ Z+, then (4.18) becomes

2F1(a, b; c; z) =
Γ(c)

Γ(a)Γ(b)

k−1∑
j=0

(c− a)j(c− b)jΓ(k − ε− j)(−1)j

j!
(1− z)j−k+ε (A.9)

+Γ(c)
∞∑
j=0

Γ(a+ j + ε)Γ(b+ j + ε)Γ(−j − ε)(−1)j+k

Γ(a)Γ(b)Γ(c− a)Γ(c− b)(j + k)!
(1− z)j+ε

+Γ(c)
∞∑
j=0

Γ(a+ j)Γ(b+ j)Γ(ε− j − k)(−1)j

Γ(a)Γ(b)Γ(c− a)Γ(c− b)j!
(1− z)j.

• If c− a− b = k + ε with k ∈ Z+ ∪ {0}, and |ε| is small, then the equivalent expression

for (4.19) in Section 4.6 is given by

lim
δ→0+

2F1(a, b; c; z + iδ) (A.10)

= z−aΓ(c)×

[
k−1∑
j=0

(a)j(1 + a− c)jΓ(k − j + ε)(−1)j

Γ(c− a)Γ(c− b)j!

(
1− 1

z

)j
+

∞∑
j=0

(a)j+k(1 + a− c)j+kΓ(ε− j)(−1)j+k

Γ(c− a)Γ(c− b)(j + k)!

(
1− 1

z

)j+k
+e−iπ(k+ε)

∞∑
j=0

(1− b)j(c− b)jΓ(−k − j − ε)(−1)j

Γ(a)Γ(b)j!

(
1− 1

z

)j+k+ε
]
.

If c− a− b = −k+ ε, when k ∈ Z+ and |ε| is small, the formula can instead be written

as:

lim
δ→0+

2F1(a, b; c; z + iδ) (A.11)

= z−aΓ(c)×

[
eiπ(k−ε)

k−1∑
j=0

(1− b)j(c− b)jΓ(k − j − ε)(−1)j

Γ(a)Γ(b)j!

(
1− 1

z

)j−k+ε

+ eiπ(k−ε)
∞∑
j=0

(1− b)j+k(c− b)j+kΓ(−ε− j)(−1)j+k

Γ(a)Γ(b)(j + k)!

(
1− 1

z

)j+ε
+z−aΓ(c)

∞∑
j=0

(a)j(a− c+ 1)jΓ(ε− k − j)(−1)j

Γ(a− k + ε)Γ(b− k + ε)j!

(
1− 1

z

)j]
.
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• Finally, an alternative formulation for (4.20) in Section 4.6, if a − b = k + ε where

k ∈ Z+ ∪ {0} and |ε| is small, reads as follows:

lim
δ→0+

2F1(a, b; c; z + iδ) = Γ(c)eiπb
k−1∑
j=0

(b− c+ 1)j(b)jΓ(k + ε− j)(−1)j

Γ(a)Γ(c− b)j!

(
1

z

)j+b
(A.12)

+Γ(c)eiπa
∞∑
j=0

(a)j(a− c+ 1)jΓ(−k − ε− j)(−1)j

Γ(b)Γ(c− a)j!

(
1

z

)j+a
+Γ(c)eiπb

∞∑
j=0

(b)j+k(b− c+ 1)j+kΓ(ε− j)(−1)j+k

Γ(a)Γ(c− b)(j + k)!

(
1

z

)j+k+b

.

Again, if Re(a − b) < 0, then the parameters a and b are exchanged before (A.12) is

applied.
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B List of test cases used for 1F1(a; b; z)

We show in Table 18 the 40 test cases that represent the range of problems that, as a

result of testing the methods and carrying out a literature review, are deemed to be likely

to cause code written for the purpose of computing 1F1(a; b; z) to fail. This could be due

to excessive round-off error or cancellation, the fact that the case represents a particular

instance or regime for which the method being tested will not work, or the fact that the

method is not sufficient for any regime. The aim is to find, for each test case, a method that

computes it quickly and accurately. The comments column explains the properties of each

case that motivate its place on the list.

Shown next to a number of cases is the paper that influenced the choice of test case. Test

cases 9, 10 and 11 were taken from [44], the discussion in [2] inspired the choice of test cases

17 and 18, and the combination of values of b and z (although not the value of a) in cases

26 and 27 were taken from [34].
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Case a b z Comments
1 0.1 0.2 0.5 Basic case, positive a, with b = 2a
2 −0.1 0.2 0.5 Basic case, negative a
3 0.1 0.2 −0.5 + i Basic case, complex z, with b = 2a
4 1 + i 1 + i 1− i Complex a, b, z
5 10−8 10−8 10−10 Very small parameters and variable
6 10−8 10−12 −10−10 + 10−12i Very small complex variable
7 1 1 10 + 10−9i Larger variable with small imaginary

part, and a = b
8 1 3 10 b > a > 0 and larger z
9 500 511 10 Large b > a > 0 [44]
10 8.1 10.1 100 Larger z, with b > a > 0 [44]
11 1 2 600 Very large z, with b = 2a [44]
12 100 1.5 2.5 Large positive a
13 −60 1 10 Large negative a, positive z
14 60 1 10 Large positive a, positive z
15 60 1 −10 Large positive a, negative z
16 −60 1 −10 Large negative a, negative z
17 1000 1 10−3 Very large a > 0, small z > 0, z = 1

a [2]
18 10−3 1 700 Very large z > 0, small a > 0 [2]
19 500 1 −5 Very large a > 0, z < 0
20 −500 1 5 Very large a < 0, z > 0
21 20 −10 + 10−9 −2.5 b close to positive integer, z < 0 < a
22 20 10− 10−9 2.5 b close to positive integer, a, z > 0
23 −20 −10 + 10−12 2.5 a negative integer, b close

to negative integer
24 50 10 200i Very large, purely imaginary z
25 −5 (−5 + 10−9) + (−5 + 10−9)i −1 b with real and imaginary parts close

to negative integer
26 4 80 200 Large b and larger z [34]
27 −4 500 300 Very large z and larger b [34]
28 5 0.1 −2 + 300i Very large imaginary part of z,

negative real part
29 −5 0.1 2 + 300i Very large imaginary part of z,

positive real part
30 2 + 8i −150 + i 150 Large values of Re(b) < 0 < Re(z)
31 5 2 100− 1000i Large values of z in fourth quadrant

of complex plane
32 −5 2 −100 + 1000i Large real and imaginary parts of z

in second quadrant of complex plane
33 −5 −2− i 1 + (2− 10−10)i Complex b and z, with mixed signs
34 1 10−12 1 Very small b
35 10 10−12 10 Very small b with larger a and z
36 1 −1 + 10−12i 1 Very small imaginary part of b
37 1000 1 −1000 Very large positive real a and very

large negative real z, with a = −z
38 −1000 1 1000 Very large negative real a and very

large positive real z, with a = −z
39 −10 + 500i 5i 10 Large imaginary part of a, imaginary b
40 20 10 + 1000i −5 Large imaginary part of b

Table 18: List of test cases used for 1F1(a; b; z).
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C List of test cases used for 2F1(a, b; c; z)

We show in Table 19 the 30 test cases written to represent the range of problems that,

as a result of testing the methods and carrying out a literature review, are deemed to be

likely to cause code written for the purpose of computing 2F1(a, b; c; z) to fail. As is the case

for 1F1(a; b; z), this could be due to excessive round-off error or cancellation, the fact that

the case represents a particular instance or regime for which the method being tested will

not work, or the fact that the method is not sufficient for any regime. Again, the aim is to

find, for each test case, a method that computes it quickly and accurately. The comments

column explains the properties of each case that motivate its place on the list.

Shown next to test case 30 is the paper from which it was taken.
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Case a b c z Comments
1 0.1 0.2 0.3 0.5 Basic case with b = 2a, c = a+ b
2 −0.1 0.2 0.3 0.5 Basic case with c = b− a
3 0.1 0.2 −0.3 −0.5 + 0.5i Basic case, complex z, with b = 2a,

c = −a− b
4 10−8 10−8 10−8 10−6 Very small parameters and variable
5 10−8 −10−6 10−12 −10−10 + 10−12i Very small complex variable
6 1 10 1 0.5 + 10−9i Variable with Re(z)� Im(z)
7 1 −1 + 10−12i 1 −0.8 Parameter b differs from a negative

integer by very small imaginary part
8 2 + 8i 3− 5i

√
2− πi 0.75 All parameters imaginary

9 100 200 350 i z on unit disc, large real parameters
10 2 + 10−9 3 5 −0.75 Real a close to positive integer,

negative z
11 −2 −3 −5 + 10−9 0.5 c close to negative integer, real a, b < 0
12 −1 −1.5 −2− 10−15 0.5 c close to negative integer, real b < a < 0
13 500 −500 500 0.75 Large real a = c > 0, b < 0,

2F1(a, b; c; z) = 1F0(b; ; z)
14 500 500 500 −0.6 Large real a = b = c > 0,

2F1(a, b; c; z) = 1F0(a; ; z)
15 −1000 −2000 −4000.1 −0.5 Very large negative c < b < a < 0
16 −100 −200 −300 + 10−9 0.5

√
2 Large negative real parameters, c

close to negative integer
17 300 10 5 0.5 Large real a > 0
18 5 −300 10 0.5 Large real b < 0
19 10 5 −300.5 0.5 Large real c < 0
20 2 + 200i 5 10 0.6 a with large positive imaginary part
21 2 + 200i 5− 100i 10 + 500i 0.8 Parameters all with large imaginary

parts
22 2 5 10− 500i −0.8 Large negative imaginary part of c
23 2.25 3.75 −0.5 −1 Special case of 2F1(a, b; 1 + a− b;−1)

= Γ(1+a−b)Γ(1+a/2)
Γ(1+a)Γ(1+a/2+b/2)

24 1 2 4 + 3i 0.6− 0.8i z on unit disc with Re(c− a− b) > 0
25 1 0.9 2 eiπ/3 z = eiπ/3 with Re(c− a− b) > 0
26 1 1 4 eiπ/3 z = eiπ/3 with a = b, c positive integers
27 −1 0.9 2 e−iπ/3 z = e−iπ/3 with real a < 0,

Re(c− a− b) > 0
28 4 1.1 2 0.5 + (0.5

√
3− 0.01)i z near e−iπ/3, different imaginary part

29 5 2.2 −3 0.49 + 0.5
√

3i z near e−iπ/3, different real part
30 2

3 1 4
3 eiπ/3 z = eiπ/3, known value is 2πeiπ/6Γ(1/3)

9[Γ(2/3)]2

[28]

Table 19: List of test cases used for 2F1(a, b; c; z).
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D Methods of testing the robustness of code selected

There are a number of different a posteriori error tests that can be applied to test

the accuracy and robustness of the code selected to compute the hypergeometric functions

1F1 and 2F1 for a specific parameter regime. We carried out a variety of such tests on the

code that was found to be comparatively robust. We recommend these tests, which are

detailed below, to any programmer who wishes to test a routine for the computation of a

hypergeometric function for robustness:

• We tested each method for computing 1F1 and 2F1 that was fairly robust on each test

case, as detailed in Appendices B, C, E and F. These test cases were devised on the

basis of a literature review and extensive testing of each method implemented and

are intended to represent a list of the classes of problems likely to find a flaw in a

routine for computing the particular hypergeometric function. Reasons are given in

Appendices B and C for why each case is potentially troublesome for the code, and

reference is made to any literature that directly led to the opinion that the case might

be difficult. The true solutions for each of the cases are found using Mathematica and

verified using MATLAB, and are given to 16 significant figures.

• Methods deemed to be effective for specific parameter regimes were extensively tested

on tabulated values from [64, 70] for 1F1 and [65] for 2F1.
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• Effective code for each parameter regime was tested on cases based on the following

known relations and values [3, 7, 37]:

M(1; 2; 2z) =
ez

z
sinh z,

M(a; a+ 1;−z) = az−aγ(a, z),

M

(
1

2
;
3

2
;−z2

)
=

√
π

2z
erf(z),

M

(
a+

1

2
; 2a+ 1; 2z

)
= Γ(1 + a)ez

(z
2

)−a
Ia(z),

M

(
−n;

1

2
; z2

)
= (−1)n

n!

(2n)!
H2n(z),

2F1(1, 1; 2;−z) =
1

z
log(1 + z),

2F1

(
1,

1

2
;
3

2
;−z2

)
=

1

z
tan−1 z,

2F1

(
a, 1− a; b;

1

2

)
=

21−b√πΓ(b)

Γ
(

1
2
a+ 1

2
b
)

Γ
(

1
2
b− 1

2
a+ 1

2

) ,
2F1

(
−n, n;

1

2
;
1− z

2

)
= Tn(z),

2F1

(
−n, n+ 1; 1;

1− z
2

)
= Pn(z).

In the relations above, the Hermite polynomials Hn(z) for n ∈ Z+∪{0} are defined

as (−1)nez
2/2 dn

dzn

(
1
2
e−z

2
)

, the Chebyshev polynomials Tn(z) for n ∈ Z+ ∪ {0} are

defined by T0(z) = 1, T1(z) = z, Tn+1(z) = 2zTn(z) − Tn−1(z) for n = 1, 2, ... (or

as Tn(z) = cos(n cos−1 z)), and the Legendre polynomials Pn(z) are defined by

Pn(z) = 1
2nn!

dn

dzn
[(z2 − 1)n]).
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• The numerical results for the most robust routines for M(a; b; z) obtained were tested

on the following known recurrence relations from [3], which provide a good a posteriori

test for the accuracy of a computation:

(b− a)M(a− 1; b; z) + (2a− b+ z)M(a; b; z)− aM(a+ 1; b; z) = 0,

b(b− 1)M(a; b− 1; z) + b(1− b− z)M(a; b; z) + z(b− a)M(a; b+ 1; z) = 0,

(a− b+ 1)M(a; b; z)− aM(a+ 1; b; z) + (b− 1)M(a; b− 1; z) = 0,

bM(a; b; z)− bM(a− 1; b; z)− zM(a; b+ 1; z) = 0,

b(a+ z)M(a; b; z) + z(a− b)M(a; b+ 1; z)− abM(a+ 1; b; z) = 0,

(a− 1 + z)M(a; b; z) + (b− a)M(a; b+ 1; z) + (1− b)M(a; b− 1; z) = 0,

as well as the following recurrence relation, which can be shown to be equivalent to

the differential equation (3.2) for M(a; b; z) by applying (2.7):

(a+ 1)zM(a+ 2; b+ 2; z) + (b+ 1)(b− z)M(a+ 1; b+ 1; z)− b(b+ 1)M(a; b; z) = 0.

Robust routines devised for computing 2F1(a, b; c; z) were tested on the following re-

currence relations, stated in [3, 15, 17]:

(c− a) 2F1(a− 1, b; c; z) + (2a− c+ (b− a)z) 2F1(a, b; c; z)

+ a(z − 1) 2F1(a+ 1, b; c; z) = 0,

(b− a) 2F1(a, b; c; z) + a 2F1(a+ 1, b; c; z)− b 2F1(a, b+ 1; c; z) = 0,

(c− a− b) 2F1(a, b; c; z) + a(1− z) 2F1(a+ 1, b; c; z)

− (c− b) 2F1(a, b− 1; c; z) = 0,

c(a+ (b− c)z) 2F1(a, b; c; z)− ac(1− z) 2F1(a+ 1, b; c; z)

+ (c− a)(c− b)z 2F1(a, b; c+ 1; z) = 0,

(c− a− 1) 2F1(a, b; c; z) + a 2F1(a+ 1, b; c; z)− (c− 1) 2F1(a, b; c− 1; z) = 0,

c(1− z) 2F1(a, b; c; z)− c 2F1(a− 1, b; c; z) + (c− b)z 2F1(a, b; c+ 1; z) = 0,

(a− 1 + (b+ 1− c)z) 2F1(a, b; c; z) + (c− a) 2F1(a− 1, b; c; z)

− (c− 1)(1− z) 2F1(a, b; c− 1; z) = 0,

c(c− 1)(z − 1) 2F1(a, b; c− 1; z) + c(c− 1− (2c− a− b− 1)z) 2F1(a, b; c; z)

+ (c− a)(c− b)z 2F1(a, b; c+ 1; z) = 0,
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as well as the following recurrence relation, which by (2.7) is equivalent to the differ-

ential equation (4.2) for 2F1(a, b; c; z):

z(1− z)(a+ 1)(b+ 1)2F1(a+ 2, b+ 2; c+ 2; z)

+ [c− (a+ b+ 1)z](c+ 1)2F1(a+ 1, b+ 1; c+ 1; z)− c(c+ 1)2F1(a, b; c; z) = 0.

