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This textbook is aimed at newcomers to nonlinear dynamics and chaos, especially
students taking a first course in the subject. It is based on a one-semester course
I’ve taught for the past several years at MIT. My goal is to explain the mathematics
as clearly as possible, and to show how it can be used to understand some of the
wonders of the nonlinear world.

The mathematical treatment is friendly and informal, but still careful. Analyti-
cal methods, concrete examples, and geometric intuition are stressed. The theory is
developed systematically, starting with first-order differential equations and their
bifurcations, followed by phase plane analysis, limit cycles and their bifurcations,
and culminating with the Lorenz equations, chaos, iterated maps, period doubling,
renormalization, fractals, and strange attractors.

A unique feature of the book is its emphasis on applications. These include me-
chanical vibrations, lasers, biological rhythms, superconducting circuits, insect
outbreaks, chemical oscillators, genetic control systems, chaotic waterwheels, and
even a technique for using chaos to send secret messages. In each case, the sci-
entific background is explained at an elementary level and closely integrated with
the mathematical theory.

Prerequisites

The essential prerequisite is single-variable calculus, including curve-sketch-
ing, Taylor series, and separable differential equations. In a few places, multivari-
able calculus (partial derivatives, Jacobian matrix, divergence theorem) and linear
algebra (eigenvalues and eigenvectors) are used. Fourier analysis is not assumed,
and is developed where needed. Introductory physics is used throughout. Other
scientific prerequisites would depend on the applications considered, but in all
cases, a first course should be adequate preparation.
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Possible Courses
The book could be used for several types of courses:

* A broad introduction to nonlinear dynamics, for students with no prior expo-
sure to the subject. (This is the kind of course I have taught.) Here one goes
straight through the whole book, covering the core material at the beginning
of each chapter, selecting a few applications to discuss in depth and giving
light treatment to the more advanced theoretical topics or skipping them alto-
gether. A reasonable schedule is seven weeks on Chapters 1-8, and five or six
weeks on Chapters 9-12. Make sure there’s enough time left in the semester
to get to chaos, maps, and fractals.

* A traditional course on nonlinear ordinary differential equations, but with
more emphasis on applications and less on perturbation theory than usual.
Such a course would focus on Chapters 1-8.

* A modern course on bifurcations, chaos, fractals, and their applications, for
students who have already been exposed to phase plane analysis. Topics
would be selected mainly from Chapters 3, 4, and 8-12.

For any of these courses, the students should be assigned homework from the
exercises at the end of each chapter. They could also do computer projects; build
chaotic circuits and mechanical systems; or look up some of the references to geta
taste of current research. This can be an exciting course to teach, as well as to take.
I hope you enjoy it.

Conventions

Equations are numbered consecutively within each section. For instance, when
we’re working in Section 5.4, the third equation is called (3) or Equation (3), but
elsewhere it is called (5.4.3) or Equation (5.4.3). Figures, examples, and exercises
are always called by their full names, e.g., Exercise 1.2.3. Examples and proofs
end with a loud thump, denoted by the symbol m.
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OVERVIEW

1.0 Chaos, Fractals, and Dynamics

There is a tremendous fascination today with chaos and fractals. James Gleick’s
book Chaos (Gleick 1987) was a bestseller for months—an amazing accomplish-
ment for a book about mathematics and science. Picture books like The Beauty of
Fractals by Peitgen and Richter (1986) can be found on coffee tables in living
rooms everywhere. It seems that even nonmathematical people are captivated by
the infinite patterns found in fractals (Figure 1.0.1). Perhaps most important of all,
chaos and fractals represent hands-on mathematics that is alive and changing. You
can turn on a home computer and create stunning mathematical images that no one

has ever seen before.

Figure 1.0.1

The aesthetic appeal of chaos
and fractals may explain why so
many people have become in-
trigued by these ideas. But maybe
you feel the urge to go deeper—to
learn the mathematics behind the
pictures, and to see how the ideas
can be applied to problems in sci-
ence and engineering. If so, this is
a textbook for you.

The style of the book is infor-
mal (as you can see), with an em-
phasis on concrete examples and
geometric thinking, rather than
proofs and abstract arguments. It is
also an extremely “applied”
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book—virtually every idea is illustrated by some application to science or engi-
neering. In many cases, the applications are drawn from the recent research litera-
ture. Of course, one problem with such an applied approach is that not everyone is
an expert in physics and biology and fluid mechanics . . . so the science as well as
the mathematics will need to be explained from scratch. But that should be fun,
and it can be instructive to see the connections among different fields.

Before we start, we should agree about something: chaos and fractals are part of
an even grander subject known as dynamics. This is the subject that deals with
change, with systems that evolve in time. Whether the system in question settles
down to equilibrium, keeps repeating in cycles, or does something more compli-
cated, it is dynamics that we use to analyze the behavior. You have probably been
exposed to dynamical ideas in variov.hs.@ces—in courses in differential equations,
classical mechanics, chemical kinetics, population biology, and so on. Viewed
from the perspective of dynamics, all of these subjects can be placed in a common
framework, as we discuss at the end of this chapter. .

Our study of dynamics begins in earnest in Chapter 2. But before digging in, we
present two overviews of the subject, one historical and one logical. Our treatment
is intuitive; careful definitions will come later. This chapter concludes with a “dy-
namical view of the world,” a framework that will guide our studies for the rest of
the book.

1.1 Capsule History of Dynamics

Although dynamics is an interdisciplinary subject today, it was originally a branch
of physics. The subject began in the mid-1600s, when Newton invented differen-
tial equations, discovered his laws of motion and universal gravitation, and com-
bined them to explain Kepler’s laws of planetary motion. Specifically, Newton
solved the two-body problem—the problem of calculating the motion of the earth
around the sun, given the inverse-square law of gravitational attraction between
them. Subsequent generations of mathematicians and physicists tried to extend
Newton’s analytical methods to the three-body problem (e.g., sun, earth, and
moon) but curiously this problem turned out to be much more difficult to solve.
After decades of effort, it was eventually realized that the three-body problem was
essentially impossible to solve, in the sense of obtaining explicit formulas for the
motions of the three bodies. At this point the situation seemed hopeless.

The breakthrough came with the work of Poincaré in the late 1800s. He intro-
duced a new point of view that emphasized qualitative rather than quantitative
questions. For example, instead of asking for the exact positions of the planets at
all times, he asked “Is the solar system stable forever, or will some planets eventu-
ally fly off to infinity?” Poincaré developed a powerful geometric approach to an-
alyzing such questions. That approach has flowered into the modern subject of
dynamics, with applications reaching far beyond celestial mechanics. Poincaré
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was also the first person to glimpse the possibility of chaos, in which a determinis-
tic system exhibits aperiodic behavior that depends sensitively on the initial condi-
tions, thereby rendering long-term prediction impossible.

But chaos remained in the background in the first half of this century; instead
dynamics was largely concerned with nonlinear oscillators and their applications
in physics and engineering. Nonlinear oscillators played a vital role in the develop-
ment of such technologies as radio, radar, phase-locked loops, and lasers. On the
theoretical side, nonlinear oscillators also stimulated the invention of new mathe-
matical techniques—pioneers in this area include van der Pol, Andronov, Little-
wood, Cartwright, Levinson, and Smale. Meanwhile, in a separate development,
Poincaré’s geometric methods were being extended to yield a much deeper under-
standing of classical mechanics, thanks to the work of Birkhoff and later Kol-
mogorov, Arnol’d, and Moser.

The invention of the high-speed computer in the 1950s was a watershed in
the history of dynamics. The computer allowed one to experiment with equa-
tions in a way that was impossible before, and thereby to develop some intuition
about nonlinear systems. Such experiments led to Lorenz’s discovery in 1963 of
chaotic motion on a strange attractor. He studied a simplified model of convec-
tion rolls in the atmosphere to gain insight into the notorious unpredictability of
the weather. Lorenz found that the solutions to his equations never settled down
to equilibrium or to a periodic state—instead they continued to oscillate in an ir-
regular, aperiodic fashion. Moreover, if he started his simulations from two
slightly different initial conditions, the resulting behaviors would soon become
totally different. The implication was that the system was inherently unpre-
dictable—tiny errors in measuring the current state of the atmosphere (or any
other chaotic system) would be amplified rapidly, eventually leading to embar-
rassing forecasts. But Lorenz also showed that there was structure in the
chaos—when plotted in three dimensions, the solutions to his equations fell
onto a butterfly-shaped set of points (Figure 1.1.1). He argued that this set had
to be “an infinite complex of surfaces”—today we would regard it as an exam-
ple of a fractal.

Lorenz’s work had little impact until the 1970s, the boom years for chaos. Here
are some of the main developments of that glorious decade. In 1971 Ruelle and Tak-
ens proposed a new theory for the onset of turbulence in fluids, based on abstract
considerations about strange attractors. A few years later, May found examples of
chaos in iterated mappings arising in population biology, and wrote an influential re-
view article that stressed the pedagogical importance of studying simple nonlinear
Systems, to counterbalance the often misleading linear intuition fostered by tradi-
tional education. Next came the most surprising discovery of all, due to the physicist
Feigenbaum. He discovered that there are certain universal laws governing the tran-
sition from regular to chaotic behavior; roughly speaking, completely different sys-
tems can go chaotic in the same way. His work established a link between chaos and
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Figure 1.1.1

phase transitions, and enticed a generation of physicists to the study of dynamics. Fi-
nally, experimentalists such as Gollub, Libchaber, Swinney, Linsay, Moon, and
Westervelt tested the new ideas about chaos in experiments on fluids, chemical reac-
tions, electronic circuits, mechanical oscillators, and semiconductors.

Although chaos stole the spotlight, there were two other major developments in
dynamics in the 1970s. Mandelbrot codified and popularized fractals, produced
magnificent computer graphics of them, and showed how they could be applied in
a variety of subjects. And in the emerging area of mathematical biology, Winfree
applied the geometric methods of dynamics to biological oscillations, especially
circadian (roughly 24-hour) rhythms and heart rhythms.

By the 1980s many people were working on dynamics, with contributions too
numerous to list. Table 1.1.1 summarizes this history.

1.2 The Importance of Being Nonlinear

Now we turn from history to the logical structure of dynamics. First we need to in-
troduce some terminology and make some distinctions.

4 OVERVIEW

Dynamics - A Capsule History
1666 Newton Invention of calculus, explanation of planetary motion
1700s Flowering of calculus and classical mechanics
1800s Analytical studies of planetary motion
1890s Poincaré Geometric approach, nightmares of chaos
1920-1950 Nonlinear oscillators in physics and engineering,
invention of radio, radar, laser
1920-1960 Birkhoff Complex behavior in Hamiltonian mechanics
Kolmogorov
Amol'd
Moser
1963 Lorenz Strange attractor in simple model of convection
1970s Ruelle &Takens  Turbulence and chaos
May Chaos in logistic map
Feigenbaum Universality and renormalization, connection between
chaos and phase transitions
Experimental studies of chaos
Winfree Nonlinear oscillators in biology
Mandelbrot Fractals
1980s Widespread interest in chaos, fractals, oscillators,
and their applications
Table 1.1.1

There are two main types of dynamical systems: differential equations and it-
erated maps (also known as difference equations). Differential equations describe
the evolution of systems in continuous time, whereas iterated maps arise in prob-
lems where time is discrete. Differential equations are used much more widely in
science and engineering, and we shall therefore concentrate on them. Later in the
book we will see that iterated maps can also be very useful, both for providing sim-
ple examples of chaos, and also as tools for analyzing periodic or chaotic solutions
of differential equations.

Now confining our attention to differential equations, the main distinction is be-
tween ordinary and partial differential equations. For instance, the equation for a
damped harmonic oscillator

2
mIE b =0 (1)
dt dt
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is an ordinary differential equation, because it involves only ordinary derivatives
dx/dt and d’x/dr’ . That is, there is only one independent variable, the time ¢ . In
contrast, the heat equation

_ i
o o’

is a partial differential equation—it has both time ¢ and space x as independent
variables. Our concern in this book is with purely temporal behavior, and so we
deal with ordinary differential equations almost exclusively.

A very general framework for ordinary differential equations is provided by the
system

X, .=f,(xl, cea X,)

: — (2)
x,=f(x, ...,x,).

Here the overdots denote differentiation with respect to 7. Thus X; =dx;/dt. The
variables x,, ..., x, might represent concentrations of chemicals in a reactor, popula-
tions of different species in an ecosystem, or the positions and velocities of the planets
in the solar system. The functions f;, ..., f, are determined by the problem at hand.

For example, the damped oscillator (1) can be rewritten in the form of 2),
thanks to the following trick: we introduce new variables x, =x and x, = x. Then
X, = x, , from the definitions, and

X,=X=—4 3L

m "

=_—by _k
- m x2 m X

from the definitions and the governing equation (1). Hence the equivalent system
(2)is

X, =x,
Xy =—fkx,—%x.
This system is said to be linear, because all the x; on the right-hand side appear

to the first power only. Otherwise the system would be nonlinear. Typical nonlin-

ear terms are products, powers, and functions of the x;, such as xx, , (x), or
COS X, .
For example, the swinging of a pendulum is governed by the equation

X+4sinx=0,

where x is the angle of the pendulum from vertical, g is the acceleration due to
gravity, and L is the length of the pendulum. The equivalent system is nonlinear:
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Xy =X,

. g
X, =—4£sinx,.

Nonlinearity makes the pendulum equation very difficult to solve analytically.
The usual way around this is to fudge, by invoking the small angle approximation
sinx = x"for x << 1. This converts the problem to a linear one, which can then be
solved easily. But by restricting to small x, we’re throwing out some of the
physics, like motions where the pendulum whirls over the top. Is it really necessary
to make such drastic approximations?

It turns out that the pendulum equation can be solved analytically, in terms of
elliptic functions. But there ought to be an easier way. After all, the motion of the
pendulum is simple: at low energy, it swings back and forth, and at high energy it
whirls over the top. There should be some way of extracting this information from
the system directly. This is the sort of problem we’ll learn how to solve, using geo-
metric methods.

Here’s the rough idea. Suppose we happen to know a solution to the pendu-
lum system, for a particular initial condition. This solution would be a pair of
functions x,(f) and x,(r), representing the position and velocity of the pendu-
lum. If we construct an abstract space with coordinates (x,,x,), then the solu-
tion (x,(#), x,(t)) corresponds to a point moving along a curve in this space
(Figure 1.2.1).

)

/ﬁ\(x@t»

N -

(x,(0), X2 (1))

Figure 1.2.1

This curve is called a trajectory, and the space is called the phase space for the
system. The phase space is completely filled with trajectories, since each point can
serve as an initial condition.

Our goal is to run this construction in reverse: given the system, we »want'to

1.2 THE IMPORTANCE OF BEING NONLINEAR 7



draw the trajectories, and thereby extract information about the solutions. In many
cases, geometric reasoning will allow us to draw the trajectories without actually
solving the system!

Some terminology: the phase space for the general system (2) is the space with
coordinates x,, ..., x, . Because this space is n-dimensional, we will refer to (2) as

an n-dimensional system or an nth-order system. Thus n represents the dimen-
sion of the phase space.

Nonautonomous Systems

You might worry that (2) is not general enough because it doesn’t include any ex-
plicit time dependence. How do we deal with time-dependent or nonautonomous
equations like the forced harmonic oscillator m + by + kx = Fcost? In this case too
there’s an easy trick that allows us to rewrite the system in the form (2). We let X, =x

andt X, =% as before but now we introduce *3 =t. Then X; =1 and so the equivalent
system is

X = x,
X, = ﬁ(—kxI - bx, +Fcosx3) (3)
X, =1

which is an example of a three-dimensional system. Similarly, an nth-order time-
dependent equation is a special case of an (n+1)-dimensional system. By this
trick, we can always remove any time dependence by adding an extra dimension to
the system.

The virtue of this change of variables is that it allows us to visualize a phase
space with trajectories frozen in it. Otherwise, if we allowed explicit time depen-
dence, the vectors and the trajectories would always be wiggling—this would ruin
the geometric picture we’re trying to build. A more physical motivation is that the
state of the forced harmonic oscillator is truly three-dimensional: we need to know
three numbers, x, x, and ¢, to predict the future, given the present. So a three-
dimensional phase space is natural.

The cost, however, is that some of our terminology is nontraditional. For exam-
ple, the forced harmonic oscillator would traditionally be regarded as a second-
order linear equation, whereas we will regard it as a third-order nonlinear system,
since (3) is nonlinear, thanks to the cosine term. As we’ll see later in the book,
forced oscillators have many of the properties associated with nonlinear systems,
and so there are genuine conceptual advantages to our choice of language.

Why Are Nonlinear Problems So Hard?

As we’ve mentioned earlier, most nonlinear systems are impossible to solve ana-
lytically. Why are nonlinear systems so much harder to analyze than linear ones?
The essential difference is that /inear systems can be broken down into parts. Then
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each part can be solved separately and finally recombined to get the answer. This
idea allows a fantastic simplification of complex problems, and underlies such meth-
ods as normal modes, Laplace transforms, superposition arguments, and Fourier
analysis. In this sense, a linear system is precisely equal to the sum of its parts.

But many things in nature don’t act this way. Whenever parts of a system inter-
fere, or cooperate, or compete, there are nonlinear interactions going on. Most of
everyday life is nonlinear, and the principle of superposition fails spectacularly. If
you listen to your two favorite songs at the same time, you won’t get double the plea-
sure! Within the realm of physics, nonlinearity is vital to the operation of a laser, the
formation of turbulence in a fluid, and the superconductivity of Josephson junctions.

1.3 A Dynamical View of the World

Now that we have established the ideas of nonlinearity and phase space, we can
present a framework for dynamics and its applications. Our goal is to show the log-
ical structure of the entire subject. The framework presented in Figure 1.3.1 will
guide our studies thoughout this book.

The framework has two axes. One axis tells us the number of variables needed
to characterize the state of the system. Equivalently, this number is the dimension
of the phase space. The other axis tells us whether the system is linear or nonlin-
ear.

For example, consider the exponential growth of a population of organisms.
This system is described by the first-order differential equation

xX=rx

where x is the population at time ¢ and r is the growth rate. We place this system
in the column labeled “n = 1" because one piece of information—the current value
of the population x—is sufficient to predict the population at any later time. The
system is also classified as linear because the differential equation x = rx is linear
in x.

As a second example, consider the swinging of a pendulum, governed by

X+4£sinx=0.

In contrast to the previous example, the state of this system is given by two vari-
ables: its current angle x and angular velocity x. (Think of it this way: we need
the initial values of both x and x to determine the solution uniquely. For example,
if we knew only x, we wouldn’t know which way the pendulum was swinging.)
Because two variables are needed to specify the state, the pendulum belongs in the
n=2 column of Figure 1.3.1. Moreover, the system is nonlinear, as discussed in
the previous section. Hence the pendulum is in the lower, nonlinear half of the
n =2 column.

1.3 ADYNAMICAL VIEW OF THE WAODID o
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Figure 1.3.1

One can continue to classify systems in this way, and the result will be some-
thing like the framework shown here. Admittedly, some aspects of the picture are
debatable. You might think that some topics should be added, or placed differ-
ently, or even that more axes are needed—the point is to think about classifying
systems on the basis of their dynamics.

There are some striking patterns in Figure 1.3.1. All the simplest systems occur
in the upper left-hand corner. These are the small linear systems that we learn
about in the first few years of college. Roughly speaking, these linear systems ex-
hibit growth, decay, or equilibrium when 7 =1 , or oscillations when n=2. The
italicized phrases in Figure 1.3.1 indicate that these broad classes of phenomena
first arise in this part of the diagram. For example, an RC circuit has n =1 and
cannot oscillate, whereas an RLC circuit has n=2 and can oscillate.

The next most familiar part of the picture is the upper right-hand corner. This is
the domain of classical applied mathematics and mathematical physics where the
linear partial differential equations live. Here we find Maxwell’s equations of elec-
tricity and magnetism, the heat equation, Schrédinger’s wave equation in quantum
mechanics, and so on. These partial differential equations involve an infinite “con-
tinuum” of variables because each point in space contributes additional degrees of
freedom. Even though these systems are large, they are tractable, thanks to such
linear techniques as Fourier analysis and transform methods.

In contrast, the lower half of Figure 1.3.1-—the nonlinear half—is often ignored
or deferred to later courses. But no more! In this book we start in the lower left cor-
ner and systematically head to the right. As we increase the phase space dimension
from n=1 to n =3, we encounter new phenomena at every step, from fixed points
and bifurcations when n = 1, to nonlinear oscillations when n =2 , and finally
chaos and fractals when n = 3. In all cases, a geometric approach proves to be very
powerful, and gives us most of the information we want, even though we usually
can’t solve the equations in the traditional sense of finding a formula for the an-
swer. Our journey will also take us to some of the most exciting parts of modern
science, such as mathematical biology and condensed-matter physics.

You’ll notice that the framework also contains a region forbiddingly marked
“The frontier.” It’s like in those old maps of the world, where the mapmakers
wrote, “Here be dragons” on the unexplored parts of the globe. These topics are
not completely unexplored, of course, but it is fair to say that they lie at the limits
of current understanding. The problems are very hard, because they are both large
and nonlinear. The resulting behavior is typically complicated in both space and
time, as in the motion of a turbulent fluid or the patterns of electrical activity in a
fibrillating heart. Toward the end of the book we will touch on some of these prob-
lems—they will certainly pose challenges for years to come.
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FLOWS ON THE LINE

2.0 | Introduction

In Chapter 1, we introduced the general system

X = fi(x, ....x,)
xn =f;|(xl’ A "xn)

and mentioned that its solutions could be visualized as trajectories flowing though
an n-dimensional phase space with coordinates ()c,, ...,X,). At the moment, this
idea probably strikes you as a mind-bending abstraction. So let’s start slowly, be-
ginning here on earth with the simple case n = 1. Then we get a single equation of
the form

X = f(x).

Here x(¢) is a real-valued function of time ? ,and f(x) is a smooth real-valued
function of x. We’ll call such equations one-dimensional or first-order systems.

Before there’s any chance of confusion, let’s dispense with two fussy points of
terminology:

1. The word system is being used here in the sense of a dynamical system,
not in the classical sense of a collection of two or more equations. Thus
a single equation can be a “system.”

2. We do not allow f to depend explicitly on time. Time-dependent or
“nonautonomous” equations of the form x = f(x,t) are more compli-
cated, because one needs two pieces of information, x and 1, to predict
the future state of the system. Thus x = Sf(x,t) should really be re-
garded as a two-dimensional or second-order system, and will there-
fore be discussed later in the book.
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2.1 A Geometric Way of Thinking

Pictures are often more helpful than formulas for analyzing nonlinear systems.
Here we illustrate this point by a simple example. Along the way we will introduce
one of the most basic techniques of dynamics: interpreting a differential equation
as a vector field.

Consider the following nonlinear differential equation:

X =sin x. (1)

To emphasize our point about formulas versus pictures, we have chosen one of the
few nonlinear equations that can be solved in closed form. We separate the vari-
ables and then integrate:

dr = dx \

. b
sin x

which implies

t=Jcscxaﬁx

=—In|cscx+cotx| + C.

To evaluate the constant C, suppose that x = x, at t =0. Then C = ln| €SC x;, +cot x, ’

Hence the solution is

csCx, + cot x,

t=In (2)

cscx+cotx

This result is exact, but a headache to interpret. For example, can you answer
the following questions?

1. Suppose x, = /4 ; describe the qualitative features of the solution x(¢)
for all £ > 9. In particular, what happens as t — o ?

2. For an arbitrary initial condition x,, what is the behavior of x(z) as
t— o0 ?

Think about these questions for a while, to see that formula (2) is not tra.nspzfrent.

In contrast, a graphical analysis of (1) is clear and simple, as shown in Flgfll'e
2.1.1. We think of ¢ as time, x as the position of an imaginary particle moving
along the real line, and % as the velocity of that particle. Then the difff:rentia]
equation x = sin x represents a vector field on the line: it dictates the velocity vec-
tor x at each x . To sketch the vector field, it is convenient to plot x versus x, and
then draw arrows on the x-axis to indicate the corresponding velocity vector at
each x. The arrows point to the right when x >0 and to the left when x < 0.
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Figure 2.1.1

Here’s a more physical way to think about the vector field: imagine that fluid
is flowing steadily along the x-axis with a velocity that varies from place to
place, according to the rule % = sin x. As shown in Figure 2.1.1, the flow is to the
right when x>0 and to the left when % < 0. At points where x =0, there is no
flow; such points are therefore called Jfixed points. You can see that there are two
kinds of fixed points in Figure 2.1.1: solid black dots represent stable fixed
points (often called attractors or sinks, because the flow is toward them) and
open circles represent unstable fixed points (also known as repellers or
sources).

Armed with this picture, we can now easily understand the solutions to the dif-
ferential equation X = sin x. We just start our imaginary particle at x, and watch
how it is carried along by the flow.

This approach allows us to answer the questions above as follows:

1. Figure 2.1.1 shows that a particle starting at x, = /4 moves to the
right faster and faster until it crosses x = 7/2 (where sinx reaches its
maximum). Then the particle starts slowing down and eventually ap-
proaches the stable fixed point x =7 from the left. Thus, the qualita-
tive form of the solution is as shown in Figure 2.1.2.

Note that the curve is concave up at first, and then concave down;
this corresponds to the initial acceleration for x < 7/2, followed by the
deceleration toward x = 7.

2. The same reasoning applies to any initial condition x,. Figure 2.1.1

shows that if X >0 initially, the particle heads to the right and asymptot-

x ically approaches the nearest sta-

ble fixed point. Similarly, if

x<0 initially, the particle ap-

proaches the nearest stable fixed

point to its left. If x =0, then x

remains constant. The qualitative

form of the solution for any ini-

¢ tial condition is sketched in Fig-
ure 2.1.3.

Z
4

Figure 2.1.2

2.1 A GEOMETRIC WAY OF THINKINS .y



2n

=27

Figure 2.1.3

In all honesty, we should admit that a picture can’t tell us certain quantitative
things: for instance, we don’t know the time at which the speed | X | is greatest. But in
many cases qgualitative information is what we care about, and then pictures are fine.

2.2 Fixed Points and Stability

The ideas developed in the last section can be extended to any one-dimensional
system X = f(x). We just need to draw the graph of f(x) and then use it to sketch
the vector field on the real line (the x-axis in Figure 2.2.1).

x

f(x)

Figure 2.2.1

As before, we imagine that a fluid is flowing along the real line with a local veloc-
ity f(x). This imaginary fluid is called the phase fluid, and the real line is the
phase space. The flow is to the right where f(x) > 0 and to the left where f (x)<0.
To find the solution to x = f(x) starting from an arbitrary initial condition x,, we
place an imaginary particle (known as a phase point) at x, and watch how it is car-
ried along by the flow. As time goes on, the phase point moves along the x-axis
according to some function x(¢). This function is called the trajectory based at x,
and it represents the solution of the differential equation starting from the initial
condition x,. A picture like Figure 2.2.1, which shows all the qualitatively differ-
ent trajectories of the system, is called a phase portrait.

The appearance of the phase portrait is controlled by the fixed points x *, de-
fined by f(x*)=0; they correspond to stagnation points of the flow. In Figure
2.2.1, the solid black dot is a stable fixed point (the local flow is toward it) and the
open dot is an unstable fixed point (the flow is away from it).

In terms of the original differential equation, fixed points represent equilib-
rium solutions (sometimes called steady, constant, or rest solutions, since if
x=x* initially, then x(#) = x * for all time). An equilibrium is defined to be sta-
ble if all sufficiently small disturbances away from it damp out in time. Thus sta-
ble equilibria are represented geometrically by stable fixed points. Conversely,
unstable equilibria, in which disturbances grow in time, are represented by unsta-
ble fixed points.

EXAMPLE 2.2.1:

Find all fixed points for x = x* —1, and classify their stability.

Solution: Here f(x)=x*—1. To find the fixed points, we set f(x*)=0 and
solve for x *. Thus x* = 1. To determine stability, we plot x*> —1 and then sketch
the vector field (Figure 2.2.2). The flow is to the right where x* —1>0 and to the
left where x* — 1< 0. Thus x* = —1 is stable, and x* =1 is unstable. m
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Note that the definition of stable equilibrium is based on small disturbances;
certain large disturbances may fail to decay. In Example 2.2.1, all small distur-
bances to x* =—1 will decay, but a large disturbance that sends x to the right of
x =1 will not decay—in fact, the phase point will be repelled out to +oo . To em-
phasize this aspect of stability, we sometimes say that x* = —1 is locally stable, but

not globally stable. /

JE—— ]

EXAMPLE 2.2.2:

Consider the electrical circuit shown in Figure 2.2.3. A resistor R and a capaci-
tor C are in series with a battery of constant dc voltage V;,. Suppose that the switch
is closed at ¢ = 0, and that there is no charge on the capacitor initially. Let Q(t) de-
note the charge on the capacitor at time
— ¢ > 0. Sketch the graph of Q7).

Solution: This type of circuit problem
is probably familiar to you. It is governed
by linear equations and can be solved an-
alytically, but we prefer to illustrate the
geometric approach.

First we write the circuit equations. As
we go around the circuit, the total voltage
drop must equal zero; hence —V; +
Figure 2.2.3 RI+Q/C=0, where [ is the current
flowing through the resistor. This current causes charge to accumulate on the ca-
pacitor at a rate Q =1.Hence

~V, +RQ+Q/C=0 or

s oy = Yo - L

The graph of f(Q) is a straight line with a negative slope (Figure 2.2.4). The
corresponding vector field has a fixed point where f(Q)=0, which occurs at
. Q% = CV,. The flow is to the right where
0 f(Q)>0 and to the left where f(Q)<0.
Thus the flow is always toward Q*—itis a
stable fixed point. In fact, it is globally sta-
ble, in the sense that it is approached from

- «— Q allinitial conditions.

Q*\ To sketch Q(r) , we start a phase point at
the origin of Figure 2.2.4 and imagine how
it would move. The flow carries the phase

Figure 2.2.4 point monotonically toward Q*. Its speed

f@

Q decreases linearly as it a i
pproaches the fixed point; therefore is i i
) t
and concave down, as shown in Figure 2.2.5. m O s ncreasing

0

EXAMPLE 2.2.3:

b — — — — — — — — — _ Sketch the phase portrait corre-
sponding to x=x-cosx, and deter-
mine the stability of all the fixed points.

Solution: One approach would be to
plot the function f(x)=x-cosx and
then sketch the associated vector field.
This method is valid, but it requires you
to figure out what the graph of

Figure 2.2.5

x —cos x looks like.

There’ . . .
’ xe;e ds an easier solution, which exploits the fact that we know how to graph
(};b nd y= co§x separately. We plot both graphs on the same axes and then
serve that they intersect in exactly one point (Figure 2.2.6)

y=x
y=cosx

N
N_

A

x*
Figure 2.2.6

This i i i
P xs*)mttz)rsiitlon corresponds to a fixed point, since x* =cosx* and therefore
= 0. Moreover, when the line lies abov i
, e the cosine curve h;
and so x > O: the flow is t i imi Lof whore the line
: o the right. Similarly, the flow i
o ' : y, the flow is to the left where the line is
e cosine curve. Hence x * is the only fixed point, and it is unstable. Note that

| we can classify the stability of x * ?
L\ e y , even thqugh we don’t have a formula for x * it-

2.3 Population Growth

The si
thrzlnl:}:esF rr;lodel for t.he growth of a population of organisms is N =rN
) is the population at time ¢, and >0 is the growth rate. This modei
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Growth rate predicts exponential ~growth:
N(t)= Nye", where N, is the
population at ¢ = 0.
Of course such exponential
growth cannot go on forever.
To model the effects of over-
K N crowding and limited resources,
population biologists and de-
mographers often assume that
the per capita growth rate N/ N
decreases when N becomes sufficiently large, as shown in Figure 2.3.1. For
small N, the growth rate equals r, just as before. However, for populations larger
than a certain carrying capacity
K, the growth rate actually be-
comes negative; the death rate is
higher than the birth rate.

A mathematically convenient
way to incorporate these ideas is
to assume that the per capita
growth rate N/N decreases lin-
early with N (Figure 2.3.2).

r

Figure 2.3.1

Growth rate

r

Figure 2.3.2

This leads to the logistic equation

N=rN(1——I\£)
K

first suggested to describe the growth of human populations by Verhulst in 1838.
This equation can be solved analytically (Exercise 2.3.1) but once again we prefer a
graphical approach. We plot N versus N to see what the vector field looks like.
Note that we plot only N 20, since it makes no sense to think about a negative pop-
ulation (Figure 2.3.3). Fixed points occur at N*=0 and N* = K, as found by set-
ting N =0 and solving for N. By looking at the flow in Figure 2.3.3, we see that
N* =0 is an unstable fixed point and N* = K is a stable fixed point. In biological
terms, N =0 is an unstable equilibrium: a small population will grow exponen-
tially fast and run away from N =0 . On the other hand, if N is disturbed slightly
from K, the disturbance will decay monotonically and N(r) —> K as f —> <.

In fact, Figure 2.3.3 shows that if we start a phase point at any N, >0,itwillal-
ways flow toward N =K. Hence the population always approaches the carrying
capacity.

The only exception is if Ny = 0: then there’s nobody around to start reproducing,
and so N =0 for all time. (The model does not allow for spontaneous generation!)

—emuAFNS Sunl TAIFE 1IRLE

K/2 K

Figure 2.3.3

Figure ?.3.3 also allows us to deduce the qualitative shape of the solutions. For
example, if N < K/2, the phase point moves faster and faster until it cr(;sses
N = K/2 , where the parabola in Figure 2.3.3 reaches its maximum. Then the ph
point slows down and eventually creeps toward N = K. In bioloéical term: tallls'e
means th.at the population initially grows in an accelerating fashion, and the érapﬁ
of dN(t) 1s c?ncave up. But afteF N = K/2, the derivative N begins to decrease
and so N(¢) is concave down as it asymptotes to the horizontal line N = K (Fi r,
2.3.4). Thus the graph of N(¢) is S-shaped or sigmoid for N, < K/2. .

N

\

K/2 -

Figure 2.3.4

K/go;lslzth;g quah;atively 'different occurs if the initial condition N, lies between

o cm;cr;c;w dt e soflutlons are decelerating from the start. Hence these solu-

bacty (N o K )e thown or all z. If the population initially exceeds the carrying ca-

e o <, en N(r) decreas.es toward N = K and is concave up. Finally, if
o or N, = K, then the population stays constant.

Critique of the Logistic Model

Vali;?tforefleaving‘th.is example, we should make a few comments about the biological
- I )',1-(:1 the logistic equation. The algebraic form of the model is not to be taken lit-
y. The model should really be regarded as a metaphor for populations that have a
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tendency to grow from zero population up to some carrying capacity K.

Originally a much stricter interpretation was proposed, and the model was ar-
gued to be a universal law of growth (Pearl 1927). The logistic equation was tested
in laboratory experiments in which colonies of bacteria, yeast, or other simple or-
ganisms were grown in conditions of constant climate, food supply, and absence of
predators. For a good review of this literature, see Krebs (1972, pp. 190-200).
These experiments often yielded sigmoid growth curves, in/some cases with an im-
pressive match to the logistic predictions.

On the other hand, the agreement was much worse for fruit flies, flour beetles,
and other organisms that have complex life cycles, involving eggs, larvae, pupae,
and adults. In these organisms, the predicted asymptotic approach to a steady car-
rying capacity was never observed—instead the populations exhibited large, per-
sistent fluctuations after an initial period of logistic growth. See Krebs (1972) for a
discussion of the possible causes of\these fluctuations, including age structure and
time-delayed effects of overcrowding in the population.

For further reading on population biology, see Pielou (1969) or May (1981).
Edelstein—Keshet (1988) and Murray (1989) are excellent textbooks on mathemat-
ical biology in general.

2.4 Linear Stability Analysis

So far we have relied on graphical methods to determine the stability of fixed
points. Frequently one would like to have a more quantitative measure of stability,
such as the rate of decay to a stable fixed point. This sort of information may be
obtained by linearizing about a fixed point, as we now explain.

Let x* be a fixed point, and let n(f) = x(#) - x * be a small perturbation away
from x *. To see whether the perturbation grows or decays, we derive a differential
equation for 7. Differentiation yields

A= 4x-x9)=1

since x * is constant. Thus 1= x = f(x) = f(x*+ n). Now using Taylor’s expan-
sion we obtain

Fxk+ M= FOR)+0f (x¥)+00"),

where O(*) denotes quadratically small terms in 7 . Finally, note that f(x5=0
since x * is a fixed point. Hence

7= nf(x*)+00T).

Now if f/(x*)#0, the O(n?) terms are negligible and we may write the approxi-
mation

oA ELAMIC AAN TME 1INE

n=nf'(x*).

This is a linear equation in 7, and is called the linearization about x *. It shows
thfxt the perturbation 1(t) grows exponentially if f'(x*)>0 and decays if
f (x*)' <‘0'. If f'(x*)=0, the O(n*) terms are not negligible and a nonlinear
analysis is needed to determine stability, as discussed in Example 2.4.3 below.
The upshot is that the slope f'(x*) at the fixed point determines its stability. If
){ou look back at the earlier examples, you’ll see that the slope was always neéa-
tive at a stable fixed point. The importance of the sign of f’(x*) was clear from
our graphical approach; the new feature is that now we have a measure of how sta-
ble a fixed point is—that’s determined by the magnitude of f’(x*). This magni-
Fude plays the role of an exponential growth or decay rate. Its reciprocal 1/ | f ’(Jgr*)|
is a characteristic time scale; it determines the time required for x(¢) to vary sig-
nificantly in the neighborhood of x *. Y

EXAMPLE 2.4.1:
' Us.ing linear stability analysis, determine the stability of the fixed points for
X =sinx.

Solution: The fixed points occur where f(x)=si
: =sinx=0.Th *=
k is an integer. Then i here

1, k even

f'(x*)=coskn =
-1, k odd.

Hence x * is unstable if k¥ is even and stable i i i
e if k is odd. This i -
sults shown in Figure 2.1.1. m verees wih fhe e

EXAMPLE 2.4.2:

Cl'ass1fy the fixed points of the logistic equation, using linear stability analysis
and find the characteristic time scale in each case. ’

p S]'\(,Jlution: 2I-I{Vere F(N)=rN(1-4), with fixed points N*=0 and N* = K. Then
N*E —)1: f—T and so f’(0)=r and f'(K)=-r.Hence N*=0 is unstable and

=K 1s' stable, as found earlier by graphical arguments. In either case, the char-
acteristic time scale is 1/|f’(N*)|=1/r .= ’

o

EXAMPLE 2.4.3:

SWhat'can be said about the stability of a fixed point when f’(x*)=0?
olution: Nothing can be said in general. The stability is best determined on a

Case-by-case basis, using graphical methods. Consider the following examples:

(a) x=-x° b) x=x* (c) x=x2 (dx=0
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Each of these systems has a fixed point x* =0 with f’(x*) =0. However the sta-
bility is different in each case. Figure 2.4.1 shows that (a) is stable and (b) is unsta-
ble. Case (c) is a hybrid case we’ll call half-stable, since the fixed point is
attracting from the left and repelling from the right. We therefore indicate this type
of fixed point by a half-filled circle. Case (d) is a whole line of fixed points; pertur-

bations neither grow nor decay. /
x (a) X ®
X X
x (c) % @

; eeeesteeess;

Figure 2.4.1

These examples may seem artificial, but we will see that they arise naturally in the
context of bifurcations—more about that later. m

2.5 Existence and Uniqueness

Our treatment of vector fields has been very informal. In particular, we have taken
a cavalier attitude toward questions of existence and uniqueness of solutions to

Y. S EIOWSE ON THE LINE

the system x = f(x). That’s in keeping with the “applied” spirit of this book.
Nevertheless, we should be aware of what can go wrong in pathological cases.

EXAMPLE 2.5.1:

Show that the solution to x = x'* starting from x, = 0 is not unique.

Solution: The point x =0 is a fixed point, so one obvious solution is x(¢) =0
for all ¢. The surprising fact is that there is another solution. To find it we separate
variables and integrate:

= [

so $x** =t+C. Imposing the initial condition x(0)=0 yields C =0. Hence
x(t)=(% t)y2 is also a solution! m

3

When uniqueness fails, our geometric approach collapses because the phase
point doesn’t know how to move; if a phase point were started at the origin, would
it stay there or would it move according to x(r) = (% t)3/2 ? (Or as my friends in el-
ementary school used to say when discussing the problem of the irresistible force
and the immovable object, perhaps the phase point would explode!)

Actually, the situation in Example 2.5.1 is even worse than we’ve let on—there
are infinitely many solutions starting from the same initial condition (Exercise

x 2.5.4).

What’s the source of the non-uniqueness?
A hint comes from looking at the vector field
—_——— ¢ - (Figure 2.5.1). We see that the fixed point

* x*=0 is very unstable—the slope f’(0) is
infinite.

Chastened by this example, we state a theo-
Figure 2.5.1 rem that provides sufficient conditions for exis-
tence and uniqueness of solutions to x = f(x).

Existence and Uniqueness Theorem: Consider the initial value problem
x = f(x), x(0)=x,.

Suppose that f(x) and f’(x) are continuous on an open interval R of the x-axis,
and suppose that x, is a point in R. Then the initial value problem has a solution
x(t) on some time interval (—7,7) about 7 = 0, and the solution is unique.

For proofs of the existence and uniqueness theorem, see Borrelli and Coleman
(1987), Lin and Segel (1988), or virtually any text on ordinary differential equations.
This theorem says that if f(x) is smooth enough, then solutions exist and are
unique. Even so, there’s no guarantee that solutions exist forever, as shown by the
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next example.

EXAMPLE 2.5.2:

Discuss the existence and uniqueness of solutions to the initial value problem
%=1+x, x(0) = x,. Do solutions exist for all time?

Solution: Here f(x)=1+ %2 This function is continuous and has a continuous de-
rivative for all x. Hence the theorem tells us that solutions exist a;d are unique for any
initial condition x,. But the theorem does not say that the solutions exist for all time;
they are only guaranteed to exist in a (possibly very short) time interval around ¢ = 0.

For example, consider the case where x(0)=0. Then the problem can be solved
analytically by separation of variables:

.[1?;2 =J.dt,

which yields

tan' x=1+C

The initial condition x(0)=0 implies C=0. Hence x(1)=tant is the solution.
But notice that this solution exists only for — /2 <t < /2, because x(t) > oo as
t — +x/2. Outside of that time interval, there is no solution to the initial value
problem for x, =0. =

The amazing thing about Example 2.5.2 is that the system has solutions that
reach infinity in finite time. This phenomenon is called blow-up. As the name sug-
gests, it is of physical relevance in models of combustion and other runaway
processes.

There are various ways to extend the existence and uniqueness theorem. One
can allow f to depend on time ¢, or on several variables x,, ..., x, . One of the
most useful generalizations will be discussed later in Section 6.2.

From now on, we will not worry about issues of existence and uniqueness—our
vector fields will typically be smooth enough to avoid trouble. If we happen to
come across a more dangerous example, we’ll deal with it then.

2.6 Impossibility of Oscillations

Fixed points dominate the dynamics of first-order systems. In all our examples so
far, all trajectories either approached a fixed point, or diverged to teo. In fact,
those are the only things that can happen for a vector field on the real line. The rea-
son is that trajectories are forced to increase or decrease monotonically, or remain
constant (Figure 2.6.1). To put it more geometrically, the phase point never re-
verses direction.
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Figure 2.6.1

Thus, if a fixed point is regarded as an equilibrium solution, the approach to
eqmlit?rium is always monotonic—overshoot and damped oscillations can never
occur in a first-order system. For the same reason, undamped oscillations are im-
possible. Hence there are no periodic solutions to x = f(x).

These general results are fundamentally topological in origin. They reflect the
fact that x = f(x) corresponds to flow on a line. If you flow monotonically on a
line: you’ll never come back to your starting place—that’s why periodic solutions
are impossible. (Of course, if we were dealing with a circle rather than a line, we
could eventually return to our starting place. Thus vector fields on the circle,can
exhibit periodic solutions, as we discuss in Chapter 4.)

Mechanical Analog: Overdamped Systems

It may seem surprising that solutions to x = f(x) can’t oscillate. But this result be-
c.on.uf,s obvious if we think in terms of a mechanical analog. We regard x = f(x) as a
limiting case of Newton’s law, in the limit where the “inertia term” m# is negligible.
. For example, suppose a mass m is attached to a nonlinear spring whose restor-
ing force is F(x), where x is the displacement from the origin. Furthermore sup-
ppse that the mass is immersed in a vat of very viscous fluid, like honey or r,notor
oil (Figure 2.6.2), so that it is subject to a damping force bx . Then Newton’s law is
mx +bx = F(x).

If the viscous damping is strong compared

¥ = to the inertia term (bx >>mx), the system

FGx) s.hould behave like bx = I_’(x), or equivalently

x = f(x), where f(x)=b"'F(x). In this over-

damped limit, the behavior of the mechanical

- m ) system is clear. The mass prefers to sit at a sta-

Figure 2.6.2 ble equilibrium, where f(x)=0and f’(x)<O.

If displaced a bit, the mass is slowl

back Fo eguilibrium by the restoring force. No overshoot can occur, bgc:l::fgtlelg

dampmg 1s enormous. And undamped oscillations are out of the question! These
conclusions agree with those obtained earlier by geometric reasoning.

honey
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Actually, we should confess that this argument contains a slight swindle. The
neglect of the inertia term mi is valid, but only after a rapid initial transient during
which the inertia and damping terms are of comparable size. An honest discussion
of this point requires more machinery than we have available. We’ll return to this

matter in Section 3.5.

2.7 Potentials

There’s another way to visualize the dynamics of the first-orde/ system x = f(x),
- based on the physical idea of potential energy. We picture a particle sliding down
the walls of a potential well, where the potential V(x) is defined by

dv .
fo=-2L. = Ao

dx
As before, you should imagine that the particle is heavily damped—its inertia is
completely negligible compared to the damping force and the force due to the po-
tential. For example, suppose that the particle has to slog through a thick layer of
goo that covers the walls of the potential (Figure 2.7.1).

V(x)

Figure 2.7.1

The negative sign in the definition of V follows the standard convention in
physics; it implies that the particle always moves “downhill” as the motion pro-
ceeds. To see this, we think of x as a function of ¢, and then calculate the time-
derivative of V(x(1)). Using the chain rule, we obtain

dv _dv dx
dt dx di

Now for a first-order system,

&__dv
dt dx’
since X = f(x)=—dV/dx , by the definition of the potential. Hence,
2
av _ _(ﬂ) <0.
dt dx

Thus V(t) decreases along trajectories, and so the particle always moves toward
lower potential. Of course, if the particle happens to be at an equilibrium point
where dV/dx=0, then V remains constant. This is to be expected, since
dV/dx =0 implies x = 0; equilibria occur at the fixed points of the vector field.
Note that local minima of V(x) correspond to stable fixed points, as we’d expect
intuitively, and local maxima correspond to unstable fixed points.

EXAMPLE 2.7.1:

Graph the potential for the system x=—x, and identify all the equilibrium
points.

Vo Solution: We need to find V(x) such that

—dV/dx=—-x. The general solution is V(x)=

1 x* + C, where C is an arbitrary constant. (It always

happens that the potential is only defined up to an ad-

ditive constant. For convenience, we usually choose

C=0.) The graph of V(x) is shown in Figure 2.7.2.

x The only equilibrium point occurs at x =0, and it’s
stable. m

Figure 2.7.2

EXAMPLE 2.7.2:

‘Graph the potential for the system % =x—-x>, and identify all equilibrium
points.
Solution: Solving —dV/dx=x-x" yields
V=-4x*+4x*+C. Once again we set C =0. Fig-
§ / ure 2.7.3 shows the graph of V. The local minima at
x =21 correspond to stable equilibria, and the local
maximum at x =0 corresponds to an unstable equi-
librium. The potential shown in Figure 2.7.3 is often
called a double-well potential, and the system is said
to be bistable, since it has two stable equilibria. m

V(x)

T T

-1 1

Figure 2.7.3
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2.8 Solving Equations on the Computer

Throughout this chapter we have used graphical and analytical methods to analyze
first-order systems. Every budding dynamicist should master a third tool: numeri-
cal methods. In the old days, numerical methods were impractical because they re-
quired enormous amounts of tedious hand-calculation. But all that has changed,
thanks to the computer. Computers enable us to approximate the solutions to ana-
lytically intractable problems, and also to visualize those so:it/'éns. In this section
we take our first look at dynamics on the computer, in the context of numerical in-
tegration of x = f(x). |

Numerical integration is a vast subjeét. We will barely scratch the surface. See
Chapter 15 of Press et al. (1986) for an excellent treatment.

Euler’s Method

The problem can be posed this way: given the differential equation x = f(x),
subject to the condition x = x, at t =1, find a systematic way to approximate the
solution x(t).

Suppose we use the vector field interpretation of x = f(x). That is, we think of a
fluid flowing steadily on the x-axis, with velocity f(x) at the location x. Imagine
we’re riding along with a phase point being carried downstream by the fluid. Ini-
tially we're at x,, and the local velocity is f(x,). If we flow for a short time Ar,
we’ll have moved a distance f(x,)Af, because distance = rate X time . Of course,
that’s not quite right, because our velocity was changing a little bit throughout the
step. But over a sufficiently small step, the velocity will be nearly constant and our
approximation should be reasonably good. Hence our new position x(f, + At) is ap-
proximately x, + f(x,)At . Let’s call this approximation x,. Thus

x(t, + Aty = x; = x, + f(xy)At.

Now we iterate. Our approximation has taken us to a new location x, ; our new
velocity is f(x,); we step forward to x, = x, + f(x,)At; and so on. In general, the
- update rule is

xn+l

= x, + f(x,)AL.

This is the simplest possible numerical integration scheme. It is known as Euler’s
method.

Euler’s method can be visualized by plotting x versus ¢ (Figure 2.8.1). The
curve shows the exact solution x(¢), and the open dots show its values x(t,) at the
discrete times f, = t, + nAt . The black dots show the approximate values given by
the Euler method. As you can see, the approximation gets bad in a hurry unless At
is extremely small. Hence Euler’s method is not recommended in practice, but it
contains the conceptual essence of the more accurate methods to be discussed next.

32 FLOWS ON THE LINE

Euler

exact

X1
x(1)

Figure 2.8.1

Refinements

One problem with the Euler method is that it estimates the derivative only at
the left end of the time interval between ¢, and ¢,,,. A more sensible approach
would be to use the average derivative across this interval. This is the idea behind
the improved Euler method. We first take a trial step across the interval, using the
Euler method. This produces a trial value %,,, = x, + f(x,)At ; the tilde above the
x indicates that this is a tentative step, used only as a probe. Now that we’ ve esti-
mated the derivative on both ends of the interval, we average f(x,) and f(X,,,),

and use that to take the real step across the interval. Thus the improved Euler
method is

Xon =X, + f(x,)At (the trial step)

X = X, +3[f(x,)+ F(R,)]AL. (the real step)

This method is more accurate than the Euler method, in the sense that it tends to
make a smaller error E =|x(t,)— x,| for a given stepsize Ar. In both cases, the
error E— 0 as At — 0, but the error decreases faster for the improved Euler
method. One can show that E o At for the Euler method, but E (At)2 for the im-
p}'oved Euler method (Exercises 2.8.7 and 2.8.8). In the jargon of numerical analy-
SIS(i the Euler method is first order, whereas the improved Euler method is second
order.

Methods of third, fourth, and even higher orders have been concocted, but you
should realize that higher order methods are not necessarily superior. Higher order
rTltlthods require more calculations and function evaluations, so there’s a computa-
tional cost associated with them. In practice, a good balance is achieved by the

Jfourth-order Runge—Kutta method. To find X, interms of x,, this method first

l‘eqlfires us to calculate the following four numbers (cunningly chosen, as you’ll
see in Exercise 2.8.9):
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k = f(x,)At

k, = f(x, +1k)At
ky= f(x, +1k,)At
k, = f(x, +k;)At.

Then x,,, is given by
X, =X, +L(k +2k, + 2k, +k,). /

This method generally gives accurate results without requiring an excessively
small stepsize At. Of course, some problems are nastier, and may require small
steps in certain time intervals, while permitting very large steps elsewhere. In such
cases, you may want to use a Runge—Kutta routine with an automatic stepsize con-
trol; see Press et al. (1986) for details.

Now that computers are so fast, you may wonder why we don’t just pick a tiny
At once and for all. The trouble is that excessively many computations will occur,
and each one carries a penalty in the form of round-off error. Computers don’t
have infinite accuracy—they don’t distinguish between numbers that differ by
some small amount 8. For numbers of order 1, typically 6 =107 for single preci-
sion and & =~107'° for double precision. Round-off error occurs during every cal-
culation, and will begin to accumulate in a serious way if At is too small. See
Hubbard and West (1991) for a good discussion.

Practical Matters

You have several options if you want to solve differential equations on the com-
puter. If you like to do things yourself, you can write your own numerical integra-
tion routines, and plot the results using whatever graphics facilities are available.
The information given above should be enough to get you started. For further guid-
ance, consult Press et al. (1986); they provide sample routines written in Fortran,
C, and Pascal.

A second option is to use existing packages for numerical methods. The soft-
ware libraries by IMSL and NAG have a wide variety of state-of-the-art numerical
integrators. These libraries are well documented, reliable, and flexible, and can be
found at most university computing centers or networks. The packages Matlab,
Mathematica, and Maple are more interactive and also have programs for solving
ordinary differential equations.

The final option is for people who want to explore dynamics, not computing.
Dynamical systems software has recently become available for personal comput-
ers. All you have to do is type in the equations and the parameters; the program
solves the equations numerically and plots the results. Some recommended pro-

grams are Phaser (Kocak 1989) for the IBM PC or MacMath (Hubbard and West
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1992) for the Macintosh. MacMath was used to generate many of the plots in this
book.

These programs are easy to use, and they will help you build intuition about dy-
namical systems.

EXAMPLE 2.8.1:

Use MacMath to solve the system X = x(1 —x) numerically.

Solution: This is a logistic equation (Section 2.3) with parameters r=1, K =1.
Previously we gave a rough sketch of the solutions, based on geometric arguments;
now we can draw a more quantitative picture.

As a first step, we plot the slope field for the system in the (#,x) plane (Figure
2.8.2). Here the equation x = x(1—x) is being interpreted in a new way: for each
point (¢, x) , the equation gives the slope dx/dt of the solution passing through that
point. The slopes are indicated by little line segments in Figure 2.8.2.
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Figure 2.8.2

Finding a solution now becomes a problem of drawing a curve that is always tan-
geflt to the local slope. Figure 2.8.3 shows four solutions starting from various
points in the (¢, x) plane.
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Figure 2.8.3

These numerical solutions were computed using the Runge—Kutta method with a

2.8 SOLVING EQUATIONS ON THE COMPUTER 35



stepsize At = 0.1. The solutions have the shape expected from Section 2.3. m

Computers are indispensable for studying dynamical systems. We will use them
liberally throughout this book, and you should do likewise.

EXERCISES FOR CHAPTER 2

2.1 A Geometric Way of Thinking

In the next three exercises, interpret x = sinx as a flow on the line.
2.1.1  Find all the fixed points of the flow.
2.1.2 At which points x does the flow have greatest velocity to the right?

2.1.3
a) Find the flow’s acceleration X as a function of x.
b) Find the points where the flow has maximum positive acceleration.

2.1.4 (Exact solution of x =sinx) As shown in the text, x =sinx has the solu-

tion t= ln| (csc x,, + cot x,)/(csc x +cot x) | where x, = x(0) is the initial value

of x.

a) Given the specific initial condition x, = /4, show that the solution above can
be inverted to obtain

= A€
x(t)=2tan (1+«/§]'

Conclude that x(¢) — & as t — oo, as claimed in Section 2.1. (You need to be good
with trigonometric identities to solve this problem.)
b) Try to find the analytical solution for x(t), given an arbitrary initial condition

Xg.

2.1.5 (A mechanical analog)

a) Find a mechanical system that is approximately governed by x = sin x.

b) Using your physical intuition, explain why it now becomes obvious that x* =0
is an unstable fixed point and x* =7 is stable.

2.2 Fixed Points and Stability

Analyze the following equations graphically. In each case, sketch the vector field
on the real line, find all the fixed points, classify their stability, and sketch the
graph of x(¢) for different initial conditions. Then try for a few minutes to obtain
the analytical solution for x(z); if you get stuck, don’t try for too long since in sev-
eral cases it’s impossible to solve the equation in closed form!
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221 x=4x"-16 222 x=1-x"

223 x=x-x 2.24 x=¢ " sinx

225 x=1+1cosx 226 x=1-2cosx

2.2.7 x=e" —cosx (Hint: Sketch the graphs of e* and cos x on the same
axes, and look for intersections. You won’t be able to find the fixed points explic-
itly, but you can still find the qualitative behavior.)

2.2.8 (Working backwards, from flows to equations) Given an equation x = f(x),
we know how to sketch the corresponding flow on the real line. Here you are asked
to solve the opposite problem: For the phase portrait shown in Figure 1, find an

equation that is consistent with it. (There are an infinite number of correct an-
swers—and wrong ones t00.)

——O0—>—0 - O S
-1 0 2
Figure 1

2.2.9 (Backwards again, now from solutions to equations) Find an equation
x = f(x) whose solutions x(¢) are consistent with those shown in Figure 2.

-

X

\

L

Figure 2

2.2.10 (Fixed points) For each of (a)—(e), find an equation % = f(x) with the
stated properties, or if there are no examples, explain why not. (In all cases, as-
sume that f(x) is a smooth function.)

a) Every real number is a fixed point.

b) Every integer is a fixed point, and there are no others.

¢) There are precisely three fixed points, and all of them are stable.

d) There are no fixed points.

e) There are precisely 100 fixed points.

2.2.11 (Analytical solution for charging capacitor) Obtain the analytical solu-
tion of the initial value problem Q=%—£, with Q(0) =0, which arose in
Example 2.2.2. |

2.2.12 (A nonlinear resistor) Suppose the resistor in Example 2.2.2 is replaced
by a nonlinear resistor. In other words, this resistor does not have a linear
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] relation between voltage and current. Such non-
&v) linearity arises in certain solid-state devices.
Instead of I, = V/R, suppose we have I, = g(V),
where g(V) has the shape shown in Figure 3.

Redo Example 2.2.2 in this case. Derive the cir-
cuit equations, find all the fixed points, and ana-
lyze their stability. What q@ﬁve effects does
the nonlinearity introduce (if any)?

Figure 3

2.2.13 (Terminal velocity) The velocity v(¢) of a skydiver falling to the ground

is governed by mv = mg — kv?, where m is the mass of the skydiver, g is the accel-

eration due to gravity, and k >0 is a constant related to the amount of air resis-
tance.

a) Obtain the analytical solution for v(t), assuming that v(0) =0.

b) Find the limit of v(¢) as t — oo . This limiting velocity is called the terminal veloc-
ity. (Beware of bad jokes about the word terminal and parachutes that fail to open.)

¢) Give a graphical analysis of this problem, and thereby re-derive a formula for
the terminal velocity.

d) An experimental study (Carlson et al. 1942) confirmed that the equation
mv = mg — kv’ gives a good quantitative fit to data on human skydivers. Six
men were dropped from altitudes varying from 10,600 feet to 31,400 feet to a
terminal altitude of 2,100 feet, at which they opened their parachutes. The long
free fall from 31,400 to 2,100 feet took 116 seconds. The average weight of the
men and their equipment was 261.2 pounds. In these units, g =32.2 ft/sec’ .
Compute the average velocity V,, .

e) Using the data given here, estimate the terminal velocity, and the value of the
drag constant k. (Hints: First you need to find an exact formula for s(¢), the
distance fallen, where s(0)=0, s =—v, and v(¢) is known from part (a). You
should get s(¢) = "Tzln (cosh g—v’), where V is the terminal velocity. Then solve
for V graphically or numerically, using s = 29,300, t =116, and g=32.2.)

A slicker way to estimate V' is to suppose V=V, ,asa rough first approxi-
mation. Then show that gt/V =15. Since gt/V >>1, we may use the approxi-
mation In(coshx)=x—In2 for x>>1. Derive this approximation and then
use it to obtain an analytical estimate of V. Then k follows from part (b). This
analysis is from Davis (1962).

2.3 Population Growth

2.3.1 (Exact solution of logistic equation) There are two ways to solve the logis-
tic equation N = rN(1— N/K) analytically for an arbitrary initial condition N,.
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a) Separate variables and integrate, using partial fractions.

b) Make the change of variables x =1/N. Then derive and solve the resulting dif-
ferential equation for x.

2.3.2 (Autocatalysis) Consider the model chemical reaction

SLI N
A+X J— 2X
in which one molecule of X combines with one molecule of A to form two mole-
cules of X . This means that the chemical X stimulates its own production, a process
called autocatalysis. This positive feedback process leads to a chain reaction, which
eventually is limited by a “back reaction” in which 2X returns to A + X.

According to the law of mass action of chemical kinetics, the rate of an elemen-
tary reaction is proportional to the product of the concentrations of the reactants.
We denote the concentrations by lowercase letters x =[X] and a =[A]. Assume
that there’s an enormous surplus of chemical A, so that its concentration a can be
regarded as constant. Then the equation for the kinetics of x is

x=kax—k_ x’

where k, and k_, are positive parameters called rate constants.
a) Find all the fixed points of this equation and classify their stability.
b) Sketch the graph of x(¢) for various initial values x,,.

2.3.3 (Tumor growth) The growth of cancerous tumors can be modeled by the
Gompertz law N=-aN In(bN), where N(t) is proportional to the number of cells
in the tumor, and a,b > 0 are parameters.

a) Interpret @ and b biologically.

b) Sketch the vector field and then graph N(¢) for various initial values.

The predictions of this simple model agree surprisingly well with data on tumor

growth, as long as N is not too small; see Aroesty et al. (1973) and Newton (1980)
for examples.

2.3.4. (The Allee effect) For certain species of organisms, the effective growth

rate N/N is highest at intermediate N. This is the called the Allee effect (Edel-

stein-Keshet 1988). For example, imagine that it is too hard to find mates when N

is very small, and there is too much competition for food and other resources when

N is large.

a) Show that N/N = r—a(N - b)? provides an example of Allee effect, if r, a,
and b satisfy certain constraints, to be determined.

b) Find all the fixed points of the system and classify their stability.

¢) Sketch the solutions N(¢) for different initial conditions.

d) Compare the solutions N(7) to those found for the logistic equation. What are
the qualitative differences, if any?
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2.4 Linear Stability Analysis

Use linear stability analysis to classify the fixed points of the following systems. If
linear stability analysis fails because f’(x*)=0, use a graphical argument to de-

cide the stability. /
240 x=x(1-x) 24.2 x=x(1-x)(2~-x)

243 x=tanx 244 i= x2(6 -X)
. 2 .
245 x=l-e 246 x=Inx
2.4.7 x=ax—x’,where a canbe positive, negative, or zero. Discuss all three
cases.

2.4.8  Using linear stability analysis, classify the fixed points of the Gompertz
model of tumor growth N =—-aN In(bN). (As in Exercise 2.3.3, N(t) is propor-
tional to the number of cells in the tumor and a,b > 0 are parameters.)

2.4.9 (Critical slowing down) In statistical mechanics, the phenomenon of

“critical slowing down” is a signature of a second-order phase transition. At the

transition, the system relaxes to equilibrium much more slowly than usual. Here’s

a mathematical version of the effect:

a) Obtain the analytical solution to x=-x" for an arbitrary initial condition.
Show that x(r)—> 0 as t — oo, but that the decay is not exponential. (You
should find that the decay is a much slower algebraic function of ¢ .)

b) To get some intuition about the slowness of the decay, make a numerically ac-
curate plot of the solution for the initial condition x,=10,for 0 < 1<10. Then,
on the same graph, plot the solution to x = —x for the same initial condition.

2,5 Existence and Uniqueness

2.5.1  (Reaching a fixed point in a finite time) A particle travels on the half-line

x 2 0 with a velocity given by x = —x°, where c is real and constant.

a) Find all values of ¢ such that the origin x = 0 is a stable fixed point.

b) Now assume that ¢ is chosen such that x =0 is stable. Can the particle ever
reach the origin in a finite time? Specifically, how long does it take for the par-
ticle to travel from x =1 to x =0, as a function of ¢ ?

2.5.2 (“Blow-up”: Reaching infinity in a finite time) Show that the solution to
x=1+x"" escapes to +o in a finite time, starting from any initial condition.
(Hint: Don’t try to find an exact solution; instead, compare the solutions to those of
i=1+x")

2.5.3 Consider the equation x=rx+x’, where r>0 is fixed. Show that
x(t) — oo in finite time, starting from any initial condition xy #0.

2.5.4 (Infinitely many solutions with the same initial condition) Show that the
initial value problem x = x'”*, x(0) = 0, has an infinite number of solutions. (Hint:
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Construct a solution that stays at x = 0 until some arbitrary time ¢,, after which it
takes off.)

2.5.5 (A general example of non-uniqueness) Consider the initial value prob-
lem % =|x|""*, x(0)=0, where p and g are positive integers with no common
factors.

a) Show that there are an infinite number of solutions if p < g.

b) Show that there is a unique solution if p > q.

2.5.6 (The leaky bucket) The following example (Hubbard and West 1991,
p- 159) shows that in some physical situations, non-uniqueness is natural and obvi-
ous, not pathological.

Consider a water bucket with a hole in the bottom. If you see an empty bucket
with a puddle beneath it, can you figure out when the bucket was full? No, of
course not! It could have finished emptying a minute ago, ten minutes ago, or
whatever. The solution to the corresponding differential equation must be non-
unique when integrated backwards in time.

Here’s a crude model of the situation. Let A(r) = height of the water remaining
in the bucket at time ¢ ; a = area of the hole; A = cross-sectional area of the bucket
(assumed constant); v(t) = velocity of the water passing through the hole.

a) Show that av(t) = Ah(r). What physical law are you invoking?
b) To derive an additional equation, use conservation of energy. First, find the
change in potential energy in the system, assuming that the height of the water

in the bucket decreases by an amount Ak and that the water has density p.

Then find the kinetic energy transported out of the bucket by the escaping wa-

ter. Finally, assuming all the potential energy is converted into kinetic energy,

derive the equation v’ = 2gh.

¢) Combining (b) and (c), show & = —C+/h, where C = \[2g (4).
d) Given h(0)=0 (bucket empty at r =0 ), show that the solution for h(t) is non-
unique in backwards time, i.e., for t < 0.

2.6 Impossibility of Oscillations

2.6.1  Explain this paradox: a simple harmonic oscillator mi = —kx is a system
that oscillates in one dimension (along the x-axis). But the text says one-dimen-
sional systems can’t oscillate.

2.6.2 (No periodic solutions to x = f(x)) Here’s an analytic proof that periodic
solutions are impossible for a vector field on a line. Suppose on the contrary that
x(t) is a nontrivial periodic solution, i.e., x(t)=x(t+T) for some T >0, and

x()#x(t+s) for all O<s<T. Derive a contradiction by considering

t+T
J. f(x)4edr .
'
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2.7 Potentials

For each of the following vector fields, plot the potential function V(x) and iden-
tify all the equilibrium points and their stability.

271 x=x(1-x) 272 x=3 /
2.7.3 x=sinx 274 x=2+sinx
2.7.5 x=-sinhx 2.7.6 x=r+x—x’, for various values of r.

2.7.7 (Another proof that solutions to x = f(x) can’t oscillate) Let x = f(x) be
a vector field on the line. Use the existence of a potential function V(x) to show
that solutions x(¢) cannot oscillate.

2.8 Solving Equations on the Computer

2.8.1 (Slope field) The slope is constant along horizontal lines in Figure 2.8.2.
Why should we have expected this?

2.8.2 Sketch the slope field for the following differential equations. Then “inte-
grate” the equation manually by drawing trajectories that are everywhere parallel
to the local slope.

a) x=x b) x=1-x> ¢) x=1-4x(1-x) d) x=sinx

2.8.3 (Calibrating the Euler method) The goal of this problem is to test the

Euler method on the initial value problem x = —x, x(0) =1.

a) Solve the problem analytically. What is the exact value of x(1)?

b) Using the Euler method with step size At =1, estimate x(1) numerically-——call
the result x(1). Then repeat, using Ar=10"",for n=1, 2, 3, 4.

c) Plot the error E =|%(1)— x(1)| as a function of Az. Then plot InE vs. Int. Ex-
plain the results.

2.8.4 Redo Exercise 2.8.3, using the improved Euler method.
2.8.5 Redo Exercise 2.8.3, using the Runge—Kutta method.

2.8.6 (Analytically intractable problem) Consider the initial value problem
x=x+e ", x(0) = 0. In contrast to Exercise 2.8.3, this problem can’t be solved an-
alytically.

a) Sketch the solution x(¢) forz>0.

b) Using some analytical arguments, obtain rigorous bounds on the value of x at
t =1. In other words, prove that a< x(1)< b, for a, b to be determined. By
being clever, try to make a and b as close together as possible. (Hint: Bound
the given vector field by approximate vector fields that can be integrated ana-
lytically.)

¢) Now for the numerical part: Using the Euler method, compute x at t =1, cor-
rect to three decimal places. How small does the stepsize need to be to obtain
the desired accuracy? (Give the order of magnitude, not the exact number.)
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d) Repeat part (b), now using the Runge—-Kutta method. Compare the results for
stepsizes At =1, Ar=0.1, and Ar=0.01.

2.8.7  (Error estimate for Euler method) In this question you’ll use Taylor series
expansions to estimate the error in taking one step by the Euler method. The exact
solution and the Euler approximation both start at x = x, when t=t,. We want to
compare the exact value x(¢)= x(t, + Ar) with the Euler approximation
X, =Xo + f(xy)At,
a) Expand x(t)) = x(t, + Ar) as a Taylor series in At, through terms of O(Af?).
Express your answer solely in terms of x,, At, and f and its derivatives at X, -
b) Show that the local error |x(t,)—x, | ~ C(A1)* and give an explicit expression
for the constant C. (Generally one is more interested in the global error in-
curred after integrating over a time interval of fixed length T = nAt . Since each
step produces an O(Ar)’ error, and we take n=T/At=O(Ar™) steps, the
global error Ix(t") - X, | is O(At), as claimed in the text.)

2.8.8  (Error estimate for the improved Euler method) Use the Taylor series ar-

guments of Exercise 2.8.7 to show that the local error for the improved Euler
method is O(Ar*).

2.8.9 (Error estimate for Runge—Kutta) Show that the Runge-Kutta method
produces a local error of size O(A¢°).

(Warning: This calculation involves massive amounts of algebra, but if you do it
correctly, you’ll be rewarded by seeing many wonderful cancellations. Teach

yourself Mathematica, Maple, or some other symbolic manipulation language, and
do the problem on the computer.)
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BIFURCATIONS

3.0 Introduction

As we’ve seen in Chapter 2, the dynamics of vector fields on the line is very limited:
all solutions either settle down to equilibrium or head out to +eo. Given the triviality
of the dynamics, what’s interesting about one-dimensional systems? Answer: De-
pendence on parameters. The qualitative structure of the flow can change as parame-
ters are varied. In particular, fixed points can be created or destroyed, or their
stability can change. These qualitative changes in the dynamics are called bifurca-
tions, and the parameter values at which they occur are called bifurcation points.

Bifurcations are important scientifically—they provide models of transitions
and instabilities as some control parameter is varied. For example, consider the
buckling of a beam. If a small weight is placed on top of the beam in Figure 3.0.1,
the beam can support the load and remain vertical. But if the load is too heavy, the
vertical position becomes unstable, and the beam may buckle.

weight

beam "buckles”

T

Figure 3.0.1

Here the weight plays the role of the control parameter, and the deflection of the
beam from vertical plays the role of the dynamical variable x.
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One of the main goals of this book is to help you develop a solid and practical
understanding of bifurcations. This chapter introduces the simplest examples: bi-
furcations of fixed points for flows on the line. We’ll use these bifurcations to
model such dramatic phenomena as the onset of coherent radiation in a laser and
the outbreak of an insect population. (In later chapters, when we step up to two-
and three-dimensional phase spaces, we’ll explore additional types of bifurcations
and their scientific applications.)

We begin with the most fundamental bifurcation of all.

3.1 Saddle-Node Bifurcation

The saddle-node bifurcation is the basic mechanism by which fixed points are cre-
ated and destroyed. As a parameter is varied, two fixed points move toward each
other, collide, and mutually annihilate.

The prototypical example of a saddle-node bifurcation is given by the first-
order system

. 2
X=r+x (1)

where r is a parameter, which may be positive, negative, or zero. When r is nega-
tive, there are two fixed points, one stable and one unstable (Figure 3.1.1a).

X x X
x x > - x
(a) r<0 (b) r=0 (c) r>0
Figure 3.1.1

As r approaches 0 from below, the parabola moves up and the two fixed points move
toward each other. When r = 0, the fixed points coalesce into a half-stable fixed point
at x*=0 (Figure 3.1.1b). This type of fixed point is extremely delicate—it vanishes
as soon as r > 0, and now there are no fixed points at all (Figure 3.1.1c).

‘ In this example, we say that a bifurcation occurred at r =0, since the vector
fields for r <0 and >0 are qualitatively different.

Graphical Conventions

There are several other ways to depict a saddle-node bifurcation. We can show a
stack of vector fields for discrete values of r (Figure 3.1.2).
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This representation emphasizes the de-
pendence of the fixed points on r. In
the limit of a continuous stack of vector

——>—QO—>———— r=0 fields, we have a {icture like Figure

3.1.3. The curve shqwnis r = —x7, i.e.,
x =0, which gives tthe fixed points for

— e ———— different r. To distinguish between
X stable and unstable fixed points, we use
a solid line for stable points and a bro-

Figure 3.1.2 ken line for unstable ones.

However, the most common way to
depict the bifurcation is to invert the axes of Figure 3.1.3. The rationale is that r
plays the role of an independent variable, and so sheuld be plotted horizontally

r
—— — —_—
N X
Al
A
A
A
[}
—_— g “ —
A
Al
]
i
A
stable unstable

Figure 3.1.3

(Figure 3.1.4). The drawback is that now the x-axis has to be plotted vertically,
which looks strange at first. Arrows are sometimes included in the picture, but not
always. This picture is called the
bifurcation diagram for the saddle-

unstable ~ . _ node bifurcation.

¥ Terminology

r Bifurcation theory is rife with
conflicting terminology. The sub-
ject really hasn’t settled down yet,

stable and different people use different

words for the same thing. For ex-
ample, the saddle-node bifurcation

Figure 3.1.4
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is sometimes called a fold bifurcation (because the curve in Figure 3.1.4 has a
fold in it) or a turning-point bifurcation (because the point (x,r)=(0,0) is a
“turning point.”) Admittedly, the term saddle-node doesn’t make much sense for
vector fields on the line. The name derives from a completely analogous bifurca-
tion seen in a higher-dimensional context, such as vector fields on the plane,
where fixed points known as saddles and nodes can collide and annihilate (see
Section 8.1).

The prize for most inventive terminology must go to Abraham and Shaw
(1988), who write of a blue sky bifurcation. This term comes from viewing a
saddle-node bifurcation in the other direction: a pair of fixed points appears
“out of the clear blue sky” as a parameter is varied. For example, the vector
field

X=r—x* 2)
has no fixed points for r < 0, but then one materializes when r = 0 and splits into
two when r>0 (Figure 3.1.5). Incidentally, this example also explains why we
use the word “bifurcation”: it means “splitting into two branches.”

%

——— O

X X ] x
r<o0 ’ r=0 r>0

Figure 3.1.5

EXAMPLE 3.1.1:

Give a linear stability analysis of the fixed points in Figure 3.1.5.

Solution: The fixed points for x = f(x)=r—xare given by x*=++/r. There
are two fixed points for r 2 0, and none for r < 0. To determine linear stability, we
compute f'(x*)=-2x* Thus x* =47 is stable, since f/(x*)<0. Similarly
x* =—r is unstable. At the bifurcation point r =0, we find f/(x*)=0; the lin-
canzation vanishes when the fixed points coalesce. m

EXAMPLE 3.1.2:

Show that the first-order system x = r —x — e~ undergoes a saddle-node bifur-
cation as r is varied, and find the value of r at the bifurcation point.

Solution: The fixed points satisfy f(x)=r—x—e™* =0.But now we run into
fl difficulty—in contrast to Example 3.1.1, we can’t find the fixed points explic-
itly as a function of r. Instead we adopt a geometric approach. One method
Wou.ld be to graph the function f(x)=r—x—e " for different values of r, look
for its roots x*, and then sketch the vector field on the x-axis. This method is
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fine, but there’s an easier way. The point is that the two functions r — x and e””
have much more familiar graphs than their difference r—x —e™* . So we plot
r—x and e on the same picture (Figure 3.1.6a). Where the line r—x
intersects the curve e¢™*, we have r—x=¢* and so f(x)=0. Thus, intersec-
tions of the line and the curve correspond to fixed points for the system. This
picture also allows us to read off the direction of flow on the x-axis: the flow is
to the right where the line lies above the curve, since r—x>e~* and therefore
x>0 . Hence, the fixed point on the right is stable, and the one on the left is un-
stable.

Now imagine we start decreasing the parameter r. The line r— x slides down
and the fixed points approach each other. At some critical value r = r., the line be<”
comes tangent to the curve and the fixed points coalesce in a saddle-node bifurca-
tion (Figure 3.1.6b). For r below this critical value, the line lies below the curve
and there are no fixed points (Figure 3.1.6c).

(@ ) ©

Figure 3.1.6

To find the bifurcation point r,, we impose the condition that the graphs of
r—x and e™" intersect tangentially. Thus we demand equality of the functions and
their derivatives:

e =r—x
and

Le =4 (r-x).
The second equation implies —e™ =—1, so x=0. Then the first equation yields
r=1. Hence the bifurcation point is . =1, and the bifurcation occurs at x=0. m

Normal Forms

In a certain sense, the examples x=r—x> or x=r+ x> are representative of
all saddle-node bifurcations; that’s why we called them “prototypical.” The idea is

that, close to a saddle-node bifurcation, the dynamics typically look like x = r — x
or x=r+x2,
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For instance, consider Example 3.1.2 near the bifurcation at x = 0 and r=1.
Using the Taylor expansion for e™ about x =0, we find

iy x

X=r—x—e

=r—x—|l-x+—+...
2!

2
X

= -] ———4...
(r-1) >

to leading order in x. This has the same algebraic form as x =r—x? and can be

made to agree exactly by appropriate rescalings of x and r. ﬁ\
It’s easy to understand why saddle-node bifurcations typically have this alge-

braic form. We just ask ourselves: how can two fixed points of x = f(x) collide and

disappear as a parameter r is varied? Graphically, fixed points occur where the

graph of f(x) intersects the x-axis. For a saddle-node bifurcation to be possible, we

need two nearby roots of f(x); this means JS(x) must look locally “bowl-shaped” or

parabolic (Figure 3.1.7).

x
________ r>r,
V— .'  rer,
~ N, X
f(x) looks

parabolic in here
Figure 3.1.7

Now we use a microscope to zoom in on the behavior near the bifurcation. Asr
varies, we see a parabola intersecting the x-axis, then becoming tangent to it, and
~ then failing to intersect. This is exactly the scenario in the prototypical Figure 3.1.1.
Here’s a more algebraic version of the same argument. We regard f as a func-
tion of both x and r, and examine the behavior of x = f(x,r) near the bifurcation

Atx=x* and r= r.. Taylor’s expansion yields

X =f(x,r)
82

+%(x—x*)2——{ + .t

(x*.r) (x*.r)

=f(x*,rc)+(x—x*)a—f +(r—r(,)ﬁ

Ix

l(x*.n-)

3.1 SADDLE-NODE BIFURCATION AO



where we have neglected quadratic terms in (r — r.) and cubic terms in (x - x*). Two
of the terms in this equation vanish: f(x*,7)=0 since x* is a fixed point, and

af [dx

oy = 0 by the tangency condition of a saddle-node bifurcation. Thus

x=a(r—r)+b(x—x*)*+--. (3)

where a =df/or andb=%¢92f/9x2m

our prototypical examples. (We are assuming that a, b # 0, which is the typical case;

e Equation (3) agrees with the form of

(x*r)

for instance, it would be a very special situation if the second derivative 9°f/dx>
also happened to vanish at the fixed point.)

What we have been calling prototypical examples are more conventionally
known as normal forms for the saddle-node bifurcation. There is much, much
more to normal forms than we have indicated here. We will be seeing their impor-
tance throughout this book. For a more detailed and precise discussion, see Guck-
enheimer and Holmes (1983) or Wiggins (1990).

3.2 Transcritical Bifurcation

There are certain scientific situations where a fixed point must exist for all values
of a parameter and can never be destroyed. For example, in the logistic equation
and other simple models for the growth of a single species, there is a fixed point at
zero population, regardless of the value of the growth rate. However, such a fixed
point may change its stability as the parameter is varied. The transcritical bifurca-
tion is the standard mechanism for such changes in stability.

The normal form for a transcritical bifurcation is

X=rx—x-. (1)

This looks like the logistic equation of Section 2.3, but now we allow x and r to
be either positive or negative.

Figure 3.2.1 shows the vector field as r varies. Note that there is a fixed point at
x*=0 for all values of r, '

T

(@ r<0 (b) r=0 (e r>0

Figure 3.2.1
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For r <0, there is an unstable fixed point at x*=r and a stable fixed point at
x*=0. As r increases, the unstable fixed point approaches the origin, and coa-
lesces with it when r = 0. Finally, when r >0, the origin has become unstable,
and x*=r is now stable. Some people say that an exchange of stabilities has
taken place between the two fixed points.

Please note the important difference between the saddle-node and transcritical
bifurcations: in the transcritical case, the two fixed points don’t disappear after the
bifurcation—instead they just switch their stability.

" Figure 3.2.2 shows the bifurcation diagram for the transcritical bifurcation. As
in Figure 3.1.4, the parameter r is regarded as the independent variable, and the
fixed points x* =0 and x* = r are shown as dependent variables.

X stable

stable e - unstable -

unstable

Figure 3.2.2
—_—

EXAMPLE 3.2.1:

Show that the first-order system x = x(1— x*) - a(l - e™™) undergoes a trans-
critical bifurcation at x = 0 when the parameters a, b satisfy a certain equation, to
be determined. (This equation defines a bifurcation curve in the (a,b) parameter
Space.) Then find an approximate formula for the fixed point that bifurcates from
X =0, assuming that the parameters are close to the bifurcation curve.

Solution: Note that x = 0 is a fixed point for all (a, b). This makes it plausible that
the fixed point will bifurcate transcritically, if it bifurcates at all. For small x , we find

l-e™ =1—[1 -bx++b°x? +0(x3)]
=bx—{b’x* + O(x?)
and so
x=x—a(bx-+b*x?)+0(x*)

= =ab)x + (£ ab*)x* + O(x%). i
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Hence a transcritical bifurcation occurs when ab = 1; this is the equation for the bi-

furcation curve. The nonzero fixed point is given by the solution o
l-ab+($ab*)x=0 ,ie.,

_ 2(ab-1)
ab*

x*

This formula is approximately correct only if x * is small, since our series expansions
are based on the assumption of small x. Thus the formula holds only when ab is
close to 1, which means that the parameters must be close to the bifurcation curve. a

EXAMPLE 3.2.2:

Analyze the dynamics of x =rlnx+x—1 near x =1 , and show that the system
undergoes a transcritical bifurcation at a certain value of r. Then find new vari-
ables X and R such that the system reduces to the approximate normal form
X = RX — X* near the bifurcation.

Solution: First note that x =1 is a fixed point for all values of r. Since we are
interested in the dynamics near this fixed point, we introduce a new variable
u=x~-1, where u is small. Then

Uu=x
=rin(l+u)+u
= r[u -tu’ + 0(u3)]+u
= (r+Du—-+r? +0W?).
Hence a transcritical bifurcation occurs at r.=-1, Lifye beic £ aliwuc .

To put this equation into normal form, we first need to get rid of the coefficient
of . Let u=av , where a will be chosen later. Then the equation for v is

v=(r+0v—-($ray’ +00?).
So if we choose a = 2/r, the equation becomes
v=(r+lv—-v’+00°).

Now if we let R=r+1 and X =v, we have achieved the approximate normal
form X = RX — X*, where cubic terms of order O(X?) have been neglected. In
terms of the original variables, X = v = ufa=4r(x-1).m

To be a bit more accurate, the theory of normal forms assures us that we can
find a change of variables such that the system becomes X = RX — X?, with strict,
rather than approximate, equality. Our solution above gives an approximation to
the necessary change of variables. If we wanted a better approximation, we would
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retain the cubic terms in the series expansions (and perhaps even higher-order
terms if we’re really feeling heroic) and we would have to do a more elaborate cal-
culation to eliminate these higher-order terms. See Exercises 3.2.6 and 3.2.7 for a
taste of such calculations, or see the books of Guckenheimer and Holmes (1983),
Wiggins (1990), or Manneville (1990).

3.3 Laser Threshold

Now it’s time to apply our mathematics to a scientific example. We analyze an ex-
tremely simplified model for a laser, following the treatment given by Haken (1983).

Physical Background

We are going to consider a particular type of laser known as a solid-state laser,
which consists of a collection of special “laser-active” atoms embedded in a solid-
state matrix, bounded by partially reflecting mirrors at either end. An external energy
source is used to excite or “pump” the atoms out of their ground states (Figure 3.3.1).

!

N t:. laser light
N active material N
N
mirror
Figure 3.3.1

Each atom can be thought of as a little antenna radiating energy. When the pump-
ing is relatively weak, the laser acts just like an ordinary lamp: the excited atoms
oscillate independently of one another and emit randomly phased light waves.

Now suppose we increase the strength of the pumping. At first nothing different
happens, but then suddenly, when the pump strength exceeds a certain threshold, the
atoms begin to oscillate in phase—the lamp has turned into a laser. Now the trillions
of little antennas act like one giant antenna and produce a beam of radiation that is
much more coherent and intense than that produced below the laser threshold.

This sudden onset of coherence is amazing, considering that the atoms are being
excited completely at random by the pump! Hence the process is self-organizing: the
coherence develops because of a cooperative interaction among the atoms themselves.

Model

A proper explanation of the laser phenomenon would require us to delve into
quantum mechanics. See Milonni and Eberly (1988) for an intuitive discussion.
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Instead we consider a simplified model of the essential physics (Haken 1983, p.
127). The dynamical variable is the number of photons n(t) in the laser field. Its
rate of change is given by

n = gain — loss
= GnN - kn.

The gain term comes from the process of stimulated emission, in which photons
stimulate excited atoms to emit additional photons. Because this process occurs
via random encounters between photons and excited atoms, it occurs at a rate
proportional to #n and to the number of excited atoms, denoted by N(¢) . The pa-
rameter G >0 is known as the gain coefficient. The loss term models the escape
of photons through the endfaces of the laser. The parameter k >0 is a rate con-
stant; its reciprocal 7 =1/k represents the typical lifetime of a photon in the
laser. ’

Now comes the key physical idea: after an excited atom emits a photon, it drops
down to a lower energy level and is no longer excited. Thus N decreases by the
emission of photons. To capture this effect, we need to write an equation relating
N to n. Suppose that in the absence of laser action, the pump keeps the number of
excited atoms fixed at N, . Then the actual number of excited atoms will be re-
duced by the laser process. Specifically, we assume

N({t)=N,—-on,
where a > 0 is the rate at which atoms drop back to their ground states. Then
n=Gn(N,—an)—kn
=(GN,—-k)n-(aG)n* .

We’re finally on familiar ground—this is a first-order system for n(¢). Figure
3.3.2 shows the corresponding vector field for different values of the pump
strength N, . Note that only positive values of n are physically meaningful.

Ny <k/G Ny =k/G Ng >k/G

Figure 3.3.2
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When N, < k/G, the fixed point at n* =0 is stable. This means that there is no
stimulated emission and the laser acts like a lamp. As the pump strength N, is in-
creased, the system undergoes a transcritical bifurcation when N, =k/G. For
N, >k/G, the origin loses stability and a stable fixed point appears at
n*=(GN, —k)/aG >0, corresponding to spontaneous laser action. Thus
N, =k/G can be interpreted as the laser threshold in this model. Figure 3.3.3
summarizes our results.

laser _

kIG Ny

Figure 3.3.3

Although this model correctly predicts the existence of a threshold, it ignores
the dynamics of the excited atoms, the existence of spontaneous emission, and sev-
eral other complications. See Exercises 3.3.1 and 3.3.2 for improved models.

3.4 Pitchfork Bifurcation

We turn now to a third kind of bifurcation, the so-called pitchfork bifurcation.
This bifurcation is common in physical problems that have a symmetry. For ex-
ample, many problems have a spatial symmetry between left and right. In such
cases, fixed points tend to appear and disappear in symmetrical pairs. In the buck-
ling example of Figure 3.0.1, the beam is stable in the vertical position if the load
is small. In this case there is a stable fixed point corresponding to zero deflection.
But if the load exceeds the buckling threshold, the beam may buckle to either the
left or the right. The vertical position has gone unstable, and two new symmetri-
cal fixed points, corresponding to left- and right-buckled configurations, have
been born.

There are two very different types of pitchfork bifurcation. The simpler type is
called supercritical, and will be discussed first.

Supercritical Pitchfork Bifurcation
The normal form of the supercritical pitchfork bifurcation is

X=rx—x", (1)
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Note that this equation is invariant under the change of variables x — —x . That
is, if we replace x by —x and then cancel the resulting minus signs on both sides
of the equation, we get (1) back again. This invariance is the mathematical ex-
pression of the left-right symmetry mentioned earlier. (More technically, one
says that the vector field is equivariant, but we’ll use the more familiar lan-
guage.) )

Figure 3.4.1 shows the vector field for different values of r.

x x x

N A
A

(a) r<0 (b) r=0 () r>0

Figure 3.4.1

When r <0, the origin is the only fixed point, and it is stable. When r = 0, the ori-
gin is still stable, but much more weakly so, since the linearization vanishes. Now
solutions no longer decay exponentially fast—instead the decay is a much slower
algebraic function of time (recall Exercise 2.4.9). This lethargic decay is called
critical slowing down in the physics literature. Finally, when r >0, the origin has

become unstable. Two new stable fixed points appear on either side of the origin, '}

symmetrically located at x* = ++/7.
The reason for the term “pitchfork” becomes clear when we plot the bifurcation
diagram (Figure 3.4.2). Actually, pitchfork trifurcation might be a better word!

X

stable

Stable e——— - = - - o o o L. unstable

stable

Figure 3.4.2
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EXAMPLE 3.4.1:

Equations similar to x = —x + Btanh x arise in statistical mechanical models of
magnets and neural networks (see Exercise 3.6.7 and Palmer 1989). Show that this
equation undergoes a supercritical pitchfork bifurcation as B is varied. Then give
a numerically accurate plot of the fixed points for each B.