• The solutions were tested on the following Wronskians for M(a; b; z) and 2F1(a, b; c; z),

from [36, 67]:

W {M(a; b; z), U(a; b; z)}

= −Γ(b)z−bez

Γ(a)
,

W {2F1(a, b; c; z), z1−c
2F1(a− c+ 1, b− c+ 1; 2− c; z)}

= (1− c)z−c(1− z)c−a−b−1,

W {2F1(a, b; a+ b+ 1− c; 1− z), (1− z)c−a−b 2F1(c− a, c− b; c− a− b+ 1; 1− z)}

= (a+ b− c)z−c(1− z)c−a−b−1,

W {z−a 2F1(a, a− c+ 1; a− b+ 1;
1

z
), z−b 2F1(b, b− c+ 1; b− a+ 1;

1

z
)}

= (a− b)z−c(z − 1)c−a−b−1,

where the Wronskian of two functions g1(z), g2(z) is defined as

W {g1(z), g2(z)} = g1(z)g′2(z)− g′1(z)g2(z).
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E Numerical results for 1F1(a; b; z)

Case (a,b,z) Correct M(a; b; z) Taylor (a) (tol = 10−15) N
1 (0.1,0.2,0.5) 1.317627178278510 1.317627178278510 (16) 15
2 (−0.1, 0.2, 0.5) 0.695536565102261 0.695536565102261 (16) 15
3 (0.1, 0.2,−0.5 + i) 0.667236640109150 0.667236640109149 19

+0.274769720129335i +0.274769720129335i (14)
4 (1 + i, 1 + i, 1− i) 1.468693939915885 1.468693939915885 21

−2.287355287178842i −2.287355287178842i (15)
5 (10−8, 10−8, 10−10) 1.000000000100000 1.000000000100000 (16) 3
6 (10−8, 10−12,−10−10 + 10−12i) 0.999999000000000 0.999999000088899 3

+0.000000010000000i +0.000000010000000i (11)
7 (1, 1, 10 + 10−9i) 2.202646579480672× 10−4 2.202646579480671× 10−4 46

+2.02646579480672× 10−5i +2.02646579480672× 10−5i (15)
8 (1,3,10) 4.403093158961343× 102 4.403093158961343× 102 (16) 44
9 (500,511,10) 1.779668553337393× 10−4 1.779668553337393× 10−4 (16) 46
10 (8.1,10.1,100) 1.724131075992688× 1041 1.724131075992686× 1041 (15) 188
11 (1,2,600) 6.288367168216566× 10257 500 terms computed N/A
12 (100,1.5,2.5) 2.748892975858683× 1012 2.748892975858683× 1012 (16) 48
13 (−60, 1, 10) 10.04854112964948 −35.241346779094869 (0) 58
14 (60,1,10) 1.818086887618945× 1022 1.818086887618948× 1022 (15) 72
15 (60, 1,−10) −6.713066845459067× 10−4 1.608258431433813× 105 (0) 97
16 (−60, 1,−10) 1.233142540998589× 1018 1.233142540998589× 1018 (16) 46
17 (1000, 1, 10−3) 2.279929853828663 2.279929853828663 (16) 12
18 (10−3, 1, 700) 1.46135307199289× 10298 500 terms computed N/A
19 (500,1,-5) 0.001053895943365 1.669453216927715× 1026 (0) 128
20 (-500,1,5) 0.251406264291805 6.711437272547195× 1023 (0) 115
21 (20,−10 + 10−9,−2.5) 8.857934344815256× 109 8.857934347919209× 109 (9) 49
22 (20, 10− 10−9, 2.5) 98.353133058093164 98.353133058093178 (15) 29
23 (−20,−10 + 10−12, 2.5) −1.051351454763442× 1014 −1.051351454763442× 1014 (16) 22
24 (50, 10, 200i) −3.000605782805072× 1035 1.600646031599127× 10108 425

+3.046849261045972× 1035i −4.042278036419474× 10107i (0)
25 (−5, (−5 + 10−9) + (−5 + 10−9)i,−1) 0.507421537454510 0.507421537454510 7

+0.298577267504408i +0.298577267504408i (16)
26 (4,80,200) 3.448551506216654× 1027 3.448551506216651× 1027 (15) 248
27 (−4, 500, 300) 0.024906201315854 0.024906201315854 (14) 6
28 (5, 0.1,−2 + 300i) 7.208553632163922× 1010 9.670266564937197× 10139 452

−1.550289119122414× 1010i +1.252328293832722× 10139i (0)
29 (−5, 0.1, 2 + 300i) 2.897045042631838× 1010 2.897045042631835× 1010 7

−8.276253515853658× 1011i −8.276253515853651× 1011i (15)
30 (2 + 8i,−150 + i, 150) −9.853780031496243× 10135 −9.853780031496170× 10135 409

+3.293888962100131× 10136i +3.293888962100122× 10136i (13)
31 (5, 2, 100− 1000i) 7.002864442038879× 1050 500 terms computed N/A

+8.973775767458327× 1050i
32 (−5, 2,−100 + 1000i) 7.196140446954445× 1011 7.196140446954443× 1011 7

−1.233790613611111× 1012i −1.233790613611111× 1012i (15)
33 (−5,−2− i, 1 + (2− 10−10)i) 61.699999992549998 61.699999992550005 7

+9.899999997100000i +9.899999997100000i (11)
34 (1, 10−12, 1) 2.718281828457880× 1012 2.718281828457886× 1012 (15) 20
35 (10, 10−12, 10) 1.332534440778499× 1023 1.332415988221225× 1023 (4) 53
36 (1,−1 + 10−12i, 1) −5.528996131321089× 10−1 −5.528996131321089× 10−1 21

+2.718281828459045× 1012i +2.718281828459045× 1012i (16)
37 (1000, 1,−1000) 1.805334147110282× 10−53 500 terms computed N/A
38 (−1000, 1, 1000) 2.593820783362006× 10215 500 terms computed N/A
39 (−10 + 500i, 5i, 10) 7.086198763185099× 1043 7.020404376373322× 1043 151

+2.328576049934718× 1043i +2.431781751237888× 1043i (1)
40 (20, 10 + 1000i,−5) 0.993763703678828 0.993763703678828 11

+0.099687801957356i +0.099687801957356i (16)

Table 20: Numerical results for 1F1(a; b; z) part 1/6; shown is the correct value using MAT-
LAB and verified using Mathematica, the results from Taylor series method (a) from Section
3.2 with the number of digits of accuracy in brackets, and the number of terms computed
using this method.
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Case (a, b, z) Taylor (b) (tol = 10−15) N Single fraction (tol = 10−15) N
1 (0.1,0.2,0.5) 1.317627178278510 (16) 15 1.317627178278509 (14) 15
2 (−0.1, 0.2, 0.5) 0.695536565102261 (16) 15 0.695536565102261 (16) 15
3 (0.1, 0.2,−0.5 + i) 0.667236640109150 19 0.667236640109149 19

+0.274769720129335i (16) +0.274769720129335i (14)
4 (1 + i, 1 + i, 1− i) 1.468693939915885 21 1.468693939915886 21

−2.287355287178843i (15) −2.287355287178842i (15)
5 (10−8, 10−8, 10−10) 1.000000000100000 (16) 3 1.000000000100000 (16) 3
6 (10−8, 10−12,−10−10 + 10−12i) 0.999999000000000 3 0.999999000000000 3

+0.000000010000000i (16) +0.000000010000000i (16)
7 (1, 1, 10 + 10−9i) 2.202646579480672× 10−4 46 2.202646579480671× 10−4 46

+2.02646579480669× 10−5i (14) +2.02646579480672× 10−5i (15)
8 (1,3,10) 4.403093158961347× 102 (15) 44 4.403093158961341× 102 (15) 44
9 (500,511,10) 1.779668553337393× 10−4 (16) 46 1.779668553337394× 10−4 (15) 45
10 (8.1,10.1,100) 1.724131075992686× 1041 (15) 188 1.443638146242888× 1040 (0) 85
11 (1,2,600) 500 terms computed N/A 2.708933063093695× 1094 (0) 73
12 (100,1.5,2.5) 2.748892975858682× 1012 (15) 48 2.748892975858684× 1012 (15) 48
13 (−60, 1, 10) −13.585500872106090 (0) 58 −19.306589748926299 (0) 58
14 (60,1,10) 1.818086887618946× 1022 (15) 72 1.818086887618944× 1022 (15) 97
15 (60, 1,−10) 4.161733968914763× 105 (0) 96 6.748784369464462× 104 (0) 97
16 (-60,1,-10) 1.233142540998589× 1018 (16) 46 1.233142540998589× 1018 (16) 46
17 (1000,1,10−3) 2.279929853828663 (16) 12 2.279929853828663 (16) 12
18 (10−3, 1, 700) 500 terms computed N/A 1.788934052781859× 1096 (0) 73
19 (500, 1,−5) 1.319078645590728× 1026 (0) 128 −4.223914178002353× 1032 (0) 90
20 (−500, 1, 5) 2.807220260994878× 1023 (0) 116 −2.959206777727982× 1023 (0) 92
21 (20,−10 + 10−9,−2.5) 8.857934341268038× 109 (9) 49 8.857934344315682× 109 (10) 49
22 (20, 10− 10−9, 2.5) 98.353133058093192 (14) 29 98.353133058093263 (13) 29
23 (−20,−10 + 10−12, 2.5) −1.051351454763440× 1014 (15) 22 −1.051351454763444× 1014 (15) 22
24 (50, 10, 200i) −8.164726863126853× 10107 425 NaN+NaNi (0) 95

−1.893898004263770× 10108i (0)
25 (−5, (−5 + 10−9) + (−5 + 10−9)i,−1) 0.507421537454510 7 0.507421537454510 7

+0.298577267504408i (16) +0.298577267504408i (16)
26 (4,80,200) 3.448551506216642× 1027 (14) 247 1.020523345666494× 1024 (0) 80
27 (−4, 500, 300) 0.024906201315854 (14) 6 0.024906201315854 (14) 6
28 (5, 0.1,−2 + 300i) 9.670266564937197× 10139 452 NaN+NaNi (0) 99

+1.252328293832722× 10139i (0)
29 (−5, 0.1, 2 + 300i) 2.897045042631837× 1010 6 2.897045042631837× 1010 7

−8.276253515853658× 1011i (15) −8.276253515853661× 1011i (14)
30 (2 + 8i,−150 + i, 150) −9.853780031496204× 10135 409 500 terms computed N/A

+3.293888962100115× 10136i (14)
31 (5, 2, 100− 1000i) 500 terms computed N/A NaN+NaNi (0) 98

32 (−5, 2,−100 + 1000i) 7.196140446954445× 1011 7 7.196140446954445× 1011 7
−1.233790613611111× 1012i (16) −1.233790613611111× 1012i (16)

33 (−5,−2− i, 1 + (2− 10−10)i) 61.699999992550005 7 61.699999992549998 7
+9.899999997100002i (11) +9.899999997099993i (10)

34 (1, 10−12, 1) 2.718281828457880× 1012 (16) 20 2.718281828457880× 1012 (16) 20
35 (10, 10−12, 10) 1.332534440778498× 1023 (15) 53 1.332534440778500× 1023 (13) 54
36 (1,−1 + 10−12i, 1) −5.528996131321089× 10−1 21 −5.528996131321099× 10−1 21

+2.718281828459045× 1012i (16) +2.718281828459045× 1012i (15)
37 (1000, 1,−1000) 500 terms computed N/A −1.453008575645283× 10174 (0) 52
38 (−1000, 1, 1000) 500 terms computed N/A −1.133008385978182× 10173 (0) 52
39 (−10 + 500i, 5i, 10) 7.142144460489667× 1043 151 500 terms computed N/A

+2.336672709767327× 1043i (1)
40 (20, 10 + 1000i,−5) 0.993763703678828 10 0.993763703678828 12

+0.099687801957356i (16) +0.099687801957356i (16)

Table 21: Numerical results for 1F1(a; b; z) part 2/6; shown are the results from Taylor series
method (b) in Section 3.2, the single fraction method of Section 3.3, and the number of terms
computed for each. The number of digits of accuracy of each method is placed in brackets;
this notation will will continue for the remainder of this appendix.
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Case (a, b, z) Buchholz 1 (tol = 10−15) N Buchholz 2 (tol = 10−15) N
1 (0.1,0.2,0.5) 170 terms computed N/A 500 terms computed N/A
2 (−0.1, 0.2, 0.5) 0.695742258430131 (4) 11 0.695536565102262 (15) 12
3 (0.1, 0.2,−0.5 + i) 170 terms computed N/A 500 terms computed

4 (1 + i, 1 + i, 1− i) 1.469314879177899 14 1.468693939915886 15
−2.286400529446476i (3) −2.287355287178842i (15)

5 (10−8, 10−8, 10−10) 1.000000005007177 (9) 3 1.000000005007180 (9) 3
6 (10−8, 10−12,−10−10 + 10−12i) 1.000004373569878 3 1.000004373569878 3

+0.000000010000000i (0) +0.000000010000000i (0)
7 (1, 1, 10 + 10−9i) 170 terms computed N/A 2.202646579480671× 104 32

+2.2026631199777× 10−5i (5)
8 (1,3,10) 170 terms computed N/A 4.403093158961342× 102 (15) 32
9 (500,511,10) 170 terms computed N/A 500 terms computed N/A
10 (8.1,10.1,100) 170 terms computed N/A 1.724131075992711× 1041 (13) 32
11 (1,2,600) 170 terms computed N/A 500 terms computed N/A
12 (100,1.5,2.5) 2.748923904028464× 1012 (4) 10 2.748892975858687× 1012 (15) 110
13 (−60, 1, 10) 170 terms computed N/A −10.048954112964900 (14) 41
14 (60,1,10) 170 terms computed N/A 1.818086887618946× 1022 (15) 31
15 (60, 1,−10) 170 terms computed N/A −6.713066845459049× 10−4 (14) 37
16 (−60, 1,−10) 170 terms computed N/A 1.233142540998591× 1018 (14) 31
17 (1000, 1, 10−3) 2.279929853828661 (15) 3 2.279929853828660 (15) 4
18 (10−3,1,700) 170 terms computed N/A 500 terms computed N/A
19 (500, 1,−5) 0.001053940354303 (7) 3 0.001053895943365 (16) 24
20 (−500, 1, 5) 0.251412647967877 (5) 11 0.251406264291806 (15) 22
21 (20,−10 + 10−9,−2.5) 170 terms computed N/A 8.857934360394379× 109 (8) 26
22 (20, 10− 10−9, 2.5) 98.355163835291791 (4) 15 98.353132437185800 (7) 17
23 (−20,−10 + 10−12, 2.5) 170 terms computed N/A −1.051290662997823× 1014 (4) 26
24 (50, 10, 200i) 170 terms computed N/A 500 terms computed N/A

25 (−5, (−5 + 10−9) + (−5 + 10−9)i,−1) 0.507423640026765 19 0.507421537454510 15
+0.298580648127604i (4) +0.298577267504409i (15)

26 (4,80,200) 170 terms computed N/A 500 terms computed N/A
27 (−4, 500, 300) 170 terms computed N/A 500 terms computed N/A
28 (5, 0.1,−2 + 300i) 170 terms computed N/A 500 terms computed N/A

29 (−5, 0.1, 2 + 300i) 170 terms computed N/A 500 terms computed N/A

30 (2 + 8i,−150 + i, 150) 170 terms computed N/A 500 terms computed N/A

31 (5, 2, 100− 1000i) 170 terms computed N/A 500 terms computed N/A

32 (−5, 2,−100 + 1000i) 170 terms computed N/A 500 terms computed N/A

33 (−5,−2− i, 1 + (2− 10−10)i) 170 terms computed N/A 500 terms computed N/A

34 (1, 10−12, 1) 2.719894658150835× 1012 (3) 14 2.718267221656422× 1012 (5) 15
35 (10, 10−12, 10) 170 terms computed N/A 2.050732524592003× 1024 (0) 32
36 (1,−1 + 10−12i, 1) 9.811147843567357× 106 17 9.992870000444725× 106 15

+2.722943556625816× 1012i (0) +2.718281828848585× 1012i
37 (1000, 1,−1000) 170 terms computed N/A 500 terms computed N/A
38 (−1000, 1, 1000) 170 terms computed N/A 500 terms computed N/A
39 (−10 + 500i, 5i, 10) 6.199417984891287× 1042 15 3.982062330684256× 1042 28

+3.820721389070740× 1043i (0) +3.783409778766555× 1043i (0)
40 (20, 10 + 1000i,−5) 170 terms computed N/A 170 terms computed N/A

Table 22: Numerical results for 1F1(a; b; z) part 3/6; shown are the results from methods 1
and 2 from Section 3.4, and the number of terms computed for each method.
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Case (a,b,z) Buchholz 3 (tol = 10−15) N Beta series (tol = 10−15) N
1 (0.1,0.2,0.5) 1.317839415371721 (4) 11 1.317627177923377 (9) 6
2 (−0.1, 0.2, 0.5) 0.695742258430129 (4) 11 0.695536565102261 (16) 6
3 (0.1, 0.2,−0.5 + i) 0.665061834948175 15 0.667236705173041 6

+0.277048273017027i (2) +0.277048273017027i (3)
4 (1 + i, 1 + i, 1− i) 1.469314879177899 14 500 terms computed N/A

−2.286400529446476i (3) −2.286400529446476i (3)
5 (10−8, 10−8, 10−10) 1.000000000100000 (9) 3 1.000000000100000 (16) 3
6 (10−8, 10−12,−10−10 + 10−12i) 0.999999000088888 3 0.999999000088888 3

+0.000000009999111i (9) +0.000000009999111i (9)
7 (1, 1, 10 + 10−9i) 170 terms computed N/A 500 terms computed N/A