Solution: We use the strategy of Example 3.1.2 to find the fixed points. The
graphsof y=x and y = Stanhx are shown in Figure 3.4.3; their intersections cor-
respond to fixed points. The key thing to realize is that as S increases, the tanh
curve becomes steeper at the origin (its slope there is ). Hence for B <1 the ori-
gin is the only fixed point. A pitchfork bifurcation occurs at B=1, x*=0, when
the tanh curve develops a slope of 1 at the origin. Finally, when B>1, two new
stable fixed points appear, and the origin becomes unstable.

X

B tanh x

B<1 B=1 B>1
Figure 3.4.3

Now we want to compute the fixed points x * for each B. Of course, one fixed
point always occurs at x* = 0; we are looking for the other, nontrivial fixed points.
One approach is to solve the
6 { ‘ equation x*=ftanhx* nu-
merically, using the Newton—
Raphson method or some other
root-finding scheme. (See Press
et al. (1986) for a friendly and
informative discussion of nu-
merical methods.)

But there’s an easier way,
which comes from changing
'60 1 2 3 ﬂ our point of view. Instead of
studying the dependence of
x* on B, we think of x* as
the independent variable, and
then compute = x */tanh x *. This gives us a table of pairs (x*, B). For each pair,

we plot f horizontally and x * vertically. This yields the bifurcation diagram (Fig-
ure 3.4.4).

Figure 3.4.4
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The shortcut used here exploits the fact that f(x,8)=-x+ Btanhx depends
more simply on B than on x . This is frequently the case in bifurcation problems—
the dependence on the control parameter is usually simpler than the dependence on
x.m

o /LFI&(, /{\ ,t{i’w’ ‘
EXAMPLE 3.4.2: , ‘

Plot the potential V(x) for the system x = rx — x*, for the cases r<0, r=0,
and r>0.

Solution: Recall from Section 2.7 that the potential for x = f(x) is defined by
f(x)=-dV/dx. Hence we need to solve —dV/dx=rx—- x”. Integration yields
V(x) ==%rx* + L x*, where we neglect the arbitrary constant of integration. The cor-

responding graphs are shown in Figure 3.4.5.

\%4 \% \%
X X X
r<0 r=0 r>0
Figure 3.4.5

When r < 0, there is a quadratic minimum at the origin. At the bifurcation value
r =0, the minimum becomes a much flatter quartic. For r>0, a local maxi-
mum appears at the origin, and a symmetric pair of minima occur to either side
ofit. m

Subcritical Pitchfork Bifurcation

In the supercritical case x = rx — x° discussed above, the cubic term is stabiliz-
ing: it acts as a restoring force that pulls x(r) back toward x = 0. If instead the cu-
bic term were destabilizing, as in

i=rx+x, (2)

then we’d have a subcritical pitchfork bifurcation. Figure 3.4.6 shows the bifurca-
tion diagram.
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X
unstable . _
‘\
stable s I unstable
L
S r
unstable "7
Figure 3.4.6

Compared to Figure 3.4.2, the pitchfork is inverted. The nonzero fixed points
x*==x~/—r are unstable, and exist only below the bifurcation (r < 0 ), which moti-
vates the term “subcritical.” More importantly, the origin is stable for r <0 and un-
stable for r >0, as in the supercritical case, but now the instability for r > 0 is not
opposed by the cubic term—in fact the cubic term lends a helping hand in driving the
trajectories out to infinity! This effect leads to blow-up: one can show that
x(f) = *eo in finite time, starting from any initial condition x, # 0 (Exercise 2.5.3).

In real physical systems, such an explosive instability is usually opposed by the
stabilizing influence of higher-order terms. Assuming that the system is still sym-
metric under x — —x, the first stabilizing term must be x° . Thus the canonical ex-
ample of a system with a subcritical pitchfork bifurcation is

X=rx+x>—x’ (3)
There’s no loss in generality in assuming that the coefficients of x* and x° are 1
(Exercise 3.5.8).
The detailed analysis of (3) is left to you (Exercises 3.4.14 and 3.4.15). But we will

summarize the main results here. Figure 3.4.7 shows the bifurcation diagram for (3).
x For small x, the picture looks just like
K__— Figure 3.4.6: the origin is locally sta-

.. ble for r<0, and two backward-
SR bending branches of unstable fixed

0 : e points bifurcate from the origin when
r, e ‘0 r r =0. The new feature, due to the x°
et term, is that the unstable branches turn
\ around and become stable at r=r,,

where r, <0. These stable large-
amplitude branches exist for all r > r,.
Figure 3.4.7
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There are several things to note about Figure 3.4.7: tistical mechanics. The subcritical bifurcation is sometimes called an inverted or
backward bifurcation, and is related to discontinuous or first-order phase transi-
tions. In the engineering literature, the supercritical bifurcation is sometimes
called soft or safe, because the nonzero fixed points are born at small amplitude; in
contrast, the subcritical bifurcation is hard or dangerous, because of the jump from

zero to large amplitude.

l.Intherange r, <r <0, two qualitatively different stable states coexist,
namely the origin and the large-amplitude fixed points. The initial con-
dition x, determines which fixed point is approached as ¢t — e . One
consequence is that the origin is stable to small perturbations, but not to
large ones—in this sense the origin is locally stable, but not globally
stable.

2. The existence of different stable states allows for the possibility of
Jumps and hysteresis as r is varied. Suppose we start the system in the
state x* =0, and then slowly increase the parameter r (indicated by an
arrow along the r-axis of Figure 3.4.8).

3.5 Overdamped Bead on a Rotating Hoop

In this section we analyze a classic problem from first-year physics, the bead on a
rotating hoop. This problem provides an example of a bifurcation in a mechanical
system. It also illustrates the subtleties involved in replacing Newton’s law, which

x - e is a second-order equation, by a simpler first-order equation.
. - The mechanical system is shown in Figure 3.5.1. A bead
e \,‘/ @ of mass m slides along a wire hoop of radius r. The hoop is
l e -. constrained to rotate at a constant angular velocity @
0 T - ;1 --------- about its vertical axis. The problem is to analyze the mo-
T 00 r tion of the bead, given that it is acted on by both gravita-
et ’ tional and centrifugal forces. This is the usual statement of
\ ™ the problem, but now we want to add a new twist: suppose
that there’s also a frictional force on the bead that opposes
: its motion. To be specific, imagine that the whole system is

Figure 3.4.8

Figure 3.5.1 immersed in a vat of molasses or some other very viscous
fluid, and that the friction is due to viscous damping.

Let ¢ be the angle between the bead and the downward vertical direction. By
convention, we restrict ¢ to the range —7 < ¢ < 7, so there’s only one angle for
each point on the hoop. Also, let p=rsing denote the distance of the bead from
the vertical axis. Then the coordinates are as shown in Figure 3.5.2.

Now we write Newton’s law for the bead. There’s a down-
ward gravitational force mg, a sideways centrifugal force
mpw”, and a tangential damping force b¢. (The constants g
and b are taken to be positive; negative signs will be added
later as needed.) The hoop is assumed to be rigid, so we only
have to resolve the forces along the tangential direction, as
shown in Figure 3.5.3. After substituting p=rsing in the

Centrifugal term, and recalling that the tangential acceleration is r¢, we obtain the
governing equation

Then the state remains at the origin until =0, when the origin loses
stability. Now the slightest nudge will cause the state to jump to one of
the large-amplitude branches. With further increases of r, the state
moves out along the large-amplitude branch. If  is now decreased, the
state remains on the large-amplitude branch, even when 7 is decreased
below 0! We have to lower r even further (down past r,) to get the ‘
state to jump back to the origin. This lack of reversibility as a parame-
ter is varied is called hysteresis.

3. The bifurcation at r, is a saddle-node bifurcation, in which stable and
unstable fixed points are born “out the clear blue sky” as r is increased

(see Section 3.1). Figure 3,5.2

Terminology

As usual in bifurcation theory, there are several other names for the bifurcations
discussed here. The supercritical pitchfork is sometimes called a forward bifurca-

. . . e . b= —bhh_ : 2 .
tion, and is closely related to a continuous or second-order phase transition in sta- mro = —b¢ —mgsin ¢ + mrw’ sin g cos . (1)
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(2/‘,:0 N

This is a second-order differential
equation, since the second derivative ¢ is
the highest one that appears. We are not
yet equipped to analyze second-order
equations, so we would like to find some
conditions under which we can safely ne-
glect the mr(}i term. Then (1) reduces to a
first-order equation, and we can apply our
machinery to it.

Of course, this is a dicey business: we
can’t just neglect terms because we feel
like it! But we will for now, and then at the end of this section we’ll try to find a
regime where our approximation is valid.

Figure 3.5.3

Analysis of the First-Order System

Our concern now is with the first-order system
b¢ = —mgsin ¢ + mro® sin ¢ cos ¢

2

=mgsin¢(rw cos¢—1]. (2)
g

The fixed points of (2) correspond to equilibrium positions for the bead. What’s
your intuition about where such equilibria can occur? We would expect the bead to
remain at rest if placed at the top or the bottom of the hoop. Can other fixed points
occur? And what about stability? Is the bottom always stable?

Equation (2) shows that there are always fixed points where sin¢ = 0, namely
¢* =0 (the bottom of the hoop) and ¢* = & (the top). The more interesting result
is that there are two additional fixed points if

that is, if the hoop is spinning fast enough. These fixed points satisfy
¢* =+cos™ (g/ ra)z) . To visualize them, we introduce a parameter

and solve cos¢* =1/y graphically. We plot cos¢ vs. ¢, and look for intersections
with the constant function 1/y, shown as a horizontal line in Figure 3.5.4. For
Y <1 there are no intersections, whereas for ¥ > 1 there is a symmetrical pair of in-
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Yy <1
‘y:
Yy >1

cos @

Figure 3.5.4

tersections to either side of ¢* = 0. As y — o, these intersections approach tx/2.
Figure 3.5.5 plots the fixed points on the hoop for the cases y <1 and ¥ > 1.

top top
bottom bottom
<1 y>1
Figure 3.5.5

To summarize our results so far, let’s plot all the fixed points as a function of

the parameter y (Figure 3.5.6). As usual, solid lines denote stable fixed points and
broken lines denote unstable fixed points.

Figure 3.5.6
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We now see that a supercritical pitchfork bifurcation occyrs at y =1.1It’s left to
you to check the stability of the fixed points, using linear stability analysis or
graphical methods (Exercise 3.5.2).

&rows as the bead moves farther from the bottom, any slight displacement of the
bead will be amplified. The bead is therefore pushed up the hoop until gravity bal-
ances the centrifugal force; this balance occurs at o*= i-cos“( g/ ra)z). Which of
these two fixed points is actually selected depends on the initial disturbance. Even
though the two fixed points are entirely Symmetrical, an asymmetry in the initial
conditions will lead to one of them being chosen—physicists sometimes refer to
these as Symmetry-broken solutions. In other words, the solution has less Symme-
try than the governing equation.

What is the symmetry of the governing equation? Clearly the left and right
halves of the hoop are physically equivalent—this is reflected by the invariance of
(1) and (2) under the change of variables ®>—-0. As we mentioned in Section
3.4, pitchfork bifurcations are to be €xpected in situations where such a symmetry

Dimensional Analysis and Scaling

Now we need to address the question: When is it valid to neglect the inertia
term mr¢ in (1)? At first sight the limit m — ( looks promising, but then we no-

of parameters by lumping them together into dimensionless 8roups. This reduc-
tion always simplifies the analysis. For an excellent introduction to dimensional
analysis, see Lin and Segel (1988).

There are often severa] Ways to nondimensionalize an €quation, and the best
choice might not be clear at first. Therefore We proceed in a flexible fashion, We
define a dimensionless time 7 by

t

T=—
T

where T is a characteristic time scale to be chosen later, When T is chosen cor-
rectly, the new derivatives d¢/dt and d’¢/dr® should be O(1), i.e., of order
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unity. To express these new derivatives in terms of the old ones, we use the chain

rule:
<90 _dpdr _1dp
T dt drdi Tdr

and similarly

(The easy way to remember these formulas is to formally substitute Tt for t)

Hence (1) becomes

2
mrd¢_ —éﬂ—mgsin¢+mra)2 singcos .
T* di*  Tdr

Now since this equation is a balance of forces, we nondimensionalize it by divid-
ing by a force mg. This yields the dimensionless equation

_r fz_‘P=_(L)ﬁ-sin¢+(r—w2]sin¢cos¢. (3)
gT? | dr? mgT | dt 8

Each of the terms in parentheses is a dimensionless group. We recogniz‘e the group
r@’[g in the last term—that’s our old friend y from earhe.r in the section. ‘

We are interested in the regime where the left-hand side of (3? is negllglPle
compared to all the other terms, and where all the terms on the rlght—h.and side
are of comparable size. Since the derivatives are O(1) by assumption, and
sin§ = O(1), we see that we need

L~ 0a), and <«
mgT gT

The first of these requirements sets the time scale 7 : a natural choice is

b

mg

Then the condition r/gT? << 1 becomes

1(3)2 <<1 (4)
g\ b '

Or equivalently,

b* >> m?gr,

3.5 OVERDAMPED BEAD ONMN A DT A Ta0tos &2 o o



This can be interpreted as saying that the damping is very strong, or that the mass
is very small, now in a precise sense.

The condition (4) motivates us to introduce a dimensionless group

2
m-gr
€= bf ) (5)

Then (3) becomes

d*¢ o . .
£~ =———sing+ysindcos¢ . ‘ 6
dir g Siné+ysingcose (6)
As advertised, the dimensionless Equation (6) is simpler than (1): the five parame-
ters m, g, r, @, and b have been replaced by two dimensionless groups ¥ and €.
In summary, our dimensional analysis suggests that in the overdamped limit
€ — 0, (6) should be well approximated by the first-order system

a9 _
dr —f(¢) (7)

where

f(@)=~sing+ysingcos¢
=sin@(ycosp—1).

A Paradox

Unfortunately, there is something JSundamentally wrong with our idea of replac-
ing a second-order equation by a first-order equation. The trouble is that a second-
order equation requires two initial conditions, whereas a first-order equation has
only one. In our case, the bead’s motion is determined by its initial position and ve-
locity. These two quantities can be chosen completely independent of each other.
But that’s not true for the first-order system: given the initial position, the initial
velocity is dictated by the equation d¢/dt = f(¢). Thus the solution to the first-
order system will not, in general, be able to satisfy both initial conditions,

We seem to have run into a paradox. Is (7) valid in the overdamped limit or not?
If it is valid, how can we satisfy the two arbitrary initial conditions demanded by (6)?

The resolution of the paradox requires us to analyze the second-order system
(6). We haven’t dealt with second-order systems before—that’s the subject of
Chapter 5. But read on if you’re curious; some simple ideas are all we need to fin-
ish the problem.

Phase Plane Analysis

Throughout Chapters 2 and 3, we have exploited the idea that a first-order sys-
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tem x = f(x) can be regarded as a vector field on a line. By analogy, the second-
order system (6) can be regarded as a vector field on a plane, the so-called phase

plane.

The plane is spanned by two axes, one for the angle ¢ and one for the angular
velocity d@/dt. To simplify the notation, let

Q=¢"'=d¢/dt

where prime denotes differentiation with respect to 7. Then a.n initial condition. for
(6) corresponds to a point (,, Q,) in the phase plane (Figure 3.5.7). As time
evolves, the phase point (¢(¢), Q(f)) moves around in the phase plane along a tra-
Jectory determined by the solution to (6).

Q

($(0), 2(0))
\—’/—\ 6 (1), Q1))

¢

Figure 3.5.7

Our goal now is to see what those trajectories actually look like. As before, the
key idea is that the differential equation can be interpreted as a vector field on the
phase space. To convert (6) into a vector field, we first rewrite it as

Q' = f(¢)-Q.
Along with the definition ¢” = Q , this yields the vector field
o'=Q (8a)

o= é( F6)-Q). (8b)

We interpret the vector (¢’, Q') at the point (¢, Q) as the local velocity of a phase
fluid flowing steadily on the plane. Note that the velocity vector now has two C(?m-
ponents, one in the ¢-direction and one in the Q-direction. To visualize the trajec-
tories, we just imagine how the phase point would move as it is carried along by
the phase fluid.

In general, the pattern of trajectories would be difficult to picture, but the pre-
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sent case is simple because we are only interested in the limit £ — 0. In this
limit, all trajectories slam straight up or down onto the curve C defined by
f(9)—-Q, and then slowly ooze along this curve until they reach a fixed point
(Figure 3.5.8).

Q

‘ C:f(¢)-Q2=0
I\,
-2;:\/ 27

Figure 3.5.8

To arrive at this striking conclusion, let’s do an order-of-magnitude calculation.
Suppose that the phase point lies off the curve C. For instance, suppose (¢, Q) lies
an O(1) distance below the curve C, i.e., Q < f(¢) and f(¢)—Q = O(1). Then (8b)
shows that Q’ is enormously positive: Q' = O(1/€) >> 1. Thus the phase point zaps
like lightning up to the region where f(¢)—Q = O(€). In the limit € — 0, this re-
gion is indistinguishable from C. Once the phase point is on C, it evolves accord-
ing to Q= f(¢); that is, it approximately satisfies the first-order equation
¢’ =f(¢9).

Our conclusion is that a typical trajectory is made of two parts: a rapid initial
transient, during which the phase point zaps onto the curve where ¢’ = f(¢), fol-
lowed by a much slower drift along this curve.

Now we see how the paradox is resolved: The second-order system (6) does be-
have like the first-order system (7), but only after a rapid initial transient. During
this transient, it is not correct to neglect the term £d”¢/dt>. The problem with our
earlier approach is that we used only a single time scale T = b/mg; this time scale
is characteristic of the slow drift process, but not of the rapid transient (Exercise
3.5.5).

A Singular Limit

The difficulty we have encountered here occurs throughout science and engi-
neering. In some limit of interest (here, the limit of strong damping), the term con-
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taining the highest order derivative drops out of the governing equation. Then the
initial conditions or boundary conditions can’t be satisfied. Such a limit is often
called singular. For example, in fluid mechanics, the limit of high Reynolds num-
ber is a singular limit; it accounts for the presence of extremely thin “boundary lay-
ers” in the flow over airplane wings. In our problem, the rapid transient played the
role of a boundary layer—it is a thin layer of time that occurs near the boundary
t=0.

The branch of mathematics that deals with singular limits is called singular per-
turbation theory. See Jordan and Smith (1987) or Lin and Segel (1988) for an in-
troduction. Another problem with a singular limit will be discussed briefly in
Section 7.5.

3.6 Imperfect Bifurcations and Catastrophes

As we mentioned earlier, pitchfork bifurcations are common in problems that have
a symmetry. For example, in the problem of the bead on a rotating hoop (Section
3.5), there was a perfect symmetry between the left and right sides of the hoop. But
in many real-world circumstances, the symmetry is only approximate—an imper-
fection leads to a slight difference between left and right. We now want to see what
happens when such imperfections are present.

For example, consider the system

x=h+rx-x’, (1)

If h=0, we have the normal form for a supercritical pitchfork bifurcation, and
there’s a perfect symmetry between x and —x . But this symmetry is broken when
h # 0 ; for this reason we refer to 4 as an imperfection parameter.

Equation (1) is a bit harder to analyze than other bifurcation problems we’ve
considered previously, because we have two independent parameters to worry
about (4 and r). To keep things straight, we’ll think of r as fixed, and then exam-
ine the effects of varying h. The first step is to analyze the fixed points of (1).
These can be found explicitly, but we’d have to invoke the messy formula for the
roots of a cubic equation. It’s clearer to use a graphical approach, as in Example
3.1.2. We plot the graphs of y = rx — x* and y =-h on the same axes, and look for
intersections (Figure 3.6.1). These intersections occur at the fixed points of (1).
When r <0, the cubic is monotonically decreasing, and so it intersects the hori-
zontal line y = —h in exactly one point (Figure 3.6.1a). The more interesting case is
r>0; then one, two, or three intersections are possible, depending on the value of
h (Figure 3.6.1b).
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=rx—-x
LR A |h|> ho(r)
Sl s Kt y=-h Al ____ |h=RO
S\ ___l/[ . || < h.(r)
X X
(@) r<0 (b) r>0
Figure 3.6.1

The critical case occurs when the horizontal line is just tangent to either the lo-
cal minimum or maximum of the cubic; then we have a saddle-node bifurcation.
To find the values of h at which this bifurcation occurs, note that the cubic has a
local maximum when 4 (rx — x*) = r = 3x* = 0. Hence

and the value of the cubic at the local maximum is

_2rgr

_ 3
rx (Xpax) R ER

max

Similarly, the value at the minimum is the negative of this quantity. Hence saddle-
node bifurcations occur when h = th _(r), where

2r |r
h.(r)= RER

Equation (1) has three fixed points for || < 4.(r) and one fixed point for || > h_(r).

To summarize the results so far, we plot the bifurcation curves h=1h (r) in
the (r,h) plane (Figure 3.6.2). Note that the two bifurcation curves meet tangen-
tially at (r, k) = (0,0) ; such a point is called a cusp point. We also label the regions
that correspond to different numbers of fixed points. Saddle-node bifurcations oc-
cur all along the boundary of the regions, except at the cusp point, where we have a
codimension-2 bifurcation. (This fancy terminology essentially means that we
have had to tune two parameters, h and r, to achieve this type of bifurcation. Un-
il now, all our bifurcations could be achieved by tuning a single parameter, and
were therefore codimension-1 bifurcations.) )
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14 1 fixed point h.(r)
h
01 3 fixed points
-14
=h.(r)
2 . . . —
-2 -1 0 1 2
Figure 3.6.2

Pictures like Figure 3.6.2 will prove very useful in our future work. We will
refer to such pictures as stability diagrams. They show the different types of
behavior that occur as we move around in parameter space (here, the (r,h)
plane).

Now let’s present our results in a more familiar way by showing the bifurcation
diagram of x* vs. r, for fixed & (Figure 3.6.3).

X X

v (@ h=0 (b) h#0
Figure 3.6.3

When 4 =0 we have the usual pitchfork diagram (Figure 3.6.3a) but when A # 0,
the.pitchfork disconnects into two pieces (Figure 3.6.3b). The upper piece consists
entirely of stable fixed points, whereas the lower piece has both stable and unstable
b.ranches. As we increase r from negative values, there’s no longer a sharp transi-
tion at r =0 ; the fixed point simply glides smoothly along the upper branch. Fur-
thermore, the lower branch of stable points is not accessible unless we make a
fairly large disturbance.

Alternatively, we could plot x* vs. h, for fixed r (Figure 3.6.4).
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Figure 3.6.4

When r<0 there’s one stable fixed point for each h (Figure 3.6.4a). However,
when r >0 there are three fixed points when |h| < h.(r), and one otherwise (Figure
3.6.4b). In the triple-valued region, the middle branch is unstable and the upper and
lower branches are stable. Note that these graphs look like Figure 3.6.1 rotated by
90°.

There is one last way to plot the results, which may appeal to you if you like
to picture things in three dimensions. This method of presentation contains all
of the others as cross sections or projections.
x If we plot the fixed points x* above the
(r,h) plane, we get the cusp catastrophe
surface shown in Figure 3.6.5. The surface
folds over on itself in certain places. The pro-
jection of these folds onto the (r,h) plane
yields the bifurcation curves shown in Figure
R"\\ 3.6.2. A cross section at fixed h yields Fig-
r ure 3.6.3, and a cross section at fixed r

Figure 3.6.5 yields Figure 3.6.4.

The term catastrophe is motivated by the
fact that as parameters change, the state of the system can be carried over the edge
of the upper surface, after which it drops discontinuously to the lower surface (Fig-

ure 3.6.6). This jump could be truly cata-
x strophic for the equilibrium of a bridge or a
building. We will see scientific examples of
catastrophes in the context of insect out-

\ breaks (Section 3.7) and in the following ex-
ample from mechanics.
h For more about catastrophe theory, see
% Zeeman (1977) or Poston and Stewart
(1978). Incidentally, there was a violent
r . . .
Figure 3.6.6 controversy about this subject in the late
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1970s. If you like watching fights, have a look at Zahler and Sussman (1977) and
Kolata (1977).

Bead on a Tilted Wire

As a simple example of imperfect bifurcation and catastrophe, consider the fol-
lowing mechanical system (Figure 3.6.7).

ANANERANNRANRENNNNNNNN

Figure 3.6.7

A bead of mass m is constrained to slide along a straight wire inclined at an angle

6 with respect to the horizontal. The mass is attached to a spring of stiffness k and
relaxed length L, and is also acted on by gravity. We choose coordinates along
the wire so that x =0 occurs at the point closest to the support point of the spring;
let a be the distance between this support point and the wire.

In Exercises 3.5.4 and 3.6.5, you are asked to analyze the equilibrium positions
of the bead. But first let’s get some physical intuition. When the wire is horizontal
(6 =0), there is perfect symmetry between the left and right sides of the wire, and
x=01is always an equilibrium position. The stability of this equilibrium depends
on the relative sizes of L, and a: if L, <a, the spring is in tension and so the
equilibrium should be stable. But if L, >a, the spring is compressed and so we
ex;_)ect an unstable equilibrium at x = 0 and a pair of stable equilibria to either side
of it. Exercise 3.5.4 deals with this simple case.

. The problem becomes more interesting when we tilt the wire (0 # 0). For small
tilting, we expect that there are still three equilibria if L, > a . However if the tilt
be.comes too steep, perhaps you can see intuitively that the uphill equilibrium
}Tlght s1.1c‘1de.nly disappeellr, causing the bead to jump catastrophically to the down-

ill ethbnum. You might even want to build this mechanical system and try it.
Exercise 3.6.5 asks you to work through the mathematical details.

3.7 Insect Outbreak

F . . . .
f0r a biological example of bifurcation and catastrophe, we turn now to a model
or the sudden outbreak of an insect called the spruce budworm. This insect is a se-
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rious pest in eastern Canada, where it attacks the leaves of the balsam fir tree.
When an outbreak occurs, the budworms can defoliate and kill most of the fir trees
in the forest in about four years.

Ludwig et al. (1978) proposed and analyzed an elegant model of the interaction
between budworms and the forest. They simplified the problem by exploiting a sepa-
ration of time scales: the budworm population evolves on a fast time scale (they can
increase their density fivefold in a year, so they have a characteristic time scale of
months), whereas the trees grow and die on a slow time scale (they can completely
replace their foliage in about 7-10 years, and their life span in the absence of bud-
worms is 100-150 years.) Thus, as far as the budworm dynamics are concerned, the
forest variables may be treated as constants. At the end of the analysis, we will allow
the forest variables to drift very slowly—this drift ultimately triggers an outbreak.

Model

The proposed model for the budworm population dynamics is
- N
N=RN{1-— |- p(N).
( KJ p(N)

In the absence of predators, the budworm population N(¢) is assumed to grow logis-

tically with growth rate R and carrying capacity K . The carrying capacity depends

on the amount of foliage left on the trees,

and so it is a slowly drifting parameter; at

B P(N)  this stage we treat it as fixed. The term

P(N) represents the death rate due to preda-

tion, chiefly by birds, and is assumed to

| N have the shape shown in Figure 3.7.1. There

A is almost no predation when budworms are

scarce; the birds seek food elsewhere. How-

ever, once the population exceeds a certain

critical level N = A, the predation turns on sharply and then saturates (the birds are
eating as fast as they can). Ludwig et al. (1978) assumed the specific form

Figure 3.7.1

BN?
N)=—
PN ="\

where A, B > 0. Thus the full model is

: N BN’

We now have several questions to answer. What do we mean by an “outbreak”
in the context of this model? The idea must be that, as parameters drift, the bud-
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worm population suddenly jumps from a low to a high level. But what do we mean
by “low” and “high,” and are there solutions with this character? To answer these

questions, it is convenient to recast the model into a dimensionless form, as in Sec-
tion 3.5.

Dimensionless Formulation

The model (1) has four parameters: R, K, A, and B. As usual, there are various
ways to nondimensionalize the system. For example, both A and K have the same
dimension as N, and so either N/A or N/K could serve as a dimensionless popu-
lation level. It often takes some trial and error to find the best choice. In this case,
our heuristic will be to scale the equation so that all the dimensionless groups are
pushed into the logistic part,of the dynamics, with none in the predation part. This
turns out to ease the graphical analysis of the fixed points.

To get rid of the parameters in the predation term, we divide (1) by B and then let

x=N/A,
which yields

A dx 2
Adc _R, ( _ﬂ)_ x

Bdi B K) 1+x2 (2)

Equation (2) suggests that we should introduce a dimensionless time 7 and dimen-
sionless groups r and k , as follows:

Bt RA K

==, r=22 p=Z

A B A

Then (2) becomes ,

dx ( ) x) x°

=122 =

dt k) 1+x*’ )
Wwhich is our final dimensionless form. Here r and k are the dimensionless growth
rate and carrying capacity, respectively.

Analysis of Fixed Points

Eguation (3) has a fixed point at x* =0 ; it is always unstable (Exercise 3.7.1).
The intuitive explanation is that the predation is extremely weak for small x , and
$0 the budworm population grows exponentially for x near zero.

The other fixed points of (3) are given by the solutions of

X x
(G
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This equation is easy to analyze graphi-
cally—we simply graph the right- and

r left-hand sides of (4), and look for in-
tersections (Figure 3.7.2). The left-hand
X - side of (4) represents a straight line with

1+x

x-intercept equal to k and a y-intercept
equal to r, and the right-hand side rep-
k x  resents a curve that is independent of
the parameters! Hence, as we vary the
parameters r and k , the line moves but
the curve doesn’t—this convenient property is what motivated our choice of
nondimensionalization.

Figure 3.7.2

Figure 3.7.2 shows that if & is suf-
ficiently small, there is exactly one
r intersection for any r >0 . However,

for large k , we can have one, two, or

RN three intersections, depending on the

> value of r (Figure 3.7.3). Let’s sup-

So pose that there are three intersections

a, b, and c. As we decrease r with

k fixed, the line rotates counter-

Figure 3.7.3 clockwise about k. Then the fixed

points b and ¢ approach each other

and eventually coalesce in a saddle-node bifurcation when the line intersects the

curve fangentially (dashed line in Figure 3.7.3). After the bifurcation, the only

remaining fixed point is a (in addition to x* =0, of course). Similarly, a and b
can collide and annihilate as r is increased.

To determine the stability of the fixed points, we recall that x* =0 is unstable,
and also observe that the stability type must alternate as we move along the x-axis.

Hence a is stable, b is unstable,
and ¢ is stable. Thus, for r and
k in the range corresponding to
= three positive fixed points, the
vector field is qualitatively like
that shown in Figure 3.7.4. The
smaller stable fixed point a is
called the refuge level of the
budworm population, while the
Figure 3.7.4 larger stable point ¢ is the out-
break level. From the point of
view of pest control, one would like to keep the population at a and away from c.
The fate of the system is determined by the initial condition x,; an outbreak occurs

=

8
L)
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if and only if x, > b. In this sense the unstable equilibrium b plays the role of a
threshold.

An outbreak can also be triggered by a saddle-node bifurcation. If the parame-
ters r and k drift in such a way that the fixed point a disappears, then the popula-
tion will jump suddenly to the outbreak level c . The situation is made worse by the
hysteresis effect—even if the parameters are restored to their values before the
outbreak, the population will not drop back to the refuge level.

Calculating the Bifurcation Curves

Now we compute the curves in (k,r) space where the system undergoes saddle-
node bifurcations. The calculation is somewhat harder than that in Section 3.6: we
will not be able to write r explicitly as a function of k, for example. Instead, the
bifurcation curves will be written in the parametric form (k(x), r(x)), where x
runs through all positive values. (Please don’t be confused by this traditional ter-
minology—one would call x the “parameter” in these parametric equations, even
though r and k are themselves parameters in a different sense.)

As discussed earlier, the condition for a saddle-node bifurcation is that the line
r(1— x/k) intersects the curve x/(1+ x*) tangentially. Thus we require both

r 1—-*x— =_*
k) 1+x° ©)

w 0-alwe]

After differentiation, (6) reduces to

and

r 1-x?

PRNESSCE 7

We substitute this expression for r/k into (5), which allows us to express r solely
n terms of x. The result is

e 25}
CA+xY)? )

Then inserting (8) into (7) yields

2x*

k=
T 9)

The condition k > 0 implies that x must be restricted to the range x > I.
Together (8) and (9) define the bifurcation curves. For each x >1, we plot the
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corresponding point (k(x), r(x)) in the (k,r) plane. The resulting curves are
shown in Figure 3.7.5. (Exercise 3.7.2 deals with some of the analytical properties
of these curves.)

0.87
0.7 outbreak

I 0.6
0.5
0.41
0.3
0.2]
0.1

0.0 ‘ : , !
0 10 20 30 40

bistable

Figure 3.7.5

The different regions in Figure 3.7.5 are labeled according to the stable fixed
points that exist. The refuge level a is the only stable state for low r, and the out-
break level c is the only stable state for large r. In the bistable region, both stable
states exist.

The stability diagram is very similar to Figure 3.6.2. It too can be regarded as
the projection of a cusp catastrophe surface, as schematically illustrated in Figure
3.7.6. You are hereby challenged to graph the surface accurately!

X

Figure 3.7.6

Comparison with Observations

Now we need to decide on biologically plausible values of the dimensionless
groups r = RA/B and k = K/A . A complication is that these parameters may drift
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slowly as the condition of the forest changes. According to Ludwig et al. (1978), r
increases as the forest grows, while k remains fixed.

They reason as follows: let S denote the average size of the trees, interpreted as
the total surface area of the branches in a stand. Then the carrying capacity K
should be proportional to the available foliage, so K = K’S . Similarly, the half-
saturation parameter A in the predation term should be proportional to S ; preda-
tors such as birds search units of foliage, not acres of forest, and so the relevant
quantity A" must have the dimensions of budworms per unit of branch area. Hence
A=A’S and therefore
RA S, k= K .
B A’

(10)

The experimental observations suggest that for a young forest, typically
k=300 and r<1/2 so the parameters lie in the bistable region. The budworm
population is kept down by the birds, which find it easy to search the small number
of branches per acre. However, as the forest grows, S increases and therefore the
point (k, r) drifts upward in parameter space toward the outbreak region of Figure
3.7.5. Ludwig et al. (1978) estimate that r ~1 for a fully mature forest, which lies
dangerously in the outbreak region. After an outbreak occurs, the fir trees die and
the forest is taken over by birch trees. But they are less efficient at using nutrients
and eventually the fir trees come back—this recovery takes about 50-100 years
(Murray 1989). *

We conclude by mentioning some of the approximations in the model presented
here. The tree dynamics have been neglected; see Ludwig et al. (1978) for a dis-
cussion of this longer time-scale behavior. We’ve also neglected the spatial distri-
bution of budworms and their possible dispersal—see Ludwig et al. (1979) and
Murray (1989) for treatments of this aspect of the problem.

EXERCISES FOR CHAPTER 3

3.1 Saddle-Node Bifurcation

For each of the following exercises, sketch all the qualitatively different vector
fields that occur as r is varied. Show that a saddle-node bifurcation occurs at a

critical value of r, to be determined. Finally, sketch the bifurcation diagram of
fixed points x* versus r.

1 x=14m+x2 3.1.2 x=rmx-x(1-x)

3.1.3 X=r+x~-In(1+x) 314 i=r+ix—x/(+x)
3.1.5  (Unusual bifurcations) In discussing the normal form of the saddle-node bi-
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furcation, we mentioned the assumption that a = df /dr # 0. To see what can hap-

penif df/or| .,
the fixed points as a function of r.

(x*,r.)

= 0, sketch the vector fields for the following examples, and then plot

a) x=r’-x’
b) i=r+x°

3.2 Transcritical Bifurcation

For each of the following exercises, sketch all the qualitatively different vector
fields that occur as r is varied. Show that a transcritical bifurcation occurs at a crit-
ical value of r, to be determined. Finally, sketch the bifurcation diagram of fixed
points x * vs. r.

3.2.1 i=rx+x’ 3.22 x=rx—In(l+x)
3.23 x=x-rx(l-x) 3.24 x=x(r—e")

3.2.5 (Chemical kinetics) Consider the chemical reaction system

k
A+X —2X X+B—t2i (.

k)

This is a generalization of Exercise 2.3.2; the new feature is that X is used up in

the production of C .

a) Assuming that both A and B are kept at constant concentrations a and b,
show that the law of mass action leads to an equation of the form X = ¢,x - ¢,x°,
where x is the concentration of X, and ¢, and ¢, are constants to be deter-
mined.

b) Show that x* =0 is stable when k,b > k,a, and explain why this makes sense
chemically.

The next two exercises concern the normal form for the transcritical bifurcation. In
Example 3.2.2, we showed how to reduce the dynamics near a transcritical bifurca-
tion to the approximate form X = RX — X* + O(X*). Our goal now is to show that
the O(X?) terms can always be eliminated by a suitable nonlinear change of vari-
ables; in other words, the reduction to normal form can be made exact, not just ap-
proximate.

3.2.6 (Eliminating the cubic term) Consider the system X =RX-X*+aX?
+O(X*), where R # 0. We want to find a new variable x such that the system trans-
forms into X = Rx — x* + O(x*). This would be a big improvement, since the cubic
term has been eliminated and the error term has been bumped up to fourth order.

Let x = X+ bX* +O(X*), where b will be chosen later to eliminate the cubic
term in the differential equation for x . This is called a near-identity transforma-
tion, since x and X are practically equal; they differ by a tiny cubic term. (We
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have skipped the quadratic term X?, because it is not needed—you should check

this later.) Now we need to rewrite the system in terms of x ; this calculation re-

quires a few steps.

a) Show that the near-identity transformation can be inverted to yield
X=x+ cx3.+ O(x*), and solve for c.

b) Write X = X +3bX*X + O(X*), and substitute for X and X on the right-hand
side, so that everything depends only on x . Multiply the resulting series expan-
sions and collect terms, to obtain x = Rx — x> + kx* + O(x*), where k depends
ona,b,and R.

¢) Now the moment of triumph: Choose 4 so that k=0 .

d) Is is really necessary to make the assumption that R # 0 ? Explain.

3.2.7 (Eliminating any higher-order term) Now we generalize the method of
the last exercise. Suppose we have managed to eliminate a number of higher-

_ order terms, so that the system has been transformed into X = RX - X2 +

a,X"+O0(X""), where n>3. Use the near-identity transformation x =X+
b, X" +O(X™") and the previous strategy to show that the system can be rewritten
as x = Rx —\x2 +0(x"") for an appropriate choice of b,. Thus we can eliminate as
many higher-order terms as we like.

3.3 Laser Threshold

3.3.1 (An improved model of a laser) In the simple laser model considered in
Section 3.3, we wrote an algebraic equation relating N, the number of excited
atoms, to n, the number of laser photons. In more realistic models, this would be re-
placed by a differential equation. For instance, Milonni and Eberly (1988) show that
after certain reasonable approximations, quantum mechanics leads to the system

fi=GnN —kn
N=-GnN-fN+p.

Here G is the gain coefficient for stimulated emission, k is the decay rate due to

loss of photons by mirror transmission, scattering, etc., f is the decay rate for

Spontaneous emission, and p is the pump strength. All parameters are positive, ex-

¢ept p, which can have either sign.

This two-dimensional system will be analyzed in Exercise 8.1.13. For now,
let’s convert it to a one-dimensional system, as follows.

a) Suppose that N relaxes much more rapidly than n. Then we may make the
qQuasi-static approximation N = 0. Given this approximation, express N(t) in
terms of n(r) and derive a first-order system for n. (This procedure is often
called adiabatic elimination, and one says that the evolution of N(7) is slaved
to that of n(r) . See Haken (1983).)

b) Show that n* =0 becomes unstable for p> p,_, where p, is to be determined.
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¢) What type of bifurcation occurs at the laser threshold p.?
d) (Hard question) For what range of parameters is it valid to make the approxi-
mation used in (a)?

3.3.2 (Maxwell-Bloch equations) The Maxwell-Bloch equations provide an
even more sophisticated model for a laser. These equations describe the dynamics
of the electric field E, the mean polarization P of the atoms, and the population
inversion D:

E=x(P-E)
P=y,(ED-P)
D=y,(A+1-D-AEP)

where x is the decay rate in the laser cavity due to beam transmission, y, and Y2
are decay rates of the atomic polarization and population inversion, respectively,
and A is a pumping energy parameter. The parameter A may be positive, negative,
or zero; all the other parameters are positive.

These equations are similar to the Lorenz equations and can exhibit chaotic be-
havior (Haken 1983, Weiss and Vilaseca 1991). However, many practical lasers do
not operate in the chaotic regime. In the simplest case Yi:Y, >>K ;then P and D re-
lax rapidly to steady values, and hence may be adiabatically eliminated, as follows.
a) Assuming P=~0, D=0, express P and D in terms of E, and thereby derive a

first-order equation for the evolution of E .

b) Find all the fixed points of the equation for E .
¢) Draw the bifurcation diagram of E* vs. . (Be sure to distinguish bétween
stable and unstable branches.)

3.4 Pitchfork Bifurcation

In the following exercises, sketch all the qualitatively different vector fields that
oceur as r is varied. Show that a pitchfork bifurcation occurs at a critical value of
r (to be determined) and classify the bifurcation as supercritical or subcritical. Fi-
nally, sketch the bifurcation diagram of x * vs. r.

340 i=x+rx’ 3.4.2 i=rx-sinhx
343 x=x-rx’ 344 sx=x+ rx 5
I+x

The next exercises are designed to test your ability to distinguish among the vari-
ous types of bifurcations—it’s easy to confuse them! In each case, find the values
of r at which bifurcations occur, and classify those as saddle-node, transcritical,
supercritical pitchfork, or subcritical pitchfork. Finally, sketch the bifurcation dia-
gram of fixed points x * vs. r.
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3.45 x=r-3x 346 i=rx—

T+x
. -2 .

A7 x=5-re" 3.4.8 x=rx-—
3.4 14 x?
3
3.49 x=x+tanh(rx) 3.4.10 )'c=rx+1+ =
x

3.4.11 (An interesting bifurcation diagram) Consider the system X =rx —sinx.

a) For the case r =0, find and classify all the fixed points, and sketch the vector
field.

b) Show that when r > 1, there is only one fixed point. What kind of fixed point is
it?

c) As r decreases from oo to 0, classify all the bifurcations that occur.

d) For 0 <r<<1, find an approximate formula for values of r at which bifurca-
tions occur.

e) Now classify all the bifurcations that occur as r decreases 0 to —o .

f) Plot the bifurcation diagram for —eo < r < o0, and indicate the stability of the
various branches of fixed points.

3.4.12 (“Quadfurcation”) With tongue in cheek, we pointed out that the pitch-
fork bifurcation could be called a “trifurcation,” since three branches of fixed
points appear for r>0. Can you construct an example of a “quadfurcation,” in
which x = f(x,r) has no fixed points for r <0 and four branches of fixed points
for r>07? Extend your results to the case of an arbitrary number of branches, if
possible.

3.4.13 (Computer work on bifurcation diagrams) For the vector fields below,
Use a computer to obtain a quantitatively accurate plot of the values of x * vs. r,
where 0 < r < 3. In each case, there’s an easy way to do this, and a harder way us-
ing the Newton-Raphson method.

a) X=r-x-¢* b) x=l-x—e™"

3.4.14 (Subcritical pitchfork) Consider the system x =rx+x’ - x°, which ex-

hibits a subcritical pitchfork bifurcation.

a) Find algebraic expressions for all the fixed points as r varies.

b) Sketch the vector fields as r varies. Be sure to indicate all the fixed points and
their stability.

¢) Calculate 1, » the parameter value at which the nonzero fixed points are born in a
saddle-node bifurcation.
3.4.15 (First-order phase transition) Consider the potential V(x) for the system

X=rx+x’ — ¥, Calculate 1., where r. is defined by the condition that V has three
€Qqually deep wells, i.e., the values of V at the three local minima are equal.
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(Note: In equilibrium statistical mechanics, one says that a first-order phase
transition occurs at r = r.. For this value of r, there is equal probability of finding
the system in the state corresponding to any of the three minima. The freezing of
water into ice is the most familiar example of a first-order phase transition.)

3.4.16 (Potentials) In parts (a)—(c), let V(x) be the potential, in the sense that
x =—dV/dx. Sketch the potential as a function of r . Be sure to show all the quali-
tatively different cases, including bifurcation values of r .

a) (Saddle-node) x = r — x2

b) (Transcritical) % = rx ~ x>

c) (Subcritical pitchfork) x = rx + x* — x°

3.5 Overdamped Bead on a Rotating Hoop

3.5.1  Consider the bead on the rotating hoop discussed in Section 3.5. Explain
in physical terms why the bead cannot have an equilibrium position with ¢ > /2.

3.5.2 Do the linear stability analysis for all the fixed points for Equation (3.5.7),
and confirm that Figure 3.5.6 is correct.

3.5.3 Show that Equation (3.5.7) reduces to gﬁ =A¢- B¢’ +0(¢°) near
¢=0. Find A and B. t

3.5.4 (Bead on a horizontal wire) A bead of mass m is constrained to slide long
a straight horizontal wire. A spring of relaxed length L, and spring constant & is\at-
tached to the mass and to a support point a distance 4 from the wire (Figure 1).

F#»
wire

()
)

Figure 1

Finally, suppose that the motion of the bead is opposed by a viscous damping force

bx.

a) Write Newton’s law for the motion of the bead.

b) Find all possible equilibria, i.e., fixed points, as functions of k, k, m, b, and L,.

¢) Suppose m = 0. Classify the stability of all the fixed points, and draw a bifurca-
tion diagram.

d) If m# 0, how small does m have to be to be considered negligible? In what
sense is it negligible?
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3.5.5 (Time scale for the rapid transient) While considering the bead on the ro-
tating hoop, we used phase plane analysis to show that the equation

d’¢  do _
“ar e TI?

d¢

has solutions that rapidly relax to the curve where d_ = f(¢).
T

a) Estimate the time scale T, for this rapid transient in terms of &, and then

express T}, in terms of the original dimensional quantities m, g,r,®,and
b.

b) Rescale the original differential equation, using T, as the characteristic time
scale, instead of T,,,. =b/mg. Which terms in the equation are negligible on
this time scale?

c) Show that 7, <<T,

are widely separated.)

and T

stow

if £ << 1. (In this sense, the time scales T,

3.5.6 (A model problem about singular limits) Consider the linear differential
equation

EX+x+x=0,

subject to the initial conditions x(0)=1, %(0)=0.

a) Solve the problem analytically for all £ >0.

b) Now suppose € << 1. Show that there are two widely separated time scales in
the problem, and estimate them in terms of & . .

¢) Graph the solution x(¢) for €<'% 1, and indicate the two time scales on the
graph.

d) What do you conclude about the validity of replacing €x+x+x =0 with its
singular limit x + x=07?

€) Give two physical analogs of this problem, one involving a mechanical system,
and another involving an electrical circuit. In each case, find the dimensionless

combination of parameters corresponding to €, and state the physical meaning
of the limit £ << 1.

3.5.7‘ (Nondimensionalizing the logistic equation) Consider the logistic equa-
tion N = rN(1 - N/K), with initial condition N(0) = N,.
a) This system hél,s three dimensional parameters r, K , and N,. Find the dimen-
sions of each of these parameters.
b) Show that the system can be rewritten in the dimensionless form
dx

d—T=x(l—x), x(0)=x,
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for appropriate choices of the dimensionless variables x, x,, and 7 .

¢) Find a different nondimensionalization in terms of variables u and 7, where u
is chosen such that the initial condition is always u, = 1.

d) Can you think of any advantage of one nondimensionalization over the other?

3.5.8 (Nondimensionalizing the subcritical pitchfork) The first-order system
u=au+bu —cu’, where b,c >0, has a subcritical pitchfork bifurcation at a=0.
Show that this equation can be rewritten as

—=rx+x =x
dt

where x =u/U, 1=t/T,and U, T, and r are to be determined in terms of a, b,
and c.

3.6 Imperfect Bifurcations and Catastrophes

3.6.1 (Warm-up question about imperfect bifurcation) Does Figure 3.6.3b cor-
respondto h>0orto h<0?

3.6.2 (Imperfect transcritical bifurcation) Consider the system x = h+rx —x7,

When 4 =0, this system undergoes a transcritical bifurcation at r = 0. Outg

to see how the bifurcation diagram of x * vs. r is affected by the imperfection pas

rameter h.

a) Plot the bifurcation diagram for x =+ rx—x*,for h<0, h=0,and h>0.

b) Sketch the regions in the (r,h) plane that correspond to qualitatively different
vector fields, and identify the bifurcations that occur on the boundaries of those
regions.

c) Plot the potential V(x) corresponding to all the different regions in the (r,h)
plane.

3.6.3 (A perturbation to the supercritical pitchfork) Consider the system

x=rx+ax’ —x*, where —o <a<oo. When a=0, we have the normal form for

the supercritical pitchfork. The goal of this exercise is to study the effects of the

new parameter a .

a) For each a, there is a bifurcation diagram of x* vs. r. As a varies, these bi-
furcation diagrams can undergo qualitative changes. Sketch all the qualitatively
different bifurcation diagrams that can be obtained by varying a.

b) Summarize your results by plotting the regions in the (r,a) plane that corre-
spond to qualitatively different classes of vector fields. Bifurcations occur
on the boundaries of these regions; identify the types of bifurcations that
occur.

3.6.4 (Imperfect saddle-node) What happens if you add a small imperfection to
a system that has a saddle-node bifurcation?
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3.6.5 (Mechanical example of imperfect bifurcation and catastrophe) Consider
the bead on a tilted wire discussed at the end of Section 3.6.
a) Show that the equilibrium positions of the bead satisfy

. LO
mgsin8 = kx| 1 — ——|.

vx* +a?
b) Show that this equilibrium equation can be written in dimensionless form as

-2 _R

U N1+u?

for appropriate choices of R, 2, and u .

c¢) Give a graphical analysis of the dimensionless equation for the cases R<1 and
R >1. How many equilibria can exist in each case?

d) Let r = R—1. Show that the equilibrium equation reduces to h+ru—+u® =0
forsmall r, h,and u.

e) Find an approximate formula for the saddle-node bifurcation curves in the limit
of small , h,and u.

f) Show that the exact equations for the bifurcation curves can be written in para-
metric form as

h(u)=-u®, R@w) = (1+u*)*?,

where —o <y <. (Hint: You may want to look at Section 3.7.) Check that
this result reduces to the approxima:'e\rgsult in part (d).

g) Give a numerically accurate plot of the bifurcation curves in the (r, ) plane.

h) Interpret your results physically, in terms of the original dimensional variables.

3.6.6 (Patterns in fluids) Ahlers (1989) gives a fascinating review of experiments

on one-dimensional patterns in fluid systems. In many cases, the patterns first emerge

via supercritical or subcritical pitchfork bifurcations from a spatially uniform state.

Near the bifurcation, the dynamics of the amplitude of the patterns are given approxi-

mately by 7A = €A — gA® in the supercritical case, or 7A = €4 — gA® — kA® in the sub-

critical case. Here A(r) is the amplitude, 7 is a typical time scale, and £ is a small
dimensionless parameter that measures the distance from the bifurcation. The para-
meter g > 0 in the supercritical case, whereas g < 0 and k > 0 in the subcritical case.

(In this context, the equation TA = €A~ gA3 is often called the Landau equation.)

a) Dubois and Bergé (1978) studied the supercritical bifurcation that arises in
Rayleigh-Bénard convection, and showed experimentally that the steady-state
amplitude depended on € according to the power law A*ec g?, where
B=0.50+0.01. What does the Landau equation predict?

b) The equation A = 4 — gA* — kA® is said to undergo a tricritical bifurcation
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when g = 0; this case is the borderline between supercritical and subcritical bi-
furcations. Find the relation between A * and £ when g=0.

¢) In experiments on Taylor—Couette vortex flow, Aitta et al. (1985) were able to
change the parameter g continuously from positive to negative by varying the
aspect ratio of their experlmental set-up. Assuming that the equation is modi-
fiedto TA=h+eA - gA' —kA’, where h>0 is a slight imperfection, sketch the
bifurcation diagram of A* vs. £ in the three cases g>0,g=0,and g<0.
Then look up the actual data in Aitta et al. (1985, Figure 2) or see Ahlers
(1989, Figure 15).

d) In the experiments of part (c), the amplitude A(z) was found to evolve toward a
steady state in the manner shown in Figure 2 (redrawn from Ahlers (1989), Fig-
ure 18). The results are for the imperfect subcritical case g<0, h#0.Inthe
experiments, the parameter £ was switched at =0 from a negative value to a
positive value €, . In Figure 2, €, increases from the bottom to the top.

large € £

small £

Figure 2

_ Explain intuitively why the curves have this strange shape. Why do the curves for
large £, go almost straight up to their steady state, whereas the curves for small

€, rise to a plateau before increasing sharply to their final level? (Hint: Graph A
vs. A for different £ .)

3.6.7 (Simple model of a magnet) A magnet can be modeled as an enormous
collection of electronic spins. In the simplest model, known as the Ising model, the
spins can point only up or down, and are assigned the values S, =1, for
i=1,...,N>>1. For quantum mechanical reasons, the spins like to point in the
same dlrection as their neighbors; on the other hand, the randomizing effects of
temperature tend to disrupt any such alignment.

An important macroscopic property of the magnet is its average spin or magne-
tization
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At high temperature the spins point in random directions and so m =0 ; thc.e mater-
jal is in the paramagnetic state. As the temperature is lowered, m remains near
zero until a critical temperature T, is reached. Then a phase transition occurs and
the material spontaneously magnetizes. Now m >0 ; we have a ferromagnet.

But the symmetry between up and down spins means that there are two possible
ferromagnetic states. This symmetry can be broken by applying an external rpag-
netic field 2, which favors either the up or down direction. Then, in an approxima-
tion called mean-field theory, the equation governing the equilibrium value of m is

h=Ttanh™ m— Jnm

where J and n are constants; J >0 is the ferromagnetic coupling strength and n

is the number of neighbors of each spin (Ma 1985, p. 459).

a) Analyze the solutions m* of h=Ttanh™ m—Jnm, using a graphical ap-
proach.

b) For the special case # =0, find the critical temperature 1<Z at which a phase
transition occurs.

3.7 Insect Outbreak

3.7.1  (Warm-up question about insect outbreak model) Show that the fixed
point x* =0 is always unstable for Equation (3.7.3).

3.7.2 (Bifurcation curves for insect outbreak model)

a) Using Equations (3.7.8) and (3.7.9), sketch r(x) and k(x) vs. x. Determine the
limiting behavior of r(x) and k(x) as x > 1 and x - oo

b) Find the exact values of r, k, and x at the cusp point shown in Figure 3.7.5.

3.7.3 (A model of a fishery) The equation N =rN(1- #)— H provides an ex-
tremely simple model of a fishery. In the absence of fishing, the population is as-
sumed to grow logistically. The effects of fishing are modeled by the term —H,
which says that fish are caught or “harvested” at a constant rate H >0, indepen-
dent of their population N . (This assumes that the fishermen aren’t worried about
fishing the population dry—they simply catch the same number of fish every day.)
a) Show that the system can be rewritten in dimensionless form as

dx
i x(I—-x)—h,
for suitably defined dimensionless quantities x, 7, and & .
b) Plot the vector field for different values of /4 .
€) Show that a bifurcation occurs at a certain value h_, and classify this bifurca-
tion.
d) Discuss the long-term behavior of the fish population for A< h. and > h_, and
give the biological interpretation in each case.
There’s something silly about this model—the population can become nega-
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tive!" A better model would have a fixed point at zero population for all values of
H . See the next exercise for such an improvement.

3.7.4  (Improved model of a fishery) A refinement of the model in the last exer-
cise is

N=rN(1-ﬁ)—H N
K A+N

where H >0 and A > 0. This model is more realistic in two respects: it has a fixed
point at N =0 for all values of the parameters, and the rate at which fish are
caught decreases with N. This is plausible—when fewer fish are available, it is
harder to find them and so the daily catch drops.

a) Give a biological interpretation of the parameter A; what does it measure?

b) Show that the system can be rewritten in dimensionless form as

B -y —h—
dr a+x

for suitably defined dimensionless quantities x, T, a,and 4.

¢) Show that the system can have one, two, or three fixed points, depending on the
values of a and & . Classify the stability of the fixed points in each case.

d) Analyze the dynamics near x =0 and show that a bifurcation occurs when
h = a . What type of bifurcatiofris it?

€) Show that another bifurcation occurs
is to be determined. Classify this bifurcation.

f) Plot the stability diagram of the system in (a, k) parameter space. Can hystere-
sis occur in any of the stability regions?

+1), for a<a,, where a,

3

3.7.5 (A biochemical switch) Zebra stripes and butterfly wing patterns are two
of the most spectacular examples of biological pattern formation. Explaining the
development of these patterns is one of the outstanding problems of biology; see
Murray (1989) for an excellent review of our current knowledge.

As one ingredient in a model of pattern formation, Lewis et al. (1977) considered
a simple example of a biochemical switch, in which a gene G is activated by a bio-
chemical signal substance S. For example, the gene may normally be inactive but
can be “switched on” to produce a pigment or other gene product when the concen-
tration of S exceeds a certain threshold. Let g(2) denote the concentration of the
gene product, and assume that the concentration s, of § is fixed. The model is
ks g :

k42 +g°

§=ksy~k,g+

where the k’s are positive constants. The production of gis stimulated by s, at a
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rate k, , and by an autocatalytic or positive feedback process (the nonlinear term).

There is also a linear degradation of g atarate &, .
a) Show that the system can be put in the dimensionless form

2

—=s5s—rx+

drt 1+ x?

where r >0 and s >0 are dimensionless groups.

b) Show that if s =0, there are two positive fixed points x * if r <r,, where 7, is
to be determined.

¢) Assume that initially there is no gene product, i.e., g(0) =0, and suppose s is
slowly increased from zero (the activating signal is turned on); what happens to
g(#) 7 What happens if s then goes back to zero? Does the gene turn off again?

d) Find parametric equations for the bifurcation curves in (r,s) space, and classify
the bifurcations that occur. v/

e) Use the computer to give a quantitatively accurate plot of the stability diagram
in (7,s) space.
For further discussion of this model, see Lewis et al. (1977); Edelstein-Keshet

(1988), Section 7.5; or Murray (1989), Chapter 15.

3.7.6 (Model of an epidemic) In pioneering work in epidemiology, Kermack
and McKendrick (1927) proposed the following simple model for the evolution of
an epidemic. Suppose that the population can be divided into three classes: x(¢) =
number of healthy people; y() = number of sick people; z(t) = number of dead
people. Assume that the total population remains constant in size, except for
deaths due to the epidemic. (That is, the epidemic evolves so rapidly that we can
ignore the slower changes in the populations due to births, emigration, or deaths by
other causes.) ‘
Then the model is

X = —kxy
y=kxy—Ly
=Ly

where k and ¢ are positive constants. The equations are based on two assump-

tions:

(i) Healthy people get sick at a rate proportional to the product of x and y. This
would be true if healthy and sick people encounter each other at a rate propor-
tional to their numbers, and if there were a constant probability that each such
encounter would lead to transmission of the disease.

(ii) Sick people die at a constant rate £ .

The goal of this exercise is to reduce the model, which is a third-order system,
to a first-order system that can analyzed by our methods. (In Chapter 6 we will see
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a simpler analysis.)
a) Show that x+y+z=N, where N is constant.
b) Use the * and z equation to show that x(t) = x, exp(—kz(t)/¢), where
x, =x(0).
¢) Show that z satisfies the first-order equation z = ¢ [N —Z— X, exp(— kz/()].
d) Show that this equation can be nondimensionalized to
au =a~-bu—-e™"
dt
by an appropriate rescaling.
e) Showthata>1and 5>0.
f) Determine the number of fixed points u * and classify their stability.
g) Show that the maximum of () occurs at the same time as the maximum of
both z(r) and y(t) . (This time is called the peak of the epidemic, denoted 7, .
At this time, there are more sick people and a higher daily death rate than at any
other time.)

h) Show that if b <1, then u(f) is increasing at t =0 and reaches its maximum at

some time 7., >0. Thus things get worse before they get better. (The term
epidemic is reserved for this case.) Show that u(z) tually decreases to 0.
i) On the other hand, show that Loea =0 1 . (Hence no epidemic occurs if

b>1)

J) The condition b =1 is the threshold condition for an epidemic to occur. Can
you give a biological interpretation of this condition?

k) Kermack and McKendrick showed that their model gave a good fit to data from
the Bombay plague of 1906. How would you improve the model to make it
more appropriate for AIDS? Which assumptions need revising?

For an introduction to models of epidemics, see Murray (1989), Chapter 19, or
Edelstein-Keshet (1988). Models of AIDS are discussed by Murray (1989) and
May and Anderson (1987). An excellent review and commentary on the Ker-
mack-McKendrick papers is given by Anderson (1991).
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4

FLOWS ON THE CIRCLE

/

4.0 Introduction

So far we’ve concentrated on the equation x = f(x), which we visualized as a vec-
tor field on the line. Now it’s time to consider a new kind of differential equation
and its corresponding phase space. This equation,

6= (0,

corresponds to a vector field on the circle. Here € is a point on the circle and 8 is
the velocity vector at that point, determined by the rule 8 = f(6). Like the line, the
circle is one-dimensional, but it has an important new property: by flowing in one
direction, a particle can eventually return to its starting place (Figure 4.0.1). Thus
periodic solutions become possible for the first time in this book!
To put it another way, vector fields on the circle provide the most
basic model of systems that can oscillate.

However, in all other respects, flows on the circle are similar to
flows on the line, so this will be a short chapter. We will discuss
the dynamics of some simple oscillators, and then show that these
equations arise in a wide variety of applications. For example, the
flashing of fireflies and the voltage oscillations of superconduct-
ing Josephson junctions have been modeled by the same equation, even though
their oscillation frequencies differ by about ten orders of magnitude!

Figure 4.0.1

4.1 Examples and Definitions

Let’s begin with some examples, and then give a more careful definition of vector
fields on the circle.
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EXAMPLE 4.1.1:

Sketch the vector field on the circle corresponding to 6 =sin .

Solution: We assign coordinates to the circle in the usual way, with 8 =0 in
the direction of “east,” and with 8 increasing counterclockwise.

To sketch the vector field, we first find the fixed points, defined by 6=0.
These occur at 6* =0 and 6* = . To determine their stability, note that sin8 >0
on the upper semicircle. Hence 6 > 0, so the flow is counterclockwise. Similarly,

the flow is clockwise on the lower semicircle,
where  <0. Hence 6* =1 is stable and 6* = 0
9% = 1 g* — o 18 unstable, as shown in Figure 4.1.1.
Actually, we’ve seen this example before—
it’s given in Section 2.1. There we regarded
Figure 4.1.1 x=sinx as a vector field on the line. Compare
Figure 2.1.1 with |[Figure 4.1.1 and notice how
much clearer it is to think of this system as a vector field on the circle. m

EXAMPLE 4.1.2:

Explain why 6 = 6 cannot be re
the range —co < @ < oo,

Solution: The velocity is not uniquely defined. For example, § =0 and 6 = 21
are two labels for the same point on the circle, but the first label implies a velocity
of 0 at that point, while the second implies a velocity of 27 . m

ed as a vector field on the circle, for 6 in

If we try to avoid this non-uniqueness by restricting 6 to the range ~-T <@ < 7,
then the velocity vector jumps discontinuously at the point corresponding to 6 = 7.
Try as we might, there’s no way to consider 8 = 8 as a smooth vector field on the
entire circle.

Of course, there’s no problem regarding 6 =0 as a vector field on the line, be-
cause then 6 =0 and 8 =27 are different points, and so there’s no conflict about
how to define the velocity at each of them.

Example 4.1.2 suggests how to define vector fields on the circle. Here’s a geo-
metric definition: A vector field on the circle is a rule that assigns a unique veloc-
ity vector to each point on the circle.

In practice, such vector fields arise when we have a first-order system 6 = 1@,
where f(0) is a real-valued, 27-periodic function. That is, f(@+2m)= f(6) for
all real 6. Moreover, we assume (as usual) that £(8) is smooth enough to guaran-
tee existence and uniqueness of solutions. Although this system could be regarded
as a special case of a vector field on the line, it is usually clearer to think of it as a
vector field on the circle (as in Example 4.1.1). This means that we don’t distin-
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guish between 6 ’s that differ by an integer multiple of 27 . Here’§ where the peri-
odicity of f(6) becomes important—it ensures that the velocity 8 is uniquely de-
fined at each point @ on the circle, in the sense that @ is the same, whether we call
that point @ or 8+ 2z, or 8 +2nk for any integer & .

4.2 Uniform Oscillator

A point on a circle is often called an angle or a phase. Then the simplest oscillator
of all is one in which the phase 8 changes uniformly:

0=w
where @ is a constant. The solution is /
0t)=wt+6,,

which corresponds to uniform motion around the circle at an angular frequency
. This solution is periodic, in the sense that 8(z) changes by 27, and therefore re-
turns to the same point on the circle, after a time 7 = 2n/@w. We call T the period
of the oscillation.

Notice that we have said nothing about the amplitude of the oscillation. There
really is no amplitude variable in our system. If we had an amplitude as well as a
phase variable, we’d be in a two-dimensional phase space; this situation is more
complicated and will be discussed later in the book. (Or if you prefer, you can imag-
ine that the oscillation occurs at some fixed amplitude, corresponding to the radius
of our circular phase space. In any case, amplitude plays no role in the dynamics.)

EXAMPLE 4.2.1:

Two joggers, Speedy and Pokey, are running at a steady pace around a circular
track. It takes Speedy 7, seconds to run once around the track, whereas it takes
Pokey T, > T, seconds. Of course, Speedy will periodically overtake Pokey; how
long does it take for Speedy to lap Pokey once, assuming that they start together?

Solution: Let 6,(t) be Speedy’s position on the track. Then 6, = @, where
®, =27x/T. This equation says that Speedy runs at a steady pace and completes
0, a circuit every 7, seconds. Similarly, suppose that
6, = w, =2r/T, for Pokey.

\ 9 The condition for Speedy to lap Pokey is that the angle be-
tween them has increased by 27 . Thus if we define the phase
difference ¢ = 6, — 6,, we want to find how long it takes for
¢ to increase by 27w (Figure 4.2.1). By subtraction we find
o= él —92 =, —®,. Thus ¢ increases by 27z after a time

Figure 4.2.1
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Example 4.2.1 illustrates an effect called the beat phenomenon. Two noninter-
acting oscillators with different frequencies will periodically go in and out of
phase with each other. You may have heard this effect on a Sunday morning:
sometimes the bells of two different churches will ring simultaneously, then
slowly drift apart, and then eventually ring together again. If the oscillators inter-
act (for example, if the two joggers try to stay together or the bell ringers can hear
each other), then we can get more interesting effects, as we will see in Section 4.5
on the flashing rhythm of fireflies.

4.3 Nonuniform Oscillator

The equation

@=w-asind

(1)
arises in many different branches of science and engineering. Here is a partial list:

Electronics (phase-locked loops)

Biology (oscillating neurons, firefly flashing rhythm, human sleep-wake
cycle)

Condensed-matter physics (Josephson junction, charge-density waves)

Mechanics (Overdamped pendulum driven by a constant torque)

Some of these applications will be discussed later in this chapter and in the exercises.

/7N

-2 mi2

Figure 4.3.1

To analyze (1), we assume that @ >0 and a>0 for convenience; the results
for negative @ and a are similar. A typical graph of f(6) = - asin@ is shown in
Figure 4.3.1. Note that @ is the mean and a is the amplitude.

Vector Fields

If a=0, (1) reduces to the uniform oscillator. The parameter a introduces a
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nonuniformity in the flow around the circle: the flow is fastest at 8 = —x/2 and
slowest at 8 = /2 (Figure 4.3.2a). This nonuniformity becomes more pronounced
as a increases. When a is slightly less than @, the oscillation is very jerky: the
phase point 6(¢) takes a long time to pass through a bottleneck near 6 = 7r/2 , after
which it zips around the rest of the circle on a much faster time scale. When a = o,
the system stops oscillating altogether: a half-stable fixed point has been born in a
saddle-node bifurcation at 0 = /2 (Figure 4.3.2b). Finally, when a > @, the half-
stable fixed point splits into a stable and unstable fixed point (Figure 4.3.2c). All
trajectories are attracted to the stable fixed point as # — oo .

; e
v QLAQ

slow passage
through here
(bottleneck)

(@ a<o b)) a=w cya>0
Figure 4.3.2

The same information can be shown by plotting the vector fields on the circle (Fig-
ure 4.3.3).

slow 0=n/2
fast
(a) a<w ®b)a=w ©) a>w
Figure 4.3.3

EXAMPLE 4.3.1:

Use linear stability analysis to classify the fixed points of (1) for a > @.
Solution: The fixed points 8 * satisfy

sin 8* = w/a , cos@* =+./ 1 —(w/a)’.
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Their linear stability is determined by

£/(6%) = —acos6* = Fay1- (w/a)* .

Thus the fixed point with cos@* >0 is the stable one, since f’(6*)<0. This
agrees with Figure 4.3.2c. m

Oscillation Period

For a <, the period of the oscillation can be found analytically, as follows:
the time required for 6 to change by 27 is given by

T=fdt=f” %de

r” de

b w-gsing

where we have used (1) to replace dz/d6 . This integral can be evaluated by com-
plex variable methods, or by the substitution u = tan§ . (See Exercise 4.3.2 for de-
tails.) The result is

T:._2.7_t__ (2)
- @? —a°

Figure 4.3.4 shows the graph of T as a function of a.

T

2r/w

Figure 4.3.4

When a =0, Equation (2) reduces to T =2x/w, the familiar result for a uniform
oscillator. The period increases with a and diverges as a approaches @ from be-
low (we denote this limit by a — @™). \

We can estimate the order of the divergence by noting that

Vo —a =JoTaJo-a
'~ VioVo-a

98 FLOWS ON THE CIRCLE

as a —> @~ . Hence

m/_i 1
T[‘EJT 3)

which shows that T blows up like (a, —a)”
the origin of this square-root scaling law./

"2, where a, = @ . Now let’s explain

Ghosts and Bottlenecks

The square-root scaling law found above is a very general feature of systems
that are close to a saddle-node bifurcation. Just after the fixed points collide, there
is a saddle-node remnant or ghost that leads to slow passage through a bottleneck.

For example, consider = @ — asin@ for decreasing values of a, starting with
a>® . As a decreases, the two fixed points approach each other, collide, and dis-
appear (this sequence was shown earlier in Figure 4.3.3, except now you have to
read from right to left.) For a slightly less than @, the fixed points near 7/2 no
longer exist, but they still make themselves felt through a saddle-node ghost (Fig-
ure 4.3.5).

/\\/9

\

bottleneck
due to ghost

Y

Figure 4.3.5

A graph of 6(t) would have the shape shown in Figure 4.3.6. Notice how the
trajectory spends practically all its time getting through the bottleneck.

9 Toontencck /
— -

A

Figure 4.3.6

Now we want to derive a general scaling law for the time required to pass
through a bottleneck. The only thing that matters is the behavior of @ in the imme-
diate vicinity of the minimum, since the time spent there dominates all other time
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scales in the problem. Generically, 6 looks parabolic near its minimum. Then the
problem simplifies tremendously: the dynamics can be reduced to the normal form
for a saddle-node bifurcation! By a local rescaling of space, we can rewrite the
vector field as

x=r+x’

where r is proportional to the distance from the bifurcation, and 0 < r <<1. The
graph of x is shown in Figure 4.3.7.

Figure 4.3.7

To estimate the time spent in the bottleneck, we calculate the time taken for x to
go from —eo (all the way on one side of the bottleneck) to +oo (all the way on the
other side). The result is

= dx z
T;aoltleneck = J‘_w r+ x2 = W’ (4)

which shows the generality of the square-root scaling law. (Exercise 4.3.1 reminds
you how to evaluate the integral in (4).)

EXAMPLE 4.3.2:

Estimate the period of 0 =w—asin® in the limit @ — @™, using the normal
form method instead of the exact result.

Solution: The period will be essentially the time required to get through the
bottleneck. To estimate this time, we use a Taylor expansion about 8 = /2 , where
the bottleneck occurs. Let ¢ =8 — /2, where ¢ is small. Then

¢p=w-asin@+%)
=®-acos¢
=w-a+tap’ + -
which is close to the desired normal form. If we let
x=(a/2)"¢, r=w-a

then (2/a)""* x = r + x°, to leading order in x . Separating variables yields
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T ~2ja)" - d_x (2/a)”2%.

2:
- r+Xx r

Now we substitute » = @ — a . Furthermore, since a — @™, we may replace 2/a by
2/ . Hence

Ve

which agrees with (3). =

s

w-—-a

4.4 Overdamped Pendulum

We now consider a simple mechanical example of a nonuniform oscillator: an
overdamped pendulum driven by a constant torque. Let 8 denote the angle be-
tween the pendulum and the downward vertical, and suppose that 0 increases
counterclockwise (Figure 4.4.1).

m

r
A’—\
N lg
DN

Figure 4.4.1

Then Newton’s law yields

mI20+ b6 + mgLsin6 =T (1

where m is the mass and L is the length of the pendulum, b is a viscous damping
constant, g is the acceleration due to gravity, and I is a constant applied torque.
All of these parameters are positive. In particular, ' >0 implies that the applied
torque drives the pendulum counterclockwise, as shown in Figure 4.4.1.

Equation (1) is a second-order system, but in the overdamped limit of extremely
large b, it may be approximated by a first-order system (see Section 3.5 and Exer-
cise 4.4.1). In this limit the inertia term mI2@ is negligible and so (1) becomes

b6+ mgLsin@=T. (2)

To think about this problem physically, you should imagine that the pendulum is
Immersed in molasses. The torque I enables the pendulum to plow through its vis-
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cous surroundings. Please realize that this is the opposite limit from the familiar
frictionless case in which energy is conserved, and the pendulum swings back and
forth forever. In the present case, energy is lost to damping and pumped in by the
applied torque.

To analyze (2), we first nondimensionalize it. Dividing by mgL yields

LG = L sin@.
mgL mgL

Hence, if we let

mgL T
= —t , = — 3
4 b Y mgL / (3)
then
6’ =y —sin (4)

where 6’ = d0/dzt .

The dimensionless group ¥ is the ratio of the applied torque to the maximum \

gravitational torque. If ¥ >1 then the applied torque can never be balanced by the

gravitational torque and the pendulum will overturn continually. The rotation rate '
is nonuniform, since gravity helps the applied torque on one side and opposes it on

the other (Figure 4.4.2).

]
fast slow
]
b\/
1

Figure 4.4.2

As ¥ — 17, the pendulum takes longer and longer to climb past @ = /2 on the .
slow side. When y =1 a fixed point appears at 6* = 7/2, and then splits into two
when y <1 (Figure 4.4.3). On physical grounds, it’s clear that the lower of the two 1“!‘

equilibrium positions is the stable one.
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Figure 4.4.3

As y decreases, the two fixed points move farther apart. Finally, when y =0, the
applied torque vanishes and there is an unstable equilibrium at the top (inverted
pendulum) and a stable equilibrium at the bottom.

4.5 Fireflies

Fireflies provide one of the most spectacular examples of synchronization in na-
ture. In some parts of southeast Asia, thousands of male fireflies gather in trees at
night and flash on and off in unison. Meanwhile the female fireflies cruise over-
head, looking for males with a handsome light.

To really appreciate this amazing display, you have to see a movie or videotape
of it. A good example is shown in David Attenborough’s (1992) television series
The Trials of Life, in the episode called “Talking to Strangers.” See Buck and
Buck (1976) for a beautifully written introduction to synchronous fireflies, and
Buck (1988) for a more recent review. For mathematical models of synchronous
fireflies, see Mirollo and Strogatz (1990) and Ermentrout (1991).

How does the synchrony occur? Certainly the fireflies don’t start out synchro-
nized; they arrive in the trees at dusk, and the synchrony builds up gradually as the
night goes on. The key is that the fireflies influence each other: When one firefly
sees the flash of another, it slows down or speeds up so as to flash more nearly in
phase on the next cycle.

Hanson (1978) studied this effect experimentally, by periodically flashing a
light at a firefly and watching it try to synchronize. For a range of periods close to
the firefly’s natural period (about 0.9 sec), the firefly was able to match its fre-
quency to the periodic stimulus. In this case, one says that the firefly had been en-
trained by the stimulus. However, if the stimulus was too fast or too slow, the
firefly could not keep up and entrainment was lost—then a kind of beat phenome-
on occurred. But in contrast to the simple beat phenomenon of Section 4.2, the
Phase difference between stimulus and firefly did not increase uniformly. The
Phase difference increased slowly during part of the beat cycle, as the firefly strug-
gled in vain to synchronize, and then it increased rapidly through 27, after which
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the firefly tried again on the next beat cycle. This process is called phase walk-
through or phase drift.

Model

Ermentrout and Rinzel (1984) proposed a simple model of the firefly’s flashing
rhythm and its response to stimuli. Suppose that 8(¢) is the phase of the firefly’s
flashing rhythm, where € =0 corresponds to the instant when a flash is emitted.
Assume that in the absence of stimuli, the firefly goes through its cycle at a fre-
quency @, according to f=0.

Now suppose there’s a periodic stimulus whose phase © satisfies

0=Q, (1)

where © =0 corresponds to the flash of the/stimulus. We model the firefly’s re-
sponse to this stimulus as follows: If the stignulus is ahead in the cycle, then we as-
sume that the firefly speeds up in an aftempt to synchronize. Conversely, the
firefly slows down if it’s flashing tod early. A simple model that incorporates
these assumptions is

0=w+Asin©@-0) (2)

where A >0. For example, if © is ahead of 0 (i.e., 0 <©®—8 < x) the firefly
speeds up (6 > @ ). The resetting strength A measures the firefly’s ability to mod-
ify its instantaneous frequency.

Analysis
To see whether entrainment can occur, we look at the dynamics of the phase dif-
ference ¢ = © — @ . Subtracting (2) from (1) yields
$=0-6 =Q-w-Asing, (3)

which is a nonuniform oscillator equation for ¢(z) . Equation (3) can be nondimen-
sionalized by introducing

T=At #=9i2. 4)

Then
¢ =pu—sing (5)

where ¢’ = d¢/dt . The dimensionless group u is a measure of the frequency dif-
ference, relative to the resetting strength. When ¢ is small, the frequencies are rel-
atively close together and we expect that entrainment should be possible. This is
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confirmed by Figure 4.5.1, where we plot the vector fields for (5), for different val-
ues of 42 0. (The case <0 is similar.)

¢I

N
Jay A, \_/

Y

(@) u=0 (b) O<u<i ) u>1

Figure 4.5.1

When p =0, all trajectories flow toward a stable fixed point at ¢* =0 (Figure
4.5.1a). Thus the firefly eventually entrains with zero phase difference in the case
Q = . In other words, the firefly and the stimulus flash simultaneously if the fire-
fly is driven at its natural frequency.

Figure 4.5.1b shows that for 0 < u <1, the curve in Figure 4.5.1a lifts up and
the stable and unstable fixed points move closer together. All trajectories are still
attracted to a stable fixed point, but now ¢* > 0. Since the phase difference ap-
proaches a constant, one says that the firefly’s rhythm is phase-locked to the stim-
ulus.

Phase-locking means that the firefly and the stimulus run with the same instan-
taneous frequency, although they no longer flash in unison. The result ¢*>0 im-
plies that the stimulus flashes akead of the firefly in each cycle. This makes
sense—we assumed 4 >0, which means that Q> @ the stimulus is inherently
faster than the firefly, and drives it faster than it wants to g0. Thus the firefly falls
behind. But it never gets lapped—it always lags in phase by a constant amount ¢ *,

If we continue to increase u, the stable and unstable fixed points eventually co-
alesce in a saddle-node bifurcation at y =1. For 1 >1 both fixed points have dis-
:clppeared and now phase-locking is lost; the phase difference ¢ increases
Indefinitely, corresponding to phase drift (Figure 4.5.1c). (Of course, once ¢
reaches 27 the oscillators are in phase again.) Notice that the phases don’t sepa-
fate at a uniform rate, in qualitative agreement with the experiments of Hanson
(1978): ¢ increases most slowly when it passes under the minimum of the sine
wave in Figure 4.5.1c, at ¢ = 7r/2 , and most rapidly when it passes under the max-
Imum at ¢ = —7/2.

The model makes a number of specific and testable predictions. Entrainment is
predicted to be possible only within a symmetric interval of driving frequencies,

specifically @ —A<Q< @+ A. This interval is called the range of entrainment
(Figure 4.5.2).
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Figure 4.5.2

By measuring the range of entrainment experimentally, one can nail down the
value of the parameter A. Then the model makes a rigid prediction for the phase
difference during entrainment, namely

-
A

(6)

sing* = Q

where —7t/2 < ¢* < /2 corresponds to the stable ﬁ\xed point of (3).
Moreover, for i > 1, the period of phase drift may be predicted as follows. The
time required for ¢ to change by 27 is given by

2 dt

Tyin =J.dt= A :i—q;dd’
27 d¢

o Q-w-Asing
To evaluate this integral, we invoke (2) of Section 4.3, which yields
2z

Tyig =—F7———.
e Je-w)y - A

Since A and @ are presumably fixed properties of the firefly, the predictions (6)

(7)

and (7) could be tested simply by varying the drive frequency Q. Such experi- ‘

ments have yet to be done.

Actually, the biological reality about synchronous fireflies is more complicated.
The model presented here is reasonable for certain species, such as Pteroptyx
cribellata, which behave as if A and @ were fixed. However, the species that is
best at synchronizing, Pteroptyx malaccae, is actually able to shift its frequency @
toward the drive frequency Q (Hanson 1978). In this way it is able to achieve
nearly zero phase difference, even when driven at periods that differ from its nat-
ural period by *15 percent! A model of this remarkable effect has been presented
by Ermentrout (1991).

4.6 Superconducting Josephson Junctions

Josephson junctions are superconducting devices that are capable of generating
voltage oscillations of extraordinarily high frequency, typically 10'°-10"" cycles
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per second. They have great technological promise as amplifiers, voltage stan-
dards, detectors, mixers, and fast switching devices for digital circuits. Josephson
junctions can detect electric potentials as small as one quadrillionth of a volt, and
they have been used to detect far-infrared radiation from distant galaxies. For an
introduction to Josephson junctions, as well as superconductivity more generally,
see Van Duzer and Turner (1981).

Although quantum mechanics is required to explain the origin of the Josephson
effect, we can nevertheless describe the dynamics of Josephson junctions in classi-
cal terms. Josephson junctions have been particularly useful for experimental stud-
ies of nonlinear dynamics, because the equation governing a single junction is the
same as that for a pendulum! In this section we will study the dynamics of a single
junction in the overdamped limit. In later sections we will discuss underdamped
junctions, as well as arrays of enormous numbers of junctions coupled together.

Physical Background

A Josephson junction consists of two closely spaced superconductors separated
by a weak connection (Figure 4.6.1). This connection may be provided by an insula-
tor, a normal metal, a semiconductor, a weakened superconductor, or some other
material that weakly couples the
two superconductors. The two
superconducting regions may be

v, e superconductor #1

weak coupling characterized by quantum me-
chanical wave functions ,e™
superconductor #2  and y,e™” respectively. Normally
a much more complicated descrip-
tion would be necessary because
there are ~ 10> electrons to deal
with, but in the superconducting ground state, these electrons form “Cooper pairs”
that can be described by a single macroscopic wave function. This implies an aston-
ishing degree of coherence among the electrons. The Cooper pairs act like a minia-
ture version of synchronous fireflies: they all adopt the same phase, because this
turns out to minimize the energy of the superconductor.

As a 22-year-old graduate student, Brian Josephson (1962) suggested that it
should be possible for a current to pass between the two superconductors, even if
fhere were no voltage difference between them. Although this behavior would be
Impossible classically, it could occur because of quantum mechanical tunneling of
Cooper pairs across the junction. An observation of this “Josephson effect” was
made by Anderson and Rowell in 1963.

Incidentally, Josephson won the Nobel Prize in 1973, after which he lost inter-
est in mainstream physics and was rarely heard from again. See Josephson (1982)
for an interview in which he reminisces about his early work and discusses his

Figure 4.6.1
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more recent interests in transcendental meditation, consciousness, language, and
even psychic spoon-bending and paranormal phenomena.

The Josephson Relations

We now give a more quantitative discussion of the Josephson effect. Suppose
that a Josephson junction is connected to a dc current source (Figure 4.6.2), so that
a constant current />0 is driven through
the junction. Using quantum mechanics,

one can show that if this current is less than
T X I sing  acertain critical current I, no voltage will
be developed across the junction; that is, the
junction acts as if it had zero resistance!
wever, the phases of the two supercon-
ductors will be driven apart to a constant
phase difference ¢ = ¢, — ¢,, where ¢ satis-
“phase relation

Figure 4.6.2

fies the Josephson curren

I=1:sin¢. (1)

Equation (1) implies that the phase difference increases as the bias current I in-
creases.

When I exceeds I_, a constant phase difference can no longer be maintained
and a voltage develops across the junction. The phases on the two sides of the junc-
tion begin to slip with respect to each other, with the rate of slippage governed by
the Josephson voltage-phase relation

ho.
V=-—o¢. 2
2e¢ (2)

Here V(¢) is the instantaneous voltage across the junction, % is Planck’s constant
divided by 27, and e is the charge on the electron. For an elementary derivation of
the Josephson relations (1) and (2), see Feynman’s argument (Feynman et al.
(1965), Vol. III), also reproduced in Van Duzer and Turner (1981).

Equivalent Circuit and Pendulum Analog

The relation (1) applies only to the supercurrent carried by the electron pairs. In
general, the total current passing through the junction will also contain contribu-
tions from a displacement current and an ordinary current. Representing the dis-
placement current by a capacitor, and the ordinary current by a resistor, we arrive
at the equivalent circuit shown in Figure 4.6.3, first analyzed by Stewart (1968)
and McCumber (1968).
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Figure 4.6.3

Now we apply Kirchhoff’s voltage and current laws. For this parallel circuit,
the voltage drop across each branch must be equal, and hence all the voltages are
equalto V, the voltage across the junction. Hence the current through the capaci-
tor equals CV and the current through the resistor equals V/R . The sum of these
currents and the supercurrent /_ sin¢ must equal the bias current I ; hence

CV+%+ICsin¢=1. (3)

Equation (3) may be rewritten solely in terms of the phase difference ¢, thanks to
(2). The result is

RC .- h .
—0+——0¢+ 1 sing=
o ¢ 2eR¢+ sing =1, 4)

which is precisely analogous to the equation governing a damped pendulum driven
by a constant torque! In the notation of Section 4.4, the pendulum equation is

mL2é+bé+mgLsin0= I.

Hence the analogies are as follows:

Pendulum Josephson junction
Angle 0 Phase difference ¢
Angular velocity 0 Voltage 2i¢

e
Mass m Capacitance C
Applied torque T’ Bias current /
Damping constant b Conductance 1/R

Maximum gravitational torque mgL  Critical current I

This mechanical analog has often proved useful in visualizing the dynamics of
Josephson junctions. Sullivan and Zimmerman (1971) actually constructed such a
mechanical analog, and measured the average rotation rate of the pendulum as a
function of the applied torque; this is the analog of the physically important [ -V
Curve (current-voltage curve) for the Josephson junction.
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Typical Parameter Values

Before analyzing (4), we mention some typical parameter values for Josephson
junctions. The critical current is typically in the range I, ~1 uA - 1 mA, and a typ-
ical voltage is I, R =1 mV. Since 2¢/h = 4.83x10"* Hz/V, a typical frequency is
on the order of 10" Hz. Finally, a typical length scale for Josephson junctions is
around 1 pm , but this depends on the geometry and the type of coupling used.

Dimensionless Formulation

i

If we divide (4) by 1. and definela dimensionless time

2el R

t, (3)

we obtain the dimensionless equ4tion
Bo” +¢ +sing=- IL (6)

where ¢’ = d¢/dt . The dimensionless group S is defined by

2el .R*C
B= —

and is called the McCumber parameter. It may be thought of as a dimensionless
capacitance. Depending on the size, the geometry, and the type of coupling used in f\
the Josephson junction, the value of B can range from 8 =~ 107° to much larger val-

ues ( B =10°).

We are not yet prepared to analyze (6) in general. For now, let’s restrict our- “"
selves to the overdamped limit B << 1. Then the term B¢” may be neglected after b
arapid initial transient, as discussed in Section 3.5, and so (6) reduces to a nonuni- A

form oscillator:

¢’=Ii—sin¢. (7)

c

As we know from Section 4.3, the solutions of (7) tend to a stable fixed point when
I'<1_, and vary periodically when 1>, .

EXAMPLE 4.6.1:

Find the current-voltage curve analytically in the overdamped limit. In other e
words, find the average value of the voltage (V) as a function of the constant ap-

plied current I, assuming that all transients have decayed and the system has
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reached steady-state operation. Then plot (V) vs. I.

Solution: 1t is sufficient to find (¢’), since (V)= (h/2e)(¢> from the voltage-
phase relation (2), and

o Q>_<£d_¢>_2eICR ,
<¢>—<dt “\dr dr/  n @),
from the definition of 7 in (5); hence

(V)=1R(¢’). (8)

There are two cases to consider. When I < [, all solutions of (7) approach a fixed
point ¢* = sin”'(I/1), where - /2 < ¢*<m/2.Thus ¢’ =0 in steady state, and so
(V)=0for I<1.

When I > I, all solutions of (7) are periodic with period

2
—— 9)
JU/LY -1

where the period is obtained from (2) of Section 4.3, and time is measured in units
of 7. We compute (¢') by taking the average over one cycle:

T=

A L7 do 1
<¢> TJ.O dr T ¢ T 1o
Combining (8)—(10) yields
(Vy=ILRJ(I/1.) =1 forl>1I,.

In summary, we have found

0 forI<1I,
(V)= LR\ (/L) -1 forI>1,. (11)

The I-V curve (1 1) is shown in Figure 4.6.4.
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The analysis given in-Example 4.6.1 applies only to the overdamped limit
B << 1. The behavior of the system becomes much more interesting if B is not
negligible. In particular, the I-V curve can be hysteretic, as shown in Figure 4.6.5.
As the bias current is increased slowly from I =0, the voltage remains at V=0
until 7 > I . Then the voltage jumps up to a nonzero value, as shown by the upward
arrow in Figure 4.6.5. The voltage increases with further increases of /. However,
if we now slowly decrease I, the voltage doesn’t drop back to zero at
I.—we have to go below I before the voltage returns to zero.

Figure 4.6.5

The hysteresis comes about because the system has inertia when ff # 0. We can
make sense of this by thinking in terms of the pendulum analog. The critical cur-
rent I, is analogous to the critical torque I, needed to get the pendulum overturn-
ing. Once the pendulum has started whirling, its inertia keeps it going so that even
if the torque is lowered below T, the rotation continues. The torque has to be low-
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ered even further before the pendulum will fail to make it over the top.

In more mathematical terms, we’ll show in Section 8.5 that this hysteresis oc-
curs because a stable fixed point coexists with a stable periodic solution. We have
never seen anything like this before! For vector fields on the line, only fixed
points can exist; for vector fields on the circle, both fixed points and periodic solu-
tions can exist, but not simultaneously. Here we see just one example of the new
kinds of phenomena that can occur in two-dimensional systems. It’s time to take
the plunge.