8 (1,3,10) 170 terms computed N/A 4.403093158961343× 102 (16) 39
9 (500,511,10) 170 terms computed N/A 1.779668553337395× 10−4 (15) 12
10 (8.1,10.1,100) 170 terms computed N/A 500 terms computed N/A
11 (1,2,600) 170 terms computed N/A 2.913833835501408× 10134 (0) 2
12 (100,1.5,2.5) 2.748923904028461× 1012 (4) 10 500 terms computed N/A
13 (−60, 1, 10) 1.413226048215916× 105 (0) 19 500 terms computed N/A
14 (60,1,10) 170 terms computed N/A 500 terms computed N/A
15 (60, 1,−10) 2.771191610071790 (0) 18 500 terms computed N/A
16 (−60, 1,−10) 170 terms computed N/A 500 terms computed N/A
17 (1000, 1, 10−3) 2.279929853828663 (16) 3 2.279929853828663 (16) 25
18 (10−3, 1, 700) 170 terms computed N/A 500 terms computed N/A
19 (500, 1,−5) 1.905228957818582× 1024 (0) 9 500 terms computed N/A
20 (−500, 1, 5) 7.330744651005754× 1024 (0) 10 500 terms computed N/A
21 (20,−10 + 10−9,−2.5) 170 terms computed N/A 8.857765424923950× 109 (4) 83
22 (20, 10− 10−9, 2.5) 98.355163835291577 (4) 15 98.353133058093931 (13) 21
23 (−20,−10 + 10−12, 2.5) 170 terms computed N/A −1.051351364505603× 1014 (7) 69
24 (50, 10, 200i) 170 terms computed N/A 500 terms computed N/A

25 (−5, (−5 + 10−9) + (−5 + 10−9)i,−1) 0.507423641026765 7 0.507421537454510 21
+0.298580648127604i (4) +0.298577267504408i (16)

26 (4,80,200) 170 terms computed N/A −1.051283623213817× 1033 (0) 60
27 (−4, 500, 300) 170 terms computed N/A 0.153016595479951 (0) 114
28 (5, 0.1,−2 + 300i) 170 terms computed N/A 500 terms computed N/A

29 (−5, 0.1, 2 + 300i) 170 terms computed N/A 500 terms computed N/A

30 (2 + 8i,−150 + i, 150) 170 terms computed N/A 500 terms computed N/A

31 (5, 2, 100− 1000i) 170 terms computed N/A 500 terms computed N/A

32 (−5, 2,−100 + 1000i) 170 terms computed N/A 500 terms computed N/A

33 (−5,−2− i, 1 + (2− 10−10)i) 170 terms computed N/A 61.699999992550538 45
+9.89999999709625i (10)

34 (1, 10−12, 1) 2.719652879427196× 1012 (3) 14 500 terms computed N/A
35 (10, 10−12, 10) 170 terms computed N/A 500 terms computed N/A
36 (1,−1 + 10−12i, 1) 170 terms computed N/A −5.528996131321100× 10−1 38

+2.718281828459045× 1012i (13)
37 (1000, 1,−1000) 170 terms computed N/A 500 terms computed N/A
38 (−1000, 1, 1000) 170 terms computed N/A 500 terms computed N/A
39 (−10 + 500i, 5i, 10) 6.199417984891350× 1042 15 500 terms computed N/A

+3.820721389070737× 1043i (0)
40 (20, 10 + 1000i,−5) 0.993763703523084 11 0.993763703678828 9

+0.099687803000057i (8) +0.099687801957356i (16)

Table 23: Numerical results for 1F1(a; b; z) part 4/6; shown are the results from method 3
of Section 3.4, the beta series method of Appendix G.1, and the number of terms computed
for each.
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Case (a,b,z) Asymptotic (a) (tol = 10−15) N Asymptotic (b) (tol = 10−15) N
1 (0.1,0.2,0.5) 500 terms computed N/A 500 terms computed N/A
2 (-0.1,0.2,0.5) 500 terms computed N/A 500 terms computed N/A
3 (0.1, 0.2,−0.5 + i) 500 terms computed N/A 500 terms computed N/A

4 (1 + i, 1 + i, 1− i) 500 terms computed N/A 500 terms computed N/A

5 (10−8, 10−8, 10−10) 500 terms computed N/A 500 terms computed N/A
6 (10−8, 10−12,−10−10 + 10−12i) 500 terms computed N/A 500 terms computed N/A

7 (1, 1, 10 + 10−9i) 500 terms computed N/A 500 terms computed N/A

8 (1,3,10) 4.403093158961344× 102 (15) 3/3 4.403093158961344× 102 (15) 3/4
9 (500,511,10) 500 terms computed N/A 500 terms computed N/A
10 (8.1,10.1,100) 1.724131075992683× 1041 (15) 10/2 1.724131075992683× 1041 (2) 11/3
11 (1,2,600) 6.288367168216566× 10257 (16) 3/3 6.288367168216566× 10257 (16) 3/3
12 (100,1.5,2.5) 500 terms computed N/A 500 terms computed N/A
13 (−60, 1, 10) 500 terms computed N/A 500 terms computed N/A
14 (60,1,10) 500 terms computed N/A 500 terms computed N/A
15 (60, 1,−10) 500 terms computed N/A 500 terms computed N/A
16 (−60, 1,−10) 500 terms computed N/A 500 terms computed N/A
17 (1000, 1, 10−3) 500 terms computed N/A 500 terms computed N/A
18 (10−3, 1, 700) 1.461353307199288× 10298 (15) 8/5 1.461353307199288× 10298 (15) 9/6
19 (500, 1,−5) 500 terms computed N/A 500 terms computed N/A
20 (−500, 1, 5) 500 terms computed N/A 500 terms computed N/A
21 (20,−10 + 10−9,−2.5) 500 terms computed N/A 500 terms computed N/A
22 (20, 10− 10−9, 2.5) 500 terms computed N/A 500 terms computed N/A
23 (−20,−10 + 10−12, 2.5) 500 terms computed N/A 500 terms computed N/A
24 (50, 10, 200i) 500 terms computed N/A 500 terms computed N/A

25 (−5, (−5 + 10−9) + (−5 + 10−9)i,−1) 500 terms computed N/A 500 terms computed N/A

26 (4,80,200) 3.448551506216226× 1027 (13) 5/35 3.448551506216225× 1027 (13) 6/36
27 (−4, 500, 300) 500 terms computed N/A 500 terms computed N/A
28 (5, 0.1,−2 + 300i) 7.208553632163907× 1010 6/14 7.208553632163907× 1010 7/15

−1.550289119122399× 1010i (13) −1.550289119122399× 1010i (13)
29 (−5, 0.1, 2 + 300i) NaN+NaNi (0) 14/7 NaN+NaNi (0) 15/8

30 (2 + 8i,−150 + i, 150) NaN+NaNi (0) 5/10 NaN+NaNi (0) 6/11

31 (5, 2, 100− 1000i) NaN+NaNi (0) 11/7 NaN+NaNi (0) 12/8

32 (−5, 2,−100 + 1000i) 500 terms computed N/A 500 terms computed N/A

33 (−5,−2− i, 1 + (2− 10−10)i) 500 terms computed N/A 500 terms computed N/A

34 (1, 10−12, 1) 500 terms computed N/A 500 terms computed N/A
35 (10, 10−12, 10) 500 terms computed N/A 500 terms computed N/A
36 (1,−1 + 10−12i, 1) 500 terms computed N/A 500 terms computed N/A

37 (1000, 1,−1000) 500 terms computed N/A 500 terms computed N/A
38 (−1000, 1, 1000) 500 terms computed N/A 500 terms computed N/A
39 (−10 + 500i, 5i, 10) 500 terms computed N/A 500 terms computed N/A

40 (20, 10 + 1000i,−5) 500 terms computed N/A 500 terms computed N/A

Table 24: Numerical results for 1F1(a; b; z) part 5/6; shown are the results from asymptotic
series methods (a) and (b) of Section 3.5, and the number of terms computed to compute
the series (3.23) and (3.24).
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Case (a,b,z) Gauss-Jacobi (Nmesh = 200) N RK4 (Nmesh = 500)
1 (0.1,0.2,0.5) 1.317627178278510 (16) 10 1.317627178272184 (12)
2 (−0.1, 0.2, 0.5) 0.695536565117007 (11)
3 (0.1, 0.2,−0.5 + i) 0.667236640109151 10 0.667236640069050

+0.274769720129335i (14) +0.274769720118543i (10)
4 (1 + i, 1 + i, 1− i) 1.468693939915453

−2.287355287178543i (13)
5 (10−8, 10−8, 10−10) 1.000000000100030 (14)
6 (10−8, 10−12,−10−10 + 10−12i) 0.999999999900024

+0.000000000001000i (7)
7 (1, 1, 10 + 10−9i) 2.202646550655129× 10−4

+2.202646550655129× 10−5i (8)
8 (1,3,10) 4.403093158961341× 102 (15) 10 4.403093148049358× 102 (8)
9 (500,511,10) NaN (0) NaN (0)
10 (8.1,10.1,100) 1.724131075992687× 1041 (15) 30 1.722537193851716× 1041 (3)
11 (1,2,600) 6.288367168215225× 10257 (12) 70 1.479432114195077× 10256 (0)
12 (100,1.5,2.5) 2.748885788836260× 1012 (5)
13 (−60, 1, 10) −10.188448906836700 (2)
14 (60,1,10) 1.816295490482157× 1022 (3)
15 (60, 1,−10) −6.793293948029929× 10−4 (2)
16 (−60, 1,−10) 1.232168820022416× 1018 (3)
17 (1000, 1, 10−3) 2.279929853883460 (11)
18 (10−3, 1, 700) 1.461353307199045× 10298 (13) 70 1.404571654438778× 10295 (0)
19 (500, 1,−5) −7.627275304977973× 10−4 (0)
20 (−500, 1, 5) −0.032291191622581 (0)
21 (20,−10 + 10−9,−2.5) 5.483601858393873× 1014 (0)
22 (20, 10− 10−9, 2.5) 98.353133200849229 (8)
23 (−20,−10 + 10−12, 2.5) −6.201407443966957× 1017 (15)
24 (50, 10, 200i) −2.793635422283713× 1035

−2.775425472898587× 1035i (0)
25 (−5, (−5 + 10−9) + (−5 + 10−9)i,−1) −4.285233435708474× 103

−4.445607978729533× 104i (0)
26 (4,80,200) 6.470060431231330× 1028 (0) N/A −3.322885799839796× 1059 (0)
27 (−4, 500, 300) 8.361936470287937× 10280 (0)
28 (5, 0.1,−2 + 300i) 5.863939931340572× 1010

−2.167792798974293× 1010i (0)
29 (−5, 0.1, 2 + 300i) 3.370368728276094× 1010

−8.381696309624608× 1011i (0)
30 (2 + 8i,−150 + i, 150) NaN+NaNi (0)

31 (5, 2, 100− 1000i) −1.311578113933106× 1013

+1.010042944762634× 1013i (0)
32 (−5, 2,−100 + 1000i) 7.842056930954999× 1011

−1.255786004291030× 1012i (1)
33 (−5,−2− i, 1 + (2− 10−10)i) 61.630758240468424

+10.102788220752368i (0)
34 (1, 10−12, 1) 2.718279502014370× 1012 (5)
35 (10, 10−12, 10) 1.332433731584012× 1023 (4)
36 (1,−1 + 10−12i, 1) −5.533356053310802× 10−1

+2.718218662119980× 1012i (2)
37 (1000, 1,−1000) 1.148741372573041× 10248 (0)
38 (−1000, 1, 1000) NaN (0)
39 (−10 + 500i, 5i, 10) 7.539964771333821× 1043

+1.951376092802496× 1043i (0)
40 (20, 10 + 1000i,−5) NaN+NaNi (0)

Table 25: Numerical results for 1F1(a; b; z) part 6/6; shown are the results from the Gauss-
Jacobi quadrature method of Section 3.6 with 200 mesh points (when Re(b) > Re(a) > 0),
the number of mesh points Ncrit required to generate 10 digit accuracy with the Gauss-Jacobi
quadrature method (where the number of mesh points was increased in increments of 10 until
10 digit accuracy was obtained), and the results from applying the RK4 method of Section
3.7 with 500 mesh points.
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F Numerical results for 2F1(a, b; c; z)

Case (a,b,c,z) Correct 2F1(a, b; c; z) Taylor (a) (tol = 10−15) N
1 (0.1,0.2,0.3,0.5) 1.046432811217352 1.046432811217352 (16) 41
2 (−0.1,0.2,0.3,0.5) 0.956434210968214 0.956434210968214 (16) 40
3 (0.1,0.2,−0.3,−0.5 + 0.5i) 1.027216624114001 1.027216624114002 88

−0.013577157567418i −0.013577157567418i (15)
4 (10−8,10−8,10−8,10−6) 1.000000000000010 1.000000000000010 (16) 3
5 (10−8,−10−6,10−12,−10−10 + 10−12i) 1.000000000001000 1.000000000001000 3

−0.000000000000010i +0.000000010000000i (16)
6 (1,10,1,0.5 + 10−9i) 1.024000000000000× 103 1.023999999999999× 103 79

+2.048000000000000× 10−5i +2.047999999999990× 10−5i (3)
7 (1,−1 + 10−12i,1,−0.8) 1.800000000000000 1.800000000000000 10

−0.000000000001058i −0.000000000001058i (16)

8 (2 + 8i,3− 5i,
√

2− πi,0.75) 6.882463762011614× 103 6.882463762011581× 103 163
−6.596555778724484× 103i −6.596555778724495× 103i (13)

9 (100,200,350,i) 5.686708048303445× 10155 500 terms computed N/A
+4.471204020179333× 10155i

10 (2 + 10−9,3,5,−0.75) 0.492238858852651 0.492238858852651 (16) 115
11 (−2,−3,−5 + 10−9,0.5) 0.474999999913750 0.474999999913750 (16) 3
12 (−1,−1.5,−2− 10−15,0.5) 0.625000000000000 0.625000000000000 (16) 2
13 (500,−500,500,0.75) 9.332636185032189× 10−302 3.047459035998018× 10102 (0) 351
14 (500,500,500,−0.6) 8.709809816217217× 10−103 500 terms computed N/A
15 (−1000,−2000,−4000.1,−0.5) 5.233580403196932× 1094 5.233580403196953× 1094 (14) 293

16 (−100,−200,−300 + 10−9,0.5
√

2) 2.653635302903707× 10−31 0.078395353116161 (0) 87
17 (300,10,5,0.5) 3.912238919961547× 1098 500 terms computed N/A
18 (5,−300,10,0.5) 1.661006238211309× 10−7 4.628142177960427× 1029 (0) 199
19 (10,5,−300.5,0.5) −3.852027081523919× 1032 0.921182716632848 (0) 12
20 (2 + 200i,5,10,0.6) 1.499739394713933× 10−7 −8.206946157063342× 1031 399

+5.771450716812297× 10−7i +8.961768586845500× 1031i (0)
21 (2 + 200i,5− 100i,10 + 500i,0.8) −4.103442641430799 −4.102898902166944 146

+6.013632243569482i +6.016364243229925i (3)
22 (2,5,10− 500i,−0.8) 0.999450314116122 0.999450314116122 9

−0.015980509652011i −0.015980509652011i (16)
23 (2.25, 3.75,−0.5,−1) −0.631220676949703 500 terms computed N/A
24 (1,2,4 + 3i,0.6− 0.8i) 0.834550347995121 500 terms computed 22

−0.316176129469793i

25 (1,0.9,2,eiπ/3) 0.932633569241998 500 terms computed N/A
+0.475200538581623i

26 (1,2.5,5,eiπ/3) 0.950417228136049 500 terms computed N/A
+0.548723642506806i

27 (−1,0.9,2,e−iπ/3) 0.775000000000000 500 terms computed N/A
+0.389711431702997i

28 (4,1.1,2,0.5 + (0.5
√

3− 0.01)i) −0.470097672835090 500 terms computed N/A
+0.500986178581549i

29 (5,2.2,−2.5,0.49 + 0.5
√

3i) 1.084589030597151× 103 500 terms computed N/A
−5.115786480028586i

30 ( 2
3

,1, 4
3

,eiπ/3) 0.883319375142725 500 terms computed N/A
+0.509984679019064i

Table 26: Numerical results for 2F1(a, b; c; z) part 1/4; shown is the correct value using
MATLAB and verified with Mathematica, the results from Taylor series method (a) from
Section 4.2, and the number of terms computed using this method. The number of digits of
accuracy this method is placed in brackets; this notation will continue for the remainder the
rest of this appendix.
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Case (a,b,c,z) Taylor (b) (tol = 10−15) N Single fraction (tol = 10−15) N
1 (0.1,0.2,0.3,0.5) 1.046432811217351 (15) 41 1.046432811217352 (16) 42
2 (−0.1,0.2,0.3,0.5) 0.956434210968214 (16) 40 0.956434210968215 (15) 41
3 (0.1,0.2,−0.3,−0.5 + 0.5i) 1.027216624114002 88 1.027216624114002 90

−0.013577157567418i (15) −0.013577157567418i (15)
4 (10−8,10−8,10−8,10−6) 1.000000000000010 (16) 3 1.000000000000010 (16) 3
5 (10−8,−10−6,10−12,−10−10 + 10−12i) 1.000000000001000 3 1.000000000001000 3

+0.000000010000000i (16) −0.000000000000010i (16)
6 (1,10,1,0.5 + 10−9i) 1.023999999999999× 10−4 79 NaN+NaNi (0) N/A

+2.047999999999989× 10−5i (3)
7 (1,−1 + 10−12i,1,−0.8) 1.800000000000000 10 1.800000000000000 10