EXERCISES FOR CHAPTER 4

4.1 Examples and Definitions

4.1.1  For which real values of a does the equation 6 = sin(a8) give a well-
defined vector field on the circle?

For each of the following vector fields, find and classify all the fixed points, and
sketch the phase portrait on the circle.

4.1.2 O0=1+2cosf 4.1.3 6=sin20
4.1.4 0O=sin’6 4.1.5 0=sinf+cosb
4.1.6 0=3+cos28 4.1.7 O =sink@ where kis a positive integer.

4.1.8 (Potentials for vector fields on the circle)

a) Consider the vector field on the circle given by 6 = cos6 . Show that this sys-
tem has a single-valued potential V(8), i.e., for each point on the circle, there is
a well-defined value of V such that = —d V/d@. (As usual, @ and 0 + 27k
are to be regarded as the same point on the circle, for each integer & .)

b) Now consider 6 = 1. Show that there is no single-valued potential V(@) for this
vector field on the circle.

¢) What’s the general rule? When does 6 = f(B) have a single-valued potential?

4.1.9 InExercises 2.6.2 and 2.7.7, you were asked to give two analytical proofs
that periodic solutions are impossible for vector fields on the line. Review these ar-
guments and explain why they don’t carry over to vector fields on the circle.
Specifically which parts of the argument fail?

4.2 Uniform Oscillator

4.2.1  (Church bells) The bells of two different churches are ringing. One bell
Tings every 3 seconds, and the other rings every 4 seconds. Assume that the bells
have just rung at the same time. How long will it be until the next time they ring to-

gether? Answer the question in two ways: using common sense, and using the
method of Example 4.2.1.
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4.2.2 (Beats arising from linear superpositions) Graph x(z) = sin 8¢ +sin9¢ for

~20<t<20. You should find that the amplitude of the oscillations is

modulated—it grows and decays periodically.

a) What is the period of the amplitude modulations?

b) Solve this problem analytically, using a trigonometric identity that converts
sums of sines and cosines to products of sines and cosines.

(In the old days, this beat phenomenon was used to tune musical instruments.

You would strike a tuning fork at the same time as you played the desired note
on the instrument. The combined sound A, sin @,7 + A, sin @,t would get louder
and softer as the two vibrations went in and out of phase. Each maximum of to-
tal amplitude is called a beat. When the time between beats is long, the instru-
ment is nearly in tune.)

4.2.3 (The clock problem) Here’s an old chestnut from high school algebra: At
12:00, the hour hand and minute hand of a clock are perfectly aligned. When is the
next time they will be aligned? (S6lve the problem by the methods of this section,
and also by some alternative approach of your choosing.)

4.3 Nonuniform Oscillator

4.3.1 As shown in the text, the time required to pass through a saddle-node

. . = dx o i
bottleneck is approximately T, . =j 5. To evaluate this integral, .§

~ rtx

let x = /r tan @, use the identity 1+ tan® @ = sec’ @, and change the limits of inte- i

gration appropriately. Thereby show that 7, ...k = 7% [T

4.3.2 The oscillation period for the nonuniform oscillator is given by the inte-

n
gral T = —de—, where @ > a > 0. Evaluate this integral as follows.

-x @—asing
a) Let u=tan$. Solve for 6 and then express d@ in terms of u and du .

b) Show that sin@ =2u/(1+u*). (Hint: Draw a right triangle with base 1 and
height u . Then ¢ is the angle opposite the side of length u , since u = tang by

definition. Finally, invoke the half-angle formula sin @ = 2sin$ cos £.)

c) Show that u — teo as 8 — +7, and use that fact to rewrite the limits of integra- ¢

tion.
d) Express T as an integral with respect to u .

e) Finally, complete the square in the denominator of the integrand of (d), and re-

duce the integral to the one studied in Exercise 4.3.1, for a suitable choice of x
and r.

For each of the following questions, draw the phase portrait as function of the con-
trol parameter p . Classify the bifurcations that occur as y varies, and find all the
bifurcation values of 1.
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sin @
Uu+cos@
4.3.6 0= +sin6+cos26

4.3.3 0=psin6—sin20 434 6=

435 0= H+cosB+cos20

237 6=2Y 238 @=-_5in20
K +sin@ 1+ usin@

4.3.9 (Alternative derivation of scaling law) For systems close to a saddle-node
bifurcation, the scaling law 7, ... ~ O(r™""?) can also be derived as follows.

a) Suppose that x has a characteristic scale O(r*), where a is unknown for now.

Then x = ru, where u ~ O(1). Similarly, suppose ¢ = r®z, with 7 ~ O(1). Show

that x = r+x’ is thereby transformed to r** gli =r+r2y?,

- . T
b) Assume that all terms in the equation have the same order with respect to r,
and thereby derive a= 4, b=~1.

4.3.10 (Nongeneric scaling laws) In deriving the square-root scaling law for
the time spent passing through a bottleneck, we assumed that £ had a quadratic
minimum. This is the generic case, but what if the minimum were of higher or-
der? Suppose that the bottleneck is governed by x = r+ x2", where n > 1 is an in-
teger. Using the method of Exercise 4.3.9, show that T, otencer =7, and
determine b and c.

(It’s acceptable to leave ¢ in the form of a definite integral. If you know com-
plex variables and residue theory, you should be able to evaluate ¢ exactly by inte-
grating around the boundary of the pie-slice { z=re®:0<0< wfn, 0<r< R}
and letting R — o)

4.4 Overdamped Pendulum

4.4.1 (Validity of overdamped l.i‘mit).Find the conditions under which it is valid
to approximate the equation mI’@ + b + mgLsin@ =T by its overdamped limit
b0+ mgLsing=T.

4.4.2 (Understanding sin6(t)) By imagining the rotational motion of an over-
damped pendulum, sketch sin 0(t) vs. t for a typical solution of 9’ = Y —sin@.
HOW does the shape of the waveform depend on y ? Make a series of graphs for
different y , including the limiting cases ¥ =1 and ¥ >> 1. For the pendulum, what
Physical quantity is proportional to sin 8(z)?

:.'4~93 (Understanding 6(r)) Redo Exercise 4.4.2, but now for 6(t) instead of
iné(r).

4.4.4 (Torsional spring) Suppose that our overdamped pendulum is connected
10 a torsional spring. As the pendulum rotates, the spring winds up and generates
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an opposing torque —k6. Then the equation of motion becomes b8 +
mgLsin@ =T — k6.

a) Does this equation give a well-defined vector field on the circle?

b) Nondimensionalize the equation.

¢) What does the pendulum do in the long run?

d) Show that many bifurcations occur as k is varied from 0 to oo . What kind of bi-
furcations are they?

4.5 Fireflies

4.5.1 (Triangle wave) In the firefly model, the sinusoidal form of the firefly’s
response function was chosen spmewhat arbitrarily. Consider the alternative

model ©=Q, =w+A f(©—0),/where f is given now by a triangle wave, not a 5

sine wave. Specifically, let

on the interval — £ <

a) Graph f(¢).
Find the range of entrainment.

C) Assuming that the firefly is phase-locked to the stimulus, find a formula for the |

phase difference ¢ *.
d) Find a formula for T, .

4.5.2 (General response function) Redo as much of the previous exercise as

maximum and minimum on the interval -7 < o<nm.

4.5.3  (Excitable systems) Suppose you stimulate a neuron by injecting it with a 1
pulse of current. If the stimulus is small, nothing dramatic happens: the neuron in- ‘,v
creases its membrane potential slightly, and then relaxes back to its resting poten- 4
tial. However, if the stimulus exceeds a certain threshold, the neuron will “fire” §
and produce a large voltage spike before returning to rest. Surprisingly, the size of ]
the spike doesn’t depend much on the size of the stimulus—anything above thresh- ‘}

old will elicit essentially the same response.

Similar phenomena are found in other types of cells and even in some chemi- »'
cal reactions (Winfree 1980, Rinzel and Ermentrout 1989, Murray 1989). These ;'
systems are called excitable. The term is hard to define precisely, but roughly 4

speaking, an excitable system is characterized by two properties: (1) it has a

unique, globally attracting rest state, and (2) a large enough stimulus can send §

the system on a long excursion through phase space before it returns to the rest-
ing state.
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possible, assuming only that f(@) is a smooth, 27- -periodic function with a smgle

This exercise deals with the simplest caricature of an excitable system. Let

6= U +sin@, where u is slightly less than 1.

a) Show that the system satisfies the two properties mentioned above. What object
plays the role of the “rest state”? And the “threshold”?

b) Let V(¢) = cosO(z). Sketch V() for various initial conditions. (Here V is anal-
ogous to the neuron’s membrane potential, and the initial conditions corre-
spond to different perturbations from the rest state.)

4.6 Superconducting Josephson Junctions

4.6.1 (Current and voltage oscillations) Consider a Josephson junction in the

ovefdamped limit §=0.

a) Sketch the supercurrent I, sin ¢(¢) as a function of 7, assuming first that /1, is
slightly greater than 1, and then assuming that 7/1, >> 1. (Hint: In each case,
visualize the flow on the circle, as given by Equation (4.6.7).)

b) Sketch the instantaneous voltage V(¢) for the two cases considered in (a).

4.6.2 (Computer work) Check your qualitative solution to Exercise 4.6.1 by in-
tegrating Equation (4.6.7) numerically, and plotting the graphs of 1. sin¢(r) and
V().

4.6.3 (Washboard potential) Here’s another way to visualize the dynamics of an
overdamped Josephson junction. As in Section 2.7, imagine a particle sliding
down a suitable potential.
a) Find the potential function corresponding to Equation (4.6.7). Show that it is
not a single-valued function on the circle.
b) Graph the potential as a function of ¢, for various values of I/1. . Here ¢ is to
be regarded as a real number, not an angle.
¢) What is the effect of increasing 1 ?
The potential in (b) is often called the “washboard potential” (Van Duzer and
Turner 1981, p. 179) because its shape is reminiscent of a tilted, corrugated wash-
board.

4.6.4 (Resistively loaded array) Arrays of coupled Josephson junctions raise
many fascinating questions. Their dynamics are not yet understood in detail. The
qQuestions are technologically important because arrays can produce much greater
power output than a single junction, and also because arrays provide a reasonable
model of the (still mysterious) high-temperature superconductors. For an introduc-
tion to some of the dynamical questions of current interest, see Tsang et al. (1991)
and Strogatz and Mirollo (1993).

Figure 1 shows an array of two identical overdamped Josephson junctions.

The junctions are in series with each other, and in parallel with a resistive “load”
R.
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23 X r

Figure 1

The goal of this exercise is to derive the governing equations for this circuit. In

particular, we want to find differential equations for ¢, and ¢, .

a) Write an equation relating the dc bi /
through the array and the current /

b) Let V, and V, denete the es across the first and second Josephson junc-
tions. Show that I, = I sing, +V,/r and I, = I sing, +V,/r.

c) Let k=1,2. Express V, in terms of (1'),“

d) Using the results above, along with Kirchhoff’s voltage law, show that

current I, to the current /, flowing
owing through the load resistor.

. no. no.o
}b = Ic sm¢k +E¢k +ﬁ(¢l +¢2) fork=12.

e) The equations in part (d) can be written in more standard form as equations for
(f)k, as follows. Add the equations for k =1,2, and use the result to eliminate
the term (@, + d)z) . Show that the resulting equations take the form

2
¢, =Q+asing, +K2$in¢j,

j=1
and write down explicit expressions for the parameters ,a,K .

4.6.5 (N junctions, resistive load) Generalize Exercise 4.6.4 as follows. In-
stead of the two Josephson junctions in Figure 1, consider an array of N junctions
in series. As before, assume the array is in parallel with a resistive load R, and that
the junctions are identical, overdamped, and driven by a constant bias current /,.
Show that the governing equations can be written in dimensionless form as

d . -
%=Q+asm¢k+#25m¢j , fork=1,..,N,

Jj=1
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and write down explicit expressions for the dimensionless groups Q and a and the

dimensionless time 7 . (See Example 8.7.4 and Tsang et al. (1991) for further dis-
cussion.)

4.6.6 (N junctions, RLC load) Generalize Exercise 4.6.4 to the case where
there are N junctions in series, and where the load is a resistor R in series with a
capacitor C and an inductor L. Write differential equations for ¢, and for Q,
where Q is the charge on the load capacitor. (See Strogatz and Mirollo 1993.)
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PART TWO

TWO-DIMENSIONAL FLOWS

-




LINEAR SYSTEMS

5.0 Introduction

As we’ve seen, in one-dimensional phase spaces the flow is extremely confined—
all trajectories are forced to move monotonically or remain constant. In higher-
dimensional phase spaces, trajectories have much more room to maneuver, and so
a wider range of dynamical behavior becomes possible. Rather than attack all this
complexity at once, we begin with the simplest class of higher-dimensional sys-
tems, namely linear systems in two dimensions. These systems are interesting in
their own right, and, as we’ll see later, they also play an important rolé in the clas-
sification of fixed points of nonlinear systems. We begin with some definitions
and examples.

5.1 Definitions and Examples

A two-dimensional linear system is a system of the form

X =ax+by
y=cx+dy

where a, b, c, d are parameters. If we use boldface to denote vectors, this system
can be written more compactly in matrix form as

where
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Such a system is linear in the sense that if x, and x, are solutions, then so is any
linear combination ¢,X, +¢,X,. Notice that x=0 when x=0, so x* = 0 is al-
ways a fixed point for any choice of A .

The solutions of X = AX can be visualized as trajectories moving on the (x,y)
plane, in this context called the phase plane. Our first example presents the phase
plane analysis of a familiar system.

|
EXAMPLE 5.1.1:

As discussed in elementary physics courses, the vibrations of a mass hanging
from a linear spring are governed by the linear differential equation

mi + kx = 0 e )

o
-

where m is the mass, k is the spring constant, and x is the displacement of the

mass from equilibrium (Figure 5.1.1). Give a phase plane analysis of this simple

harmonic oscillator.

N Solution: As you probably recall, it’s easy to solve (1) ana-
lytically in terms of sines and cosines. But that’s precisely what
makes linear equations so special! For the nonlinear equations

k  of ultimate interest to us, it’s usually impossible to find an ana-
lytical solution. We want to develop methods for deducing the
behavior of equations like (1) without actually solving them.

The motion in the phase plane is determined by a vector

x field that comes from the differential equation (1). To find

this vector field, we note that the state of the system is char-

acterized by its current position x and velocity v; if we know
the values of both x and v, then (1) uniquely determines the
future states of the system. Therefore we rewrite (1) in terms of x and v, as fol-

lows:

Figure 5.1.1

x=v (2a)
v=—%x. (2b)

Equation (2a) is just the definition of velocity, and (2b) is the differential equation
(1) rewritten in terms of v. To simplify the notation, let w* =k/m . Then (2) be-
comes

xX=Vv (3a)
v=—x. 3b)

The system (3) assigns a vector (x,v)=(v, —w’x) at each point (x,v), and there-
fore represents a vector field on the phase plane.

For example, let’s see what the vector field looks like when we’re on the x-axis.
Then v =0 and so (x,v) = (0,—@”x) . Hence the vectors point vertically downward
for positive x and vertically upward for negative x (Figure 5.1.2). As x gets
larger in magnitude, the vectors (0,—@’x) get longer. Similarly, on the v-axis, the
vector field is (x,v) = (v,0), which points to the right when v >0 and to the left
when v< 0. As we move around in phase space, the vectors change direction as
shown in Figure 5.1.2.

v Just as in Chapter 2, it is helpful to

) o . visualize the vector field in terms of the
P motion of an imaginary fluid. In the

- \ present case, we imagine that a fluid is

1 } ~ flowing steadily on the phase plane

1 x Wwith a local velocity given by

(x,v) = (v,—@’x). Then, to find the tra-
o e jectory starting at (x,, v,), we place an
imaginary particle or phase point at
(xy, vy) and watch how it is carried
Figure 5.1.2 around by the flow.

The flow in Figure 5.1.2 swirls about
the origin. The origin is special, like the eye of a hurricane: a phase point placed
there would remain motionless, because (x,v)=(0,0) when (x,v)=(0,0); hence
the origin is a fixed point. But a phase point starting anywhere else would circulate
around the origin and eventually return
to its starting point. Such trajectories

form closed orbits, as shown in Figure

5.1.3. Figure 5.1.3 is called the phase

/ \\ portrait of the system—it shows the

. overall picture of trajectories in phase
\/ X space.

What do fixed points and closed or-
bits have to do with the original prob-
lem of a mass on a spring? The answers
are beautifully simple. The fixed point
(x,v)=(0,0) corresponds to static
equilibrium of the system: the mass is at rest at its equilibrium position and will
remain there forever, since the spring is relaxed. The closed orbits have a more in-
teresting interpretation: they correspond to periodic motions, i.e., oscillations of
the mass. To see this, just look at some points on a closed orbit (Figure 5.1.4).
When the displacement x is most negative, the velocity v is zero; this corre-

sponds to one extreme of the oscillation, where the spring is most compressed
(Figure 5.1.4).

1%

Figure 5.1.3
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Figure 5.1.4

In the next instant as the phase point flows along the orbit, it is carried to points
where x has increased and v is now positive; the mass is being pushed back to-
ward its equilibrium position. But by the time the mass has reached x =0, ithas a
large positive velocity (Figure 5.1.4b) and so it overshoots x = 0. The mass even-
tually comes to rest at the other end of its swing, where x is most positive and v is
zero again (Figure 5.1.4c). Then the mass gets pulled up agz}irrl and §ventually com-
pletes the cycle (Figure 5.1.4d). ﬁ;ﬁ e By s sk ee

The shape of the closed orbits also hasjan interesting physical interpretation. The
orbits in Figures 5.1.3 and 5.1.4 (are 'actuall‘fl ellipses given by the equation
@*x? +v2 = C, where C 2 0 is a constant. In Exercise 5.1.1, you are asked to derive
this geometric result, and to show that it is equivalent to conservation of energy. @

EXAMPLE 5.1.2:

a 0 . .
Solve the linear system X = Ax, where A = ( 1). Graph the phase portrait
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as a varies from —o to +oo, showing the qualitatively different cases.
Solution: The system is

xy (a 0Yx

¥ 0 ~1Lly)
Matrix multiplication yields

X=ax"

y=-y

which shows that the two equations are uncoupled; there’s no x in the y-equation

and vice versa. In this simple case, each equation may be solved separately. The
solution is

x(t) = x,e” (1a)
y(t)=y,e”. (1b)

Thephase portraits for different values of a are shown in Figure 5.1.5. In each
case, y(1) decays exponentially. When a < 0, x(¢) also decays exponentially and so

all trajectories approach the origin as t — o. However, the direction of approach
depends on the size of a compared to 1.

!

v @ a<-1 v (b) a =-1 (c) -1<a<0

Ve d) a=0 (€) a>0

Figure 5.1.5
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In Figure 5.1.5a, we have a < -1, which implies that x(¢) decays more rapidly
than y(r). The trajectories approach the origin tangent to the slower direction
(here, the y-direction). The intuitive explanation is that when a is very negative,
the trajectory slams horizontally onto the y-axis, because the decay of x(t) is al-
most instantaneous. Then the trajectory dawdles along the y-axis toward the ori-
gin, and so the approach is tangent to the y-axis. On the other hand, if we look
backwards along a trajectory (f — —oo), then the trajectories all become parallel to
the faster decaying direction (here, the x-direction). These conclusions are easily
proved by looking at the slope dy/dx = y/x along the trajectories; see Exercise
5.1.2. In Figure 5.1.5a, the fixed point x* = 0 is called a stable node.

Figure 5.1.5b shows the case a = —1. Equation (1) shows that y(¢)/x(t) = yo /X, =
constant, and so all trajectories are straight lines through the origin. This is a very
special case—it occurs because the decay/rates in the two directions are precisely
equal. In this case, x * is called a symmefrical node or star.

When —1< a <0, we again have a fode, but now the trajectories approach x *
along the x-direction, which is the more slowly decaying direction for this range of
a (Figure 5.1.5¢).

Something dramatic happens when a =0 (Figure 5.1.5d). Now (la) becomes
x(f) = x, and so there’s an entire line of ‘fixed points along the x-axis. All trajecto-
ries approach these fixed points along vertical lines.

Finally when a >0 (Figure 5.1.5¢), X * becomes unstable, due to the exponen-
tial growth in the x-direction. Most trajectories veer away from x * and head out to
infinity. An exception occurs if the trajectory starts on the y-axis; then it walks a
tightrope to the origin. In forward time, the trajectories are asymptotic to the x-
axis; in backward time, to the y-axis. Here x* =0 is called a saddle point. The

y-axis is called the stable manifold of the saddle point X *, defined as the set of
initial conditions x,, such that X(t) - X* as t — 0. Likewise, the unstable mani-
fold of x* is the set of initial conditions such that x(f) = x * as t — —oo. Here the
unstable manifold is the x-axis. Note that a typical trajectory asymptotically ap-
proaches the unstable manifold as ¢ — e, and approaches the stable manifold as
t — —eo. This sounds backwards, but it’s right! m

Stability Language

It’s useful to introduce some language that allows us to discuss the stability of
different types of fixed points. This language will be especially useful when we an-
alyze fixed points of nonlinear systems. For now we’ll be informal; precise defini-
tions of the different types of stability will be given in Exercise 5.1.10.

We say that x* = 0 is an affracting fixed point in Figures 5. 1.5a—c; all trajectories
that start near X * approach it as ¢ — co. That is, X(f) > X* as t — o< In fact x *
attracts all trajectories in the phase plane, so it could be called globally attracting.

There’s a completely different notion of stability which relates to the behavior
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of trajectories for all time, not just as t — o . We say that a fixed point x * is Lia-
punov stable if all trajectories that start sufficiently close to x * remain close to it
for all time. In Figures 5.1.5a—d, the origin is Liapunov stable.
flgure 5.1.5d shows that a fixed point can be Liapunov stable but not attracting.
This situation comes up often enough that there is a special name for it. When a
fixed point is Liapunov stable but not attracting, it is called neutrally stable.
Nearby trajectories are neither attracted to nor repelled from a neutrally stable
point. As a second example, the equilibrium point of the simple harmonic oscilla-
tor (Figure 5.1.3) is neutrally stable. Neutral stability is commonly encountered in
me‘chanical systems in the absence of friction. Conversely, it’s possible for a fixed
point to be attracting but not Liapunov stable; thus, neither notion of stability im-
pllCS the other. An example is given by the following vector field on the circle:
0=1-cos@ (Figure 5.1.6). Here 6* =0 attracts all trajectories as £ — oo _ but it is
not Liapunov stable; there are trajectories that start infini-
tesimally close to 6 * but go on a very large excursion be-
fore returning to 6 *.

However, in practice the two types of stability often oc-
cur together. If a fixed point is both Liapunov stable and at-
tracting, we’ll call it stable, or sometimes asymptotically
stable.

Figure 5.1.6 Finally, x* is unstable in Figure 5.1.5e, because it is
neither attracting nor Liapunov stable.
A graphical convention: we’ll use open dots to denote unstable fixed points, and

solid black dots to denote Liapunov stable fixed points. This convention is consis-
tent with that used in previous chapters.

5.2 Classification of Linear Systems

The examples in the last section had the special feature that two of the entries in
the matrix A were zero. Now we want to study the general case of an arbitrary
2X2 matrix, with the aim of classifying all the possible phase portraits that can
occur.

Example 5.1.2 provides a clue about how to proceed. Recall that the x and y
axes played a crucial geometric role. They determined the direction of the trajecto-
ries as t — oo, They also contained special straight-line trajectories: a trajectory
sFartlng on one of the coordinate axes stayed on that axis forever, and exhibited
simple exponential growth or decay along it.

For the general case, we would like to find the analog of these straight-line tra-
Jectories. That is, we seek trajectories of the form

— A
x(t)=e v, )
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where v # 0 is some fixed vector to be determined, and A is a growth rate, also to
be determined. If such solutions exist, they correspond to exponential motion
along the line spanned by the vector v.

To find the conditions on v and A, we substitute x(r) = e¥v into x = Ax, and
obtain Ae¥v = ¥ Av . Canceling the nonzero scalar factor e yields

Av=Av, 3)

which says that the desired straight line solutions exist if v is an eigenvector of A
with corresponding eigenvalue A . In this case we call the solution (2) an eigen-
solution.

Let’s recall how to find eigenvalues and eigenvectors. (If your memory needs
more refreshing, see any text on linear algebra.) In general, the eigenvalues of a
matrix A are given by the characteristic equation det(A — AI) =0, where I is the
identity matrix. For a 2 X2 matrix

A= ,
c d

the characteristic equation becomes

a-A b
=0.
det( . d—l)

Expanding the determinant yields

A-1tA+A=0 “)
where
T=trace(A)=a+d,
A =det(A)=ad - bc.
Then
T+N1? —4A T-N12-4A
hem—G— A=y ©

are the solutions of the quadratic equation (4). In other words, the eigenvalues de-
pend only on the trace and determinant of the matrix A .

The typical situation is for the eigenvalues to be distinct: A, # A, . In this case, a
theorem of linear algebra states that the corresponding eigenvectors v, and v, are
linearly independent, and hence span the entire plane (Figure 5.2.1). In particular,
any initial condition X, can be written as a linear combination of eigenvectors, say
X, =V, +C,V,.
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Xp = v+ Vo

oA} |

(541

Figure 5.2.1
This observation allows us to write down the general solution for x(f)—it is simply
— At At
xX()=ce™v, +c,e™v,. )

Why is this the general solution? First of all, it is a linear combination of solu-
tions to x = Ax, and hence is itself a solution. Second, it satisfies the initial condi-
tion x(0)=x,, and so by the existence and uniqueness theorem, it is the only
solution. (See Section 6.2 for a general statement of the existence and uniqueness
theorem.)

EXAMPLE 5.2.1:

Solve the initial value problem x=x+y, y=4x-2y, subject to the initial
condition (x,,y,) = (2,-3).
Solution: The corresponding matrix equation is

X (1 1Y=x

v) 4 20y)
First we find the eigenvalues of the matrix A . The matrix has 7=—1 and A =6,
so the characteristic equation is A + 1 -6 =0 . Hence

A =2, A =-3.

Next we find the eigenvectors. Given an eigenvalue A, the corresponding
eigenvector v = (v,,v,) satisfies

(3 L)

L. -1 1Y\v 0
For A, =2, this yields (4 _4)[ ')=(0], which has a nontrivial solution

vy
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(v;,v,)=(1,1), or any scalar multiple thereof. (Of course, any multiple of an eigen-

vector is always an eigenvector; we try to pick the simplest multiple, but any one will
. ) 4 1Yv 0
do.) Similarly, for A, =-3, the eigenvector equation becomes 4 1l =lo)
2
which has a nontrivial solution (v, v,) = (1,—4) . In summary,

o) L)

Next we write the general solution as
From (6), the general solution is

linear combination of eigensolutions.

)

Finally, we compute ¢, and ¢; to satisfy the initial condition (x,, ¥o) =(2,-3). At

t =0, (7) becomes

(5)-(o()

which is equivalent to the algebraic system

2=¢ +c,,
-3=¢ —4c,.

The solution is ¢, =1, ¢, = 1. Substituting back into (7) yields

x(=e +e™,
y(t)=e* —4de™

for the solution to the initial value problem. m

Whew! Fortunately we don’t need to go through all this to draw the phase por-
trait of a linear system. All we need to know are the eigenvectors and eigenvalues.

EXAMPLE 5.2.2:

Draw the phase portrait for the system of Example 5.2.1.

Solution: The system has eigenvalues A, =2, A, = -3 . Hence the first eigenso-
lution grows exponentially, and the second eigensolution decays. This means the
origin is a saddle point. Its stable manifold is the line spanned by the eigenvector
v, = (1,—4), corresponding to the decaying eigensolution. Similarly, the unstable
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fnanifold is the line spanned by v, = (1,1). As with all saddle points, a typical tra-
Jectory approaches the unstable manifold as t — oo, and the stable manifold as
t — —eo. Figure 5.2.2 shows the phase portrait. m

y

Ll

Figure 5.2.2

EXAMPLE 5.2.3:
Sketch a typical phase portrait for the case A, < 4, <0.
Solution: First suppose A, < 4, <0. Then both eigensolutions decay exponen-

y slow eigendirection ~ ially. The fixed point is a stable
node, as in Figures 5.1.5a and 5.1.5¢,

_ except now the eigenvectors are not
mutually perpendicular, in general.

\ " Trajectories typically approach the

origin tangent to the slow eigendirec-
tion, defined as the direction spanned
by the eigenvector with the smaller
|A] . In backwards time (+ — —oo), the
Figure 5.2.3 trajectories become parallel to the

fast eigendirection. Figure 5.2.3
shows the phase portrait. (If we reverse all the arrows in Figure 5.2.3, we obtain a
typical phase portrait for an unstable node.)m

fast eigendirection

B e —

EXAMPLE 5.2.4:

What happens if the eigenvalues are complex numbers?

5.2 CLASSIFICATION OF LINEAR SYSTEMS 133



Solution: If the eigenvalues are complex, the fixed point is either a center (Fig-

ure 5.2.4a) or a spiral (Figure 5.2.4b). We’ve already seen an example of a center

in the simple harmonic oscilla-

tor of Section 5.1; the origin is

surrounded by a family of

S closed orbits. Note that centers

are neutrally stable, since

nearby trajectories are neither

attracted to nor repelled from

the fixed point. A spiral would

occur if the harmonic oscillator

were lightly damped. Then the

trajectory would just fail to
close, because the oscillator loses a bit of energy on each cycle.

To justify these statements, recall that the eigenvalues are A, , = -%(1 tN7?-4A )

Thus complex eigenvalues occar when

(a) center (b) spi

Figure 5.2.4

72 —4A<0.
To simplify the notation, let’s write the eigenvalues as
A, =atio

where

o=1/2, w=4+v4A-177.

By assumption, @ # 0. Then the eigenvalues are distinct and so the general solu-

tion is still given by

A
x(t) = c,eM'v, + ey, .

But now the ¢’s and v’s are complex, since the A’s are. This means that x(¢) in- \
volves linear combinations of ¢®*®”, By Euler’s formula, ' = cos¥ +isinax. |
Hence x(f) is a combination of terms involving e” cosax and e sincr. Such "
terms represent exponentially decaying oscillations if o = Re(A) <0 and growing
oscillations if o > 0. The corresponding fixed points are stable and unstable spi- )

rals, respectively. Figure 5.2.4b shows the stable case.

If the eigenvalues are pure imaginary (¢ = 0), then all the solutions are periodic
with period T = 27t/®. The oscillations have fixed amplitude and the fixed pointis

a center.

For both centers and spirals, it’s easy to determine whether the rotation is clock-
wise or counterclockwise; just compute a few vectors in the vector field and the
sense of rotation should be obvious. »
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EXAMPLE 5.2.5:

In our analysis of the general case, we have been assuming that the eigenvalues
are distinct. What happens if the eigenvalues are equal?

Solution: Suppose A, = A, = A. There are two possibilities: either there are two
independent eigenvectors corresponding to A, or there’s only one.

If there are two independent eigenvectors, then they span the plane and so
every vector is an eigenvector with this same eigenvalue A. To see this, write

an arbitrary vector X, as a linear combination of the two eigenvectors:
X, =V, +c,v,. Then

AXy = A(CV, +6,V,) = AV, +c,Av, = AX,

SO X, is also an eigenvector with eigenvalue A. Since multiplication by A sim-

ply stretches every vector by a factor A, the matrix must be a multiple of the
identity:

A= A0 .
0o A
Then if A #0, all trajectories are straight lines through the origin (x(r) = e“'xo)
and the fixed point is a star node (Figure 5.2.5).

Figure 5.2.5

01‘1 the other hand, if A =0, the whole plane is filled with fixed points! (No sur-
Prise—the systemis x =0 .)

The other possibility is that there’s only one eigenvector (more accurately, the

e. . . . .
1genspace corresponding to A is one-dimensional.) For example, any matrix of

the form A = Al with b#0 has only a one-dimensional eigenspace (Exer-

cise 5.2.11).

When there’s only one eigendirection, the fixed point is a degenerate node. A
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typical phase portrait is

shown in Figure 5.2.6. As

t — +oo and also as t — —eo,
eigendirection  all trajectories become paral-
lel to the one available
eigendirection.

A good way to think about
the degenerate node is to
imagine that it has been cre-
ated by deforming an ordi-
nary node. The ordinary node
has two independent eigendirections; all trajectories are parallel to the slow
eigendirection as ¢ — oo, and to the fast eigendirection as ¢ — —o° (Figure 5.2.7a).

Figure 5.2.6

(a) node (b) degenerate node
Figure 5.2.7
Now suppose we start changing the parameters of the system in such a way that the

two eigendirections are scissored together. Then some of the trajectories will get
squashed in the collapsing region between the two eigendirections, while the sur-

viving trajectories get pulled around to form the degenerate node (Figure 5.2.7b). /

Another way to get intuition about this case is to realize that the degenerate
node is on the borderline between a spiral and a node. The trajectories are trying
to wind around in a spiral, but they don’t quite make it. m

Classification of Fixed Points

By now you’re probably tired of all the examples and ready for a simple classi-
fication scheme. Happily, there is one. We can show the type and stability of all the
different fixed points on a single diagram (Figure 5.2.8).
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" unstable nodes *

saddle points

stable nodes I

non-isolated
fixed points

stars, degenerate nodes

Figure 5.2.8

The. axe.s are the trace 7 and the determinant A of the matrix A. All of the infor-
mation in the diagram is implied by the following formulas:

A, =-;-(1;t«/72—4A), A=AA,,  t=A+A,

The first ‘equation is just (5). The second and third can be obtained by writing the
characteristic equation in the form (A -4 )}(A-4,)= A —7A+A =0.
To arrive at Figure 5.2.8, we make the following observations:
. If A <0, the eigenvalues are real and have opposite signs; hence the fixed point
18 a saddle point.
I.f A >0, the eigenvalues are either real with the same sign (nodes), or complex
con . . . .
g iu‘tgztz ésp;‘r:ls ani clentezrs). Nc_)des' satisfy 7° — .4A >0 and spirals satisfy
- The parabola 7° —4A =0 is the borderline between nodes and spi-
rals; star nodes and degenerate nodes live on this parabola. The stability of the
nodes and spirals is determined by 7. When 7 < 0, both eigenvalues have negative
real parts, so the fixed point is stable. Unstable spirals and nodes have 7 > 0. Neu-
Frally stable centers live on the borderline 7 = 0, where the eigenvalues are purely
imaginary.
| If A.= 0, a.t least one of the eigenvalues is zero. Then the origin is not an iso-
ated fixed point. There is either a whole line of fixed points, as in Figure 5.1.5d, or
a plane of fixed points,if A=0. ,
. Flgurc.a 5.2.8 shows that saddle points, nodes, and spirals are the major types of
dlxed points; they occur in large open regions of the (A, 7) plane. Centers, stars,
1egenerate n(?des, and non-isolated fixed points are borderline cases that occur
along curves in the (A,7) plane. Of these borderline cases, centers are by far the

most i o
t lmponar}t. They occur very commonly in frictionless mechanical systems
Wwhere energy is conserved.
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EXAMPLE 5.2.6:

1 2
Classify the fixed point x* = 0 for the system x = Ax, where A = (3 J
Solution: The matrix has A =-2; hence the fixed point is a
saddle point. m

EXAMPLE 5.2.7: ) 1
Redo Example 5.2.6 for A = (3 4).

Solution: Now A=5 and T=6. Since A>0 and 72 —4A =16>0, the fixed

point is a node. It is unstable, since T>0.u

5.3 Love Affairs

To arouse your interest in the classification of linear systems, we now discuss a

simple model for the dynamics of love affairs (Strogatz 1988). The following story ;}1“

illustrates the idea.
Romeo is in love with Juliet, but in our version of this story, Juliet is a fickle
lover. The more Romeo loves her, the more Juliet wants to run away and hide. But

when Romeo gets discouraged and backs off, Juliet begins to find him strangely at-
tractive. Romeo, on the other hand, tends to echo her: he warms up when she loves 8

him, and grows cold when she hates him.
Let

R(t) = Romeo’s love/hate for Juliet at time ¢
J(t) = Juliet’s love/hate for Romeo at time ¢ .

Positive values of R, J signify love, negative values signify hate. Then a model

for their star-crossed romance is
R=al
J=-bR

where the parameters a and b are positive, to be consistent with the story.

The sad outcome of their affair is; of course, a neverending cycle of love and
hate; the governing system has a center at (R,J) = (0,0). At least they manage to sz;

achieve simultaneous love one-quarter of the time (Figure 5.3.1).
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Figure 5.3.1

Now consider the forecast for lovers governed by the general linear system

R=aR+bJ

J=cR+dJ

where the parameters a, b, ¢, d may have either sign. A choice of signs specifies
the romantic styles. As named by one of my students, the choice a>0, b>0
means that Romeo is an “eager beaver”—he gets excited by Juliet’s love for him,
and is further spurred on by his own affectionate feelings for her. It’s entertaining
to name the other three romantic styles, and to predict the outcomes for the various
pairings. For example, can a “cautious lover” (a< 0, b > 0) find true love with an

eager beaver? These and other pressing questions will be considered in the exer-
cises.

EXAMPLE 5.3.1:
What happens when two identically cautious lovers get together?
Solution: The system is
R=aR+bJ
J=bR+al
with c'z< 0, 5>0. Here a is a measure of cautiousness (they each try to avoid
throwm-g themselves at the other) and b is a measure of responsiveness (they both
get excited by the other’s advances). We might suspect that the outcome depends

on the relative size of a and b. Let’s see what happens.
The corresponding matrix is '

r

which has

T=2a<0, A=a’-b?, TP —4A=4p* >0,
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Hence the fixed point (R,J) =(0,0) is a saddle point if a® < b? and a stable node
if a® > b* . The eigenvalues and corresponding eigenvectors are

A =a+b, v,=(LD, A,=a-b, v,=(,-1).

Since a+b>a-b, the eigenvector (1,1) spans the unstable manifold when the
origin is a saddle point, and it spans the slow eigendirection when the origin is a
stable node. Figure 5.3.2 shows the phase portrait for the two cases.

\ ’\\’/
\ N //\

az>b2 a2<b2

Figure 5.3.2

If a® > b’, the relationship always fizzles out to mutual indifference. The lesson-

seems to be that excessive caution can lead to apathy.

If a® < b?, the lovers are more daring, or perhaps more sensitive to each other.
Now the relationship is explosive. Depending on their feelings initially, their rela- :
tionship either becomes a love fest or a war. In either case, all trajectories approach

the line R = J, so their feelings are eventually mutual. m

EXERCISES FOR CHAPTER 5

5.1 Definitions and Examples

5.1.1 (Ellipses and energy conservation for the harmonic oscillator) Consider

the harmonic oscillator x = v, v = ~@’x.
a) Show that the orbits are given by ellipses w”x* +v* = C, where C is any non-

negative constant. (Hint: Divide the x equation by the v equation, separate the

v’s from the x s, and integrate the resulting separable equation.)
b) Show that this condition is equivalent to conservation of energy.
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5.1.2  Consider the system % =ax, y=—y, where a < —1. Show that all trajec-
tories become parallel to the y-direction as t — o , and parallel to the x-direction
as t — —oo,

(Hint: Examine the slope dy/dx = y/x.)
Write the following systems in matrix form.

5.1.3 x=-y, y=-x 514 x=3x-2y,y=2y—x
5.1.5 )'c=0,)'7=x+y. 5.1.6 x=x,y=5x+y

Sketch the vector field for the following systems. Indicate the length and direction
of the vectors with reasonable accuracy. Sketch some typical trajectories.

5.1.7 x=x,y=x+y 5.1.8 x=-2y,y=x

5.1.9  Consider the system x = -y, y = —x.
a) Sketch the vector field.
b) Show that the trajectories of the system are hyperbolas of the form x* — y? = C,

(Hint: Show that the governing equations imply xt — yy = 0 and then integrate
both sides.)

¢) The origin is a saddle point; find equations for its stable and unstable mani-
folds.

d) The system can be decoupled and solved as follows. Introduce new variables
and v, where u = x+y, v=x—-y. Then rewrite the system in terms of u and v.
Solve for u(t) and v(¢), starting from an arbitrary initial condition (u,, v,).

e) What are the equations for the stable and unstable manifolds in terms of u and
v?

f) Finally, using the answer to (d), write the general solution for x(z) and y(z),
starting from an initial condition (x,, y,).

5.14.10 (Attracting and Liapunov stable) Here are the official definitions of the
various types of stability. Consider a fixed point x * of a system x = f(x).

We say that x * is attracting if there is a § > 0 such that lirﬁ x(t)=x* when-
=00

ever | x(0) - x *|| < 8. In other words, any trajectory that starts within a distance &

of X * is guaranteed to converge to X * eventually. As shown schematically in Fig-
ure 1, trajectories that start nearby are allowed to stray from x * in the short run,
but they must approach x * in the long run.

In contrast, Liapunov stability requires that nearby trajectories remain close for
all time. We say that x * is Liapunov stable if for each £ >0, there isa & > 0 such
that || x(r)—x*| < & whenever 1>0 and | X(0)~x *| < &. Thus, trajectories that
Start within & of x * remain within € of x * for all positive time (Figure 1).
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radius =& radius =¢

Attracting Liapunov stable

Figure 1

Finally, x * is asymptotically stable if it js‘both attracting and Liapunov stable.
For each of the following systems; decide whether the origin is attracting, Lia-

punov stable, asymptotically stable, or none of the above.

a) x=y,y=—4x b) x=2y,y=x

¢) x=0,y=x d) x=0,y=-y

e) x=-x,y=-Sy f) x=x,y=y

5.1.11 (Stability proofs) Prove that your answers to 5.1.10 are correct, using the
definitions of the different types of stability. (You must produce a suitable & to
prove that the origin is attracting, or a suitable 8(€) to prove Liapunov stability.)

5.1.12 (Closed orbits from symmetry arguments) Give a simple proof that orbits
are closed for the simple harmonic oscillator x = v, v = —x, using only the symme- ‘r
try properties of the vector field. (Hint: Consider a trajectory that starts on the v- g "“
axis at (0,~v,), and suppose that the trajectory intersects the x-axis at (x,0). Then
use symmetry arguments to find the subsequent intersections with the v-axis and -

Xx-axis.)

5.1.13 Why do you think a “saddle point” is called by that name? What’s the

connection to real saddles (the kind used on horses)?

5.2 Classification of Linear Systems

5.2.1 Consider the system x=4x—-y, y=2x+y.

a) Write the system as x= Ax. Show that the characteristic polynomial is
A> =51 +6, and find the eigenvalues and eigenvectors of A.

b) Find the general solution of the system.

c) Classify the fixed point at the origin.

d) Solve the system subject to the initial condition (x,,¥,) =(3,4).

5.2.2 (Complex eigenvalues) This exercise leads you through the solution of a
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linear system where the eigenvalues are complex. The system is x=x-—y,

y=x+y.

a) Find A and show that it has eigenvalues A, =1+i, A, = 1—i, with eigenvectors
v, =(,1), v, =(=i,1). (Note that the eigenvalues are complex conjugates, and

so are the eigenvectors—this is always the case for real A with complex eigen-
values.)

b) The general solution is x(r) = c,e™'v, +c,e™'v,. So in one sense we’re done!
But this way of writing x(r) involves complex coefficients and looks unfamil-
iar. Express x(7) purely in terms of real-valued functions. (Hint: Use
€' =coswt +isinwt to rewrite x(7) in terms of sines and cosines, and then
separate the terms that have a prefactor of i from those that don’t.)

Plot the phase portrait and classify the fixed point of the following linear systems,
If the eigenvectors are real, indicate them in your sketch.

523 x=y,y=-2x-3y 524 x=5x+10y,y=—x-y
525 x=3x-4y,y=x-y 526 x=-3x+2y,y=x-2y
5.2.7 x=5x+2y,y=-17x-5y 528 x=-3x+4y,y=-2x+3y
529 x=4x-3y, y=8x-6y 5.2.10 x=y,y=—x-2y.

A
dimensional eigenspace corresponding to the eigenvalue A. Then solve the system
X = Ax and sketch the phase portrait.

A b
5.2.11 Show that any matrix of the form A = (O ), with b # 0, has only a one-

5.2.12 (LRC circuit) Consider the circuit equation LI+ RI + I/C =0, where

L,C>0and R>0.

a) Rewrite the equation as a two-dimensional linear system.

b) Show that the origin is asymptotically stable if R >0 and neutrally stable if
R=0.

¢) Classify the fixed point at the origin, depending on whetherl R?C — 4L is posi-
tive, negative, or zero, and sketch the phase portrait in all three cases.

5.2.13 (Damped harmonic oscillator) The motion of a damped harmonic oscilla-

tor is described by mi + bx + kx =0, where b > 0 is the damping constant.

a) Rewrite the equation as a two-dimensional linear system.

b) Classify the fixed point at the origin and sketch the phase portrait. Be sure to
show all the different cases that can occur, depending on the relative sizes of
the parameters.

¢) How do your results relate to the standard notions of overdamped, critically
damped, and underdamped vibrations?

3.2.14 (A project about random systems) Suppose we pick a linear system at
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random; what’s the probability that the origin will be, say, an unstable spiral? To

a b
be more specific, consider the system X = Ax, where A =( d)' Suppose we
c

pick the entries a,b,c,d independently and at random from a uniform distribution

on the interval [—1,1]. Find the probabilities of all the different kinds of fixed
points.

To check your answers (or if you hit an analytical roadblock), try the Monte
Carlo method. Generate millions of random matrices on the computer and have the
machine count the relative frequency of saddl¢s, unstable spirals, etc.

Are the answers the same if you use a noymal distribution instead of a uniform
distribution?