−0.000000000001058i (16) −0.000000000001058i (16)

8 (2 + 8i,3− 5i,
√

2− πi,0.75) 6.882463762011582× 103 163 500 terms computed N/A
−6.596555778724483× 103i (13)

9 (100,200,350,i) 500 terms computed N/A 500 terms computed N/A

10 (2 + 10−9,3,5,−0.75) 0.492238858852651 (16) 115 0.492238858852701 (13) 97
11 (−2,−3,−5 + 10−9,0.5) 0.474999999913750 (16) 3 0.474999999913750 (16) 4
12 (−1,−1.5,−2− 10−15,0.5) 0.625000000000000 (16) 2 0.625000000000000 (16) 3
13 (500,−500,500,0.75) −1.308965312275652× 10104 (0) 347 2.282231327371186× 1069 (0) 59
14 (500,500,500,−0.6) 500 terms computed N/A −Inf (0) 60
15 (−1000,−2000,−4000.1,−0.5) 5.233580403196921× 1094 (14) 293 3.206764029878514× 1055 (0) 53

16 (−100,−200,−300 + 10−9,0.5
√

2) −0.117989577492215 (0) 87 0.026445004024236 (0) 80
17 (300,10,5,0.5) 500 terms computed N/A 6.070771369227341× 1064 (0) 82
18 (5,−300,10,0.5) 3.698084043503173× 1028 (0) 201 −5.218499333377090× 1044 (0) 86
19 (10,5,−300.5,0.5) 0.921182716632848 (0) 12 0.921182716632848 (0) 12
20 (2 + 200i,5,10,0.6) 3.168834584274869× 1032 396 NaN+NaNi (0) N/A

+5.250473854631711× 1031i (0)
21 (2 + 200i,5− 100i,10 + 500i,0.8) −4.100998516155065 146 500 terms computed N/A

+6.017586881185369i (3)
22 (2,5,10− 500i,−0.8) 0.999450314116122 9 0.999450314116122 10

−0.015980509652011i (16) −0.015980509652011i (16)
23 (2.25, 3.75,−0.5,−1) 500 terms computed N/A −3.096946800128161× 1010 (0) 98
24 (1,2,4 + 3i,0.6− 0.8i) 500 terms computed N/A 500 terms computed N/A

25 (1,0.9,2,eiπ/3) 500 terms computed N/A 500 terms computed N/A

26 (1,1,4,eiπ/3) 500 terms computed N/A 500 terms computed N/A

27 (−1,0.9,2,e−iπ/3) 500 terms computed N/A 500 terms computed N/A

28 (4,1.1,2,0.5 + (0.5
√

3− 0.01)i) 500 terms computed N/A 500 terms computed N/A

29 (5,2.2,−2.5,0.49 + 0.5
√

3i) 500 terms computed N/A 500 terms computed N/A

30 ( 2
3

,1, 4
3

,eiπ/3) 500 terms computed N/A 500 terms computed N/A

Table 27: Numerical results for 2F1(a, b; c; z) part 2/4; shown are results from Taylor series
method (b) from Section 4.2, the number of terms computed using this method, the results
from the single fraction method of Section 4.3, and the number of terms computed using
that method.
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Case (a,b,c,z) Gauss-Jacobi (Nmesh = 200) Ncrit RK4 (Nmesh = 500)
1 (0.1,0.2,0.3,0.5) 1.046432811217352 (16) 10 1.046432811211848 (12)
2 (−0.1,0.2,0.3,0.5) 0.956434210972278 (11)
3 (0.1,0.2,−0.3,−0.5 + 0.5i) 1.027216624331061

−0.013577157137817i (10)
4 (10−8,10−8,10−8,10−6) 1.000000000000000 (14)
5 (10−8,−10−6,10−12,−10−10 + 10−12i) 1.000000000000999

−0.000000000000010i (12)
6 (1,10,1,0.5 + 10−9i) 1.023999993125049× 103

+2.047999977031734× 103i (3)
7 (1,−1 + 10−12i,1,−0.8) 1.800000000000023

−0.000000000001058i (14)

8 (2 + 8i,3− 5i,
√

2− πi,0.75) 6.882465637979511× 103

−6.596556746271624× 103i (6)
9 (100,200,350,i) NaN+NaNi (0) N/A −1.464729971468833× 10210

+5.133950185570621× 10209i (0)
10 (2 + 10−9,3,5,−0.75) 0.492238858852651 (16) 10 0.492238858850299 (12)
11 (−2,−3,−5 + 10−9,0.5) −5.809677420327498× 104 (0)
12 (−1,−1.5,−2− 10−15,0.5) 0.624999999997437 (3)
13 (500,−500,500,0.75) NaN (0)
14 (500,500,500,−0.6) NaN (0)
15 (−1000,−2000,−4000.1,−0.5) NaN(0)

16 (−100,−200,−300 + 10−9,0.5
√

2) −Inf (0)
17 (300,10,5,0.5) 3.659136729623440× 10298 (1)
18 (5,−300,10,0.5) 1.661006238211367× 10−7 (14) 40 1.660425565716309× 10−7 (3)
19 (10,5,−300.5,0.5) Inf (0)
20 (2 + 200i,5,10,0.6) 1.499739529309672× 10−7 460 1.486356299813440× 10−7

+5.771450811496187× 10−7i (7) +5.756173666779157× 10−7i (2)
21 (2 + 200i,5− 100i,10 + 500i,0.8) NaN+NaNi (0) N/A NaN+NaNi (0)

22 (2,5,10− 500i,−0.8) NaN+NaNi (0) N/A 4.508369694146940× 10280

+8.641388250534234× 10280i (0)
23 (2.25, 3.75,−0.5,−1) −1.379795759846573× 1022 (0)
24 (1,2,4 + 3i,0.6− 0.8i) 0.23026616844809 N/A 0.834550347993301

+0.134028428957673i (0) −0.316176129470047i (11)

25 (1,0.9,2,eiπ/3) 0.932633569241997 10 500 terms computed
+0.475200538581622i (14)

26 (1,2.5,5,eiπ/3) 0.950417228135954 10 0.950417228134638
+0.548723642506928i (11) +0.548723642510377i (10)

27 (−1,0.9,2,e−iπ/3) 0.775000000000000 10 0.775000000000025
+0.389711431702997i (16) +0.389711431702995i (14)

28 (4,1.1,2,0.5 + (0.5
√

3− 0.01)i) −0.470097672835091 20 −0.470097673031055
+0.500986178581549i (16) +0.500986178535211i (10)

29 (5,2.2,−2.5,0.49 + 0.5
√

3i) 1.141887557446073× 103

−4.761996862215397× 103i (1)

30 ( 2
3

,1, 4
3

,eiπ/3) 0.883319375142726 10 0.883319375176185
+0.509984679019065i (15) +0.509984679041032i (11)

Table 28: Numerical results for 2F1(a, b; c; z) part 3/4; shown are the results from the Gauss-
Jacobi quadrature method of Section 4.4 with 200 mesh points (when Re(c) > Re(b) > 0 or
Re(c) > Re(a) > 0), the number of mesh points Ncrit required to generate 10 digit accuracy
with the Gauss-Jacobi quadrature method (where the number of mesh points was increased
in increments of 10 until 10 digit accuracy was obtained), and the results from applying the
RK4 method of Section 4.5 with 500 mesh points.
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Case a,b,c,z) Analytic cont. (tol = 10−15) N z0
1 (0.1,0.2,0.3,0.5) 500 terms computed N/A N/A
2 (−0.1,0.2,0.3,0.5) 500 terms computed N/A N/A
3 (0.1,0.2,−0.3,−0.5 + 0.5i) 1.027216624114002 39 0.5

−0.013577157567418i (16)
4 (10−8,10−8,10−8,10−6) 500 terms computed N/A N/A
5 (10−8,−10−6,10−12,−10−10 + 10−12i) 500 terms computed N/A N/A

6 (1,10,1,0.5 + 10−9i) 500 terms computed N/A N/A

7 (1,−1 + 10−12i,1,−0.8) 500 terms computed N/A N/A

8 (2 + 8i,3− 5i,
√

2− πi,0.75) 500 terms computed N/A N/A

9 (100,200,350,i) 500 terms computed N/A N/A

10 (2 + 10−9,3,5,−0.75) 500 terms computed N/A N/A
11 (−2,−3,−5 + 10−9,0.5) 500 terms computed N/A N/A
12 (−1,−1.5,−2− 10−15,0.5) 500 terms computed N/A N/A
13 (500,−500,500,0.75) 500 terms computed N/A N/A
14 (500,500,500,−0.6) 500 terms computed N/A N/A
15 (−1000,−2000,−4000.1,−0.5) 500 terms computed N/A N/A

16 (−100,−200,−300 + 10−9,0.5
√

2) 500 terms computed N/A N/A
17 (300,10,5,0.5) 500 terms computed N/A N/A
18 (5,−300,10,0.5) 500 terms computed N/A N/A
19 (10,5,−300.5,0.5) 500 terms computed N/A N/A
20 (2 + 200i,5,10,0.6) 500 terms computed N/A N/A

21 (2 + 200i,5− 100i,10 + 500i,0.8) 500 terms computed N/A N/A

22 (2,5,10− 500i,−0.8) 500 terms computed N/A N/A

23 (2.25, 3.75,−0.5, 1) −0.631220676949703 (16) 54 0.5
24 (1,2,4 + 3i,0.6− 0.8i) 500 terms computed N/A N/A

25 (1,0.9,2,eiπ/3) 0.932633569242002 63 0.5
+0.475200538581619i (11)

26 (1,1,4,eiπ/3) 0.950417228135954 89 0.5
+0.548723642506928i (11)

27 (−1,0.9,2,e−iπ/3) 0.775000000000000 3 0.5
+0.389711431702997i (16)

28 (4,1.1,2,0.5 + (0.5
√

3− 0.01)i) −0.470097672835090 79 0.5
+0.500986178581549i (16)

29 (5,2.2,−2.5,0.49 + 0.5
√

3i) 1.084589030597452× 103 125 0.5
−5.115786480030682× 103i (11)

30 ( 2
3

,1, 4
3

,eiπ/3) 0.883319375142725 58 0.49
+0.509984679019064i (16)

Table 29: Numerical results for 2F1(a, b; c; z) part 4/4; shown are the results using the
analytic continuation theory of Section 4.7, the number of terms computed using this method,
and the value of z0 used to carry out the computation.
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G Other methods considered for evaluating 1F1(a; b; z)

In this appendix, we discuss other methods that we considered for computing the con-

fluent hypergeometric function 1F1(a; b; z). We form a judgement of these methods either

by researching them and deeming them unsuitable or inferior to other methods, or by im-

plementing them and obtaining numerical results that were not as accurate or fast as other

methods discussed in Section 3. Details are set out of the background to each method, and

a brief analysis of its effectiveness is given.

G.1 Series in terms of beta random variables

The method described below is based on the theory of a beta random variable β(α, δ),

for α, δ > 0. In [44], µj is defined as

µj = E[β(α, δ)− Eβ(α, δ)]j,

and the beta random variable is stated to have the following moment generating function

(which is defined as φ(z) = E[zX], z ∈ R, where X is the random variable being considered):

φ(z) = M(α;α + δ; z) = 1F1(α;α + δ; z).

As shown in [44], the following series expression for 1F1(a; b; z) holds:

M(a; b; z) = eaz/b

[
1 + z2

∞∑
j=0

µj+2

(j + 2)!
zj

]
, (G.1)

where

µ0 = 1, µ1 = 0

µj+1 = a

j∑
k=1

µj−k
b+ j − k

k−1∏
l=0

(b− a)(j − l)
b(b+ j − l)

− ajµj
b(b+ j)

, j = 1, 2, ... . (G.2)

Verdict: The results shown in Table 30 and Appendix E indicate that although the

beta series method does not generally give as accurate results as, for example, the Taylor

series methods, it is fairly competitive in terms of the accuracy it generates, especially for

Re(b) > Re(a) > 0. There is an issue in terms of accuracy when b = 2a and z is real, because

this case is the threshold between the terms in the series (G.1) having alternating signs and
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Case (a,b,z) Correct M(a; b; z) Acc. Time taken Beta series (tol = 10−15) Acc. N Time taken

1 (0.1,0.2,0.5) 1.317627178278510 16 11.164293s 1.317627177923377 9 6 0.178753s
2 (−0.1,0.2,0.5) 0.695536565102261 16 11.048696s 0.695536565102261 16 6 0.180622s
8 (1,3,10) 4.403093158961343×10−2 16 11.513977s 4.403093158961343×10−2 16 39 0.196009s
11 (1,2,600) 6.288367168216566× 10257 0 11.892762s 2.913833835501408× 10134 0 2 0.100343s
21 (20,−10 + 10−9,−2.5) 8.857934344815256× 109 9 10.971249s 8.857765424923950× 109 4 83 0.214479s
25 (−5, (−5 + 10−9) 0.507421537454510 16 11.231796s 0.507421537454510 16 21 0.195662s

+(−5 + 10−9)i,−1) +0.298577267504408i +0.298577267504408i

Table 30: Table showing the correct solution using MATLAB for a variety of test cases
from Appendix B and their computation times, the accuracy of Taylor series method (a) of
Section 3.2 (fourth column), and the results, accuracy and computation times of computing
the series of beta random variables, as detailed in this appendix. Full results are shown in
Appendix E.

all the terms being positive. Otherwise, however, 10 digit accuracy is usually obtained for

|a| , |b| , |z| . 15, although it is outperformed by each of the methods described in Sections

3.2–3.5 for most parameter regimes, and the time taken to achieve the results using the beta

series method is very long compared to these other methods, because the computation of

each term of the series in (G.1) itself requires a computation of a product of terms.

G.2 Expansion in terms of incomplete gamma functions

The starting point of this method, recommended in [44], is that if b > a > 0 and z > 0

for real a, b, z, then

M(a; b;−z) =
Γ(b)

Γ(a)Γ(b− a)

∫ 1

0

e−ztta−1(1− t)b−a−1dt.

Then, using the binomial expansion for f(t) = (1− t)b−a−1,

f(t) =
∞∑
j=0

(t− t0)j

j!
f (j)(t0) =

∞∑
j=0

(a− b+ 1)j
tj

j!
,

about the point t0 = 0, and transforming the integral, we obtain

M(a; b;−z) =
Γ(b)

Γ(b− a)Γ(a)
z−a

∞∑
j=0

(a− b+ 1)j
1

j!zj

∫ z

0

e−uuj+a−1du

=
Γ(b)

Γ(b− a)Γ(a)
z−a

∞∑
j=0

(a− b+ 1)j
1

j!zj
γ(z, j + a), (G.3)

giving a computation for −z < 0.
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It is added in [44] that a second transformation gives the expression

M(a; b;−z) =
Γ(b)

Γ(b− a)
z−a

∞∑
j=0

(a− b+ 1)j(a)j
j!zj

Fγ(z, j + a), (G.4)

where Fγ is the cumulative distribution function of the γ-distribution, which is defined

as its integral over the entire real line. Using the transformation (3.7), the method can be

extended to approximate M(a; b; z) for z > 0 as follows:

M(a; b; z) = ezzb−a
Γ(b)

Γ(a)Γ(b− a)

∞∑
j=0

(1− a)j
j!zj

γ(z, j + b− a),

M(a; b; z) = ezza−b
Γ(b)

Γ(a)

∞∑
j=0

(b− a)j(1− a)j
j!zj

Fγ(z, j + b− a).

This method can also be extended to the case Re(b) > Re(a) > 0 for complex parameters.

Verdict: We implemented this method, and found the accuracy it generated to vary

greatly for different parameter regimes. For example, for (a, b, z) = (1, 5,−20), the method

generated the correct answer to 16 digit accuracy, and for (a, b, z) = (0.1, 50,−20), 9 digit

accuracy was obtained, but with (a, b, z) = (10, 50,−20), the method did not give a single

digit of accuracy. Whereas the method seemed to work well for some parameter values, due

to its unreliability and the computation time (roughly 5 times as long as the Taylor series

methods of Section 3.2), this method was not considered one of the best tested.

G.3 Asymptotic expansion for large |b| and |z|

For large |z|, the basic asymptotic expansion is a series involving 2F0 functions, which

unlike the function 1F1 involve the Pochhammer symbol of a term that includes the parameter

b in both the numerator and the denominator. Therefore, when computing the asymptotic

expansion for large z, we no longer have the advantage of cases with large |b| requiring few

terms to generate an accurate approximation; in fact, our experiments show that it becomes

very difficult. One method of resolving this issue is to use the asymptotic expansions for

large |b| and |z|, which are stated in [34], and noted below.
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b− z − a− 1 < 0 (for this expansion, a, b and z must be real):

M(a; b; z) ∼ Γ(b)

Γ(a)Γ(b− a)
ez(1− α)a−1

(α
e

)αz√2απ

z

×

[
1 +

∞∑
n=1

2∑
k=0

a6n+2k−4(z)√
π

(
2α

z

)3n+k−2

Γ

(
3n+ k − 3

2

)]
,

an(z) =

bn2 c∑
k=0

n−2k∑
j=0

j∑
l=0

(−1)j(−αz)l(1− a)n−2k−jz
j+k−l

2k(j − l)!l!k!(n− 2k − j)!αk+l(1− α)n−2k−j ,

0 < α =
b− a− 1

z
< 1.

Re(b− z − a− 1) > 0:

M(a; b; z) ∼ Γ(b)

Γ(a)Γ(b− a)

×
∞∑
n=0

Γ(2n+ a− 1)[(2n+ a− 1)a2n(z) + (b− a− z − 1)a2n−1(z)]

(b− a− z − 1)2n+a
,

an(z) =
n∑
k=0

(a+ 1− b)k(b− a− 1)n−k

k!(n− k)!
.

Re(b− z − a− 1) = 0:

M(a; b; z) ∼ Γ(b)

2Γ(a)Γ(b− a)

(
2

b− a− 1

)a
2

×

[
Γ
(a

2

)
+

1∑
k=0

a2k+1(z)Γ

(
k +

a+ 1

2

)(
2

b− a− 1

)k+ 1
2

+
∞∑
n=2

2∑
k=0

a3n+2k−4(z)Γ

(
k +

3n+ a

2
− 2

)(
2

b− a− 1

)k+ 3n
2
−2
]
,

an(z) =

bn2 c∑
k=0

n−2k∑
j=0

(a+ 1− b)k(b− a− 1)n−k−j

j!k!(n− 3k)!2k
.

Verdict: A major drawback of this method is that an expansion for the case Re(b− z−
a − 1) < 0 for complex a, b, z is not stated in [34], thereby restricting the potential robust-

ness of the method significantly. Furthermore, the series computations involve many more

computations than other methods, taking roughly twice as long as the Taylor series methods

of Section 3.2. The method is also generally out-performed by applying recurrence relation
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techniques on the parameter b for large |b|, as in Section 3.8. Additionally, for moderate

values of |b|, the method was not very robust; for example with (a, b, z) = (0.1, 50, 20), only

6 digit accuracy was obtained, and with (a, b, z) = (4, 50, 20), not even one digit of accuracy

was obtained.

G.4 Hyperasymptotic expansions

Applying certain expansions, called hyperasymptotic expansions, results in the

computation error being exponentially small as opposed to algebraically small, which means

that small terms are added to the expansion to obtain an exponential term in the error

bound for the computation. The subject of hyperasymptotics is explained in more detail in

[11, 49, 50].

• First hyperasymptotic expansion: One such expansion, discussed in [48, 52, 53],

for U(a; b; z) is

U(a; b; z) = z−a
N−1∑
j=0

(a)j(a− b+ 1)j
j!

(−z)−j +RN(a; b; z), (G.5)

where

RN(a; b; z) =
2π(−1)Nza−b

Γ(a)Γ(a− b+ 1)
(G.6)

×

(
M−1∑
j=0

(1− a)j(b− a)j
(−z)jj!

GN+2a−b−j(z) + (1− a)M(b− a)MRM,N(a; b; z)

)
,

Gη(z) =
ez

2π
Γ(η)Γ(1− η, z),

and Γ($, z) is the incomplete gamma function defined by

Γ($, z) =

∫ ∞
z

t$−1e−tdt = Γ($)− γ($, z),

where γ($, z) is the incomplete gamma function introduced in (3.11).

This is shown in [53] by using the integral expression for U(a; b; z),

U(a; b; z) =
1

Γ(a)

∫ ∞
0

e−ztta−1(1 + t)−bdt, Re(a) > 0, |arg z| < π

2
,
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to express RN(a; b; z) as an integral, and then applying Cauchy’s integral theorem.

Then, as stated in [53], if δ is taken to be an arbitrary small parameter, and a, b, m

are fixed, as |z| → ∞,

RM,N(a; b; z) =

{
O(e−|z|z−M), if |arg z| < π,
O(ezz−M), if π ≤ |arg z| ≤ 5

2
π − δ, (G.7)

which is shown by deriving an integral expression for RM,N(a; b; z) and applying Tay-

lor’s theorem, Cauchy’s integral theorem and Stirling’s formula. Note that the expres-

sion (G.7) for RM,N(a; b; z) incorporates its values in two separate branches.

Verdict: As MATLAB is unable to compute the incomplete gamma function Γ($, z)

for all $ or z in the complex plane, we were not able to generate accurate results using

this method. One piece of further work on this project would be to write a routine that

computes the incomplete gamma function for all complex $ and z, and thereby makes

use of the expansion (G.5) for the purposes of computing U(a; b; z), subsequently using

this to compute M(a; b; z) with (3.6). Ideas of how we might write such a routine are

outlined in Appendix I.

• Second hyperasymptotic expansion: For large |z|, as discussed in [48], the follow-

ing is another exponentially-improved expansion for U(a; b; z):

U(a; b; z) ∼ z−a
N0−1∑
j=0

(−1)j
(a)j(b)j
j! zj

+
1

Γ(a)
RN0(z), (G.8)

where N0 is a function of |z| and

RN0(z) = e−iaθ
∫ ∞

0

e−ρττa−1+N0f1(τ)dτ,

f1(τ) =
1

2πi

∫
Ω0(0,τ)

dw

(1 + weiθ)bwN0(w − τ)
,

Ω0(τ) = {w ∈ C : |w| = 1− ε} ∪ {w ∈ C : |w − τ | = 1

2
ε},

z = ρeiθ, t = τeiθ, − π + δ ≤ θ ≤ π − δ, 0 < δ � 1, 0 < ε <
1

2
.

By residue calculations, we obtain

f1(τ) =
1

(1 + τe−iθ)τN0
+ eiθ(−1)N0−1(N0 − 1)!

N0−1∑
j=0

(b)j
(1)j

1

eiθ(b+j)(−τ)N0−j
.
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Now, as shown in [48], if f1(τ) can be written as

f1(τ) = a0,1 + a1,1(τ − γ1) + ...+ aN1,1(τ − γ1)N1−1 + (τ − γ1)N1 ,

where γ1 = a−1+N0

ρ
,

f2(τ) =
1

2πi

∫
Ω1(γ1,τ)

f1(w)

(w − γ1)N1(w − τ)
dw,

and Ω1(γ1, τ) is a contour that encircles γ1 and τ , then we obtain

RN0(z) = Γ(a+N0)z−a
N1−1∑
j=0

aj,1P
1
j (γ1)ρ−(N0+j) +RN1(z). (G.9)

Here, P 1
j is given by

P 1
j (γ1) =

ρa+N0+j

Γ(a+N0)

∫ ∞
0

e−ρττa−1+N0(τ − γ1)jdτ,

which can be computed using the known recurrence relation:

P 1
0 (γ1) = P 1

1 (γ1) = 1, P 1
j+1(γ1) = (j + 1)P 1

j (γ1) + γ1P
1
j−1(γ1).

Verdict: Due to time constraints, we were not able to test this method. However,

the error bounds given in [48] imply that this method could marginally improve on

the performance of the asymptotic series methods of Section 3.5. Hence, this method

seems to be worth testing as an aspect of further work, in order to evaluate it.

G.5 Other quadrature methods

• Splitting the integral in (3.25): The method discussed in Section 3.6 was that of

applying Gauss-Jacobi quadrature to the integral in (3.25). An alternative method

involves splitting the integral into different segments, applying substitutions to each

segment, and using these to repose the problem as a sum of several integrals.

For example, splitting the integral in (3.25) into two equal segments yields∫ 1

0

eztta−1(1− t)b−a−1dt =

∫ 1/2

0

eztta−1(1− t)b−a−1dt+

∫ 1

1/2

eztta−1(1− t)b−a−1dt
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for Re(b) > Re(a) > 0. Applying the substitution t 7→ 1
4
(t1 + 1) to the first integral

and t 7→ 1
4
(t2 + 3) to the second yields∫ 1

0

eztta−1(1− t)b−a−1dt =
1

4

[∫ 1

−1

e
1
4
z(t1+1)

(
1− t1 + 1

4

)b−a−1(
t1 + 1

4

)a−1

dt1

+

∫ 1

−1

e
1
4
z(t2+3)

(
1− t2 + 3

4

)b−a−1(
t2 + 3

4

)a−1

dt2

]
.

Extending this to splitting the interval of integration into n intervals of integration,

and applying the substitutions t 7→ 1
2j

(s + {2j − 1}), j = 1, ..., n to the j-th integral

and then replacing all of the variables with t again after the substitutions have been

applied, we obtain, for Re(b) > Re(a) > 0, the expression

M(a; b; z) =
Γ(b)

Γ(a)Γ(b− a)

× 1

(2n)b−1

n∑
j=1

∫ 1

−1

e
1

2n
z(t+{2j−1})({2n+ 1− 2j} − t)b−a−1({2j − 1}+ t)a−1dt,

at which point Gauss-Jacobi quadrature can be applied to each of the n integrals.

An extension to this method, and one which is found to be more useful, is to split

off two small intervals on [0, 1], one on each side of the integration interval, therefore

splitting the interval [0, 1] into [0, λ], [λ, 1− λ] and [1− λ, 1], where 0 < λ ≤ 1
2
. Then,

one makes the substitution t 7→ 1
2
λ(t1 + 1) to the integral on [0, λ] and the substitution

t 7→ 1
2
λ(t2 − 1) + 1 to the integral on [1 − λ, 1]. This yields the following integral

expression when we re-write the integration variables t1 and t2 as t:

M(a; b; z) =
Γ(b)

Γ(a)Γ(b− a)

[(
λ

2

)b−1

e
λz
2

∫ 1

−1

e
1
2
λzt

(
2− λ
λ
− t
)b−a−1

(1 + t)a−1dt

+

∫ 1−λ

λ

ezt(1− t)b−a−1ta−1dt (G.10)

+

(
λ

2

)b−1

ez(1−λ
2 )
∫ 1

−1

e
1
2
λzt(1− t)b−a−1

(
2− λ
λ

+ t

)a−1

dt

]
.

The motivation behind this method is that two relatively small intervals at either end

of [0, 1] can be separated, transformed, and have Gauss-Jacobi quadrature applied to
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them; but the middle integral no longer has infinite values of the integrand at the end-

points, so a variety of different methods can be applied to this integral (such as the

composite trapezoidal or composite Simpson’s rules, or the built-in MATLAB routine

‘quad’), with precision as high as the user desires, as opposed to having to apply Gauss-

Jacobi quadrature to the entire interval. This way, any error from the Gauss-Jacobi

quadrature computations will have a reduced effect if the integral over the interval

[λ, 1− λ] is computed accurately.

Verdict: One major disadvantage of using this method is that computation takes

at least 3 seconds, which is much longer than using Gauss-Jacobi quadrature. The

accuracy we obtained was reasonable; 6 digit accuracy was obtained for computing

M(20; 40; 10 + 5i), a relatively difficult case, when the composite trapezoidal rule was

applied for computing the integral on [λ, 1 − λ] when λ = 0.1, and 300 mesh points

were used to compute each of the three integrals in (G.10). However, results obtained

were similar to those obtained using Gauss-Jacobi quadrature directly, so this method

is not as powerful because of the computation time.

• Adaptive quadrature: The idea of adaptive quadrature is to adjust the step-size

at which the numerical integration of (3.25) is being carried out, depending on the

accuracy that is being generated; if the solution generated is deemed not to be accurate

enough, the step-size is reduced, and if the solution is very accurate, a larger step-size

can be taken. In our computations, this was done by taking an initial step-size h

and using two numerical methods to compute the value of the integral taken between

the start point of the integral â and the next point â + h. If the results generated

by these two methods differ by a number greater than a specified tolerance tol1, the

step-size h is halved, and if the results differ by a number less than another specified

tolerance tol2, the step-size is doubled. Once one finds a step-size that results in the

two methods differing by a number less than tol1 but greater than tol2, the result

obtained by integrating in [â, â + h] using the theoretically more accurate quadrature

method is recorded, the integration is then computed in a similar way starting from

â+ h, and so on until the end point b̂ is reached (the last step-size is restricted so that

we never pass the point b̂ in the numerical integration).
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Two routines were written for this method. The first used the trapezoidal rule,∫ b̂

â

f(x)dx ≈ b̂− â
2

[f(â) + f(b̂)], (G.11)

with known error bound (i.e. bound of the numerical solution subtracted from the

exact solution) − (b̂−â)3

12
f ′′(x∗), for some x∗ ∈ [a, b] and Simpson’s rule,∫ b̂

â

f(x)dx ≈ b̂− â
6

[
f(â) + 4f

(
â+

1

2
(b̂− â)

)
+ f(b̂)

]
, (G.12)

with known error bound − (b̂−â)5

2880
f (iv)(x∗). The second routine used the trapezoidal rule

along with Boole’s law,∫ b̂

â

f(x)dx ≈ b̂− â
90

[
7f(â) + 32f

(
â+

1

4
(b̂− â)

)
+12f

(
â+

1

2
(b̂− â)

)
+ 32f

(
â+

3

4
(b̂− â)

)
+ 7f(b̂)

]
, (G.13)

with known error bound − (b̂−â)7

1935360
f (vi)(x∗).

Verdict: This method worked fairly well for cases with reasonably small |a|, |b| and

|z|. For example M(10; 15; 0.5) was computed with 12 digit accuracy when tol1 = 10−10

and tol2 = 10−15, and the initial step-size was set to 0.001. However in cases where |a|,
|b| and |z| are larger, this method was not as effective; for example M(20; 40; 0.5) was

only computed to 5 digit accuracy, as opposed to 12 digit accuracy when Gauss-Jacobi

quadrature was used with 500 mesh points. This, coupled with the restriction that

the method can only be applied if a and b are such that there is no blow up of the

integrand of (3.25) at the end-points, renders this method unsuitable for our purposes.

• Romberg integration: This is a quadrature method that involves repeatedly ap-

plying Richardson extrapolation, which is a procedure designed to result in faster

convergence of the quadrature method to which it is being applied, to the trapezoidal

rule. It is defined as

R(0, 0) =
1

2
(b− a)[f(a) + f(b)], (G.14)

R(n, 0) =
1

2
R(n− 1, 0) + hn

2n−1∑
k=1

f(a+ (2k − 1)hn), n ≥ 1, hn =
b− a

2n
, (G.15)

R(n,m) =
1

4m − 1
[4mR(n,m− 1)−R(n− 1,m− 1)], n ≥ 1, m ≥ 1. (G.16)
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The method has the known error property

E(n,m) = O(h2m+1

n ), (G.17)

where E(n,m) denotes the value of the difference between the numerical approximation

and the exact solution.

We note that R(n, 0) corresponds to the composite trapezoidal rule with 2n−1 +1 mesh

points, and R(n, 1) corresponds to the composite Simpson’s rule with the same number

of mesh points.

Verdict: This method was seen to be fairly effective in comparison to other integral

methods described in this appendix; for example, 14 digit accuracy was generated for

the computation of M(20; 40; 0.5), M(20; 40; 5), M(20; 40; 50) and M(30; 70; 50) when

m = n = 10. Furthermore, the computation times were approximately 0.2 seconds.

However, the effectiveness of this method was restricted by the constraint that the

integrand needed to be effectively computed by the trapezoidal rule initially, in other

words, it did not blow up at the end-points. As this could only be guaranteed for a

small range of parameters, we do not recommend this as a sufficiently robust method.

• Method for oscillatory integrals: We obtain from [55] the following expression for

an oscillatory integral:∫ 1

−1

r(t)eiωtdx ≈
Nmesh∑
k=1

[
ik−1(2k − 1)

√
π

2ω
Jk− 1

2
(ω) (G.18)

×
Nmesh∑
j=1

wj−1Pk−1(xj−1)r(xj−1)
]
, ω 6= 0,

where Jν is the Bessel function of first order as defined in (2.4), Pk(x) are the Legendre

polynomials as defined in Appendix D, wk are the weights for Gauss quadrature defined

as wk = 2
(1−xk)2[P ′′Nmesh

(xk)]2
, where xk are the nodes for Gauss quadrature defined as the

k-th root of Pk(x), and Nmesh denotes the number of mesh points used for evaluating

the integral in (G.18).

We now consider the integral of (3.25), and rewrite it as follows:∫ 1

−1

ez(
1
2
t+ 1

2)(1− t)b−a−1ta−1dt = ez/2
∫ 1

−1

eRe(z)t/2(1− t)b−a−1ta−1︸ ︷︷ ︸
r(t)

eiIm(z)t/2︸ ︷︷ ︸
eiωt, ω=

Im(z)
2

dt, (G.19)
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so that the formula (G.18) can now be applied.

Verdict: We found that using the built-in MATLAB routine legendre.m to compute

the Legendre polynomials resulted in the computation time being prohibitively large

beforeNmesh was raised to a number high enough to generate accurate results. However,

if a faster routine can be written for this method, it would be worth exploring due to

the problems, noted in Sections 3.9 and 5, associated with large imaginary parts of the

variable z in the confluent hypergeometric function 1F1(a; b; z).

• Other integral representations for M(a; b; z) or U(a; b; z): Further work on com-

putation of the confluent hypergeometric function using quadrature methods could

involve other less widely examined and more complicated integrals for M(a; b; z) and

U(a; b; z). Some examples of such integrals, taken from [3, 63, 64], include the following

line integrals:

M(a; b;−z) =
Γ(b)

Γ(a)
z

1
2
− 1

2
b

∫ ∞
0

e−tta−
1
2
b− 1

2Jb−1(2
√
zt)dt, Re(a) > 0,

U(a; b; z) =
1

Γ(a)

∫ ∞
0

e−ztta−1(1 + t)b−a−1dt, Re(a) > 0, |arg z| < 1

2
π,

the contour integral valid for b− a 6= 1, 2, 3, ..., Re(a) > 0,

M(a; b; z) =
1

2πi

Γ(1 + a− b)
Γ(a)Γ(b)

∫ (1+)

0

eztta−1(t− 1)b−a−1dt,

which starts at 0, traverses anti-clockwise around 1 and returns to 0, and the Mellin-

Barnes integral,

M(a; b;−z) =
1

2πiΓ(a)Γ(b)

∫ +i∞

−i∞

Γ(a+ t)Γ(−t)
Γ(b+ t)

ztdt, |arg z| < 1

2
π,

where a 6= 0,−1,−2, ..., and the poles of Γ(a+ t) and Γ(−t) must be separated by the

contour of integration.