5.3 Love Affairs
5.3.1 (Name-calling) Suggest names for the four romantic styles, determined
by the signs of a and b in R=aR+bJ.

5.3.2 Consider the affair described by R=1J, J=-R+J.

a) Characterize the romantic styles of Romeo and Juliet.

b) Classify the fixed point at the origin. What does this imply for the affair?
¢) Sketch R(r) and J(¢) as functions of ¢, assuming R(0) =1, J(0) =0.

In each of the following problems, predict the course of the love affair, depending
on the signs and relative sizes of a and b.

5.3.3 (Out of touch with their own feelings) Suppose Romeo and Juliet react to
each other, but not to themselves: R = aJ, J = bR. What happens?

5.3.4 (Fire and water) Do opposites attract? Analyze R=aR+bJ,J=-bR—al. E

5.3.5 (Peas in a pod) If Romeo and Juliet are romantic clones (R=aR+blJ, ”

J = bR + aJ), should they expect boredom or bliss?

5.3.6 (Romeo the robot) Nothing could ever change the way Romeo feels about

Juliet: R=0, J = aR + bJ. Does Juliet end up loving him or hating him?
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6

PHASE PLANE

6.0 Introduction

Tjhis chapter begins our study of two-dimensional nonlinear systems. First we con-
sider some of their general properties. Then we classify the kinds of fixed points
Fhat can arise, building on our knowledge of linear systems (Chapter 5). The theory
is further developed through a series of examples from biology (competition be-
tween two species) and physics (conservative systems, reversible systems, and the
pendulum). The chapter concludes with a discussion of index theory, a topological
method that provides global information about the phase portrait.

This chapter is mainly about fixed points. The next two chapters will discuss
closed orbits and bifurcations in two-dimensional systems.

6.1 Phase Portraits

The general form of a vector field on the phase plane is

X, = fi(x;,x;)
x, = £,(x,,x,)

.Where f, and f, are given functions. This system can be written more compactly
1n vector notation as

o— ’ . ///
Wl:)ere X= (xl,xz? ‘and f(x) = (f,(x), f,(x)). Here x represents a point in the
Phase plane, and x is the velocity vector at that point. By flowing along the vector

fleld, a phase point traces out a solution X(#), corresponding to a trajectory wind-
Ing through the phase plane (Figure 6.1.1).
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Furthermore, the entire phase plane is filled with tra-

X
x(1) jectories, since each point can play the role of an initial
condition.
For nonlinear systems, there’s typically no hope of
Figure 6.1.1 finding the trajectories analytically. Even when explicit

formulas are available, they are often too complicated
to provide much insight. Instead we will try to determine the qualitative behavior
of the solutions. Our goal is to find the system!s phase portrait directly from the
properties of f(x). An enormous variety of phage portraits is possible; one exam-
ple is shown in Figure 6.1.2.

N an\E

Some of the most salient features of any phase portrait are:

1. The fixed points, like A, B, and C in Figure 6.1.2. Fixed points satisfy

f(x*)= 0, and correspond to steady states or equilibria of the system.

2. The closed orbits, like D in Figure 6.1.2. These correspond to periodic \

solutions, i.e., solutions for which x(z+ T)=x(t) for all ¢, for some
T>0.

3. The arrangement of trajectories near the fixed points and closed orbits.
For example, the flow pattern near A and C is similar, and different
from that near B.

4. The stability or instability of the fixed points and closed orbits. Here,
the fixed points A, B, and C are unstable, because nearby trajectories
tend to move away from them, whereas the closed orbit D is stable.

Numerical Computation of Phase Portraits

Sometimes we are also interested in quantitative aspects of the phase portrait.
Fortunately, numerical integration of x =f(x) is not much harder than that of
X = f(x) . The numerical methods of Section 2.8 still work, as long as we replace
the numbers x and f(x) by the vectors x and f(x). We will always use the
Runge-Kutta method, which in vector form is
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X, =X, +(k, +2k, + 2k, +k,)
where

k, =f(x,)At

k, =f(x, + 1k )As
k, =f(x, +$k,)Ar
k, =f(x, +k;)Ar.

A stepsize Ar = 0.1 usually provides sufficient accuracy for our purposes.

When plotting the phase portrait, it often helps to see a grid of representative
vectors in the vector field. Unfortunately, the arrowheads and different lengths of
the vectors tend to clutter such pictures. A plot of the direction field is clearer:
short line segments are used to indicate the local direction of flow.

EXAMPLE 6.1.1:

Consider the system x = x+e™*, y = —y. First use qualitative arguments to ob-
tain information about the phase portrait. Then, using a computer, plot the direc-
tion field. Finally, use the Runge—Kutta method to compute several trajectories,
and plot them on the phase plane.

Solution: First we find the fixed points by solving x = 0, y = 0 simultaneously.
The only solution is (x*, y*) = (—1,0). To determine its stability, note that y(f) — 0
as t — oo, since the solution to y =—y is y(¢) = y,e”'. Hence e — 1 and so in the
long run, the equation for x becomes x = x + 1; this has exponentially growing so-
lutions, which suggests that the fixed point is unstable. In fact, if we restrict our at-
tention to initial conditions on the x-axis, then y, =0 and so y(¢) = 0 for all time.
Hence the flow on the x-axis is governed strictly by x = x +1. Therefore the fixed
point is unstable.

To sketch the phase portrait, it is helpful to plot the nullglines, defined as the
curves where either x=0 or y=0. The nullclines indicate where the flow is
purely horizontal or vertical (Figure 6.1.3). For example, the flow is horizontal
where y =0, and since y = ~y, this occurs on the line y =0. Along this line, the
flow is to the right where % = x + 1> 0, that is, where x > —1.

Similarly, the flow is vertical where x = x + ¢~ =0, which occurs on the curve

shown in Figure 6.1.3. On the upper part of the curve where y>0, the flow is
downward, since y < 0.
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Figure 6.1.3

The nuliclines also partition the plane into regions where x and y have variqus
signs. Some of the typical vectors are sketched above in Figure 6.1.3. Even with
the limited information obtained so far, Figure 6.1.3 gives a good sense of the

overall flow pattern. o
Now we use the computer to finish the problem. The direction field is indicated

by the line segments in Figure 6.1.4, and several trajectories are shown. Note how
the trajectories always follow the local slope.

— e e = e - e

~ ~ VN N Y N N N

N 2 LR A\ T T T T

PR AN T I UL T Y

TR\ R S Z A

R N W AN

Figure 6.1.4

The fixed point is now seen to be a nonlinear version of a saddle point. m

6.2 Existence, Uniqueness, and
Topological Consequences

We have been a bit optimistic so far—at this stage, we have no guarantee t'hat the 1
general nonlinear system X = f(x) even has solutions! Fortunately the existence g

and uniqueness theorem given in Section 2.5 can be generalized to two-dimen-

148 PHASE PLANE

sional systems. We state the result for n-dimensional systems, since no extra effort
is involved:

Existence and Uniqueness Theorem: Consider the initial value problem
x =f(x), x(0) = x,,. Suppose that f is continuous and that all its partial derivatives
df,[9x;, i, j =1, ..., n,are continuous for X in some open connected set D c R".
Then for x,, € D, the initial value problem has a solution x(f) on some time interval
(=7, 7) about £ = 0, and the solution is unique.

In other words, existence and uniqueness of solutions are guaranteed if f is contin-
uously differentiable. The proof of the theorem is similar to that for the case n =1,
and can be found in most texts on differential equations. Stronger versions of the
theorem are available, but this one suffices for most applications.

From now on, we’ll assume that all our vector fields are'smooth enough to en-
sure the existence and uniqueness of solutions, starting from any point in phase
space.

The existence and uniqueness theorem has an important corollary: different
trajectories never intersect. If two trajectories did intersect, then there would be

two solutions starting from the same point (the
crossing point), and this would violate the
uniqueness part of the theorem. In more intuitive
language, a trajectory can’t move in two direc-
tions at once.
Because trajectories can’t intersect, phase por-
Figure 6.2.1 traits always have a well-groomed look to them.
Otherwise they might degenerate into a snarl of
criss-crossed curves (Figure 6.2.1). The existence and uniqueness theorem pre-
vents this from happening.

In two-dimensional phase spaces (as opposed to higher-dimensional phase

spaces), these results have especially strong topological consequences. For exam-
ple, suppose there is a closed orbit C in the phase
C plane. Then any trajectory starting inside C is
trapped in there forever (Figure 6.2.2).

What is the fate of such a bounded trajectory? If
there are fixed points inside C, then of course the
trajectory might eventually approach one of them.
But what if there aren’t any fixed points? Your
intuition may tell you that the trajectory can’t
meander around forever—if so, you're right.
For vector fields on the plane, the Poincaré-
Bendixson theorem states that if a trajectory is confined to a closed, bounded
region and there are no fixed points in the region, then the trajectory must

Figure 6.2.2
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eventually approach a closed orbit. We’ll discuss this important theorem in Sec-
tion 7.3.

But that part of our story comes later. First we must become better acquainted
with fixed points.

6.3 Fixed Points and Lineariz?tion

In this section we extend the linearization techinique developed earlier for one-
dimensional systems (Section 2.4). The hope is that we can approximate the phase
portrait near a fixed point by that of a corresponding linear system.

Linearized System
Consider the system
x=fxy) ’
y=8xy)
and suppose that (x*,y*) is a fixed point, i.e.,
fax,y$)=0,  gx*y9)=0.
Let
u=x—x%*, v=y—y*

denote the components of a small disturbance from the fixed point. To see whether
the disturbance grows or decays, we need to derive differential equations for u and
v. Let’s do the u-equation first:

H=x (since x * is a constant)
= f(x*+u, y*+v) (by substitution)
= f(x*,y*)+ u% + v—gf—v +0@>,v?,uv) (Taylor series expansion)
=ug—+v@[—+0(u3,v2,uv) (since f(x*,y*)=0).
ox dy

To simplify the notation, we have written Jf /dx and df /dy, but please remember that

these partial derivatives are to be evaluated at the fixed point (x*, y*); thus they are

numbers, not functions. Also, the shorthand notation ow?, v:,uv) denotes quadratic

terms in u and v. Since u and v are small, these quadratic terms are extremely small.
Similarly we find

) dg Og s s
V=Uu—=+v—=+O(u,v ,uv).
ox ' (

o

arn BRI ACE BLI ANME

Hence the disturbance (i, v) evolves according to

A= s g + quadratic terms. )
1 . Y
ES oy

The matrix
](.r*,y*)

is called the Jacobian matrix at the fixed point (x*, y*). It is the multivariable ana-
log of the derivative f’(x*)seen in Section 2.4.

Now since the quadratic terms in (1) are tiny, it’s tempting to neglect them alto-
gether. If we do that, we obtain the linearized system

HEHHY

whose dynamics can be analyzed by the methods of Section 5.2.

b
1
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The Effect of Small Nonlinear Terms

Is it really safe to neglect the quadratic terms in (1)? In other words, does the
linearized system give a qualitatively correct picture of the phase portrait near
(x*,y*¥)? The answer is yes, as long as the fixed point for the linearized system
is not one of the borderline cases discussed in Section 5.2. In other words, if
the linearized system predicts a saddle, node, or a spiral, then the fixed point
really is a saddle, node, or spiral for the original nonlinear system. See An-
dronov et al. (1973) for a proof of this result, and Example 6.3.1 for a concrete
illustration.

The borderline cases (centers, degenerate nodes, stars,\or non-isolated fixed
points) are much more delicate. They can be altered by small nonlinear terms, as
we’ll see in Example 6.3.2 and in Exercise 6.3.11.

-

EXAMPLE 6.3.1:

Find all the fixed points of the system x = —x+x’, y =—2y, and use lineariza-
tion to classify them. Then check your conclusions by deriving the phase portrait
for the full nonlinear system.

Solution: Fixed points occur where x =0 and y =0 simultaneously. Hence we
need x =0 or x =%I1, and y=0. Thus, there are three fixed points: (0,0), (1,0),
and (—1,0). The Jacobian matrix at a general point (x, y) is
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(3_ 3—;]=(—1+3x2 0]
2 g 0 -2

-1 0
Next we evaluate A at the fixed points. At (0,0) , we find A= ( 0 2) , SO

(0,0) is a stable node. At (+1,0), A= (i 02] , so/both (1,0) and (-1,0) are sad-
dle points.

Now because stable nodes and saddle points ar¢ not borderline cases, we can be
certain that the fixed points for the full nonlinear system have been predicted cor-
rectly.

This conclusion can be checked explicjtly for the nonlinear system, since the
x and y equations are uncoupled; the system is essentially two independent
first-order systems at right angles to each other. In the y-direction, all trajecto-
ries decay exponentially to y = 0. In the x-direction, the trajectories are attracted
to x =0 and repelled from x =x1. The vertical lines x=0 and x =%l are in-
variant, because x =0 on them; hence any trajectory that starts on these lines
stays on them forever. Similarly, y =0 is an invariant horizontal line. As a final
observation, we note that the phase portrait must be symmetric in both the x and
y axes, since the equations are invariant under the transformations x — —x and
y — —y. Putting all this information together, we arrive at the phase portrait
shown in Figure 6.3.1.

Figure 6.3.1

This picture confirms that (0,0) is a stable node, and (£1,0) are saddles, as ex-
pected from the linearization. m

The next example shows that small nonlinear terms can change a center into a spiral.
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EXAMPLE 6.3.2:

Consider the system

x=-y+ax(x’ +y%)
y=x+ay(x* +y*)

where a is a parameter. Show that the linearized system incorrectly predicts that

the origin is a center for all values of a, whereas in fact the origin is a stable spiral
if a <0 and an unstable spiral if a > 0.

Solution: To obtain the linearization about (x*, y*) = (0,0), we can either com-
pute the Jacobian matrix directly from the definition, or we can take the following
shortcut. For any system with a fixed point at the origin, x and y represent devia-
tions from the fixed point, since u=x—x*=x and v=y— y*=y; hence we can
linearize by simply omitting nonlinear terms in x and y . Thus the linearized sys-
tem is X = —y, y = x. The Jacobian is

0 -1
A=
1 0
which has 7=0, A=1>0, so the origin is always a center, according to the lin-

earization.

To analyze the nonlinear system, we change variables to polar coordinates. Let
x =rcos@, y = rsin6. To derive a differential equation for r, we note x* +y* = r?,
sO xx + yy = rr. Substituting for x and y yields

ri = x(—y +ax(x* + y*)) + y(x + ay(x” + y*))
= a(xz + yz)z .
=ar.
Hence 7 = ar’. In Exercise 6.3.12, you are asked to derive the following differen-

tial equation for 9:

é=xy;ny
r

After substituting for x and y we find 6 = 1. Thus in polar coordinates the original
system becomes

F=ar’

6=1.

The system is easy to analyze in this form, because the radial and angular mo-
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tions are independent. All trajectories rotate about the origin with constant angular
velocity 8=1.

The radial motion depends on a, as shown in Figure 6.3.2.
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Figure 6.3.2

If a< 0, then r(t) — 0 monotonically as ¢t — oo . In this case, the origin is a sta-
ble spiral. (However, note that the decay is extremely slow, as suggested by the
computer-generated trajectories shown in Figure 6.3.2.) If a=0, then r(t)=r,
for all ¢ and the origin is a center. Finally, if a >0, then () — e monotonically
and the origin is an unstable spiral.

We can see now why centers are so delicate: all trajectories are required to close
perfectly after one cycle. The slightest miss converts the center into a spiral. m

Similarly, stars and degenerate nodes can be altered by small nonlinearities, but
unlike centers, their stability doesn’t change. For example, a stable star may be
changed into a stable spiral (Exercise 6.3.11) but not into an unstable spiral. This is
plausible, given the classification of linear systems in Figure 5.2.8: stars and de-
generate nodes live squarely in the stable or unstable region, whereas centers live
on the razor’s edge between stability and instability.

If we’re only interested in stability, and not in the detailed geometry of the tra-
jectories, then we can classify fixed points more coarsely as follows:

Robust cases:

Repellers (also called sources): both eigenvalues have positive real
part.

Attractors (also called sinks): both eigenvalues have negative real part.

Saddles: one eigenvalue is positive and one is negative.

Marginal cases:

Centers: both eigenvalues are pure imaginary.

Higher-order and non-isolated fixed points: at least one eigenvalue is
Zero.

Thus, from the point of view of stability, the marginal cases are those where at
least one eigenvalue satisfies Re(1)=0.
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Hyperbolic Fixed Points, Topological Equivalence, and

Structural Stability ze P (¥

If Re(4)# 0 for both eigenvalues, the fixed point is often called hyperbolic.
(This is an unfortunate name—it sounds like it should mean “saddle point”—but it
has become standard.) Hyperbolic fixed points are sturdy; their stability type is un-
affected by small nonlinear terms. Nonhyperbolic fixed points are the fragile ones.

We’ve already seen a simple instance of hyperbolicity in the context of vector
fields on the line. In Section 2.4 we saw that the stability of a fixed point was accu-
rately predicted by the linearization, as long as f’(x*) # 0. This condition is the
exact analog of Re(4) # 0.

These ideas also generalize neatly to higher-order systems. A fixed point of an
nth-order system is hyperbolic if all the eigenvalues of the linearization lie off the
imaginary axis, i.e., Re(4,)#0 for i=1, ..., n. The important Hartman—
Grobman theorem states that the local phase portrait near a hyperbolic fixed point
is “topologically equivalent” to the phase portrait of the linearization; in particular,
the stability type of the fixed point is faithfully captured by the linearization. Here
topologically equivalent means that there is a homeomorphism (a continuous de-
formation with a continuous inverse) that maps one local phase portrait onto the
other, such that trajectories map onto trajectories and the sense of time (the direc-
tion of the arrows) is preserved.

Intuitively, two phase portraits are topologically equivalent if one is a distorted —<—

version of the other. Bending and warping are allowed, but not ripping, so closed or-
bits must remain closed, trajectories connecting saddle points must not be broken, etc.

Hyperbolic fixed points also illustrate the important general notion of structural
stability. A phase portrait is structurally stable if its topology cannot be changed
by an arbitrarily small perturbation to the vector field. For instance, the phase por-
trait of a saddle point is structurally stable, but that of a center is not: an arbitrarily
small amount of damping converts the center to a spiral.

6.4 Rabbits versus Sheep

In the next few sections we’ll consider some simple examples of phase plane
analysis. We begin with the classic Lotka-Volterra model of competition between
two species, here imagined to be rabbits and sheep. Suppose that both species are
competing for the same food supply (grass) and the amount available is limited.
Furthermore, ignore all other complications, like predators, seasonal effects, and
other sources of food. Then there are two main effects we should consider:

1. Each species would grow to its carrying capacity in the absence of the
other. This can be modeled by assuming logistic growth for each
species (recall Section 2.3). Rabbits have a legendary ability to repro-
duce, so perhaps we should assign them a higher intrinsic growth rate.
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2. When rabbits and sheep encounter each other, trouble starts. Some-
times the rabbit gets to eat, but more usually the sheep nudges the
rabbit aside and starts nibbling (on the grass, that is). We’ll assume
that these conflicts occur at a rate proportional to the size of each
population. (If there were twice as many sheep, the odds of a rabbit
encountering a sheep would be twice as great.) Furthermore, we as-
sume that the conflicts reduce the growth ra#e for each species, but
the effect is more severe for the rabbits. J

A specific model that incorporates these assumptions i

x=x(B3-x-2y)
y=y2-x-y)
where

x(t) = population of rabbits,
y(r) = population of sheep

and x,y > 0. The coefficients have been chosen to reflect this scenario, but are oth-
erwise arbitrary. In the exercises, you’ll be asked to study what happens if the co-
efficients are changed.

To find the fixed points for the system, we solve x=0 and y=0 simultane-
ously. Four fixed points are obtained: (0,0), (0,2), (3,0), and (1,1). To classify
them, we compute the Jacobian:

Ao ‘?T g_y _(3-2x-2y  -2x
g—f‘— % -y 2-x0-2y)

Now consider the four fixed points in turn:

30
(0,0): ThenAz( )
0 2

The eigenvalues are A =3, 2 so (0,0) is an unstable node. Trajectories leave
the origin parallel to the eigenvector for 4 =2, i.e. tangential to
v =(0,1), which spans the y-axis. (Recall the general rule: at a

node, trajectories are tangential to the slow eigendirection,

which is the eigendirection with the smallest |4|.) Thus, the
phase portrait near (0,0) looks like Figure 6.4.1.

-1 0
Figure 6.4.1 (0,2): Then A= (_2 _2] .

This matrix has eigenvalues A = —1,-2, as can be seen from inspection, since
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the matrix is triangular. Hence the fixed point is a stable node. Trajectories ap-
proach along the eigendirection associated with A = —1 ; you can check that this di-

rection is spanned by v =(1,~2). Figure 6.4.2 shows the phase portrait near the
fixed point (0,2).

y \\

Figure 6.4.2

-3 -6
3,0): ThenA=[0 J and A =-3,-1.

This is also a stable node. The trajectories approach along the slow eigendirec-
tion spanned by v = (3,-1), as shown in Figure 6.4.3.

y

N\

Figure 6.4.3

-1 -1

Hence this is a saddle point. As you can check, the phase portrait near (1,1) is as
shown in Figure 6.4.4.

(1,): Then A=( ), which has 7=-2, A=-1, and A=~1%+/2.

\

X

Figure 6.4.4

Combining Figures 6.4.1-6.4.4, we get Figure 6.4.5, which already conveys a
8ood sense of the entire phase portrait. Furthermore, notice that the x and y axes
contain straight-line trajectories, since ¥ =0 when x = 0, and y=0 when y=0.
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Figure 6.4.5

Now we use common sense to fill in the rest of the phase portrait (Figure 6.4.6).
For example, some of the trajectories starting near the orjgin must go to the stable
node on the x-axis, while others must go to the stable'node on the y-axis. In be-
tween, there must be a special trajectory that can’t decide which way to turn, and
so it dives into the saddle point. This trajectory is part of the stable manifold of the
saddle, drawn with a heavy line in Figure 6.4.6.

stable
y manifold

Y

Figure 6.4.6

The other branch of the stable manifold consists of a trajectory coming in “from in-
finity.” A computer-generated phase portrait (Figure 6.4.7) confirms our sketch.
The phase portrait has an inter-

sheep esting biological interpretation. It
shows that one species generally

2 drives the other to extinction. Tra-
jectories starting below the stable

manifold lead to eventual extinc-

! tion of the sheep, while those start-

ing above lead to eventual

—— . extinction of the rabbits. This di-

1 2 3 rabbits  chotomy occurs in other models of

Figure 6.4.7 competition and has led biologists

to formulate the principle of com-
petitive exclusion, which states that two species competing for the same limited re-
source typically cannot coexist. See Pianka (1981) for a biological discussion, and
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Pielou (1969), Edelstein-Keshet (1988), or Murray (1989) for additional refer-
ences and analysis.

Our example also illustrates some general mathematical concepts. Given an at-
tracting fixed point x *, we define its basin of attraction to be the set of initial con-
ditions x,, such that x(r) > x * as t — . For instance, the basin of attraction for
the node at (3,0) consists of all the points lying below the stable manifold of the
saddle. This basin is shown as the shaded region in Figure 6.4.8.

basin boundary =
stable manifold of saddle

basin for (3, 0)

Figure 6.4.8

Because the stable manifold separates the basins for the two nodes, it is called the
basin boundary. For the same reason, the two trajectories that comprise the stable
manifold are traditionally called separatrices. Basins and their boundaries are im-

portant because they partition the phase space into regions of different long-term
behavior.

6.5 Conservative Systems

Newton’s law F =ma is the source of many important stcond-order systems. For
example, consider a particle of mass m moving along the x-axis, subject to a non-
linear force F(x). Then the equation of motion is

mx = F(x).

Notice that we are assuming that F is independent of both x and ¢ ; hence there is
no damping or friction of any kind, and there is no time-dependent driving force.

Under these assumptions, we can show that energy is conserved, as follows. Let
V(x) denote the potential energy, defined by F(x)= —dV/dx . Then

v’
mjc'+ﬂ—0
——=0. )
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Now comes a trick worth remembering: multiply both sides by x and notice that
the left-hand side becomes an exact time-derivative!

mii+ -0 > —é-[Jz-micz +V(x)|=0
dx dt

where we’ve used the chain rule

d dv dx
Lv erer
o 0=

in reverse. Hence, for a given solution x(z), the total energy
E=4mi® +V(x)

is constant as a function of time. The energy is often called a conserved quantity, a
constant of motion, or a first integral. Systems for which a conserved quantity ex-
ists are called conservative systems.

Let’s be a bit more general and precise. Given a system X = f(x), a conserved
quantity is a real-valued continuous function E(x) that is constant on trajectories,
i.e. dE/dt = 0. To avoid trivial examples, we also require that E(x) be nonconstant
on every open set. Otherwise a constant function like E(x) =0 would qualify as a
conserved quantity for every system, and so every system would be conservative!
Our caveat rules out this silliness.

The first example points out a basic fact about conservative systems.

EXAMPLE 6.5.1:

Show that a conservative system cannot have any attracting fixed points.

Solution: Suppose x * were an attracting fixed point. Then all points in its basin
of attraction would have to be at the same energy E(x*) (because energy is constant
on trajectories and all trajectories in the basin flow to x *). Hence E(x) must be a
constant function for X in the basin. But this contradicts our definition of a conserv-
ative system, in which we required that E(x) be nonconstant on all open sets. m

If attracting fixed points can’t occur, then what kind of fixed points can occur?
One generally finds saddles and centers, as in the next example.

EXAMPLE 6.5.2:

Consider a particle of mass m=1 moving in a double-well potential
V(x)=—-4x*+4x* Find and classify all the equilibrium points for the system.
Then plot the phase portrait and interpret the results physically.

Solution: The force is —dV/dx = x — x*, so the equation of motion is
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X=x-x".

This can be rewritten as the vector field

where y represents the particle’s velocity. Equilibrium points occur where
(x,y)=(0,0) . Hence the equilibria are (x*,y*) = (0,0) and (*+1,0). To classify
these fixed points we compute the Jacobian:

0 1
A= ) .
1-3x° 0

At (0,0), we have A=-1, so the origin is a saddle point. But when (x*,y*) =
(£1,0), we find 7=0, A=2; hence these equilibria are predicted to be centers.

At this point you should be hearing warning bells—in Section 6.3 we saw that
small nonlinear terms can easily destroy a center predicted by the linear approxi-
mation. But that’s not the case here, because of energy conservation. The trajecto-
ries are closed curves defined by the contours of constant energy, i.e.,

E=14y"—1x*+3+x* =constant.

Figure 6.5.1 shows the trajectories corresponding to different values of E. To
decide which way the arrows point along the trajectories, we simply compute the
vector (x,y) at a few convenient locations. For example, x >0 and y =0 on the
positive y-axis, so the motion is to the right. The orientation of neighboring trajec-
tories follows by continuity.

As expected, the system has a sad-

dle point at (0,0) and centers at (1,0)
//\\\1’//_\\\ and (-1,0). Each of the neutrally sta-
O O ble centers is surrounded by a family
K\_//\\// * of small closed orbits. There are also
large closed orbits that encircle all

three fixed points.
Thus solutions of the system are
Figure 6.5.1 typically periodic, except for the
equilibrium solutions and two very
special trajectories: these are the tra-
Jectories that appear to start and end at the origin. More precisely, these trajectories
approach the origin as ¢ — teo. Trajectories that start and end at the same fixed

point are called homoclinic orbits. They are common in conservative systems, but
are rare otherwise. Notice that a homoclinic orbit does rot correspond to a periodic
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solution, because the trajectory takes forever trying to reach the fixed point.
Finally, let’s connect the phase portrait to the motion of an undamped particle in
a double-well potential (Figure 6.5.2).

Figure 6.5.2 /

The neutrally stable equilibria correspond to the particle at rest at the bottom of
one of the wells, and the small closed orbits represent small oscillations about
these equilibria. The large orbits represent more energetic oscillations that repeat-
edly take the particle back and forth over the hump. Do you see what the saddle
point and the homoclinic orbits mean physically? m

EXAMPLE 6.5.3:

Sketch the graph of the energy function E(x,y) for Example 6.5.2.

Solution: The graph of E(x,y) is shown in Figure 6.5.3. The energy E is plot-
ted above each point (x, y) of the phase plane. The resulting surface is often called
the energy surface for the system.

=y

Figure 6.5.3

Figure 6.5.3 shows that the local minima of E project down to centers in the
phase plane. Contours of slightly higher energy correspond to the small orbits sur-
rounding the centers. The saddle point and its homoclinic orbits lie at even higher
energy, and the large orbits that encircle all three fixed points are the most energetic
of all.

It’s sometimes helpful to think of the flow as occurring on the energy surface it-
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self, rather than in the phase plane. But notice—the trajectories must maintain a
constant height £, so they would run around the surface, not down it. m

Nonlinear Centers

Centers are ordinarily very delicate but, as the examples above suggest, they are
much more robust when the system is conservative. We now present a theorem
about nonlinear centers in second-order conservative systems.

The theorem says that centers occur at the local minima of the energy function.
This is physically plausible—one expects neutrally stable equilibria and small os-
cillations to occur at the bottom of any potential well, no matter what its shape.

Theorem 6.5.1: (Nonlinear centers for conservative systems) Consider
the system x = f(x), where x=(x,y) € R?, and f is continuously differentiable.
Suppose there exists a conserved quantity E(x) and suppose that x * is an isolated
fixed point (i.e., there are no other fixed points in a small neighborhood surround-
ing x*). If x* is a local minimum of E, then all trajectories sufficiently close to
X * are closed.

Ideas behind the proof: Since E is constant on trajectories, each trajec-
tory is contained in some contour of E. Near a local maximum or minimum, the
contours are closed. (We won’t prove this, but Figure 6.5.3 should make it seem
obvious.) The only remaining question is whether the trajectory actually goes all
the way around the contour or whether it stops at a fixed point on the contour.
But because we’re assuming that x * is an isolated fixed point, there cannot be
any fixed points on contours sufficiently close to x *. Hence all trajectories in a
sufficiently small neighborhood of x* are closed orbits, and therefore x* is a
center. m

Two remarks about this result:

1. The theorem is valid for local maxima of E also. Just replace the
function E by —F, and maxima get convegrted to minima; then Theo-
rem 6.5.1 applies.

2. We need to assume that x * is isolated. Otherwise there are coun-
terexamples due to fixed points on the energy contour—see Exercise
6.5.12.

Another theorem about nonlinear centers will be presented in the next section.

6.6 Reversible Systems

Many mechanical systems have time-reversal symmetry. This means that their dy-
namics look the same whether time runs forward or backward. For example, if you
were watching a movie of an undamped pendulum swinging back and forth, you
wouldn’t see any physical absurdities if the movie were run backward.
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In fact, any mechanical system of the form mx = F(x) is symmetric under time
reversal. If we make the change of variables 1 — —, the second derivative X stays
the same and so the equation is unchanged. Of course, the velocity x would be re-
versed. Let’s see what this means in the phase plane. The equivalent system is

where y is the velocity. If we make the change of variables t — 4t and y — —y,
both equations stay the same. Hence if (x(r), y()) is a solution, then so is (x(-—1),
—y(—1)). Therefore every trajectory has a twin: they differ

and a reflection in the x-axis (Figure 6.6.1).

y by time-reversal

y

Figure 6.6.1

The trajectory above the x-axis looks just like the one below the x-axis, except the
arrows are reversed.

More generally, let’s define a reversible system to be any second-order system
that is invariant under t — —t and y — —y. For example, any system of the form

x=f(x,y)
y=g(x,y),

where f is odd in y and g is even in y (ie., f(x,—y)=-f(x,y) and
g(x,—y) = g(x,y) ) is reversible.

Reversible systems are different from conservative systems, but they have
many of the same properties. For instance, the next theorem shows that centers are
robust in reversible systems as well.

Theorem 6.6.1: (Nonlinear centers for reversible systems) Suppose the
origin x* =0 is a linear center for the continuously differentiable system

x=f(x,y)
y=gxy),

and suppose that the system is reversible. Then sufficiently close to the origin, all
trajectories are closed curves.
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Ideas behind the proof: Consider a trajectory that starts on the positive
x-axis near the origin (Figure 6.6.2). Sufficiently near the origin, the flow swirls
around the origin, thanks to the dominant influence of the linear center, and so the
trajectory eventually intersects the negative x-axis. (This is the step where our
proof lacks rigor, but the claim should seem plausible.)

y

Figure 6.6.2

Now we use reversibility. By reflecting the trajectory across the x-axis, and
changing the sign of ¢, we obtain a twin trajectory with the same endpoints but
with its arrow reversed (Figure 6.6.3).

/i*—\
\*J x
Figure 6.6.3

Together the two trajectories form a closed orbit, as desired. Hence all trajectories
sufficiently close to the origin are closed. =

EXAMPLE 6.6.1:
Show that the system

x=y-y’
y=—x-y

has a nonlinear center at the origin, and plot the phase portrait.

Solution: We’ll show that the hypotheses of the theorem are satisfied. The Ja-
cobian at the origin is

A=(_°l (1))
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This has 7 =0, A >0, so the origin is a linear center. Furthermore, the system is re-
versible, since the equations are invariant under the transformation t— -z,
y — —y. By Theorem 6.6.1, the origin is a nonlinear center.

The other fixed points of the sys-

\//y/// tem are (~1,1) and (-1,~1). They

\Y

reversibility symmetry is apparent.

The trajectories above the x-axis

\ have twins below the x-axis, with
arrows reversed.

Figure 6.6.4 Notice that the twin saddle

points are joined by a pair of trajec-
tories. They are called heteroclinic trajectories or saddle connections. Like homo-
clinic orbits, heteroclinic trajectories are much more common in reversible or
conservative systems than in other types of systems. w

Although we have relied on the computer to plot Figure 6.6.4, it can be sketched

on the basis of qualitative reasoning alone. For example, the existence of the

- heteroclinic trajectories can be deduced rigorously using reversibility arguments
(Exercise 6.6.6). The next example illustrates the spirit of such arguments.

EXAMPLE 6.6.2:

Using reversibility arguments alone, show that the system
xX=y
y=x- x>

has a homoclinic orbit in the half-plane x > 0.

Solution: Consider the unstable manifold of the saddle point at the origin. This
manifold leaves the origin along the vector (1,1), since this is the unstable eigen-
direction for the linearization. Hence, close to the origin, part of the unstable man-
ifold lies in the first quadrant x, y > 0. Now imagine a phase point with coordinates
(x(#), y(t)) moving along the unstable manifold, starting from x,y small and posi-
tive. At first, x(¢) must increase since x =y >0. Also, y(f) increases initially,
since y=x— x>0 for small x. Thus the phase point moves up and to the right.
Its horizontal velocity is continually increasing, so at some time it must cross the
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vertical line x =1. Then y <0 so y(t) decreases, eventually reaching y = 0. Fig-
ure 6.6.5 shows the situation.

Figure 6.6.5

Now, by reversibility, there must be a twin trajectory with the same endpoints
but with arrow reversed (Figure 6.6.6). Together the two trajectories form the de-

sired homoclinic orbit. m
Yy

There is a more general definition of reversibility
which extends nicely to higher-order systems. Con-
1 sider any mapping R(x) of the phase space to itself
that satisfies R*(x)=x. In other words, if the map-
ping is applied rwice, all points go back to where they
. started. In our two-dimensional examples, a reflection
Figure 6.6.6 . . ..
about the x-axis (or any axis through the origin) has
this property. Then the system x = f(x) is reversible
if it is invariant under the change of variables t — —t , x — R(x).
Our next example illustrates this more general notion of reversibility, and also
highlights the main difference between reversible and conservative systems.

EXAMPLE 6.6.3:
Show that the system 7

X=2c0osx—~cosy

y=2c0sy—cosx

is reversible, but not conservative. Then plot the phase portrait.

Solution: The system is invariant under the change of variables t — —, x — —x,
and y — —y. Hence the system is reversible, with R(x,y) = (—x,—y) in the preced-
ing notation. '

To show that the system is not conservative, it suffices to show that it has an at-
tracting fixed point. (Recall that a conservative system can never have an attracting
fixed point—see Example 6.5.1.)

The fixed points satisfy 2 cosx = cosy and 2 cos y=cosx . Solving these equa-
tions simultaneously yields cos x* = cos y* = 0. Hence there are four fixed points,
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given by (x*,y*)=(x%, +%).
We claim that (x*,y*)=(—%, —%) is an attracting fixed point. The Jacobian
there is

A 2sinx* sinx* -2 -1
“{sinx* 2sinx*) (-1 2/
which has 7=—4, A=3, 7> —4A =4 Therefore the fixed point is a stable /node.
This shows that the system is not conservative.

The other three fixed points can be shown to be an unstable node and t«vo sad-
dies. A computer-generated phase portrait is shown in Figure 6.6.7.

y

/

-

Figure 6.6.7

To see the reversibility symmetry, compare the dynamics at any two points (x, y) and
R(x,y) = (=x,~y). The trajectories look the same, but the arrows are reversed. In
particular, the stable node at (—%, —%)is the twin of the unstable node at (%, §). m

The system in Example 6.6.3 is closely related to a model of two superconduct-
ing Josephson junctions coupled through a resistive load (Tsang et al. 1991). For
further discussion, see Exercise 6.6.9 and Example 8.7.4. Reversible, nonconserv-
ative systems also arise in the context of lasers (Politi et al. 1986) and fluid flows
L (Stone, Nadim, and Strogatz 1991 and Exercise 6.6.8).

6.7 Pendulum

Do you remember the first nonlinear system you ever studied in school? It was
probably the pendulum. But in elementary courses, the pendulum’s essential non-
linearity is sidestepped by the small-angle approximation sin = 6. Enough of
that! In this section we use phase plane methods to analyze the pendulum, even in
the dreaded large-angle regime where the pendulum whirls over the top.
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In the absence of damping and external driving, the motion of a pendulum is
governed by

2

0 g .
'Zd?-+281n0=0 1)

wher.e 0 is the angle from the downward vertical, g is the acceleration due to
gravity, and L is the length of the pendulum (Figure 6.7.1).

)

Figure 6.7.1

. We nondimensionalize (1) by introducing a frequency @ = ./g/L and a dimen-
sionless time 7 = @r. Then the equation becomes

6+sin=0 )

where the overdot denotes differentiation with respect to 7. The corresponding
system in the phase plane is

? =y . (3a)
v=-8in0 (3b)
where v is the (dimensionless) angular velocity.
. Thfe fixed points are (8%, v*) = (km, 0), where kis any integef. There’s no phys-
1f:al dlffc?rence between angles that differ by 27, so we’ll concentrate on the two
fixed points (0,0) and (7,0). At (0,0), the Jacobianis ~

0
A= !
-1 0
so the origin is a linear center.

In f‘act, the origin is a nonlinear center, for two reasons. First, the system (3) is
reversible: the equations are invariant under the transformation T=>-T,v—>—v,
Then Theorem 6.6.1 implies that the origin is a nonlinear center.

' Second, the system is also conservative. Multiplying (2) by 6 and integrating
yields

0(6+sinf)=0 = +6? —cos @ = constant.
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The energy function
E(8,v)=+v? —cos@ “)

has a local minimum at (0,0), since E = £ (v? +6%)—1 for small (8, v). Hence Theo-
rem 6.5.1 provides a second proof that the origin is a nonlinear center. (This argument
also shows that the closed orbits are approximately circular, with 6* + v =2E+1))

Now that we’ve beaten the origin to death, consider the fixed point at (x,0).
The Jacobian is

M 0 1
1 o)
The characteristic equation is I* —1=0. Therefore A, =—1, A, =1; the fixed
point is a saddle. The corresponding eigenvectors are v, =(1,-1) and v, =(1,1).

The phase portrait near the fixed points can be sketched from the information
obtained so far (Figure 6.7.2).

v

@

Figure 6.7.2

To fill in the picture, we include the energy contours E = L v* —cos@ for different
values of E. The resulting phase portrait is shown in Figure 6.7.3. The picture is
periodic in the O-direction,
as we’d expect.

Now for the physical inter-
pretation. The center corre-
sponds to a state of neutrally
stable equilibrium, with the
pendulum at rest and hanging
straight down. This is the low-
est possible energy state
Figure 6.7.3 (E=-1). The small orbits

surrounding the center repre-
sent small oscillations about equilibrium, traditionally called librations. As E increases,
the orbits grow. The critical case is E = 1, corresponding to the heteroclinic trajectories
joining the saddles in Figure 6.7.3. The saddles represent an inverted pendulum at rest;
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hence the heteroclinic trajectories represent delicate ‘motions in which the pendulum
slows to a halt precisely as it approaches the inverted position. For E > 1, the pendulum
whirls repeatedly over the top. These rotations should also be regarded as periodic solu-
tions, since € = —x and 6 = +7 are the same physical position.

Cylindrical Phase Space

The phasejportrait for the pendulum is more illuminating when wrapped onto
the surface of a cylinder (Figure 6.7.4). In fact, a cylinder is the natural phase
space for the pendulum, because it incor-
porates the fundamental geometric dif-
ference between v and 6: the angular
E>1 velocity v is a real number, whereas @ is
an angle.

There are several advantages to the
cylindrical representation. Now the pe-
riodic whirling motions look peri-
odic—they are the closed orbits that
encircle the cylinder for E >1. Also, it
becomes obvious that the saddle points
in Figure 6.7.3 are all the same physical
state (an inverted pendulum at rest).
The heteroclinic trajectories of Figure
6.7.3 become homoclinic orbits on the
cylinder.

There is an obvious symmetry be-
tween the top and bottom half of Figure 6.7.4. For example, both homoclinic or-
bits have the same energy and shape. To highlight this symmetry, it is

interesting (if a bit
_mind-boggling at first)

. to plot the energy verti-
r cally instead of the an-
gular velocity v (Figure

6.7.5). Then the orbits

rotations on the cylinder remain
at  constant  height,

while the cylinder gets

bent into a U-tube. The

T E=1 two arms of the tube are
distinguished by the
sense of rotation of the
- E=-1 pendulum, either clock-
wise or counterclock-

)

\

L

Figure 6.7.4

cloqkwise counterclockwise
whirling whirling

librations

Figure 6.7.5
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wise. At low energies, this distinction no longer exists; the pendulum oscillates
to and fro. The homoclinic orbits lie at E =1, the borderline between rotations
and librations.

At first you might think that the trajectories are drawn incorrectly on one
of the arms of the U-tube. It might seem that the arrows for clockwise and coun-
terclockwise motions should go in opposite directions. But if you think about
the coordinate system shown in Figure 6.7.6, you’ll see that the picture is
correct.

bottom top top
6=rx 6=0
.- T 1 - =
6=0 | | e=0 "
g _ v=0
bend and v T T
stretch S~—1—"
v increasing " -
bottom ¢ | )

Figure 6.7.6

The point is that the direction of increasing € has reversed when the bottom of the
cylinder is bent around to form the U-tube. (Please understand that Figure 6.7.6
shows the coordinate system, not the actual trajectories; the trajectories were
shown in Figure 6.7.5.)

Damping

Now let’s return to the phase plane, and suppose that we add a small amount of
linear damping to the pendulum. The governing equation becomes

0+bO+sinf=0

where b>0 is the damping strength. Then centers become stable spirals while
saddles remain saddles. A computer-generated phase portrait is shown in Figure
6.7.7.
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Figure 6.7.7

The picture on the U-tube is clearer. All trajectories continually lose altitude,
except for the fixed points (Figure 6.7.8).

cloc_k\yise counterclockwise
whirling whirling
D C 8
rotations
0 T E=1
‘ librations
L E=-1
Figure 6.7.8 -

We can see this explicitly by computing the change in energy along a trajectory:

o (36 - cos6)=6(+sin6) = -b6* <0.

Ie_{ence E decreases monotonically along trajectories, except at fixed points where
=0.

The trajectory shown in Figure 6.7.8 has the following physical interpretation:
tbe pendulum is initially whirling clockwise. As it loses energy, it has a harder
time rotating over the top. The corresponding trajectory spirals down the arm of
the U-tube until E <1; then the pendulum doesn’t have enough energy to whirl,
and so it settles down into a small oscillation about the bottom. Eventually the mo-
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tion damps out and the pendulum comes to rest at its stable equilibrium.

This example shows how far we can go with pictures—without invoking any
difficult formulas, we were able to extract all the important features of the pendu-
lum’s dynamics. It would be much more difficult to obtain these results analyti-
cally, and much more confusing to interpret the formulas, even if we could find
them.

6.8 Index Theory

In Section 6.3 we learned how to linearize a system about a fixed point. Lin-
earization is a prime example of a local method: it gives us a detailed micro-
scopic view of the trajectories near a fixed point, but it can’t tell us what happens
to the trajectories after they leave that tiny neighborhood. Furthermore, if the
vector field starts with quadratic or higher-order terms, the linearization tells us
nothing.

In this section we discuss index theory, a method that provides global informa-
tion about the phase portrait. It enables us to answer such questions as: Must a
closed trajectory always encircle a fixed point? If so, what types of fixed points are
permitted? What types of fixed points can coalesce in bifurcations? The method
also yields information about the trajectories near higher-order fixed points. Fi-
nally, we can sometimes use index arguments to rule out the possibility of closed
orbits in certain parts of the phase plane.

The Index of a Closed Curve

The index of a closed curve C is an integer that measures the winding of the
vector field on C. The index also provides information about any fixed points that
might happen to lie inside the curve, as we’ll see.
This idea may remind you of a concept in electrostatics. In that subject, one
often introduces a hypothetical closed surface (a “Gaussian surface”) to probe a
configuration of electric charges. By studying the behavior of the electric field
on the surface, one can determine the total amount
of charge inside the surface. Amazingly, the behav-

_ ior on the surface tells us what’s happening far away
inside the surface! In the present context, the electric
field is analogous to our vector field, the Gaussian
surface is analogous to the curve C, and the total
charge is analogous to the index.