Further information on computing U(a; b; z) using the trapezoidal rule is given in [4].

G.6 Other differential equation methods

• Dormand-Prince method: A linear multistep method is said to be consistent if

i−1∑
j=1

aij = ci, i = 2, ..., s,
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where, for y′ = f(t, y), the method reads

yn+1 = yn + h

s∑
i=1

biki,

k1 = f(tn, yn),

k2 = f(tn + c2h, yn + a21hk1),

k3 = f(tn + c3h, yn + a31hk1 + a32hk2),
...

ks = f(tn + csh, yn + as1hk1 + as2hk2 + ...+ as,s−1hks−1).

One consistent method that we studied, the Dormand-Prince 5th order method [19],

reads as follows:

yn+1 = yn + h

(
35

384
k1 +

500

1113
k3 +

125

192
k4 −

2187

6784
k5 +

11

84
k6

)
, (G.20)

k1 = f(tn, yn),

k2 = f

(
tn +

1

5
h, yn +

1

5
hk1

)
,

k3 = f

(
tn +

3

10
h, yn +

3

40
hk1 +

9

40
hk2

)
,

k4 = f

(
tn +

4

5
h, yn +

44

45
hk1 −

56

15
hk2 +

32

9
hk3

)
,

k5 = f

(
tn +

8

9
h, yn +

19372

6561
hk1 −

25360

2187
hk2 +

64448

6561
hk3 −

212

729
hk4

)
,

k6 = f

(
tn + h, yn +

9017

3168
hk1 −

355

33
hk2 +

46732

5247
hk3 +

49

176
hk4 −

5103

18656
hk5

)
.

We program this method into MATLAB for the differential equation (3.2), with initial

conditions given in (3.28), and values at z = h, where h is the first mesh point past

the initial point z = 0, obtained by taking Taylor series expansions of 1F1(a; b; z) and

its derivative about z = 0.

Verdict: After implementation, this method was not found to be as effective as the

RK4 method as described in Section 3.7; across most parameter regimes, the method

generated less accurate solutions when a relatively small number of mesh points was

used in both methods. For example, when both methods were applied with 500 mesh

88



points to calculate M(2; 5; 4), they only yielded 3 digit accuracy when applying the

Dormand-Prince method, as opposed to 10 digit accuracy for the RK4 method. For

this reason, the RK4 method was preferred to this method.

• More general differential equation: As stated in [36], the differential equation

hy′′ + (
2αh

z
+ 2f ′h− hh′′

h′
− hh′ + bh′y′ +

(
h′
(α
z

+ f ′
)

(b− h) (G.21)

+h

[
α(α− 1)

z2
+

2αf ′

z
+ f ′′ + (f ′)2 − h′′

h′

(α
z

+ f ′
)]
− a(h′)2

)
y = 0,

is satisfied by

y = z−ae−f(z)
1F1(a; b;h(z)).

Using this relation could provide a more general approach to finding a larger class of

hypergeometric functions.

Verdict: Although this differential equation covers a more general case, it is not

required for the purposes of this investigation, and the equation will result in far more

complex numerical schemes for computation than those for solving the differential

equation (3.2). As a possible extension to the work carried out in this project, we could

examine a variety of methods for solving this differential equation, whose solutions

represent a more general class of functions.

G.7 Padé approximants and rational approximation

• Padé approximants: For this method, we write M(a; b; z) as:

M(a; b; z) =
∞∑
j=0

(a)j
(b)j

zj

j!
=
∞∑
j=0

Ajz
j. (G.22)
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We approximate (G.22) as M(a; b; z) ≈ n0+n1z+...+np̃z
p̃

1+d1z+...+dq̃zq̃
, where:

1 0 0 · · · · · · 0 0 · · · · · · 0

0 1 0 · · · · · · 0 −A0
. . . 0

0 0 1 · · · · · · 0 −A1 −A0
. . .

...
...

...
...

. . .
... −A2 −A1

. . . 0
...

...
...

. . . 0
... −A2

. . . −A0

0 0 0 · · · 0 1
...

...
. . . −A1

0 0 0 · · · · · · 0
...

... −A2
...

...
...

. . .
...

...
...

...
...

...
...

. . .
... −An+d

...
...

0 0 0 · · · · · · 0 −Ap̃+q̃+1 · · · · · · −Ap̃





n0

n1
...
...
...
np̃
d1

d2
...
...
dq̃



=



A0

A1
...
...
...
...
...
...
...

Ap̃+q̃



. (G.23)

As pointed out in [57] and as verified by our testing, the matrix in (G.23) often has

a very low condition number (frequently less than 10−20), especially for large p̃ and q̃.

It is recommended in [57] therefore that the above system be solved by performing an

LU decomposition.

Verdict: There is not an easy method of error control with this method without

solving a large number of matrix systems. Unless we took large p̃ and q̃, we found that

the method generated accurate solutions only for moderate parameter regimes (with,

as a guide, |a| , |z| . 15). For example, M(1; 3; 2) is computed to 15 digit accuracy,

but M(10; 30; 20) is only computed to 3 digit accuracy when p̃ = 15, q̃ = 3. The

computation time was reasonable (about 0.25 seconds), but the lack of possibilities for

error control means that we do not recommend this approach for use in its own right.

• Rational approximation for U(a; 1 + a − b; z): In [37], the following expression is

given for U(a, 1 + a− b; z):

U(a; 1 + a− b; z) = z−a lim
m→∞

Nm(z)

Dm(z)
, (G.24)

where

Nm(z) =
m∑
j=0

[(−m)j(m+ 1)j(a)j(b)j
(a+ 1)j(b+ 1)j(m!)2

×3F3(−m+ j,m+ 1 + j, 1; 1 + j, a+ 1 + j, b+ 1 + j;−z)
]
,

Dm(z) = 2F2(−m,m+ 1; a+ 1, b+ 1;−z).
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This was computed in MATLAB using Taylor series methods for evaluating the hyper-

geometric functions 3F3 and 2F2.

Verdict: When we coded and tested this method, we found that, due to the fact that

a sum of more complex hypergeometric functions (by which we mean hypergeometric

functions with larger p and q in the notation (2.1)) than 1F1(a; b; z) is being computed,

the computation time was much longer than for other series methods used to compute

the confluent hypergeometric function. The method was also found to be less accurate

than many others investigated; for example, when we tried to compute U(10; 20; 30)

using Taylor series methods for 2F2 and 3F3, not a single digit of accuracy was obtained.

We conclude that this method is not a viable one for computing U(a; b; z) unless a

substantial amount of research into computing 2F2 and 3F3 is carried out first.

• Rational approximation for 1F1(a; c;−z): In [35], E(z) is set to be 1F1(a; b;−z),

which is then written as

E(z) =
An(z)

Bn(z)
+Rn(z), (G.25)

An(z) = Lnz
n

n∑
k=0

[
(−n)k(n+ 1)k(a)k

(a+ 1)k(k!)2
× Âkn

]
,

Âkn = 4F2

(
−n+ k, n+ 1 + k, b+ k, 1; 1 + k, a+ 1 + k;−1

z

)
,

Bn(z) = Lnz
n

3F1

(
−n, n+ 1, b; a+ 1;−1

z

)
,

Ln =
(a+ 1)n

(n+ 1)n(b)n
,

which can then be programmed using series methods.

Verdict: This method involves computing a sum of more complex hypergeometric

functions than 1F1(a; b; z). There is therefore too much computational work involved

for this method to be efficient in comparison to some of the methods discussed in the

main body of this dissertation.
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G.8 Other expansions for 1F1(a; b; z)

• Chebyshev expansion: In [38], M(a; b; z) is represented as

M(a; b; z) =
∞∑
j=0

Cj(ω)T̂j

( z
ω

)
, 0 ≤ z

ω
≤ 1, (G.26)

where

Cj(ω) =
εj(a)jω

j

22j(b)jj!
2F2

(
a+ j,

1

2
+ j; b+ j, 1 + 2j;ω

)
,

ε0 = 1, εj = 2, j = 1, 2, ... ,

2Cj(ω)

εj
=

4(j + 1)

ω
Cj+1(ω) + Cj+2(ω), j = 1, 2, ... .

Verdict: As this method of computing this expansion involves evaluating the sum

of more complex hypergeometric functions, time constraints prevented us from imple-

menting this method. As discussed in Section 5, an avenue of future work could be to

carry out research on 2F2 in order to subsequently attempt this computation.

• Expansion in terms of Bessel functions: The function 1F1(a; b; z) has a number

of expansions as series of Bessel functions. Two of the most useful, detailed in [36], are

1F1(a; b; z) = Γ

(
a+

1

2

)
ez/2

(
4

z

)a− 1
2

(G.27)

×
∞∑
j=0

(j + a− 1
2
)(2a− 1)j(2a− b)j

j!(b)j(a− 1
2
)

Ij+a− 1
2

(z
2

)
and

1F1(a; b; z) = Γ

(
b− a+

1

2

)
ez/2

(
4

z

)c−a− 1
2

(G.28)

×
∞∑
j=0

(−1)j(j + b− a− 1
2
)(2b− 2a− 1)j(b− 2a)j

j!(b)j(b− a− 1
2
)

Ij+b−a− 1
2

(z
2

)
,

where

Iν(z) =

(
z
2

)ν
Γ(ν + 1)

0F1

(
; 1 + ν;

z2

4

)
= e−iνπ/2Jν(ze

iπ/2), − π < arg z ≤ π

2
,

Jν(z) =

(
z
2

)ν
Γ(ν + 1)

0F1

(
; 1 + ν;

−z2

4

)
.
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Verdict: Although (G.27) and (G.28) were not computed due to time constraints,

doing so could provide another potential method for computing 1F1, as Bessel functions

are known to be easier to compute than the confluent hypergeometric function itself.

G.9 Multiplication formula

A known formula, stated in [36], can be used to find the value of the confluent hy-

pergeometric function in terms of another confluent hypergeometric function with the same

parameters but with the variable of opposite sign. The formula is as follows:

1F1(a; b; z)× 1F1(a; b;−z) = 2F3

(
a, b− a; b,

1

2
b,

1

2
b+

1

2
;
z2

4

)
. (G.29)

Verdict: The study in this project of 0F1, 1F1 and 2F1 suggests that computing the

function 2F3 will only be relatively simple if all ap in (2.1) are fairly small, in other words

if a and b − a are small. In this case, computing 1F1(a; b;−z) directly should be more

straightforward. However, this formula could prove useful for checking solutions obtained by

using other methods.
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H Other methods considered for evaluating 2F1(a, b; c; z)

In this appendix, we discuss other methods that we considered for computing the

Gauss hypergeometric function 2F1(a, b; c; z). We state an opinion as to the effectiveness of

these methods either by researching them and deeming them unsuitable or inferior to other

methods, or by finding by numerical testing that they were not as accurate or efficient as

other methods detailed in Section 4. Details are set out of the background to each method,

and a brief analysis of its effectiveness is stated.

H.1 Other quadrature methods

• Splitting the integral in (4.8): We discussed in Section 4.4 the method involving

applying Gauss-Jacobi quadrature to the integral in (4.8). An alternative method

involved splitting the integral as discussed for 1F1 in Appendix G.5.

We consider the integral (4.8) for Re(c) > Re(b) > 0, and split off two small intervals

on [0, 1], one on each side of the integration interval, hence splitting the interval [0, 1]

into [0, λ], [λ, 1− λ] and [1− λ, 1], where 0 < λ ≤ 1
2
. Then, we make the substitution

t 7→ 1
2
λ(t1 + 1) to the integral on [0, λ] and the substitution t 7→ 1

2
λ(t2 − 1) + 1 to the

integral on [1−λ, 1]. This yields the following integral expression when the integration

variables t1 and t2 were re-labelled as t:

2F1(a, b; c; z) =
Γ(c)

Γ(b)Γ(c− b)
(H.1)

×

[(
λ

2

)c−1 ∫ 1

−1

(
1− 1

2
λz{t+ 1}

)−a(
2− λ
λ
− t
)c−b−1

(1 + t)b−1dt

+

∫ 1−λ

λ

ezt(1− t)c−b−1tb−1dt

+

(
λ

2

)c−1 ∫ 1

−1

(
1− z{1

2
λ(t− 1) + 1}

)−a
(1− t)c−b−1

(
2− λ
λ

+ t

)b−1

dt

]
,

similar to the expression when we applied this same method in Appendix G.5.

Verdict: The accuracy of this method was reasonable for many cases. For instance,

2F1(2.25, 4; 5.5; 0.5) was computed to 15 digit accuracy, with 2F1(20.25, 40.5; 50; 0.5)

to 7 digit accuracy and 2F1(20.25, 4; 50.5; 0.98) (where here z is very close to the unit
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disc) to 10 digit accuracy when 300 mesh points were used to compute each of the

three integrals in (H.1), λ was taken to be 0.1, and the composite trapezoidal rule was

used to compute the integral on [λ, 1− λ]. However, similarly to when we applied this

method to compute 1F1, we found that the time taken was very large compared to the

time taken for Gauss-Jacobi quadrature as described in Section 4.4 (the computation

time was usually over 3 seconds the first time we ran this code after loading MATLAB),

and for this reason, we preferred the method of Gauss-Jacobi quadrature.

• Romberg integration: We implement Romberg integration, the theory of which was

introduced in Appendix G.5, and apply it to the integral (4.8).

Verdict: The results generated using this method were very accurate in many cases.

For example, when m = n = 10 was taken in (G.15) and (G.16), we obtained

15 digit accuracy when computing 2F1(2, 4.5; 10.25; 0.5), and 12 digit accuracy for

2F1(2, 4.5; 10.25; 0.9) and 2F1(20, 4.5; 10.25; 0.5). On the other hand, when we com-

puted 2F1(20, 40.5; 10.25; 0.5), we did not obtain any digits of accuracy, which under-

lines the limitations of the method. This, and the restriction that this method cannot

be applied when the integrand in (4.8) blows up at the end-points of the integral, are

quite serious drawbacks.

• Adaptive quadrature: We apply the theory of adaptive quadrature introduced in

Appendix G.5, but apply it this time to the integral (4.8).

Verdict: For some cases, this method was very effective. For example, when tol1 and

tol2 were taken to be 10−10 and 10−15 respectively, in the notation of G.5, we obtained

13 digit accuracy when we computed 2F1(1, 2; 5.5; 0.5) and 2F1(10, 2; 5.5; 0.5). However,

some computations such as 2F1(10, 20; 5.5; 0.5) took a prohibitively long time (over 2

minutes) to carry out using this method, which is a significant disadvantage to using

adaptive quadrature for computing 2F1. Also, as for 1F1, we require that the integrand

in (4.8) is not infinitely large at the end-points of the integral. These two reasons

justified our decision to rule out this method in favour of Gauss-Jacobi quadrature,

which is detailed in Section 4.4.
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• Other integral representations for 2F1(a, b; c; z): Further methods for numerical

integration could be considered by applying them to other integrals for 2F1(a, b; c; z).

Some examples of contour integrals which could be computed numerically, introduced

in [3, 65], are stated below:

2F1(a, b; c; z) =
Γ(c)Γ(1 + b− c)

2πiΓ(b)

∫ (1+)

0

tb−1(t− 1)c−b−1

(1− zt)a
dt,

c− b 6= 1, 2, 3, ..., Re(b) > 0,

2F1(a, b; c; z) =
e−bπi

2πi

Γ(c)Γ(1− b)
Γ(c− b)

∫ (0+)

∞

tb−1(t+ 1)a−c

(t− zt+ 1)a
dt,

b 6= 1, 2, 3, ..., Re(c− b) > 0,

2F1(a, b; c; z) =
Γ(c)

2πiΓ(a)Γ(b)

∫ +i∞

−i∞

Γ(a+ t)Γ(b+ t)Γ(−t)
Γ(c+ t)

(−z)tdt,

a, b 6= 0,−1,−2, ... ,

2F1(a, b; c; z) =
Γ(c)

2πiΓ(a)Γ(b)Γ(c− a)Γ(c− b)

×
∫ +i∞

−i∞
Γ(a+ t)Γ(b+ t)Γ(c− a− b− t)Γ(−t)(1− z)tdt,

a, b, c− a, c− b 6= 0,−1,−2, ... .

The first contour integral above represents beginning at 0, traversing anti-clockwise

around 1 and then back to 0, and the second represents starting at ∞, traversing

anti-clockwise around 0 and then moving back towards ∞.

H.2 Other differential equation methods

• Dormand-Prince: We apply the Dormand-Prince method introduced in Appendix

G.6 to the differential equation (4.2).