Now let’s make these notions precise. Suppose
that x = f(x) is a smooth vector field on the phase
plane. Consider a closed curve C (Figure 6.8.1). This

curve is not necessarily a trajectory—it’s simply a loop that we’re putting in the
phase plane to probe the behavior of the vector field. We also assume that C is a

(*,3)

Figure 6.8.1
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“simple closed curve” (i.e., it doesn’t intersect itself) and that it doesn’t pass
through any fixed points of the system. Then at each point x on C, the vector field
x = (x,y) makes a well-defined angle

¢ =tan"' (y/x)
with the positive x-axis (Figure 6.8.1).
As x moves counterclockwise around C, the angle ¢ changes continuously
| since the vector field is smooth. Also, when x returns to its starting place, ¢ re-

turns to its original direction. Hence, over one circuit, ¢ has changed by an integer

multiple of 27. Let [q)] . be the net change in ¢ over one circuit. Then the index of
the closed curve C with respect to the vector field f is defined as

1 =ﬁ[¢]c

Thus, I is the net number of counterclockwise revolutions made by the vector
field as x moves once counterclockwise around C.

To compute the index, we do not need to know the vector field everywhere; we
only need to know it along C. The first two examples illustrate this point.

EXAMPLE 6.8.1:

Given that the vector field varies along C as shown in Figure 6.8.2, find I..

Figure 6.8.2

Solution: As we traverse C once counterclockwise, the vectors rotate through
one full turn in the same sense. Hence 1. = +1.

If you have trouble visualizing this, here’s a foolproof method. Number the vec-
tors in counterclockwise order, starting anywhere on C (Figure 6.8.3a). Then
transport these vectors (without rotation!) such that their tails lie at a common ori-

gin (Figure 6.8.3b). The index equals the net number of counterclockwise revolu-
tions made by the numbered vectors.
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Figure 6.8.3

As Figure 6.8.3b shows, the vectors rotate once counterclockwise as we go in in-
creasing order from vector #1 to vector #8. Hence I. = +1 .=

EXAMPLE 6.8.2:
Given the vector field on the closed curve shown in Figure 6.8.4a, compute 1.

3
4 2
;
c 6 8
5
1 5 1
4
2
3
6 8
7
(a) (b
Figure 6.8.4

Solution: We use the same construction as in Example 6.8.1. As we make one
circuit around C, the vectors rotate through one full turn, but now in the opposite
sense. In other words, the vectors on C rotate clockwise as we go around C coun-
terclockwise. This is clear from Figure 6.8.4b; the vectors rotate clockwise as we
go in increasing order from vector #1 to vector #8. Therefore I, =—1.w

In many cases, we are given equations for the vector field, rather than a picture
of it. Then we have to draw the picture ourselves, and repeat the steps above.
Sometimes this can be confusing, as in the next example.

EXAMPLE 6.8.3:

Given the vector field x = x’y, y = x* —y? find I, where C is the unit circle
24+y'=1.
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Solution: To get a clear picture of the vector field, it is sufficient to consider a few
conveniently chosen points on C. For instance, at (x,y) = (1,0), the vector is (x,y) =
(xy, x* = y*)=(0,1). This vector is labeled #1 in Figure 6.8.5a. Now we move
counterclockwise around C,
computing vectors as we go.
At (x,y)= 7‘2-(1,1), we have
£,y)= (x,y)=7=(10), la-

beled #2. The remaining vec-

15,9

6,8 2,4

37 tors are found similarly.
' Notice that different points on

the circle may be associated

with the same vector; for ex-
(a) (b)

ample, vector #3 and #7 are
Figure 6.8.5 both (0,-1).

Now we translate the vectors over to Figure 6.8.5b. As we move from #1 to #9
in order, the vectors rotate 180° clockwise between #1 and #3, then swing back
360° counterclockwise between #3 and #7, and finally rotate 180° clockwise again
between #7 and #9 as we complete the circuit of C . Thus [¢] c=-n+2r-m=0
and therefore I. =0.m

We plotted nine vectors in this example, but you may want to plot more to see
the variation of the vector field in finer detail.

Properties of the Index

Now we list some of the most important properties of the index.

rd
1. Suppose that C can be continuously deformed into C* without passing
through a fixed point. Then I. = I ..

This property has an elegant proof: Our assumptions imply that as
we deform Cinto C”, the index /.. varies continuously. But I, is an in-
teger—hence it can’t change without jumping! (To put it more for-
mally, if an integer-valued function is continuous, it must be constant.)

As you think about this argument, try to see where we used the as-
sumption that the intermediate curves don’t pass through any fixed
points.

2.If C doesn’t enclose any fixed points, then I.=0.

Proof: By property (1), we can shrink C to a tiny circle without
changing the index. But ¢ is essentially constant on such a circle, be-
cause all the vectors point in nearly the same direction, thanks to the as-
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sumed smoothness of the vector field (Figure 6.8.6). Hence [¢] =0

and therefore 1. =C.
2\

Figure 6.8.6 Y

)

3. If we reverse all the arrows in the vector field by changing t — —t, the
index is unchanged.
Proof: All angles change from ¢ to ¢ + 7. Hence [¢],. stays the same.
4. Suppose that the closed curve C is actually a trajectory for the system,
i.e., C is aclosed orbit. Then I. = +1.
We won’t prove this, but it should be clear from geometric intuition
(Figure 6.8.7).

Figure 6.8.7

Notice that the vector field is everywhere tangent to C, because C is a trajectory.
Hence, as x winds around C once, the tangent vector also rotates once in the same
sense.

Index of a Point

The properties above are useful in several ways. Perhaps most importantly, they
allow us to define the index of a fixed point, as follows.

Suppose x * is an isolated fixed point. Then the index I of x* is defined as I,
where C is any closed curve that encloses x * and no other fixed points. By property
(1) above, I is independent of C and is therefore a property of x * alone. Therefore
we may drop the subscript C and use the notation 7 for the index of a point.

EXAMPLE 6.8.4:

Find the index of a stable node, an unstable node, and a saddle point.

Solution: The vector field near a stable node looks like the vector field of Ex-
ample 6.8.1. Hence I = +1. The index is also +1 for an unstable node, because the
only difference is that all the arrows are reversed; by property (3), this doesn’t
change the index! (This observation shows that the index is not related to stability,
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per se.) Finally, I =—1 for a saddle point, because the vector field resembles that
\discussed in Example 6.8.2. m

In Exercise 6.8.1, you are asked to show that spirals, centers, degenerate nodes
and stars all have /=+1. Thus, a saddle point is truly a different animal from all
the pther familiar types of isolated fixed points.

he index of a curve is related in a beautifully simple way to the indices of the
fixed points inside it. This is the content of the following theorem.

Theorem 6.8.1: If a closed curve C surrounds n isolated fixed points
x* ..., x,* then

I.=L+L+...+1

where [, is the index of x, *, for k=1,...,n.

Ideas behind the proof: The argument is a familiar one, and comes up
in multivariable calculus, complex variables, electrostatics, and various other
subjects. We think of C as a balloon and suck most of the air out it, being careful
not to hit any of the fixed points. The result of this deformation is a new closed
curve T', consisting of n small circles y,, . . ., ¥, about the fixed points, and two-
way bridges connecting these circles (Figure 6.8.8). Note that /. = I., by prop-

erty (1), since we didn’t cross

c any fixed points during the
deformation. Now let’s com-

o pute /. by considering [¢] .
I3 == There are contributions to

" [¢]. from the small circles
and from the two-way bridges.
The key point is that the con-
Figure 6.8.8 tributions from the bridges
cancel out: as we move
around I, each bridge is traversed once in one direction, and later in the opposite
direction. Thus we only need to consider the contributions from the small circles.

On y,, the angle ¢ changes by [¢]n =2r I, by definition of /,. Hence

I :#[‘p]r 22172:, [¢]n :i A

and since I = 1., we’re done. m
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This theorem is reminiscent of Gauss’s law in electrostatics, namely that the
electric flux through a surface is proportional to the total charge enclosed. See Ex-
ercise 6.8.12 for a further exploration of this analogy between index and charge.

Theorem 6.8.2: Any closed orbit in the phase plane must enclose fixed
points whose indices sum to +1.

Proof: Let C denote the closed orbit. From property (4) above, I, =+1.

Then Theorem 6.8.1 implies . 1, =+1.a

k=1
Theorem 6.8.2 has many practical consequences. For instance, it implies that
there is always at least one fixed point inside any closed orbit in the phase plane (as
you may have noticed on your own). If there is only one fixed point inside, it can-
not be a saddle point. Furthermore, Theorem 6.8.2 can sometimes be used to rule
out the possible occurrence of closed trajectories, as seen in the following exam-
ples.

EXAMPLE 6.8.5:

Show that closed orbits are impossible for the “rabbit vs. sheep” system

x=x(3-x-2y)
y=y2-x-y)
studied in Section 6.4. Here x,y 2 0.
Solution: As shown previously, the system has four fixed points: (0,0) = unsta-
ble node; (0,2) and (3,0) = stable nodes; and (1,1) = saddle point. The index at

each of these points is shown in Figure
\ 6.8.9. Now suppose that the system had a

’ : ! K G closed trajectory. Where could it lie?

‘. - - There are three qualitatively different lo-
, . cations, indicated by the dotted curves C;,
. C, C,, C,. They can be ruled out as follows:
N orbits like C, are impossible because they

> - don’t enclose any fixed points, and orbits
+1 +1 X like C, violate the requirement that the in-
dices inside must sum to +1. But what is
wrong with orbits like C,, which satisfy
the index requirement? The trouble is that such orbits always cross the x-axis or
the y-axis, and these axes contain straight-line trajectories. Hence C, violates the
rule that trajectories can’t cross (recall Section 6.2). m

Figure 6.8.9
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EXAMPLE 6.

Show that the system x = xe™, y =1+ x + y* has no closed orbits.
Solution: This system has no fixed points: if x=0, then x=0 and so
y=1+y® #0. By Theorem 6.8.2, closed orbits cannot exist. m

EXERCISES FOR CHAPTER 6

6.1 Phase Portraits

For each of the following systems, find the fixed points. Then sketch the nullclines,
the vector field, and a plausible phase portrait.

6.1.1 x=x-y, y=1-¢ 612 xi=x-x,y=-y
6.1.3 x=x(x—-y),y=y2x-y) 614 ix=y,y=x(1+y)-1
615 x=x(2-x-y),y=x-y 616 i=x"-y,y=x-y

6.1.7 (Nulicline vs. stable manifold) There’s a confusing aspect of Example
6.1.1. The nullcline x =0 in Figure 6.1.3 has a similar shape and location as the
stable manifold of the saddle, shown in Figure 6.1.4. But they’re not the same
curve! To clarify the relation between the two curves, sketch both of them on the
same phase portrait.

(Computer work) Plot computer-generated phase portraits of the following sys-
tems. As always, you may write your own computer programs or use any ready-
made software, e.g., MacMath (Hubbard and West 1992).

6.1.8 (van der Pol oscillator) x =y, y = —x + y(1—x?)
6.1.9 (Dipole fixed point) x =2xy, y = y* — x*

6.1.10 (Two-eyed monster) x=y+y, y=-+x+1y z xy+$y® (from Borrelli
and Coleman 1987, p. 385.)

6.1.11 (Parrot) x =y+y’, y=-x++y—xy+$%y? (from Borrelli and Coleman
1987, p. 384.)

6.1.12 (Saddle connections) A certain system is known to have exactly two fixed
points, both of which are saddles. Sketch phase portraits in which

a) there is a single trajectory that connects the saddles;

b) there is no trajectory that connects the saddles.

6.1.13 Draw a phase portrait that has exactly three closed orbits and one fixed point.

6.1.14 (Series approximation for the stable manifold of a saddle point) Recall
the system X =x+e™, y=—y from Example 6.1.1. We showed that this system
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has one fixed point, a saddle at (—1,0). Its unstable manifold is the x-axis, but its

stable manifold is a curve that is harder to find. The goal of this exercise is to ap-

proximate this unknown curve.

a) Let (x,y) be a point on the stable manifold, and assume that (x,y) is close to
(—1,0). Introduce a new variable u = x+1, and write the stable manifold as
y=au+a,u’ +0@’). To determine the coefficients, derive two expressions
for dy/du and equate them.

b) Check that your analytical result produces a curve with the same shape as the
stable manifold shown in Figure 6.1.4.

6.2 Existence, Uniqueness, and Topological Consequences
6.2.1 We claimed that different trajectories can never intersect. But in many

phase portraits, different trajectories appear to intersect at a fixed point. Is there a
contradiction here?

6.2.2 Consider the system x =y, y=—x+(1— x> — y’)y.

a) Let D be the open disk x*+y® < 4. Verify that the system satisfies the hy-
potheses of the existence and uniqueness theorem throughout the domain D.

b) By substitution, show that x(¢) =sint, y(t) =cost is an exact solution of the
system.

c) Now consider a different solution, in this case starting from the initial condition
x(0)=4, y(0)=0. Without doing any calculations, explain why this solution
must satisfy x(£)> + y(1)* <1 forall t < oo

6.3 Fixed Points and Linearization

For each of the following systems, find the fixed points, classify them, sketch the
neighboring trajectories, and try to fill in the rest of the phase portrait.

6.3.1 i=x-y,y=x'—-4 6.32 x=siny,y=x-x
633 Ji=l+y—e’, y=x—y 634 i=y+x—x,y=-y
6.3.5 x=siny, y=cosx 636 x=xy—-1l,y=x-y

6.3.7  For each of the nonlinear systems above, plot a computer-generated phase
portrait and compare to your approximate sketch.

6.3.8 (Gravitational equilibrium) A particle moves along a line joining two sta-
tionary masses, m, and m,, which are separated by a fixed distance a. Let x de-
note the distance of the particle from m,.

Gm, Gm,

a) Show that x = - —

= , where G is the gravitational constant.
(x—a)” X

b) Find the particle’s equilibrium position. Is it stable or unstable?
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6.3.9 Consider the s%stem x=y' —4x, y=y'—y-3x.

a) Find all the fixed pdints and classify them.

b) Show that the line x = y is invariant, i.e., any trajectory that starts on it stays on
it.

¢) Show that Ix(t)—y(t)l — 0 as t — oo for all other trajectories. (Hint: Form a
differential equation for x —y.)

d) Sketch the phase portrait.

e) If you have access to a computer, plot an accurate phase portrait on the square
domain —20 < x,y < 20. (To avoid numerical instability, you’ll need to use a
fairly small step size, because of the strong cubic nonlinearity.) Notice the tra-
jectories seem to approach a certain curve as ¢ — —oo; can you explain this be-
havior intuitively, and perhaps find an approximate equation for this curve?

6.3.10 (Dealing with a fixed point for which linearization is inconclusive) The

goal of this exercise is to sketch the phase portrait for x = xy, y = x> — y.

a) Show that the linearization predicts that the origin is a non-isolated fixed
point.

b) Show that the origin is in fact an isolated fixed point.

¢) Is the origin repelling, attracting, a saddle, or what? Sketch the vector field
along the nullclines and at other points in the phase plane. Use this information
to sketch the phase portrait.

d) Plot a computer-generated phase portrait to check your answer to (c).
(Note: This problem can also be solved by a method called center manifold the-

ory, as explained in Wiggins (1990) and Guckenheimer and Holmes (1983).)

6.3.11 (Nonlinear terms can change a star into a spiral) Here’s another example

that shows that borderline fixed points are sensitive to nonlinear terms. Consider

the system in polar coordinates given by r = —-r, 6= inr.

a) Find r(¢) and 6(¢) explicitly, given an initial condition (r,,8,) .

b) Show that r(t) > 0 and |6(s)]| = o as t — o= . Therefore the origin is a stable
spiral for the nonlinear system.

¢) Write the system in x,y coordinates.

d) Show that the linearized system about the origin is x =—x, y =—y. Thus the
origin is a stable star for the linearized system.

6.3.12 (Polar coordinates) Using the identity 0 =tan"'(y/x), show that
0 = (xy— yx)/r’.

6.3.13 (Another linear center that’s actually a nonlinear spiral) Consider the sys-
tem X =—y—x°, y = x. Show that the origin is a spiral, although the linearization
predicts a center.

6.3.14 Classify the fixed point at the origin for the system x=-y+ax’,
y = x +ay’, for all real values of the parameter a .
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6.3.15 Consider the system 7 = r(1 - r?), = 1 — cos 8, where r,0 represent polar
coordinates. Sketch the phase portrait and thereby show that the fixed point r*=1,
6* = 0 is attracting but not Liapunov stable.

6.3.16 (Saddle switching and structural stability) Consider the system

i=a+x"-xy,y=y" —x* -1, where a is a parameter.

a) Sketch the phase portrait for a = 0. Show that there is a trajectory connecting
two saddle points. (Such a trajectory is called a saddle connection.)

b) With the aid of a computer if necessary, sketch the phase portrait for ¢ <0 and
a>0.

Notice that for a # 0, the phase portrait has a different topological character: the
saddles are no longer connected by a trajectory. The point of this exercise is that
the phase portrait in (a) is not structurally stable, since its topology can be changed
by an arbitrarily small perturbation a .

6.3.17 (Nasty fixed point) The system x = xy — x’y+y*, y=y*> +x’ —xy’ has a
nasty higher-order fixed point at the origin. Using polar coordinates or otherwise,
sketch the phase portrait.

6.4 Rabbits versus Sheep

Consider the following “rabbits vs. sheep” problems, where x,y>0. Find the
fixed points, investigate their stability, draw the nullclines, and sketch plausible
phase portraits. Indicate the basins of attraction of any stable fixed points.

641 x=x(3-x-y),y=y2-x-y)

642 x=x(3-2x-y),y=y2-x-y)

6.43 x=x(3-2x-2y), y=y2-x-y)

The next three exercises deal with competition models of increasing complexity.
We assume N,, N, 20 in all cases.

6.4.4 The simplest model is N, = ,N, —b,N,N,, N, = ,N, —b,N,N,.

a) In what way is this model less realistic than the one considered in the text?

b) Show that by suitable rescalings of N,, N,, and ¢, the model can be nondimen-
sionalized to x" = x(1-y), ¥’ = y(p — x). Find a formula for the dimensionless
group p.

¢) Sketch the nullclines and vector field for the system in (b).

d) Draw the phase portrait, and comment on the biological implications.

e) Show that (almost) all trajectories are curves of the form plnx-x=
Iny—y+ C. (Hint: Derive a differential equation for dx/dy, and separate the
variables.) Which trajectories are not of the stated form?

6.4.5 Now suppose that species #1 has a finite carrying capacity K,. Thus
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Nl =nN,(1-N,/K,)-b NN,

. t

N, =r,N,—~b,N,N, .

Nondimensionalize the model and analyze it. Show that there are two qualitatively
different kinds of phase portrait, depending on the size of K,. (Hint: Draw the null-
clines.) Describe the long-term behavior in each case.

6.4.6 Finally, suppose that both species have finite carrying capacities:

N, ="'1N1(1_N1/K1)“b1N1N2
N, = nN,(1-N,/K,)-b,N\N,.

a) Nondimensionalize the model. How many dimensionless groups are needed?

b) Show that there are four qualitatively different phase portraits, as far as long-
term behavior is concerned.

¢) Find conditions under which the two species can stably coexist. Explain the bio-
logical meaning of these conditions. (Hint: The carrying capacities reflect the com-
petition within a species, whereas the b’s reflect the competition between species.)

6.4.7 (Two-mode laser) According to Haken (1983, p. 129), a two-mode laser
produces two different kinds of photons with numbers n, and n,. By analogy with
the simple laser model discussed in Section 3.3, the rate equations are

n, = G\Nn, —kn,

n, = G,Nn, - k,n,

where N(t)= N, —a,n, —a,n, is the number of excited atoms. The parameters

G,.G,.k,k,, 0,0, N, are all positive.

a) Discuss the stability of the fixed point n,* =n,*=0.

b) Find and classify any other fixed points that may exist.

¢) Depending on the values of the various parameters, how many qualitatively dif-
ferent phase portraits can occur? For each case, what does the model predict
about the long-term behavior of the laser?

1

6.5 Conservative Systems

6.5.1 Consider the system X = x° — x.

a) Find all the equilibrium points and classify them.
b) Find a conserved quantity.

¢) Sketch the phase portrait.

6.5.2 Consider the system ¥ = x — x°.
a) Find and classify the equilibrium points.
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b) Sketch the phase portrait.

c) Find an equation for the homoclinic orbit that separates closed and nonclosed
trajectories.

6.5.3 Find a conserved quantity for the system X = a — ¢", and sketch the phase
portrait for a<0,a=0,and a>0.

6.5.4  Sketch the phase portrait for the system x = ax —x”> fora<0, a=0, and
a>0.

6.5.5 Investigate the stability of the equilibrium points of the system
x=(x-— a)(x* — a) for all real values of the parameter a . (Hints: It might help to
graph the right-hand side. An alternative is to rewrite the equation as X = —V’(x)
for a suitable potential energy function V and then use your intuition about parti-
cles moving in potentials.)

6.5.6 (Epidemic model revisited) In Exercise 3.7.6, you analyzed the Ker-
mack-McKendrick model of an epidemic by reducing it to a certain first-order sys-
tem. In this problem you’ll see how much easier the analysis becomes in the phase
plane. As before, let x(¢) = 0 denote the size of the healthy population and y(¢) 20
denote the size of the sick population. Then the model is

x=—kxy,  y=hkxy-{y

where k,¢> 0. (The equation for z(¢), the number of deaths, plays no role in the

x,y dynamics so we omit it.)

a) Find and classify all the fixed points.

b) Sketch the nuliclines and the vector field.

¢) Find a conserved quantity for the system. (Hint: Form a differential equation
for dy/dx. Separate the variables and integrate both sides.)

d) Plot the phase portrait. What happens as t — oo ?

e) Let (x,,y,) be the initial condition. An epidemic is said to occur if y(¢) in-
creases initially. Under what condition does an epidemic occur?

6.5.7 (General relativity and planetary orbits) The relativistic equation for the
orbit of a planet around the sun is

d*u

e tu=a+eu’

where u=1/r and r,8 are the polar coordinates of the planet in its plane of mo-
tion. The parameter ¢ is positive and can be found explicitly from classical New-
tonian mechanics; the term €u’ is Einstein’s correction. Here £ is a very small
positive parameter. )

a) Rewrite the equation as a system in the (i, v ) phase plane, where v = du/d®6 .
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b) Find all the equilibrium points of the system.

¢) Show that one of the equilibria is a center in the (u,v ) phase plane, according to
the linearization. Is it a nonlinear center?

d) Show that the equilibrium point found in (c) corresponds to a circular planetary
orbit.

Hamiltonian systems are fundamental to classical mechanics; they provide an
equivalent but more geometric version of Newton’s laws. They are also central to
celestial mechanics and plasma physics, where dissipation can sometimes be ne-
glected on the time scales of interest. The theory of Hamiltonian systems is deep
and beautiful, but perhaps too specialized and subtle for a first course on nonlinear
dynamics. See Arnold (1978), Lichtenberg and Lieberman (1992), Tabor (1989),
or Hénon (1983) for introductions.

Here’s the simplest instance of a Hamiltonian system. Let H(p,q) be a smooth,
real-valued function of two variables. The variable g is the “generalized coordinate”
and p is the “conjugate momentum.” (In some physical settings, H could also de-
pend explicitly on time ¢, but we’ll ignore that possibility.) Then a system of the form

g=dH[dp, p=-JdH[dq

is called a Hamiltonian system and the function H is called the Hamiltonian.
The equations for ¢ and p are called Hamilton’s equations.
The next three exercises concern Hamiltonian systems.

6.5.8 (Harmonic oscillator) For a simple harmonic oscillator of mass m, spring
2

. . .. kx?
constant k, displacement x, and momentum p, the Hamiltonian is H = 2’; + —2-
m

Write out Hamilton’s equations explicitly. Show that one equation gives the usual
definition of momentum and the other is equivalent to F' = ma . Verify that H is the
total energy.

6.5.9 Show that for any Hamiltonian system, H(x, p) is a conserved quantity.
(Hint: Show H = 0 by applying the chain rule and invoking Hamilton’s equations.)

Hence the trajectories lie on the contour curves H(x, p) = C.

6.5.10 (Inverse-square law) A particle moves in a plane under the influence of
2 2
. . . h k
an inverse-square force. It is governed by the Hamiltonian H(p,r) = p? + YRt
r’or
where r >0 is the distance from the origin and p is the radial momentum. The pa-

rameters i and k are the angular momentum and the force constant, respectively.
a) Suppose k>0, corresponding to an attractive force like gravity. Sketch the
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phase portrait in the (r,p) plane. (Hint: Graph the “effective potential”
V(r)=h*/2r* —k/r and then look for intersections with horizontal lines of
height E . Use this information to sketch the contour curves H(p,r)=E for

various positive and negative values of E .)
b) Show that the trajectories are closed if —k*/2h* < E < 0, in which case the par-
ticle is “captured” by the force. What happens if E>0? What about E=07?
¢) If k <0 (as in electric repulsion), show that there are no periodic orbits.

6.5.11 (Basins for damped double-well oscillator) Suppose we add a small
amount of damping to the double-well oscillator of Example 6.5.2. The new sys-
temis X =y, y=—by+x—x’, where 0 < b << 1. Sketch the basin of attraction for
the stable fixed point (x*,y*)=(1,0). Make the picture large enough so that the
global structure of the basin is clearly indicated.

6.5.12 (Why we need to assume isolated minima in Theorem 6.5.1) Consider the

system x = xy, y = —x°.

a) Show that E = x*> +y” is conserved.

b) Show that the origin is a fixed point, but not an isolated fixed point.

¢) Since E has alocal minimum at the origin, one might have thought that the ori-
gin has to be a center. But that would be a misuse of Theorem 6.5.1; the theo-
rem does not apply here because the origin is not an isolated fixed point. Show
that in fact the origin is not surrounded by closed orbits, and sketch the actual

phase portrait.

6.5.13 (Nonlinear centers)

a) Show that the Duffing equation %+ x+£x®> =0 has a nonlinear center at the
origin for all £>0.

b) If £ <0, show that the origin is nonlinear center only if |£| is sufficiently small.
How large can €| be?

6.5.14 (Glider) Consider a glider flying at speed v at an angle @ to the horizon-
tal. Its motion is governed approximately by the dimensionless equations

v = —sin@ — Dv?

v0 = —cosf +1°

% terms

where the trigonometric terms represent the effects of gravity and the v

represent the effects of drag and lift.

a) Suppose there is no drag (D = 0). Show that v’ —3vcos@ is a conserved quan-
tity. Sketch the phase portrait in this case. Interpret your results physically—
what does the flight path of the glider look like?

b) Investigate the case of positive drag (D >0).

In the next four exercises, we return to the problem of a bead on a rotating hoop,
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discussed in Section 3.5. Recall that the bead/s motion is governed by
mr = -bp— mgsin @+ mro® sing ¢os¢.

Previously, we could only treat the overdamped limit. The next four exercises deal
with the dynamics more generally.

6.5.15 (Frictionless bead) Consider the undamped case b=0.

a) Show that the equation can be nondimensionalized to ¢” =sin¢(cosg—y'),
where ¥ = r®’/g as before, and prime denotes differentiation with respect to
dimensionless time 7 = wz.

b) Draw all the qualitatively different phase portraits as ¥ varies.
¢) What do the phase portraits imply about the physical motion of the bead?

6.5.16 (Small oscillations of the bead) Return to the original dimensional vari-
ables. Show that when b =0 and o is sufficiently large, the system has a symmet-
ric pair of stable equilibria. Find the approximate frequency of small oscillations
about these equilibria. (Please express your answer with respect to ¢, not 7 .)

6.5.17 (A puzzling constant of motion for the bead) Find a conserved quantity
when b=0. You might think that it’s essentially the bead’s total energy, but it
isn’t! Show explicitly that the bead’s kinetic plus potential energy is not con-
served. Does this make sense physically? Can you find a physical interpretation
for the conserved quantity? (Hint: Think about reference frames and moving con-
straints.)

6.5.18 (General case for the bead) Finally, allow the damping b to be arbitrary.
Define an appropriate dimensionless version of b, and plot all the qualitatively dif-
ferent phase portraits that occur as b and y vary.

6.5.19 (Rabbits vs. foxes) The model R=aR-bRF. , F=—cF+dRF is the

Lotka—-Volterra predator-prey model. Here R(t) is the number of rabbits, F (1) is

the number of foxes, and a,b,c,d > 0 are parameters.

a) Discuss the biological meaning of each of the terms in the model. Comment on
any unrealistic assumptions.

b) Show that the model can be recast in dimensionless form as x’ = x(1-y),
Yy =py(x-1).

¢) Find a conserved quantity in terms of the dimensionless variables.

d) Show that the model predicts cycles in the populations of both species, for al-
most all initial conditions.

This model is popular with many textbook writers because it’s simple, but some
are beguiled into taking it too seriously. Mathematical biologists dismiss the
Lotka—Volterra model because it is not structurally stable, and because real preda-
tor-prey cycles typically have a characteristic amplitude. In other words, realistic
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models should predict a single closed orbit, or perhaps finitely many, but not a con-
tinuous family of neutrally stable cycles. See the discussions in May (1972), Edel-
stein—Keshet (1988), or Murray (1989).

6.6 Reversible Systems

Show that each of the following systems is reversible, and sketch the phase por-
trait.

6.6.1 x=y(l-x"), y=1-y
6.6.2 Xx=y,y=Xxcosy

6.6.3 (Wallpaper) Consider the system x =siny, y =sinx.

a) Show that the system is reversible.

b) Find and classify all the fixed points.

¢) Show that the lines y=+x are invariant (any trajectory that starts on them
stays on them forever).

d) Sketch the phase portrait.

6.6.4 (Computer explorations) For each of the following reversible systems,
try to sketch the phase portrait by hand. Then use a computer to check your sketch.
If the computer reveals patterns you hadn’t anticipated, try to explain them.

a) X+(x)’+x=3 b) x=y—y',y=xcosy ¢) x=siny,y=y"-x

6.6.5 Consider equations of the form ¥ + f(x)+ g(x) =0, where f is an even

function, and both f and g are smooth.

a) Show that the equation is invariant under the pure time-reversal symmetry
t——t.

b) Show that the equilibrium points cannot be stable nodes or spirals.

6.6.6 (Manta ray) Use qualitative arguments to deduce the “manta ray” phase

portrait of Example 6.6.1.

a) Plot the nullclines x =0 and y=0.

b) Find the sign of X, y in different regions of the plane.

¢) Calculate the eigenvalues and eigenvectors of the saddle points at (—1,1).

d) Consider the unstable manifold of (—1,—1). By making an argument about the
signs of X, y, prove that this unstable manifold intersects the negative x-axis.
Then use reversibility to prove the existence of a heteroclinic trajectory con-
necting (—1,—1) to (-1,1).

e) Using similar arguments, prove that another heteroclinic trajectory exists, and
sketch several other trajectories to fill in the phase portrait.

6.6.7 (Oscillator with both positive and negative damping) Show that the sys-
tem X + xx + x = 0 is reversible and plot the phase portrait.
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6.6.8 (Reversible system on a cylinder) ile studying chaotic streamlines inside
a drop immersed in a steady Stokes flow, Stone ét.al. (1991) encountered the system

I

i=Fx(x-Dsing,  ¢=4[B-cosp-gyxcosd]

where 0<x<l and w<¢<rx.

Since the system is 2z-periodic in ¢, it may be considered as a vector field on a
cylinder. (See Section 6.7 for another vector field on a cylinder.) The x-axis runs
along the cylinder, and the ¢-axis wraps around it. Note that the cylindrical phase
space is finite, with edges given by the circles x =0 and x=1.

a) Show that the system is reversible.

b) Verify that for % > > =, the system has three fixed points on the cylinder,
one of which is a saddle. Show that this saddle is connected to itself by a homo-
clinic orbit that winds around the waist of the cylinder. Using reversibility,
prove that there is a band of closed orbits sandwiched between the circle x =0
and the homoclinic orbit. Sketch the phase portrait on the cylinder, and check
your results by numerical integration.

c) Show that as  — - from above, the saddle point moves toward the circle
x =0, and the homoclinic orbit tightens like a noose. Show that all the closed
orbits disappear when 8 = +*-

d) For 0 <3<, show that there are two saddle points on the edge x =0. Plot
the phase portrait on the cylinder.

6.6.9 (Josephson junction array) As discussed in Exercises 4.6.4 and 4.6.5, the
equations

do . C
';1‘;‘?9"'“31“‘1’:( +#251n¢j, for k=12,

j=1
arise as the dimensionless circuit equations for a resistively loaded array of
Josephson junctions.
a) Letf, =¢, —%, and show that the resulting system for 8, is reversible.
b) Show that there are four fixed points (mod 27 ) when |Q/(a + 1)| <1, and none
when |Q/(a+1)|>1.
c) Using the computer, explore the various phase portraits that occur for a =1, as
Q varies over the interval 0 < Q < 3.
For more about this system, see Tsang et al. (1991).

6.6.10 s the origin a nonlinear center for the system x = —y —x?, y = x?

6.6.11 (Rotational dynamics and a phase portrait on a sphere) The rotational dy-
namics of an object in a shear flow are governed by
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6 =cot¢ cosB, 6 =(cos> ¢+ Asin’ ¢) sin6,

where 8 and ¢ are spherical coordinates that describe the orientation of the object.

Our convention here is that —7 <6 < 7 is the “longitude,” i.e., the angle around

the z-axis, and —§ <@ <% is the “latitude,” i.e., the angle measured northward

from the equator. The parameter A depends on the shape of the object.

a) Show that the equations are reversible in two ways: under t — —¢, 8 = -0 and
under t > —t, ¢ > —¢.

b) Investigate the phase portraits when A is positive, zero, and negative. You may
sketch the phase portraits as Mercator projections (treating 6 and ¢ as rectangu-
lar coordinates), but it’s better to visualize the motion on the sphere, if you can.

c) Relate your results to the tumbling motion of an object in a shear flow. What
happens to the orientation of the object as t — oo ?

6.7 Pendulum

6.7.1 (Damped pendulum) Find and classify the fixed points of 6+ b6+
sin@ =0 for all b>0, and plot the phase portraits for the qualitatively different
cases.

6.7.2 (Pendulum driven by constant torque) The equation 6 +sinf = Y de-

scribes the dynamics of an undamped pendulum driven by a constant torque, or an

undamped Josephson junction driven by a constant bias current.

a) Find all the equilibrium points and classify them as ¥ varies.

b) Sketch the nullclines and the vector field.

c) Is the system conservative? If so, find a conserved quantity. Is the system re-
versible?

d) Sketch the phase portrait on the plane as ¥y varies.

e) Find the approximate frequency of small oscillations about any centers in the
phase portrait.

6.7.3 (Nonlinear damping) Analyze 6+(1+acos8)@+sin@=0, forall a>0.

6.7.4  (Period of the pendulum) Suppose a pendulum governed by 6 +sinf=0
is swinging with an amplitude « . Using some tricky manipulations, we are going
to derive a formula for T(cx), the period of the pendulum.

a) Using conservation of energy, show that 6% =2(cos6 —cos) and hence that

o de
T=4
jo [2(cos6 - cos )]

/2 -

deé
—sin’ %9)]”2

c) The formulas in parts (a) and (b) have the disadvantage that & appears in both

(4
b) Using the half-angle formula, show that T = 4I
0 [4(sin2 la

the integrand and the upper limit of integration. To remove the a-dependence
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- . . . t
from the limits of integration, we introduce a new angle ¢ that runs from 0 to
£ when 6 runs from O to «. Specifically, let (sin 4 a)sin ¢ = sin 4 6. Using this
substitution, rewrite (b) as an integral with respect to ¢ . Thereby derive the ex-
act result

2 d¢ X -
T=4J' = 4K(sin® + 1),
o cosi0 (sin” 3 )

where the complete elliptic integral of the first kind is defined as

72
K(my= | — 2 fwosm<l.
o (1-msin” ¢)

d) By expanding the elliptic integral using the binomial series and integrating
term-by-term, show that

T(@) =271+ a” + O(@")] for a <<1.
Note that larger swings take longer.

6.7.5 (Numerical solution for the period) Redo Exercise 6.7.4 using either nu-
merical integration of the differential equation, or numerical evaluation of the el-
liptic integral. Specifically, compute the period T(a), where o runs from O to
180° in steps of 10°.

6.8 Index Theory

6.8.1  Show that each of the following fixed points has an index equal to +1.
a) stable spiral b) unstable spiral c)center d)star  e) degenerate node

(Unusual fixed points) For each of the following systems, locate the fixed points
and calculate the index. (Hint: Draw a small closed curve C around the fixed point
and examine the variation of the vector field on C.)

682 i=x’y=y 683 i=y-x,y=x
684 i=y, y=x 685 x=xy,y=x+y

6.8.6 A closed orbit in the phase plane encircles S saddles, N nodes, F spirals,
and C centers, all of the usual type. Show that N+ F+C=1+3S.

6.8.7 (Ruling out closed orbits) Use index theory to show that the system
x=x(4-y-x?), y=y(x—1) has no closed orbits.

6.8.8 A smooth vector field on the phase plane is known to have exactly three
closed orbits. Two of the cycles, say C, and C,, lie inside the third cycle C,. How-
ever, C, does not lie inside C,, nor vice-versa.
a) Sketch the arrangement of the three cycles.
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b) Show that there must be at least one fixed point in the region bounded by C,,
G, G;.

6.8.9 A smooth vector field on the phase plane is known to have exactly two
closed trajectories, one of which lies inside the other. The inner cycle runs clock-
wise, and the outer one runs counterclockwise. True or False: There must be at
least one fixed point in the region between the cycles. If true, prove it. If false, pro-
vide a simple counterexample.

6.8.10 (Open-ended question for the topologically minded) Does Theorem 6.8.2
hold for surfaces other than the plane? Check its validity for various types of
closed orbits on a torus, cylinder, and sphere.

6.8.11 (Complex vector fields) Let z = x +iy. Explore the complex vector fields

z=z" and z = ()", where k >0 is an integer and Z = x — iy is the complex conju-

gate of z.

a) Write the vector fields in both Cartesian and polar coordinates, for the cases
k=12,3.

b) Show that the origin is the only fixed point, and compute its index.

c) Generalize your results to arbitrary integer k > 0.

6.8.12 (“Matter and antimatter”) There’s an intriguing analogy between bifurca-
tions of fixed points and collisions of particles and anti-particles. Let’s explore this
in the context of index theory. For example, a two-dimensional version of the sad-
dle-node bifurcation is given by x = a+ x>, y =—y, where a is a parameter.

a) Find and classify all the fixed points as a varies from —eo to +oo .

b) Show that the sum of the indices of all the fixed points is conserved as a varies.
c) State and prove a generalization of this result, for systems of the form

x =f(x,a), where xeR?> and a is a parameter.

6.8.13 (Integral formula for the index of a curve) Consider a smooth vector field
X = f(x,y), y=g(x,y) on the plane, and let C be a simple closed curve that does
not pass through any fixed points. As usual, let ¢ = tan™'(y/x) as in Figure 6.8.1.

a) Show that d¢ = (fdg—gdf)/(f* +g°).
b) Derive the integral formula

. ffde—edr
c 2 2 2
. ft+g
6.8.14 Consider the family of linear systems x=xcosa—ysina,
y=xsina+ycosa, where « is a parameter that runs over the range 0<a <rx.
Let C be a simple closed curve that does not pass through the origin.
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a) Classify the fixed point at the origin as a function gf .

b) Using the integral derived in Exercise 6.8.13, show that I, is independent of
a. ‘

¢) Let C be a circle centered at the origin. Compuﬁe I explicitly by evaluating
the integral for any convenient choice of o . \
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7

LIMIT CYCLES

\
7.0 Introduction N

o . o
A limit cycle is an isolated closed trajectory. Isolated means that neighboring tra-
jectories are not closed; they spiral either toward or away from the limit cycle (Fig-
ure 7.0.1).

stable unstable half-stable
limit cycle limit cycle limit cycle

Figure 7.0.1

If all neighboring trajectories approach the limit cycle, we say the limit cycle is
stable or attracting. Otherwise the limit cycle is unstable, or in exceptional cases,
half-stable.

Stable limit cycles are very important scientifically—they model systems that
exhibit self-sustained oscillations. In other words, these systems oscillate even in
the absence of external periodic forcing. Of the countless examples that could be
given, we mention only a few: the beating of a heart; the periodic firing of a pace-
maker neuron; daily rhythms in human body temperature and hormone secretion;
chemical reactions that oscillate spontaneously; and dangerous self-excited vibra-
tions in bridges and airplane wings. In each case, there is a standard oscillation of

some preferred period, waveform, and amplitude. If the system is perturbed:

slightly, it always returns to the standard cycle.

~>~~ Limit cycles are inherently nonlinear phenomena; they can’t occur in linear sys-
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tems. Of course, a linear system X = AX can have closed orbits, but they won’t be
isolated; if x(t) is a periodic solution, then so is cx(¢) for any constant ¢ #0.
Hence x(z) is surrounded by a one-parameter family of closed orbits (Figure 7.0.2).
Consequently, the/amplitude of a linear oscillation
cx(t)  issetentirely by ip/s initial conditions; any slight dis-
(1) turbance to the amplitude will persist forever. In
contrast, limit cytle oscillations are determined by
the structure of the system itself.
The next sectioh presents two examples of sys-
tems with limit cycles\. In the first case, the limit
cycle is obvious by inspection, but normally it’s
difficult to tell whether a given system has a limit
cycle, or indeed any closed orbits, from the gov-
Figure 7.0.2 erning equations alone. Sections 7.2-7.4 present

some techniques for ruling out closed orbits or for
proving their existence. The remainder of the chapter discusses analytical meth-
ods for approximating the shape and period of a closed orbit and for studying its
stability.

7.1 Examples

It’s straightforward to construct examples of limit cycles if we use polar coordi-
nates.

EXAMPLE 7.1.1: A SIMPLE LIMIT CYCLE

Consider the system
F=r(-r?, 6=1 (1)

where r > 0. The radial and angular dynamics are uncoupled and so can be ana-
lyzed separately. Treating 7 =r(1—r?) as a vector field on the line, we see that
r* =0 is an unstable fixed point and r* =1 is stable (Figure 7.1.1).

Figure 7.1.1
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¥

e W ¢ ‘;

y / Hence, back in the phase plane, all tra-
jectories (except r*=0) approach the

unit circle r* =1 monotonically. Since
the motion in the @-direction is simply
/‘\ rotation at constant angular velocity, we

X
Q (\_/' see that all trajectories spiral asymptoti-
cally toward a limit cycle at r=1 (Fig-
ure 7.1.2).

It is also instructive to plot solutions
as functions of ¢. For instance, in Figure
Figure 7.1.2 7.1.3 we plot*x(t) = r(t)cos 6(¢) for a tra-

jectory starting outside the limit cycle.
As expected, the solution settles down to a sinusoidal oscillation of constant ampli-
tude, corresponding to the limit cycle solution x(¢) = cos(z +6,) of (1). =

2 -

Adee A TufyCam x
N * 0

VAVAVAVE

Figure 7.1.3

-2

EXAMPLE 7.1.2: VAN DER POL OSCILLATOR

A less transparent example, but one that played a central role in the develop-
ment of nonlinear dynamics, is given by the van der Pol equation

F+pu(x*=Di+x=0 (2)

where u >0 is a parameter. Historically, this equation arose in connection with
the nonlinear electrical circuits used in the first radios (see Exercise 7.1.6 for the
circuit). Equation (2) looks like a simple harmonic oscillator, but with a nonlin-
ear damping term f (x> —1)x . This term acts like ordinary positive damping for
|x|>1, but like negative damping for |x|<1. In other words, it causes large-
amplitude oscillations to decay, but it pumps them back up if they become too
small.
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As you might guess, the system eventually settles into a self-sustained oscilla-
tion where the energy dissipated over one cycle balances the energy pumped in.
This idea can be made rigorous, and with quite a bit of work, one can prove that the
van der Pol equation has a unique, stable limit cycle for each pu >0 . This result
follows from a more general theorem discussed in Section 7.4.

To give a concrete illustration, suppose we numerically integrate (2) for
H=1.5, starting from (x,x)= (0.5, 0) at = 0. Figure 7.1.4 plots the solution in
the phase plane and Figure 7.1.5 shows the gfaph of x(z) . Now, in contrast to Ex-

ample 7.1.1, the limit cycle is not a circle :#nd the stable waveform is not a sine
wave. m 1

AU
W VA

N

Figure 7.1.4 Figure 7.1.5

7.2 Ruling Out Closed Orbits

Suppose we have a strong suspicion, based on numerical evidence or otherwise,
that a particular system has no periodic solutions. How could we prove this? In
the last chapter we mentioned one method, based on index theory (see Examples
6.8.5 and 6.8.6). Now we present three other ways of ruling out closed orbits.
They are of limited applicability, but they’re worth knowing about, in case you
get lucky.

Gradient Systems \\

Suppose the system can be written in the form x = —VV, for some continuously
differentiable, single-valued scalar function V(x). Such a system is called a gradi-
ent system with potential function V.

Theorem 7.2.1: Closed orbits are impossible in gradient systems.

Proof: Suppose there were a closed orbit. We obtain a contradiction by
considering the change in V after one circuit. On the one hand, AV =0 since V is
single-valued. But on the other hand, '
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T
AV=J. Y
o dt

= LT(VV-x)dz

T

==l ae
0

<0

(unless x = 0, in which case the trajectory is a fixed point, not a closed orbit). This
contradiction shows that closed orbits can’t exist in gradient systems. m

The trouble with Theorem 7.2.1 is that most two-dimensional systems are not
gradient systems. (Although, curiously, all vector fields on the line are gradient
systems; this gives another explanation for the absence of oscillations noted in
Sections 2.6 and 2.7.)