Verdict: We found that this method was not as accurate as the RK4 method described

in Section 4.5 when we used a relatively small number of mesh points. For example,

when we tried to compute 2F1(1.75 + 3i, 2 + 4i; 5.5 + 2i; 0.5) using both methods with

500 mesh points, we obtained 2 digit accuracy with the Dormand-Prince method as

opposed to 10 digit accuracy with the RK4 method. Therefore, we concluded that for a

number of mesh points that was feasible without resulting in a very large computation
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time, the RK4 method was the more effective for solving the differential equation (4.2)

numerically.

H.3 Padé approximants and rational approximation

• Padé approximants: We write

2F1(a, b; c; z) =
∞∑
j=0

(a)j(b)j
(c)j

=
∞∑
j=0

Ajz
j, (H.2)

and then solve the matrix system (G.23) as in Appendix G.7.

Verdict: As for 1F1(a; b; z) in Appendix G.5, we found that this Padé approximation

method for computing 2F1(a, b; c; z) was effective for some parameter values. For ex-

ample, we computed 2F1(1, 3; 4.5; 0.5) to 11 digit accuracy in roughly a quarter of a

second, when p̃ = 15 and q̃ = 3. However, when we tried to compute 2F1(5, 15; 4.5; 0.5)

for instance, no digits of accuracy were obtained, although 4 digit accuracy was ob-

tained when p̃ was increased to 30. Similarly to when we computed 1F1 using this

method, we refrained from recommending this method due to the lack of possibilities

for altering the values of p̃ and q̃ to control the error it generates.

• Rational approximation for 2F1(a, b; c;−z): We computed the representation stated

in [35],

E(z) =
An(z)

Bn(z)
+Rn(z), (H.3)

where

An(z) = Lnz
n

n∑
k=0

(−n)k(n+ 1)k(a)k(b)kk

(a+ 1)k(b+ 1)k(k!)2

× 4F3

(
−n+ k, n+ 1 + k, c+ k, 1; 1 + k, a+ 1 + k, b+ 1 + k;−1

z

)
,

Bn(z) = Lnz
n

3F2

(
−n, n+ 1, c; a+ 1, b+ 1;−1

z

)
,

Ln =
(a+ 1)n(b+ 1)n

(n+ 1)n(c)n
.

Verdict: We concluded that, on the basis of our studies for computing 1F1 detailed in

Appendix G.7, computing the Gauss hypergeometric function 2F1 using (H.3) might
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not be the most efficient method due to the fact that more complex hypergeometric

functions are involved in this representation. Therefore this method was not imple-

mented due to time constraints. If research is carried out on the computation of 4F3

and 3F2, this could be a viable method for calculating 2F1, however it is unlikely that

more accurate results could be generated for a sum of more complex hypergeometric

functions than a single simpler hypergeometric function.

H.4 Chebyshev expansion for 2F1(a, b; c; z)

As in [36], we write

2F1(a, b; c; zx) =
∞∑
j=0

Cj(z)T̂j(x), 0 ≤ x ≤ 1, z 6= 1, |arg(1− z)| < π, (H.4)

where T̂j(x) denote the scaled Chebyshev polynomials, and Cj(z) are defined as

Cj(z) =
εj(a)j(b)jz

j

22j(c)jj!
3F2

(
a+ j, b+ j,

1

2
+ j; c+ j, 1 + 2j; z

)
,

ε0 = 1, εj = 2, j = 1, 2, ... ,

2Cj(z)

εj
= (j + 1)

(
2− (2j + 3)(j + a+ 1)(j + b+ 1)

(j + 2)(j + a)(j + b)
+

4(j + c)

z(j + a)(j + b)

)
Cj+1(z)

+
2

(j + a)(j + b)

(
[(j + 2− a)(j + 2− b)

(
j +

3

2

)
−(j + 3− a)(j + 3− b)(j + 1)] +

2(j + 1)(j + 3− b)
z

)
Cj+2(z)

− (j + 1)(j + 3− a)(j + 3− b)
(j + 2)(j + a)(j + b)

Cj+3(z).

Verdict: Carrying out this computation would involve computing the hypergeometric

function 3F2, which we did not research in this project. We concluded that this method

could potentially be a successful one, but only if a body of knowledge was built-up about

the function 3F2 first. However, it is unlikely that computing more complex hypergeometric

functions will be easier than calculating simpler ones.
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I Evaluation of 0F1( ; a; z) and other special functions

required for this project

This appendix details key facts and methods concerning the computation of other special

functions that were relevant to this project. When these functions were evaluated using built-

in MATLAB routines, code from the MathWorks website http://www.mathworks.co.uk/

or the NAG Toolbox, of the Numerical Algorithms Group, these are mentioned.

• Confluent hypergeometric limit function: The confluent hypergeometric limit

function 0F1( ; a; z), required for computation for method 3 of Section 3.4 (that of

computing (3.22)), is defined as the series

0F1( ; a; z) =
∞∑
j=0

1

(a)j

zj

j!
. (I.1)

The differential equation satisfied by 0F1( ; a; z), which is obtained from (2.2) when

p = 0, q = 1, is given by

z
d2w

dz2
+ a

dw

dz
− w = 0, (I.2)

and, as illustrated in (2.4), the Bessel function, another special function, can be defined

in terms of the confluent hypergeometric limit function.

One way to compute the function 0F1 is by using the basic Taylor series definition.

Methods (a) and (b), first discussed in Section 3.2, can be used as follows:

Method (a): Similarly to the method (a) in Sections 3.2 and 4.2, compute

A0 = 1, S0 = A0,

Aj+1 = Aj ×
1

a+ j
× z

j + 1
, Sj+1 = Sj + Aj+1, j = 0, 1, 2, ...,

terminate the summation of the series when |AN+1|
|SN |

< tol for some tol and some N , and

return SN as the solution.
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Method (b): Following the method of [44] as in Sections 3.2 and 4.2, compute

S−1 = S0 = 1, S1 =
1

a
z,

rj =
1

j(a+ j − 1)
, j = 2, 3, ... ,

Sj = Sj−1 + (Sj−1 − Sj−2)rjz, j = 2, 3, ... ,

terminate the summation of the series when |SN+1−SN |
|SN |

< tol for some tol and some N ,

and return SN as the solution.

Alternatively, 0F1 has the following expression as a Bessel function [60]:

0F1( ; a; z) = Γ(a)z
1−a

2 Ia−1(2
√
z), (I.3)

where Iν(z) is defined in (3.10). The function 0F1 can therefore also be computed using

the Bessel function routines explained later in this appendix.

It was found that Taylor series method (a) generated at least 12 digit accuracy for al-

most all values tested, provided the condition |z| . 1000 held. This was therefore used

rather than the Bessel function expansion, due to the fact that the built-in MATLAB

function besselj.m will not compute the Bessel function with complex or negative

real argument. However, the Bessel function expression would be useful if software

were created to allow its computation for negative and complex argument, and we

recommend that the Numerical Algorithms Group develop software for computing the

Bessel function Jν(z) for all ν, z ∈ C. Details on the software used for computing the

Bessel function are given later in this appendix.

• Gamma function: We use the Gamma function, as defined in (2.5) and (2.6), in

many of the methods for computing the hypergeometric functions discussed.

It should be noted that, by (2.6), the Gamma function is singular when its argument

is equal to a negative integer. This causes a problem in Section 4.6 for example, when

applying transformation formulae can involve attempting to compute a finite value

by adding up two infinitely large terms of opposite sign, when summing the real or

imaginary part of the individual terms.
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The Gamma function Γ(z) satisfies

Γ(z + 1) = zΓ(z), (I.4)

which gives a useful recurrence relation for computations.

Effective code for computation of the Gamma function will take account of the reflec-

tion formula (2.6) and the recursion formula (I.4). Such code could also take account

of the polynomial expansion in [3]

1

Γ(z)
=
∞∑
j=1

cjz
j,

where the coefficients cj are stated in [3], or the following asymptotic formula given in

the same text:

Γ(z) ∼ ezzz−
1
2 (2π)

1
2

[
1 +

1

12z
+

1

288z2
− 139

51840z3
− 571

2488320z4
+ ...

]
, (I.5)

as z →∞, for |arg z| < π.

Alternatively, the following expansion, stated in [57], can be used, for certain dj, θ and

N :

Γ(z + 1) =

(
z + θ +

1

2

)z+ 1
2

e−(z+θ+ 1
2) (I.6)

×
√

2π

[
d0 +

d1

z + 1
+

d2

z + 2
+ ...+

dN
z +N

+ εN

]
,

for Re(z) > 0, where εN denotes the error in the computation for the chosen value of

N . For N = 14 and d0, d1, ..., d14 and θ stated in [57], the authors note that the error

|ε14| is less than 10−15 for real z and almost as small for complex z.

It is also recommended in [57] that log Γ(z), rather than Γ(z) directly, should be com-

puted, due to the greater possibility of overflow when z is increased if direct evaluation

of Γ(z) is used.

For this project, we use the built-in MATLAB function gamma.m for real z, and the

code cgama.m from [71], based on ideas from [70], for complex z. The NAG Toolbox

code s14aa.m can be used, but only for a real variable. We recommend to the Numer-

ical Algorithms Group that code for the Gamma function for complex variable z be
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designed to feed into routines for the evaluation of hypergeometric functions for com-

plex parameters, and that such code might benefit by using some of the ideas discussed

in this appendix.

One reason why the methods explained in this project that involve Gamma functions

are restricted by the capabilities of MATLAB is that the Gamma function is read out

as infinity for sufficiently large z (for example, according to MATLAB, Γ(171) is finite,

but Γ(172) is infinite).

• Incomplete gamma function: The two incomplete gamma functions used in this

project, which were required in Appendix G.2 and G.4, are:

γ(a, z) =

∫ z

0

e−tta−1dt, Γ(a, z) =

∫ ∞
z

e−tta−1dt, (I.7)

from which we deduce that:

γ(a, z) + Γ(a, z) =

∫ ∞
0

e−tta−1dt = Γ(a). (I.8)

It is stated in [3] that γ(a, z) and Γ(a, z) satisfy the following recurrence relations:

γ(a+ 1, z) = aγ(a, z)− zae−z, (I.9)

Γ(a+ 1, z) = aΓ(a, z) + z−ae−z.

As noted in [3],the following is a series definition for γ(a, z):

γ(a, z) = e−zza
∞∑
j=0

Γ(a)

Γ(a+ 1 + j)
zj. (I.10)

We note that, as first indicated in Section 3.2, the (k + 1)-st term can be computed

from the k-th term using multiplication by an appropriate factor in terms of k, so this

series is relatively simple to evaluate.

Apart from determining the function Γ(a, z) from γ(a, z) using (I.8), the following

continued fraction representations stated in [57] can be used for z > 0:

Γ(a, z) = e−zza
(

1

z+

1− a
1+

1

z+

2− a
1+

2

z+
. . .

)
≡ e−zza × 1

z + 1−a
1+ 1

z+...

, (I.11)

Γ(a, z) = e−zza
(

1

z + 1− a−
1 · (1− a)

z + 3− a−
2 · (2− a)

z + 5− a− . . .

)
.
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A good routine for computing the incomplete gamma functions should contain some of

the ideas above. The built-in MATLAB function used for computation of the function

γ(a, z) is gammainc.m, in terms of variable z and parameter a. This needs to be

multiplied by Γ(a) to obtain the function as defined in (I.7), and in turn subtracting

this from Γ(a) gives Γ(a, z) as defined in (I.7). The NAG Library has the routine

s14ba.m for computing the incomplete gamma function in normalised form [i.e. divided

by Γ(a)]. However this along with the MATLAB routine only works for real a. For

complex a, we could use the known relation

γ(a, z) = a−1zae−zM(1; a+ 1; z) = a−1zaM(a; a+ 1;−z). (I.12)

We recommend that a routine for computing the two incomplete gamma functions

γ(a, z) and Γ(a, z) for complex a be devised for the NAG Toolbox as a supplement to

the code for evaluating hypergeometric functions.

• Polygamma function: The polygamma function, ψ(z), is defined as in (4.26), or

alternatively, for n = 0, 1, 2, ...

ψ(n)(z) =
dn

dzn
[log Γ(z)]. (I.13)

The routines used for the computation of this function are the NAG Toolbox routines

s14ae.m and s14af.m, for real and complex z, respectively.

• Bessel functions: The built-in MATLAB function besselj.m, in terms of parameter

ν and variable z, was used to compute the Bessel functions Jν(z) and Iν(z), as defined

in (2.4) and (3.9) respectively, which arose in this project. Alternatively, the NAG

Toolbox routines s17ae.m, s17de.m or s18gk.m, could be used, but these only work

for specific regimes of ν.
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J Some examples of hypergeometric functions from

practical applications

There are a large number of practical applications for the hypergeometric functions

1F1(a; b; z) and 2F1(a, b; c; z). One key application that we have previously indicated is the

expression of other elementary and special functions as a special case of these hypergeometric

functions. A selection of other practical applications of the confluent and Gauss hypergeo-

metric functions is listed below. In all examples, the notation from the relevant literature is

used.

• The confluent hypergeometric function 1F1 can be used to find exact solutions of the

wave equation. As stated in [31], in paraboloidal coordinates,

x = 2
√
ξη cosφ, y = 2

√
ξη sinφ, z = ξ − η,

separating the variables of the Helmholtz equation ∇2u+ k2u = 0 as follows:

u = f1(ξ)f2(η)eipφ = ξ−
1
2W

(1)

k, 1
2
p
(2ikξ)︸ ︷︷ ︸

f1(ξ)

η−
1
2W

(2)

k, 1
2
p
(−2ikη)︸ ︷︷ ︸

f2(η)

eipφ (J.1)

will enable its solution to be found. Here, W
(1)
κ,µ(z), W

(2)
κ,µ(z) denote two solutions to

Whittaker’s equation

d2W

dz2
+

(
−1

4
+
κ

z
+

1
4
− µ2

z2

)
W = 0, (J.2)

whose two standard solutions are

Mκ,µ(z) = e−
1
2
zz

1
2

+µM

(
1

2
+ µ− κ; 1 + 2µ; z

)
, 2µ 6= −1,−2, ...,

Wκ,µ(z) = e−
1
2
zz

1
2

+µU

(
1

2
+ µ− κ; 1 + 2µ; z

)
,

details of which are described in [3, 14].

• In [10], the authors discuss writing a program designed to calculate cross sections for

the scattering of charged particles, and note the applicability of these calculations to
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problems in atomic and molecular physics. The discussion is based around seeking the

solution to the following differential equation, which is also discussed in [47]:

d2u

dr2
+

[
k2 +

2Z

r
− L(L+ 1)

r2

]
u = 0, (J.3)

where r is the distance between the locations of the projectile and the target, Z is

the charge product, k2 denotes the energy of the charged particle, and L is an integer

which is implicit in the definition of the Coulomb function as the solution u of (J.3).

By writing c = ik
Z

and z = Zr as in [10], the equation (J.3) can be written as a form

of (J.2),

d2u

dz2
+

[
−c2 +

2

z
− L(L+ 1)

z2

]
u = 0,

which has a solution

u = e−cz(2cz)L+1v

(
L+ 1− 1

c
; 2L+ 2; 2cz

)
, (J.4)

v(q;n+ 1; z) =
1

n!Γ(q − n)
{M(q;n+ 1; z) log z +

∞∑
j=0

(q)jz
j

(n+ 1)jj!
[ψ(q + j) (J.5)

−ψ(1 + j)− ψ(1 + j + n)]}+
(n− 1)!

Γ(q)

1

zn

n−1∑
j=0

(q − n)j
(1− n)j

zj

j!
.

• In [13], the pricing of Asian options, a problem in financial mathematics, is considered,

for all choices of market parameters. The Black-Scholes model

dSt = rSt + σStdWt, t ≥ 0,

is considered, where St denotes the price of the asset being considered at time t with

initial price S0, r ≥ 0 denotes the constant risk-free rate, σ > 0 denotes constant

volatility, and Wt represents standard Brownian motion. Of interest in this paper is

the normalised price

CA(ν, τ, κ) = E[max(Aντ − κ, 0)],

where Aντ =
∫ τ

0
e2W2+νsds is Yor’s process, which is related to the average price of the

underlying asset over the time period [0, τ ], and κ > 0 is the strike price of the Asian

call option.
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The Laplace transform of CA(ν, τ, κ),

ĈA ≡
∫ ∞

0

CA(ν, τ, κ)(t)e−stdt,

is sought; this is found to be related to the confluent hypergeometric function as follows:

U(s) =
zb−ae−sΓ(a)

s(s− 2c)Γ(b)
M(a; b; z), a =

µ+ ν

2
+ 2, b = µ+ 1, c = ν + 1, z =

1

2κ
, (J.6)

for any µ.

• The Gauss hypergeometric function 2F1 can be used to describe transonic adiabatic

flow over a smooth bump, involving an ideal compressible fluid, as described in [16].

The model is described by the following equation:

ψww +
1

w

(
1 +

w2

c2

)
ψw +

1

w2

(
1− w2

c2

)
ψθθ = 0,

where ψ is the stream function of the flow, w (the magnitude of the velocity) and θ

(the angle between the flow and a reference direction) are the plane coordinates, and

c is the speed of sound, which is given by

c2 =
1

2β
(1− w2),

where β = 1
γ−1

, and γ defines the ratio of the specific heat coefficients of fluid and air.

One finds that

ψ(w, θ) =
∞∑
j=0

Cjw
j

2F1(aj, bj; j + 1;w2) sin(jθ), (J.7)

where

C0 = 1, Cj =
2j − 1

2j
× Cj−1,

aj + bj = j − β, bj =
1

2
βj(j + 1).

This needs to be extended for large j, which results in problems for computing the

function 2F1(a, b; c; z) for large or small, real |a|, |b| and |c|. This motivates the use of

recurrence relations as detailed in Section 4.8.
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• In [39], a plasma dispersion function Zκ(ξ) is considered. This is defined as

Zκ(ξ) =
1

π1/2κ3/2

Γ(κ+ 1)

Γ(κ− 1
2
)
Q(ξ),

where

Q(ξ) =

∫ ∞
−∞

ds

(s− ξ)(1 + s2

κ
)κ+1

, Im(ξ) > 0.

with variable ξ and spectral index κ.

It is found that

Q(ξ) =
2πi

22κ+2

Γ(2κ+ 2)

Γ(κ+ 1)Γ(κ+ 2)
2F1

(
1, 2κ+ 2;κ+ 2;

1

2

[
1− ξ

i
√
κ

])
, (J.8)

and hence that

Zκ(ξ) =
i(κ+ 1

2
)(κ− 1

2
)

κ3/2(κ+ 1)
2F1

(
1, 2κ+ 2;κ+ 2;

1

2

[
1− ξ

i
√
κ

])
. (J.9)

It is noted in [39] that, when ξ = 0, the following relation can be used:

2F1

(
a, b;

1

2
(a+ b+ 1);

1

2

)
=

Γ
(

1
2

)
Γ
(

1
2

+ 1
2
a+ 1

2
b
)

Γ
(

1
2

+ 1
2
a
)

Γ
(

1
2

+ 1
2
b
) .

• In [21], the effect of penetration by electrons of a potential barrier is investigated. The

wave equation related to this problem is

ξ2u′′ + ξu′ +
2ml2

h2

[
Aξ

1− ξ
+

Bξ

(1− ξ)2
+W

]
u = 0,

where u denotes displacement, h is Planck’s constant, the de Broglie wavelength of the

electron is 2l, A, B, and W are other constants, ξ is the transformed length coordinate,

and m denotes mass.

The solution is

u = a1

(
ξ

ξ − 1

)iα
(1− ξ)iβ 2F1

(
1

2
+ i(α− β + δ),−1

2
+ i(α− β − δ); 1 + 2iα;

ξ

ξ − 1

)
+ a2

(
ξ

ξ − 1

)−iα
(1− ξ)iβ (J.10)

× 2F1

(
1

2
+ i(−α− β + δ),−1

2
+ i(−α− β − δ); 1− 2iα;

ξ

ξ − 1

)
,
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which converges when
∣∣∣ ξ
ξ−1

∣∣∣ < 1, where

a1 =
Γ(1− 2iβ)Γ(−2iα)

Γ
(

1
2

+ i(−α− β − δ)
)

Γ
(

1
2

+ i(−α− β + δ)
) ,

a2 =
Γ(1− 2iβ)Γ(2iα)

Γ
(

1
2

+ i(α− β − δ)
)

Γ
(

1
2

+ i(α− β + δ)
) ,

α =
1

2

(
W

C

) 1
2

,

β =
1

2

(
W − A
C

) 1
2

,

δ =
1

2

(
B − C
C

) 1
2

,

C =
h2

8ml2
,

where the electron has energy C.

• In [54], the susceptible-infected-susceptible (SIS) epidemic model is applied to complex

networks. The network studied is represented by an exponential network, meaning that

the probability that a node is connected to k others, P (k), is exponentially bounded.

The network obeys the law

P (k) ∼ k2−γ,

where the parameter γ > 0.

In this paper, the density of infected nodes, ρ, is found to satisfy

ρ = 2F1(1, 1 + γ; 2 + γ;−[mλΘ(λ)]−1), (J.11)

where m is the minimum number of connections at each node, λ denotes the spreading

rate, and Θ(λ) denotes the probability that a link points to an infected node with this

spreading rate.
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K List of code written for this project

Below is a list of routines written for this project. All the code listed carries out

computations for complex parameters and variable unless otherwise specified. These routines

will be hosted on the website

http://people.maths.ox.ac.uk/~porterm/research/hypergeometricpackage.zip

by 12 September 2009.

Code for computing 1F1(a; b; z):

• taylora1f1.m – Computes 1F1(a; b; z) using Taylor series method (a) in Section 3.2

• taylorb1f1.m – Computes 1F1(a; b; z) using Taylor series method (b) in Section 3.2

• singlefraction1f1.m – Computes 1F1(a; b; z) using the single fraction method in
Section 3.3

• buchholza1f1.m – Computes 1F1(a; b; z) using method 1 in Section 3.4 for complex a,
b

• buchholzbreal1f1.m – Computes 1F1(a; b; z) using method 2 in Section 3.4 for real a,
b

• buchholzbcomplex1f1.m – Computes 1F1(a; b; z) using method 2 in Section 3.4 for
complex a, b

• buchholzc1f1.m – Computes 1F1(a; b; z) using method 3 in Section 3.4 for complex a,
b

• buchholzpoly.m – Computes the Buchholz polynomials pn(b, z) for use in the routines
buchholzb1f1.m and buchholzc1f1.m

• betaseries1f1.m – Computes 1F1(a; b; z) using the series of beta random variables,
as described in Appendix G.1

• asymptotica1f1.m – Computes 1F1(a; b; z) using method (a) for asymptotic series in
Section 3.5

• asymptoticb1f1.m – Computes 1F1(a; b; z) using method (b) for asymptotic series in
Section 3.5

• hyperasymptoticu1f1.m – Model code for computing U(a; b; z) using the hyperasymp-
totic expansion given in Appendix G.4
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• gjquadreal1f1.m – Computes 1F1(a; b; z) using Gauss-Jacobi quadrature as in Section
3.6 for real a, b

• gjquadcomplex1f1.m – Computes 1F1(a; b; z) using Gauss-Jacobi quadrature as in
Section 3.6 for complex a, b

• deivprk1f1.m – Computes 1F1(a; b; z) using the RK4 method as discussed in Section
3.7

• recurrencea1f1.m – Computes U(a + n; b; z) using the computation of U(a; b; z), as
discussed in Section 3.8

• recurrenceb1f1.m – Computes 1F1(a; b + n; z) using the computation of 1F1(a; b; z),
as discussed in Section 3.8

• recurrencec1f1.m – Computes 1F1(a+n; b+n; z) using the computation of 1F1(a; b; z),
as discussed in Section 3.8

• incgammaexpansion1f1.m – Computes 1F1(a; b; z) using the incomplete gamma func-
tion expansion given in Appendix G.2

• asymptoticexpansionbz1f1.m – Computes 1F1(a; b; z) using the asymptotic expan-
sion for large |b|, |z| given in Appendix G.3

• intsplit1f1.m – Computes 1F1(a; b; z) using the method of splitting the integral in
(3.25), as discussed in Appendix G.5

• romberg1f1.m – Computes 1F1(a; b; z) using Romberg integration, as discussed in Ap-
pendix G.5

• adquad1f1.m – Computes 1F1(a; b; z) using adaptive quadrature, as discussed in Ap-
pendix G.5, with the trapezoidal rule and Simpson’s rule

• adquadboole1f1.m – Computes 1F1(a; b; z) using adaptive quadrature, as discussed in
Appendix G.5, with the trapezoidal rule and Boole’s rule

• deivpdp1f1.m – Computes 1F1(a; b; z) using the Dormand-Prince method, as discussed
in Appendix G.6

• pade1f1.m – Computes 1F1(a; b; z) using Padé approximants, as discussed in Appendix
G.7

• rational1f1.m – Computes 1F1(a; b; z) using rational approximation, as discussed in
Appendix G.7

• oscint1f1.m – Computes 1F1(a; b; z) using the method for oscillatory integrals, as
discussed in Appendix G.5
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• debvpfd1f1.m – Computes the profile of 1F1(a; b; z) over a range of z using the finite
difference method, as discussed in [73]

• debvpshooting1f1.m – Computes the profile of 1F1(a; b; z) over a range of z using the
shooting method, as discussed in [73]

• debvpchebyshev1f1.m – Computes the profile of 1F1(a; b; z) over a range of z using
Chebyshev differentiation matrices, as discussed in [73]

Code for computing 2F1(a, b; c; z):

• taylora2f1.m – Computes 2F1(a, b; c; z) using Taylor series method (a) in Section 4.2

• taylorb2f1.m – Computes 2F1(a, b; c; z) using Taylor series method (b) in Section 4.2

• singlefraction2f1.m – Computes 2F1(a, b; c; z) using the single fraction method in
Section 4.3

• transformations2f1.m – Code containing transformations detailed in Section 4.6

• buhringa2f1.m – Computes 2F1(a, b; c; z) using the method of Section 4.7

• buhringb2f1.m – Computes 2F1(a, b; c; z) using the method of Section 4.7 with a = b

• gjquadreal2f1.m – Computes 2F1(a, b; c; z) using Gauss-Jacobi quadrature as in Sec-
tion 4.4 for real a, b, c

• gjquadcomplex2f1.m – Computes 2F1(a, b; c; z) using Gauss-Jacobi quadrature as in
Section 4.4 for complex a, b, c

• deivprk2f1.m – Computes 2F1(a, b; c; z) using the RK4 method as discussed in Section
4.5

• recurrencea2f1.m – Code that implements recurrence relation 1 of Section 4.8

• recurrenceb2f1.m – Code that implements recurrence relation 2 of Section 4.8

• recurrencec2f1.m – Code that implements recurrence relation 3 of Section 4.8

• recurrenced2f1.m – Code that implements recurrence relation 4 of Section 4.8

• intsplit2f1.m – Computes 2F1(a, b; c; z) using the method of splitting the integral in
(4.8), as discussed in Appendix H.1

• romberg2f1.m – Computes 2F1(a, b; c; z) using Romberg integration, as discussed in
Appendix H.1
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• adquad2f1.m – Computes 2F1(a, b; c; z) using adaptive quadrature, as discussed in
Appendix H.1, with the trapezoidal rule and Simpson’s rule

• adquadboole2f1.m – Computes 2F1(a, b; c; z) using adaptive quadrature, as discussed
in Appendix H.1, with the trapezoidal rule and Boole’s rule

• deivpdp2f1.m – Computes 2F1(a, b; c; z) using the Dormand-Prince method, as dis-
cussed in Appendix H.2

• pade2f1.m – Computes 2F1(a, b; c; z) using Padé approximants, as discussed in Ap-
pendix H.3

• debvpfd2f1.m – Computes the profile of 2F1(a, b; c; z) over a range of z using the finite
difference method, as discussed in [73]

• debvpshooting2f1.m – Computes the profile of 2F1(a, b; c; z) over a range of z using
the shooting method, as discussed in [73]

• debvpchebyshev2f1.m – Computes the profile of 2F1(a, b; c; z) over a range of z using
Chebyshev differentiation matrices, as discussed in [73]

Code for computing other hypergeometric functions:

• taylora0f1.m – Computes 0F1( ; a; z) using Taylor series method (a), as detailed in
Appendix I

• taylorb0f1.m – Computes 0F1( ; a; z) using Taylor series method (b), as detailed in
Appendix I

• bessel0f1.m – Computes 0F1( ; a; z) using its Bessel function representation, as de-
tailed in Appendix I

• taylor2f2.m – Computes 2F2(a, b; c, d; z) using a Taylor series method

• taylor3f3.m – Computes 3F3(a, b, c; d, e, f ; z) using a Taylor series method
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Wave Functions, Computer Physics Communications, 178, pp.535–51, 2008

[42] T. Morita: Use of the Gauss Contiguous Relations in Computing the Hypergeometric

Functions F (n+1/2, n+1/2;m; z), Interdisciplinary Information Sciences, 2, pp.63–74,

1996

[43] S. L. Moshier: Methods and Programs for Mathematical Functions, Ellis Horwood, 1989

[44] K. E. Muller: Computing the Confluent Hypergeometric Function, M(a, b, x), Nu-

merische Mathematik, 90, pp.179–96, 2001

[45] M. Nardin, W. F. Perger, A. Bhalla: Algorithm 707: CONHYP: A Numerical Evaluator

of the Confluent Hypergeometric Function for Complex Arguments of Large Magnitudes,

ACM Transactions on Mathematical Software, 18, pp.345–9, 1992

[46] M. Nardin, W. F. Perger, A. Bhalla: Numerical Evaluation of the Confluent Hypergeo-

metric Function for Complex Arguments of Large Magnitudes, Journal of Computational

and Applied Mathematics, 39, pp.193–200, 1992

[47] C. J. Noble, I. J. Thompson: COULN, a Program for Evaluating Negative Energy

Coulomb Functions, Computer Physics Communications, 33, pp.413–9, 1984

[48] A. B. Olde Daalhuis: Hyperasymptotic Expansions of Confluent Hypergeometric Func-

tions, IMA Journal of Applied Mathematics, 49, pp.203–16, 1992

116



[49] A. B. Olde Daalhuis, F. W. J. Olver: Hyperasymptotic Solutions of Second-Order Linear

Differential Equations I, Methods and Applications of Analysis, 2, pp.173–97, 1995

[50] A. B. Olde Daalhuis, F. W. J. Olver: On the Asymptotic and Numerical Solution of

Linear Ordinary Differential Equations, SIAM Review, 40, pp.463–95, 1998

[51] F. W, Olver: Asymptotics and Special Functions, Academic Press, 1974

[52] F. W. Olver: Exponentially-Improved Asymptotic Solutions of Ordinary Differential

Equations, I: The Confluent Hypergeometric Function, SIAM Journal of Mathematical

Analysis, 24, pp.756–67, 1993

[53] F. W. Olver: Uniform, Exponentially Improved, Asymptotic Expansions for the Conflu-

ent Hypergeometric Function and Other Integral Transforms, SIAM Journal of Mathe-

matical Analysis, 22, pp.1475–89, 1991

[54] R. Pastor-Satorras, A. Vespignani: Epidemic Dynamics and Endemic States in Complex

Networks, Physical Review E, 63, DOI: 10.1103, 066117, 2001

[55] T. N. L. Patterson: On High Precision Methods for the Evaluation of Fourier Integrals

with Finite and Infinite Limits, Numerische Mathematik, 27, pp.41–52, 1976

[56] V. Pierro, I. M. Pinto, A. D. A. M. Spallicci di F. : Computation of Hypergeometric

Functions for Gravitationally Radiating Binary Stars, Monthly Notices of the Royal

Astronomical Society, 334, pp.855–8, 2002

[57] W. A. Press, S. A. Teukolsky, W. T. Vetterling, B. P. Flannery: Numerical Recipes:

The Art of Scientific Computing, Third Edition, Cambridge University Press, 2007

[58] M. A. Rakha, E. S. El-Sedy: Application of Basic Hypergeometric Series, Applied Math-

ematics and Computation, 148, pp.717–23, 2004

[59] H. T. Rathod, B. Venkatesudu, K. V. Nagaraja, Md. Shafiqul Islam: Gauss Legendre–

Gauss Jacobi Quadrature Rules Over a Tetrahedral Region, Applied Mathematics and

Computation, 190, pp.186–94, 2007

[60] K. Roach: Hypergeometric Function Representations, Proceedings of the 1996 Interna-

tional Symposium on Symbolic and Algebraic Computation, pp.301–8, 1996

[61] J. B. Seaborn: Hypergeometric Functions and their Applications, Springer-Verlag, 1991

117



[62] J. Segura, N. M. Temme: Numerically Satisfactory Solutions of Kummer Recurrence

Relations, Numerische Mathematik, 111, pp.109–19, 2008

[63] J. Sesma: The Temme’s Sum Rule for Confluent Hypergeometric Functions Revisited,

Journal of Computational and Applied Mathematics, 163, pp.429–31, 2004

[64] L. J. Slater: Confluent Hypergeometric Functions, Cambridge University Press, 1960

[65] L. J. Slater: Generalized Hypergeometric Functions, Cambridge University Press, 1966

[66] N. M. Temme: Large Parameter Cases of the Gauss Hypergeometric Function, Journal

of Computational and Applied Mathematics, 2003, pp.441–62, 2003

[67] N. M. Temme: The Numerical Computation of the Confluent Hypergeometric Function

U(a, b, z), Numerisch Mathematik, 41, pp.43–82, 1983

[68] N. M. Temme: Uniform Asymptotic Expansions of Confluent Hypergeometric Functions,

Journal of the Institute of Mathematical Applications, 22, pp.215–23, 1978

[69] J. Wimp: Computation with Recurrence Relations, Pitman, 1984

[70] S. Zhang, J. Jin: Computation of Special Functions, John Wiley & Sons, 1966

[71] http://www.mathworks.com/matlabcentral/fileexchange/6218, file cgama.m from

package ‘Computation of Special Functions’, by B. Barrowes, last updated 14 Apr 2005,

downloaded 26 Apr 2009

[72] http://www.mathworks.com/matlabcentral/fileexchange/32, files gaussq.m and

qrule.m, by P. A. Brodtkorb, last updated 28 Nov 2005, downloaded 4 May 2009

[73] J. Pearson: An Analysis of Five Numerical Methods for Approximating Certain Hyper-

geometric Functions in Domains Within Their Radii of Convergence, MSc in Mathe-

matical Modelling and Scientific Computing Special Topic, 2009, hosted at

http://people.maths.ox.ac.uk/~porterm/research/hypergeometricsptop.pdf

118