—_——
EXAMPLE 7.2.1:
Show that there are no closed orbits for the system x =siny, y=xcosy.
Solution: The system is a gradient system with potential function V(x,y) =
~xsiny, since x=-dV/dx and y=-dV/dy. By Theorem 7.2.1, there are no
closed orbits. m

How can you tell whether a system is a gradient system? And if it is, how do you
find its potential function V? See Exercises 7.2.5 and 7.2.6.

Even if the system is not a gradient system, similar techniques may still work,
as in the following example. We examine the change in an energy-like function af-
ter one circuit around the putative closed orbit, and derive a contradiction.

EXAMPLE 7.2.2:

Show that the nonlinearly damped oscillator ¥ +(x)* +x =0 has no periodic
solutions.

Solution: Suppose that there were a periodic solution x(t) of period 7. Con-
sider the energy function E(x,x)=+(x” +x%). After one cycle, x and x return to
their starting values, and therefore AE =0 around any closed orbit.

T,
On the other hand, AE = JE dt. If we can show this integral is nonzero, we’ve
0
reached a contradiction. Note that E = x(x+ %) = x(-x°) =—x*<0. Therefore

T
AE = —J (x)* dr < 0, with equality only if X = 0. But x =0 would mean the trajectory
0

is a fixed point, contrary to the original assumption that it’s a closed orbit. Thus AE is
strictly negative, which contradicts AE = 0. Hence there are no periodic solutions. m
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Liapunov Functions

Even for systems that have nothing to do with mechanics, it is occasionally pos-
sible to construct an energy-like function that decreases along trajectories. Such a
function is called a Liapunov function. If a Liapunov function exists, then closed
orbits are forbidden, by the same reasoning as in Example 7.2.2.

To be more precise, consider a system x = f(x) with a fixed point at x *. Sup-
pose that we can find a Liapunov function, i.e., a continuously differentiable, real-
valued function V(x) with the following ?penies:

1. V(x)>0 for all x#x*,
definite.)
2. V<0 forall x # x*. (All trajectories flow “downhill” toward x *.)

V(x*)=0. (We say that V is positive

Then x * is globally asymptotically stable: for all initial conditions, x(r) — X * as
t — o . In particular the system has no closed orbits. (For a proof, see Jordan and
Smith 1987.)

The intuition is that all trajectories move monotonically down the graph of
V(x) toward x * (Figure 7.2.1).

V(x)

x*

Figure 7.2.1

The solutions can’t get stuck anywhere else because if they did, V would stop
changing, but by assumption, V <0 everywhere except at X *.

Unfortunately, there is no systematic way to construct Liapunov functions. Dl-\;
vine inspiration is usually required, although sometimes ohe can work backwards.
Sums of squares occasionally work, as in the following example.

EXAMPLE 7.2.3:

By constructing a Liapunov function, show that the system x=-x+4y,
y=-x-1y" has no closed orbits.

Solution: Consider V(x,y)=x*+ay® , where a is a parameter to be chosen
later, Then V=2xi+ 2ayy =2x(-x +4y)+ 2ay(—x - y*) = -2x* + (8 — 2a)xy —
2ay*. If we choose a =4, the xy term disappears and V = —2x> —8y*. By inspec-
tion, V>0 and V<O for all (x,y)# (0,0). Hence V = x> +4y’ is a Liapunov
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function and so there are no closed orbits. In fact, all trajectories approach the ori-

ginast—co. m

Dulac’s Criterion

The third method for ruling out closed orbits is based on Green’s theorem, and
is known as Dulac’s criterion.

Dulac’s Criterion: Let x = f(x) be a continuously differentiable vector
field defined on a simply connected subset R of the plane. If there exists a continu-
ously differentiable, real-valued function g(x) such that V-(gx) has one sign
throughout R, then there are no closed orbits lying entirely in R.

Proof: Suppose there were a closed orbit C lying entirely in the region R.
Let A denote the region inside C (Figure 7.2.2). Then Green’s theorem yields

H V-(g:k)dA=§ gk n df

A C

where n is the outward normal and 4/ is the element of arc length along C.
Look first at the double integral on the left: it must be nonzero, since V-(gx)
has one sign in R. On the other hand, the line integral on the right equals zero
since X-n =0 everywhere, by the assumption that C is a trajectory (the tangent
vector X is orthogonal to n). This contradiction implies that no such C can
exist. m

Figure 7.2.2

Dulac’s criterion suffers from the same drawback as Liapunov’s method: there
is no algorithm for finding g(x). Candidates that occasionally work are g =1,

l/x“yb, e”, and e”.

EXAMPLE 7.2.4:

Show that the system x=x(2—x—y), y=y(4x— x* =3) has no closed orbits
in the positive quadrant x,y > 0.
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Solution: A hunch tells us to pick g =1/xy. Then

V(g% = %(gx) " %(gy‘)

_9(2=x=y), 9 (4x-x"-3
Jx y dy x

=-1/y
<0.

Since the region x,y>0 is S§imply connected and g and f satisfy the required
smoothness conditions, DuJac’s criterion implies there are no closed orbits in the
positive quadrant. m

EXAMPLE 7.2.5:
Show that the system X =y, y=—x — y+x* + y* has no closed orbits.
Solution: Let g=e”*. Then V-(gx)=—2e¢ >y +e > (-1+2y)=—e>* <0.By

Dulac’s criterion, there are no closed orbits. m

7.3 Poincaré-Bendixson Theorem

Now that we know how to rule out closed orbits, we turn to the opposite task: find-
ing methods to establish that closed orbits exist in particular systems. The follow-
ing theorem is one of the few results in this direction. It is also one of the key
theoretical results in nonlinear dynamics, because it implies that chaos can’t occur
in the phase plane, as discussed briefly at the end of this section.

Poincaré~Bendixson Theorem: Suppose that:
(1) R is aclosed, bounded subset of the plane;
(2) x =f(x) is a continuously differentiable vector field on an open set contain-

ing R;

(3) R does not contain any fixed points; and
(4) There exists a trajectory C that is “confined” in R, in the sense that it starts
in R and stays in R for all future time
(Figure 7.3.1).
Then either C is a closed orbit, or it spirals
toward a closed orbit as t — oo . In either
case, R contains a closed orbit (shown as a
heavy curve in Figure 7.3.1).

ki The proof of this theorem is subtle, and
igure 7.3.1 . .
requires some advanced ideas from topol-
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ogy. For details, see Perko (1991), Coddington and Levinson (1955), Hurewicz
(1958), or Cesari (1963).

In Figure 7.3.1, we have drawn R as a ring-shaped region because any closed
orbit must encircle a fixed point (P in Figure 7.3.1) and no fixed points are allowed
in R.

When applying the Poincaré-Ben-
dixson theorem, it’s easy to satisfy
conditions (1)—(3); condition (4) is the
tough one. How can we be sure that a
confined trajectory C exists? The stan-
dard trick is to construct a trapping
region R, i.e., a closed connected set
such that the vector field points “in-
ward” everywhere on the boundary of
R (Figure 7.3.2). Then all trajectories
in R are confined. If we can also arrange that there are no fixed points in R, then
the Poincaré—Bendixson theorem ensures that R contains a closed orbit.

The Poincaré-Bendixson theorem can be difficult to apply in practice. One con-
venient case occurs when the system has a simple representation in polar coordi-
nates, as in the following example.

Figure 7.3.2

EXAMPLE 7.3.1:
Consider the system
F=r(1-r*)+ urcos@

6=1. (1)

When p=0, there’s a stable limit cycle at r =1, as discussed in Example 7.1.1.
Show that a closed orbit still exists for it > 0, as long as u is sufficiently small.

such that 7 <0
on the outer circle and r > 0 on the inner circle. Then the annulus O <7, <r<r,

Solution: We seek two concentric circles with radii ,;, and 7,

max?

will be our desired trapping region. Note that there are no fixed points in the annu-
lus since 8 > 0; hence if r,;, and r,,, can be found, the Poincaré—Bendixson theo-

max

rem will imply the existence of a closed orbit.
To find r,

- > We require 7= r(1—r’)+ purcosf >0 for all 8. Since cos@>-1,
a sufficient condition for r,, is 1—r* — > 0. Hence any r,;, < m will work,
as long as p <1 so that the square root makes sense. We should choose r,;, as
large as possible, to hem in the limit cycle as tightly as we can. For instance, we

could pick r,,, =0.999,/ 1—u. (Even r,,, =/ 1—u works, but more careful rea-
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soning is required.) By a similar argument, the flow is inward on the outer circle if
Toax =1.0014/ 1+ 2.

Therefore a closed orbit exists for all 1 <1, and it lies somewhere in the annu-
lus 0.999,/1-u <r<1.00l\1+u.m

The estimates used in Example 7.3.1 are conseyétive. In fact, the closed orbit
can exist even if i > 1. Figure 7.3,3 shows a co;zi/puter—generated phase portrait of
(1) for p =1. In Exercise 7.3.8, you’re asked to éxplore what happens for larger u,
and in particular, whether there’s a critical u téyond which the closed orbit disap-
pears. It’s also possible to obtain some ana]yti(%al insight about the closed orbit for
small u (Exercise 7.3.9). ‘

Figure 7.3.3

When polar coordinates are inconvenient, we may still be able to find an appro-
priate trapping region by examining the system’s nullclines, as in the next example.

EXAMPLE 7.3.2:

In the fundamental biochemical process called glycolysis, living cells obtain en-
ergy by breaking down sugar. In intact yeast cells as well as in yeast or muscle ex-
tracts, glycolysis can proceed in an oscillatory fashion, with the concentrations of
various intermediates waxing and waning with a period of several minutes. For re-
views, see Chance et al. (1973) or Goldbeter (1980).

A simple model of these oscillations has been proposed by Sel’kov (1968). In
dimensionless form, the equations are

X=—x+ay+x’y

y=b-ay-x"y
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where x and y are the concentrations of ADP (adenosine diphosphate) and F6P
(fructose-6-phosphate), and a,b >0 are kinetic parameters. Construct a trapping
tegion for this system.

Solution: First we find the nullclines. The first equation shows that x =0 on the
curve y=x / (a+ x2) and the second equation shows that y=0 on the curve
y=b/(a+x*). These nuliclines are sketched in Figure 7.3.4, along with some
representative vectors.

y

y=b/(@+x")

x>0
/ \)’»<0

x>0
y>0
i:O\ y=x/(a+x%)
7>0 - £<0,y<0 =0
4 . !"'_/
\‘j = Sy
Figure 7.3.4

How did we know how to sketch these vectors? By definition, the arrows are verti-
cal on the X = 0 nullcline, and horizontal on the y = 0 nullcline. The direction of
flow is determined by the signs of x and y. For instance, in the region above both
nullclines, the governing equations imply x>0 and y <0, so the arrows point
down and to the right, as shown in Figure 7.3.4.

Now consider the region bounded by the dashed line shown in Figure 7.3.5. We
claim that it’s a trapping region. To verify this, we have to show that all the vec-
tors on the boundary point into the box. On the horizontal and vertical sides,
there’s no problem: the claim follows from Figure 7.3.4. The tricky part of the con-
struction is the diagonal line of slope —1 extending from the point (b, b/a) to the
nullcline y = x[(a+x*). Where did this come from?
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Figure 7.3.5

To get the right intuition, consider x and y in the limit of very large x. Then
x=x"y and y=—x"y, so y/x=dy/dx = -1 along trajectories. Hence the vector
field at large x is roughly parallel to the diagonal line. This suggests that in a more
precise calculation, we should compare the sizes of x and —y, for some

sufficiently large x .
In particular, consider x — (—y) . We find

i—(=y)=—x+ay+x’y+(b—ay-x’y)
=b-x.
Hence
-y>x ifx>b.

This inequality implies that the vector field points inward on the diagonal line in
Figure 7.3.5, because dy/dx is more negative than —1, and therefore the vectors are
steeper than the diagonal line. Thus the region is a trapping region, as claimed. m

Can we conclude that there is a closed orbit inside the trapping region? No!
There is a fixed point in the region (at the intersection of the nullclines), and so the
conditions of the Poincaré-Bendixson theorem are not satisfied. But if this fixed
point is a repeller, then we can prove the existence of a closed orbit by considering
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the modified “punctured” region shown in Figure 7.3.6. (The hole is infinitesimal,
but drawn larger for clarity.)

y

Figure 7.3.6

The repeller drives all neighboring trajectories into the shaded region, and since
this region is free of fixed points, the Poincaré—Bendixson theorem applies.
Now we find conditions under which the fixed point is a repeller.

EXAMPLE 7.3.3:

Once again, consider the glycolytic oscillator x=-x+ay+x’y, y=
b—ay— x*y of Example 7.3.2. Prove that a closed orbit exists if a and b satisfy
an appropriate condition, to be determined. (As before, a,b>0.)

Solution: By the argument above, it suffices to find conditions under which the
fixed point is a repeller, i.e., an unstable node or spiral. In general, the Jacobian is

A= -1+2xy a+x’
2xy —(a+xY))

After some algebra, we find that at the fixed point

b
x¥=b, * = s
Y a+b®

the Jacobian has determinant A = a+ b* >0 and trace
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_ b +Qa-1b’+(a+d’)
a+b* )

Hence the fixed point is unstable for 7 > 0, and stable for 7 <0. The dividing line
7 =0 occurs when

b =4(1-2a+1-8a).
This defines a curve in (a,b) spage, as shown in Figure 7.3.7.

1.2 T T T T

1 -]

0.8

0.6 -
b
04 i
stable
0.2 fixed point

0 / I | | ! ] i
0 002 004 006 008 0.1 012 0.14

a

Figure 7.3.7

For parameters in the region corresponding to 7 >0, we are guaranteed that the
system has a closed orbit—numerical integration shows that it is actually a stable
limit cycle. Figure 7.3.8 shows a computer-generated phase portrait for the typical
case a=0.08, b=0.6.m

Figure 7.3.8
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No Chaos in the Phase Plcﬁ/e

The Poincaré—Bendixson theorem is one of the central results of nonlinear dy-
namics. It says that the dynamical possibilities in the phase plane are very limited:
if a trajectory is confined to a closed, bounded region that contains no fixed points,
then the trajectory must eventually approach a closed orbit. Nothing more compli-
cated is possible.

This result depends crucially on the two-dimensionality of the plane. In higher-
dimensional systems (n > 3 ), the Poincaré~Bendixson theorem no longer applies,
and something radically new can happen: trajectories may wander around forever
in a bounded region without settling down to a fixed point or a closed orbit. In
some cases, the trajectories are attracted to a complex geometric object called a
strange attractor, a fractal set on which the motion is aperiodic and sensitive to
tiny changes in the initial conditions. This sensitivity makes the motion unpre-
dictable in the long run. We are now face to face with chaos. We’ll discuss this
fascinating topic soon enough, but for now you should appreciate that
the Poincaré-Bendixson theorem implies that chaos can never occur in the phase
plane. '

7.4 Lliénard Systems

In the early days of nonlinear dynamics, say from about 1920 to 1950, there was a
great deal of research on nonlinear oscillations. The work was initially motivated
by the development of radio and vacuum tube technology, and later it took on a
mathematical life of its own. It was found that many oscillating circuits could be
modeled by second-order differential equations of the form

X+ f(x)x+g(x)=0, (1)

now known as Liénard’s equation. This equation is a generalization of the van der
Pol oscillator ¥ + 1 (x*> —1) % + x = 0 mentioned in Section 7.1. It can also be inter-
preted mechanically as the equation of motion for a unit mass subject to a nonlin-
ear damping force —f(x)x and a nonlinear restoring force —g(x).

Liénard’s equation is equivalent to the system

xX=y
y=-gx) - f(x)y. (2)
The following theorem states that this system has a unique, stable limit cycle under

appropriate hypotheses on f and g. For a proof, see Jordan and Smith (1987),
Grimshaw (1990), or Perko (1991).

Liénard’s Theorem: Suppose that f(x) and g(x) satisfy the following
conditions:
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(1) f(x) and g(x) are continuously differentiable for all x ;
(2) g(-x)=—g(x) forall x (i.c., g(x) is an odd function);
3) g(x)>0 forx>0;

4) f(-x)= f(x) forall x (i

.e., f(x) is an even function);

(5) The odd function F(x =J Jf(u)du has exactly one positive zero at x=a,
0

is negative for 0.< ¥ <a, is positive and nondecreasing for x >a, and

F(x) —> oo as x — oo,

Then the system (2) has a upique, stable limit cycle surrounding the origin in the
phase plane.

This result should seem plausible. The assumptions on g(x) mean that the
restoring force acts like an ordinary spring, and tends to reduce any displacement,
whereas the assumptions on f(x) imply that the damping is negative at small |x|
and positive at large |x| . Since small oscillations are pumped up and large oscilla-
tions are damped down, it is not surprising that the system tends to settle into a
self-sustained oscillation of some intermediate amplitude.

EXAMPLE 7.4.1:

Show that the van der Pol equation has a unique, stable limit cycle.

Solution: The van der Pol equation X + £ (x* —1) X+ x =0 has f(x)=u(x> -1)
and g(x) = x, so conditions (1)~(4) of Liénard’s theorem are clearly satisfied. To
check condition (5), notice that

F(x)=;t(-‘5x3 -—x)=%,ux(x2 -3).

Hence condition (5) is satisfied for a = +/3 . Thus the van der Pol equation has a
unique, stable limit cycle. m

There are several other classical results about the existence of periodic solutions
for Liénard’s equation and its relatives. See Stoker (1950), Minorsky (1962), An-
dronov et al. (1973), and Jordan and Smith (1987).

7.5 Relaxation Oscillations

It’s time to change gears. So far in this chapter, we have focused on a qualitative
question: Given a particular two-dimensional system, does it have any periodic solu-
tions? Now we ask a quantitative question: Given that a closed orbit exists, what can
we say about its shape and period? In general, such problems can’t be solved exactly,
but we can still obtain useful approximations if some parameter is large or small.
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We begin by considering the van der Pol equation
F+p*-Di+x=0

for yu>>1. In this strongly nonlinear limit,\we’ll see that the limit cycle consists
of an extremely slow buildup followed by a sudden discharge, followed by another
slow buildup, and so on. Oscillations of this type are often called relaxation oscil-
lations, because the “stress” accumulated during the slow buildup is “relaxed” dur-
ing the sudden discharge. Relaxation oscillations occur in many other scientific
contexts, from the stick-slip oscillations of a bowed violin string to the periodic
firing of nerve cells driven by a constant current (Edelstein-Keshet 1988, Murray
1989, Rinzel and Ermentrout 1989).

EXAMPLE 7.5.1:

Give a phase plane analysis of the van der Pol equation for u >>1.
Solution: It proves convénient to introduce different phase plane variables from

the usual “x =y, y=..."”. To motivate the new variables, notice that
F+ux(x®-1= g—(x +y[=}x3 - x])
t
So if we let
F(x)=%x3—x, w=x+UF(x), (1)

the van der Pol equation implies that
v'v=)'é+,u5r(x2—l)=—x. (2)
Hence the van der Pol equation is equivalent to (1), (2), which may be rewritten as

x=w-—uF(x)
W= —x. (3)

One further change of variables is helpful. If we let

y=—
u

then (3) becomes

i=ply-F]
y=—tx. (4)
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Now consider a typical trajectory in the (x,y) phase plane. The nullclines are
the key to understanding the motion. We claim that all trajectories behave like that
shown in Figure 7.5.1; starting from any point except the origin, the trajectory zaps
horizontally onto thé cubic nullcline y = F(x). Then it crawls down the nullcline
until it comes to the knee (point B in Figure 7.5.1), after which it zaps over to the
other branch of the cybic at C. This is followed by another crawl along the cubic

y
y=F(x)
fast
> A
slow
x
slow
C .
fast B

Figure 7.5.1

until the trajectory reaches the next jumping-off point at D, and the motion contin-
ues periodically after that.

To justify this picture, suppose that the initial condition is not too close to the
cubic nullcline, i.e., suppose y— F(x) ~ O(1). Then (4) implies |x| ~0(u)>>1
whereas | y| ~O(u™") << 1; hence the velocity is enormous in the horizontal di-
rection and tiny in the vertical direction, so trajectories move practically hori-
zontally. If the initial condition is above the nulicline, then y— F(x)>0 and
therefore x > 0 ; thus the trajectory moves sideways toward the nullcline. How-
ever, once the trajectory gets so close that y — F(x)~ O(u™), then x and y be-
come comparable, both being O(u™'). What happens then? The trajectory
crosses the nullcline vertically, as shown in Figure 7.5.1, and then moves
slowly along the backside of the branch, with a velocity of size O(u™'), until it
reaches the knee and can jump sideways again. m

This analysis shows that the limit cycle has two widely separated time scales:
the crawls require Az ~ O(u) and the jumps require At ~ O(u™"). Both time scales
are apparent in the waveform of x(¢) shown in Figure 7.5.2, obtained by numerical
integration of the van der Pol equation for =10 and initial condition

(xo,y0)=(2,0).
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— 4

Figure 7.5.2

EXAMPLE 7.5.2:

Estimate the period of the limit cycle for the van der Pol equation for u >>1.
Solution: The period T is essentially the time required to travel along the

two slow branches, since the time spent in the jumps is negligible for large u.
!
By symmetry, the time spent on each branch is the same. Hence T = 2 *dt . To

1A
derive an expression for dt, note that on the slow branches, y= F(x) and

thus
dy

dx 2 dx
— = F(x)—= -D—.
dt (x)dt (x )dt

But since dy/dt = —x/u from (4), we find dx/dt = — x /i (x* —1). Therefore

p(x> =1
dtz—de (5)

on a slow branch. As you can check (Exercise 7.5.1), the positive branch begins at
x, =2 and ends at x, = 1. Hence

t 2 2
Tz2j —”—(xz—l)dx=2u|:x——lnx} =p[3—21n2], (6)
2 x 2

1

which is O() as expected. m

The formula (6) can be refined. With much more work, one can show that
T=yp[3-2In2]+20u™">+ ..., where a~2338 is the smallest root of
Ai(-a) = 0. Here Ai(x) is a special function called the Airy function. This correc-
tion term comes from an estimate of the time required to turn the corner between
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the jumps and the crawls. See Grimshaw (1990, pp. 161-163) for a readable de-
rivation of this wonderful formula, discovered by Mary Cartwright (1952). See
also Stoker (1950) for more about relaxation oscillations.

One last remark: We have seen that a relaxation oscillation has two time scales
that operate sequentially—a slow buildup is followed by a fast discharge. In the
next section we will encounter problems where two time scales operate concur-
rently, and that makes the problems a bit more subtle.

7.6 Weakly Nonlinear Oscillators

This section deals with equations of the form
X+x+eh(x,x)=0 (1)

where 0 < e<<1 and h(x, x) is an arbitrary smooth function. Such equations repre-
sent small perturbations of the linear oscillator X + x =0 and are therefore called
weakly nonlinear oscillators. Two fundamental examples are the van der Pol
equation

i+x+e(x*-1)x=0, (2)
(now in the limit of small nonlinearity), and the Duffing equation
i+x+ex’=0. (3)

To illustrate the kinds of phenomena that can arise, Figure 7.6.1 shows a com-
puter-generated solution of the van der Pol equation in the (x, x) phase plane, for
€ =0.1 and an initial condition close to the origin. The trajectory is a slowly wind-
ing spiral; it takes many cycles for the amplitude to grow substantially. Eventually

Figure 7.6.1
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the trajectory asymptotes to an approximately circular limit cycle whose radius is
close to 2.

We’d like to be able to predict the shape, period, and radius of this limit cycle.
Our analysis will exploit the fact that the oscillator is “close to” a simple harmonic
oscillator, which we understand completely.

Regular Perturbation Theory and Its Failure

As a first approach, we seek solutions of (1) in the form of a power series in €.
Thus if x(¢,€) is a solution, we expand it as

x(t,€) = x, () +ex, () + X x,(O) + . . ., (4)

where the unknown functions x, (¢) are to be determined from the governing equa-
tion and the initial conditions. The hope is that all the important information is cap-
tured by the first few terms—ideally, the first two—and that the higher-order terms
represent only tiny corrections. This technique is called regular perturbation the-
ory. It works well on certain classes of problems (for instance, Exercise 7.3.9), but
as we’ll see, it runs into trouble here.

To expose the source of the difficulties, we begin with a practice problem that
can be solved exactly. Consider the weakly damped linear oscillator

5c'+2sx+x=o,"' (5)
with initial conditions

x(0)=0, x(0)=1. (6)
Using the techniques of Chapter 5, we find the exact solution

x(t,€) = (1—@32)_”2 e sin[(l —82)”21‘]. (7)

Now let’s solve the same problem using perturbation theory. Substitution of (4)
into (5) yields

2
d
?(xo +EX +.. .)+2£‘—i;(x0 +ex,+.. ) +(x +Ex, +..)=0. (8
If we group the terms according to powers of £, we get

[%, +x, ]+ €[ %, +2%, +x,] + O(*) =0. (9

Since (9) is supposed to hold for all sufficiently small €, the coefficients of each
power of £ must vanish separately. Thus we find

o): Xy+x,=0 ~ (10)
O(e): %, +2x, +x, =0. (11)
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(We’re ignoring the O(¢?) and higher equations, in the optimistic spirit mentioned
earlier.)

The appropriate initial conditions for these equations come from (6). At t=0,
(4) implies that 0 = x,{6)+ £x,(0) + . . . ; this holds for all £, so

x,(0)=0, x,(0)<0. (12)
By applying a similar argument tp x(0) we obtain
%,(0)=1, x%(0)=0. (13)

\
Now we solve the initial-value problems one by one; they fall like dominoes.
The solution of (10), subject to the initial conditions x,(0) =0, x,(0) =1, is

xo(t) =sin¢t. (14)
Plugging this solution into (11) gives
X, +x, =-2cost. (15)

Here’s the first sign of trouble: the right-hand side of (15) is a resonant forcing.
The solution of (15) subject to x,(0) =0, x,(0)=0 is

x,(t)=—tsint, (16)

which is a secular term, i.e., a term that grows without bound as ¢t — oo .
In summary, the solution of (5), (6) according to perturbation theory is

x(t,€) = sint —ersint + O(€?). (17)

How does this compare with the exact solution (7)? In Exercise 7.6.1, you are
asked to show that the two formulas agree in the following sense: If (7) is ex-
panded as power series in £, the first two terms are given by (17). In fact, (1/7) is
the beginning of a convergent series expansion for the true solution. For any fixed
t, (17) provides a good approximation as long as € is small enough—specifically,
we need £7 << 1 so that the correction term (which is actually O(g¢?) ) is negligi-
ble.

But normally we are interested in the behavior for fixed €, not fixed ¢. In that
case we can only expect the perturbation approximation to work for times
t << O(1/¢). To illustrate this limitation, Figure 7.6.2 plots the exact solution (7)
and the perturbation series (17) for £ =0.1. As expected, the perturbation series
works reasonably well if ¢ << 1 =10, but it breaks down after that.
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Figure 7.6.2

In many situations we’d like our approximation to capture the true solution’s
qualitative behavior for all ¢, or at least for large ¢ . By this criterion, (17) is a fail-
ure, as Figure 7.6.2 makes obvious. There are two major problems:

1. The true solution (7) exhibits two time scales: a fast time t ~ O(1) for
the sinusoidal oscillations and a slow time t ~ 1/¢ over which the am-
plitude decays. ’IEquation (17) completely misrepresents the slow time
scale behavior. In particular, because of the secular term fsinz, (17)
falsely suggests that the solution grows with time whereas we know
from (7) that the amplitude A = (1 -& )_ ’ e™®' decays exponentially.

The discrepancy occurs because e =1— gt + O(e%?), so to this
order in &, it appears (incorrectly) that the amplitude increases with ¢.
To get the correct result, we’d need to calculate an infinite number of
terms in the series. That’s worthless; we want series approximations
that work well with just one or two terms.

2. The frequency of the oscillations in (7) is @ = (1—82)”2 ~1-%¢&?,
which is shifted slightly from the frequency @ =1 of (17). After a very
long time ¢ ~ O(1/£?), this frequency error will have a significant cumu-
lative effect. Note that this is a third, super-slow time scale!

Two-Timing

The elementary example above reveals a more general truth: There are going to
be (at least) two time scales in weakly nonlinear oscillators. We’ve already met
this phenomenon in Figure 7.6.1, where the amplitude of the spiral grew very
slowly compared to the cycle time. An analytical method called two-timing builds
in the fact of two time scales from the start, and produces better approximations
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than regular perturbation theory. In fact, more than two times can be used, but
we’ll stick to the simplest case.

To apply two-timing to (1), leh7 =¢ denote the fast O(1) time, and let T = ¢¢
denote the slow time. We’ll treat theése two times as if they were independent vari-
ables. In particular, functions of the slow time T will be regarded as constants on
the fast time scale 7 . It’s hard to justify this idea rigorously, but it works! (Here’s
an analogy: it’s like saying that your height is constant on the time scale of a day.
Of course, over many months or years your height can change dramatically, espe-
cially if you’re an infant or a pubescent teenager, but over one day your height
stays constant, to a good approximation.)

Now we turn to the mechanics of the method. We expand the solution of (1) as a
series

x(1,€) = xy (7, T) + €x,(1, T) + O(*). (18)
The time derivatives in (1) are transformed using the chain rule:

x‘;—ﬁ—_ai.f.ﬁ.al—ﬁ.{.g_ai (19)
T dt 9t T I It IT’
A subscript notation for differentiation is more compact; thus we write (19) as
i= d,x+Edpx. (20)

After substituting (18) into (20) and collecting powers of €, we find

x=0,x) +&(9rx, +9,x,) + O(€). (21)
Similarly,
%= 0%, +€(0x, +207,x%,)+O(E?). (22)

To illustrate the method, let’s apply it to our earlier test problem.

EXAMPLE 7.6.1:

Use two-timing to approximate the solution to the damped linear oscillator
X +2¢€ex + x =0, with initial conditions x(0)=0, x(0)=1.
Solution: After substituting (21) and (22) for x and X, we get

OeXo + (0%, +207,%,) +2€0,x, + X, +Ex, +O(€*)=0. (23)
Collecting powers of ¢ yields a pair of differential equations:

O): . .xy+x,=0 (24)
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0(&): 9%, +20,, %5 +20,x, + x, =0. (25)
Equation (24) is just a simple harmonic oscillator. Its general solution is

X, =AsinT+ BcosT, (26)

but now comes the interesting part: The “constants” A and B are actually func-
tions of the slow time T . Here we are invoking the above-mentioned ideas that 7
and T should be regarded as independent variables, with functions of 7 behaving
like constants on the fast time scale 7.

To determine A(T) and B(T), we need to go to the next order of £ . Substitut-
ing (26) into (25) gives

X +x,=-2 (3Trx0 + 8,x0)
=-2(A’+A)cosT + 2(B’'+B)sint (27)

where the prime denotes differentiation with respect to 7.

Now we face the same predicament that ruined us after (15). As in that case, the
right-hand side of (27) is a resonant forcing that will produce secular terms like
TsinT and Tcos7 in the solution for x,. These terms would lead to a convergent
but useless series expansion for x . Since we want an approximation free from sec-
ular terms, we set the coeﬁ‘i&ients of the resonant terms to zero—this manuever is
characteristic of all two-timing calculations. Here it yields

A'+A=0 (28)
B +B=0. (29)

The solutions of (28) and (29) are
A(T) = A(0)eT
B(T)=B(0)e ™.

The last step is to find the initial values A(0) and B(0). They are determined by
(18), (26), and the given initial conditions x(0) =0, x(0) =1, as follows. Equation
(18) gives 0= x(0) = x,(0,0)+ £x,(0,0) + O(£*). To satisfy this equation for all
sufficiently small €, we must have

x,(0,0)=0 (30)
and x,(0,0) = 0. Similarly,

1= x(0) = 9,x,(0,0) + £(9;x,(0,0) + 3, x,(0,0)) + O(e*)
SO

9.x,(0,0)=1 (31)
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and 0;x,(0,0) + d,x,(0,0) = 0. Combining (26) and (30) we find B(0)=0; hence
B(T)=0. Similarly, (26) and (31) imply A(0)=1, so A(T) = e ". Thus (26) be-
comes

x,(7,T)=¢"sint. (32)
Hence
x=eTsint+O0(e)
=e * sint+ O(¢) (33)

is the approximate solution predicted by two-timing. m

Figure 7.6.3 compares the two-timing solution (33) to the exact solution (7) for
£ =0.1. The two curves are almost indistinguishable, even though € is not terribly
small. This is a characteristic feature of the method—it often works better than it
has any right to.

1 T T I

—O— exact
—»— two timing

0 10 20 30 40 50

Figure 7.6.3

If we wanted to go further with Example 7.6.1, we could either solve for x, and
higher-order corrections, or introduce a super-slow time 3 = £’¢ to investigate the
long-term phase shift caused by the O(g®) error in frequency. But Figure 7.6.3
shows that we already have a good approximation.

OK, enough practice problems! Now that we have calibrated the method, let’s
unleash it on a genuine nonlinear problem.

EXAMPLE 7.6.2:

Use two-timing to show that the van der Pol oscillator (2) has a stable limit cycle
that is nearly circular, with a radius = 2 + O(¢) and a frequency w = 1+ O(£”).
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Solution: The equation is X + x + &(x* —1)x = 0. Using (21) and (22) and col-
lecting powers of £, we find the following equations:
O(): dxy+x,=0 (34)
0(&) : I xy + X, = 201X = (%,° = 1) 9, X, - (35)

As always, the O(1) equation is a simple harmonic oscillator. Its general solution
can be written as (26), or alternatively, as

x, =r(T)cos(T + ¢(T)) (36)

where r(T) and ¢(T) are the slowly-varying amplitude and phase of x,,.
To find equations governing r and ¢, we insert (36) into (35). This yields

O, + x, = =2(r’sin(T + 9) + r¢’ cos(7 + ¢))
— rsin(t +¢)[r* cos’(z+¢) - 1]. (37)

As before, we need to avoid resonant terms on the right-hand side. These are terms
proportional to cos(T + ¢) and sin(7 +¢) . Some terms of this form already appear
explicitly in (37). But—and this is the important point—there is also a resonant
term lurking in sin(7 + ¢) cos’ QT + ¢), because of the trigonometric identity

sin(7 + @) cos’ (7 + 9) = +[sin(z + ¢) +sin 3(z + 9)]. (38)

(Exercise 7.6.10 reminds you how to derive such identities, but usually we won’t need
them—shortcuts are available, as we’ll see.) After substituting (38) into (37), we get

0% +x = [—2r’ +r—% r3] sin(T + ¢)
+[-2r¢’] cos(t+¢) — £’ sin3(7 + ¢).

(39)
To avoid secular terms, we require
2r+r-4r’=0 (40)
=2r¢’=0. (41)
First consider (40). It may be rewritten as a vector field
r=%rd-r" (42)

on the half-line » >0 . Following the methods of Chapter 2 or Example 7.1.1, we
see that 7* = 0 is an unstable fixed point and r* =2 is a stable fixed point. Hence
r(T)—>?2 as T — . Secondly, (41) implies ¢’ =0, so ¢(T)= ¢, for some con-
stant ¢, . Hence x,(7,T) — 2cos(T + ¢,) and therefore
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x(t) = 2cos(t + ¢,) + O(€) (43)

as t — oo . Thus x(¢) approaches a stable limjt cycle of radius = 2 + O(€).
To find the frequency implied by (43), let 6 = ¢+ ¢(T) denote the argument of
the cosine. Then the angular frequency @ is given by

a):———=1+——-—-——=1+8¢'=1, (44)

through first order in €. Hence @ =1+ O(&?); if we want an explicit formula for
this O(g?) correction term, we’d need to introduce a super-slow time 3 = £%¢, or
we could use the Poincaré—Lindstedt method, as discussed in the exercises. m

Averaged Equations

The same steps occur again and again in problems about weakly nonlinear os-
cillators. We can save time by deriving some general formulas.
Consider the equation for a general weakly nonlinear oscillator:

X+x+eh(x,x)=0. (45)
The usual two-timing substitutions give

O(1): d %y +x,=0 (46)

O(): I x,+x,=-20,;x,—h (47)
where now h = h(x,, d,x,). As in Example 7.6.2, the solution of the O(1) equa-
tion is

xo, =r(T)cos(T +¢(T)). (48)

Our goal is to derive differential equations for * and ¢’, analogous to (40) and
(41). We’ll find these equations by insisting, as usual, that there be no terms pro-
portional to cos(7 + ¢) and sin(T +¢) on the right-hand side of (47). Substituting
(48) into (47), we see that this right-hand side is

2[r’sin(t + @)+ r¢’ cos(t + 9)| - h (49)

where now A= h(rcos(t+¢) , —rsin(7+¢)).

To extract the terms in & proportional to cos(7 + ¢) and sin(t + ¢), we borrow
some ideas from Fourier analysis. (If you’re unfamiliar with Fourier analysis,
don’t worry—we’ll derive all that we need in Exercise 7.6.12.) Notice that & is a
27 -periodic function of 7+ ¢ . Let

O0=71+¢.
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Fourier analysis tells us that A(8) can be written as a Fourier series
h(8) = a,coskf+ Y b,sink6 (50)
k=0 k=1
where the Fourier coefficients are given by

2

a0=#L h(6)de
2

ak=-},-I h(B)cosk0d6, k>1
()

2T
b, =%j0 h(O)sink6dO, k>1. 5

Hence (49) becomes

2[r'sin6+r¢'cos€]—2ak coskG—Zbk sink@ . (52)
k=0 k=1

The only resonant terms in (52) are [2r’ -b, ]sin 0 and [2r¢’ - al]cose . Therefore,

to avoid secular terms we need r" = b, /2 and r¢” = a,/2 . Using the expressions in

[
(51) for a, and b, , we obtain

2
r= ZLJ' h(6)sin6.d6 = (hsin 6)
0
27
r¢'=—2’,7j h(0)cos0d8 = (hcos ) (53)
0
where the angled brackets (-) denote an average over one cycle of 6.
The equations in (53) are called the averaged or slow-time equations. To use
them, we write out h=h(rcos(t+¢), —rsin(t+¢))=h(rcosf , —rsin@) ex-

plicitly, and then compute the relevant averages over the fast variable 8, treating
the slow variable r as constant. Here are some averages that appear often:

(cos) =(sin)=0, (sin cos)=0, <cos3 > = (sin3> =0, <cos2”+'> = (sinz"“) =0,
(cosz> = <sin2> =4, <cos4> = <sin4) =3, (cos2 sin2> =4,
<cosz”> = <sin2"> =Sy, nxl. (54)

Other averages can either be derived from these, or found by direct integration. For
instance,

<c052 sin4> = ((1 —sin? )sin“) = (sin“) - <sin°) =3-B=L
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and

<cos3 sin> = %‘ch”oﬁ 6 sin6do = —/# [cos4 O]Z” =0.

e

EXAMPLE 7.6.3:

Consider the van der Pol equation X + x + &(x*> —1)x = 0, subject to the initial
conditions x(0) =1, x(0) = 0. Find the averaged equations, and then solve them to
obtain an approximate formula for x(¢,€). Compare your result to a numerical so-
lution of the full equation, for £ =0.1.

Solution: The van der Pol equation has & = (x> —1)x = (r* cos> 8 — 1)(—rsin ).
Hence (53) becomes
r’ = (hsin@) = ((r2 cos® @ —1)(—rsin @) sin 9)
= r(sin2 9> - r3<cos2 0 sin’ 9)
r3

r-4

|-

and

r¢’ =(hcos@) = <(r2 cos® @ —1)(—rsin8) cos 9>
=r(sin cos6)—r’ <cos3 0 sin 0>
=0-0=0.
These equations match those found in Example 7.6.2, as they should.
The initial conditions x(0)=1 and x(0)=0 imply r(0) = /x(0)* + x(0)* =1
and ¢(0) = tan™'(x(0)/x(0))—7=0-0=0. Since ¢’ =0, we find ¢(T)=0. To

find ~(T), we solve r'=4r—4r’ subject to r(0)=1. The differential equation

separates to

j%:fﬂ

After integrating by partial fractions and using r(0) =1, we find
rT)=2(1+3¢7)". (55)

Hence

x(t,€) ~ x4(1,T) + O(¢)

—2* cost+ O(¢).
Jit3ee (56)
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Equation (56) describes the transient dynamics of the oscillator as it spirals out to
its limit cycle. Notice that r(T) — 2 as T — oo, as in Example 7.6.2.

In Figure 7.6.4 we plot the “exact” solution of the van der Pol equation, ob-
tained by numerical integration for £€=0.1 and initial conditions x(0)=1,
x(0)=0. For comparison, the slowly-varying amplitude r(7) predicted by (55) is
also shown. The agreement is striking. Alternatively, we could have plotted the
whole solution (56) instead of just its envelope; then the two curves would be vir-
tually indistinguishable, like those in Figure 7.6.3. m

3 T T T T
envelope predicted
2 by averaging theory

/

2
exact solution
3 ! | | |
0 10 20 30 40 50
t
Figure 7.6.4

Now we consider an example in which the frequency of an oscillator depends
on its amplitude. This is a common phenomenon, and one that is intrinsically non-
linear—it cannot occur for linear oscillators.

EXAMPLE 7.6.4:

Find an approximate relation between the amplitude and frequency of the
Duffing oscillator ¥ + x + £x> =0, where £ can have either sign. Interpret the re-
sults physically.

Solution: Here h=x" =r’cos’ 0. Equation (53) becomes

v’ = (hsinB) = r3<cos3 0 sin6) =0
and
r¢’ =(hcos@)=r’ <cos4 9> =3r.

Hence r(T)=a, for some constant a, and ¢’ =%a’ As in Example 7.6.2, the
frequency @ is given by
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o=1+€¢’ =1+3ea’ +0(e%). (57)

Now for the physical interpretation. The Duffing equation describes the un-
damped motion of a unit mass attached to a nonlinear spring with restoring force
F(x)=-x—¢&x’. We can use our intuition about ordinary linear springs if we
write F(x)=—kx, where the spring stiffness is now dependent on x:

k=k(x)=1+¢x2.

Suppose € > 0. Then the spring gets stiffer as the displacement x increases—this
is called a hardening spring. On physical grounds we’d expect it to increase the
frequency of the oscillations, consistent with (57). For € <0 we have a softening
spring, exemplified by the pendulum (Exercise 7.6.15).

It also makes sense that r’ = 0. The Duffing equation is a conservative system
and for all € sufficiently small, it has a nonlinear center at the origin (Exercise
6.5.13). Since all orbits close to the origin are periodic, there can be no long-term
change in amplitude, consistent with 7' =0.m

Validity of Two-Timing

We conclude with a few comments about the validity of the two-timing method.
The rule of thumb is that the one-term approximation x, will be within O(€) of the
true solution x for all times up to and including ¢ ~ O(}/€), assuming that both x
and x, start from the same initial condition. If x is a periodic solution, the situa-
tion is even better: x, remains within O(¢) of x forall t.

But for precise statements and rigorous results about these matters, and for dis-
cussions of the subtleties that can occur, you should consult more advanced treat-
ments, such as Guckenheimer and Holmes (1983) or Grimshaw (1990). Those
authors use the method of averaging, an alternative approach that yields the same
results as two-timing. See Exercise 7.6.25 for an introduction to this powerful
technique.

Also, we have been very loose about the sense in which our formulas approxi-
mate the true solutions. The relevant notion is that of asymptotic approximation.
For introductions to asymptotics, see Lin and Segel (1988) or Bender and Orszag
(1978).

EXERCISES FOR CHAPTER 7

7.1 Examples

Sketch the phase portrait for each of the following systems. (As usual, 7,0 denote
polar coordinates.)
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700 F=r—4r,0=1 70.2 i=r(1-r)9-r}),6=1
713 r=r(l-r’)4-r*),0=2-r*71.4 f=rsinr,0=1

7.1.5 (From polar to Cartesian coordinates) Show that the system r = r(1— r?),

@ =1 is equivalent to
x=x-y-x(x*+y),  y=x+y-yx’+y’),
where x =rcosf, y=rsin0. (Hint: x =< (rcos@)= Fcos—r@sind.)

7.1.6 (Circuit for van der Pol oscillator) Figure 1 shows the “tetrode multivi-
brator” circuit used in the earliest commercial radios and analyzed by van der Pol.
In van der Pol’s day, the active element was a vac-
. fb'l:(f\ ) uum tube; today it would be a semiconductor de-

vice. It acts like an ordinary resistor when [ is
I —— ¢ high, but like a negative resistor (energy source)
when I is low. Its current-voltage characteristic

4 @ 3 V = f(I) resembles a cubic function, as discussed
V=F(I) below.

Suppose a source of current is attached to the

Figure 1 circuit and then withdrawn. What equations gov-

ern the subsequent evolution of the current and the
various voltages?

a) Let V =V, =-V,, denote the voltage drop from point 3 to point 2 in the circuit.
Show that V =—1/C and V = LI + f(I).
b) Show that the equations in (a) are equivalent to
dw dx
—=-Xx, —=w—-UuF(x)
dt dt #
where x = L'?1, w=C"?V,1=(LC)™"*t, and F(x)= f(L_”zx) .
In Section 7.5, we’ll see that this system for (w, x) is equivalent to the van der
Pol equation, if F(x)=1x’ —x. Thus the circuit produces self-sustained oscilla-
tions.

7.1.7 (Waveform) Consider the system r=r(4— r), 0=1, and let
x(t) = r(t)cos 8(t) . Given the initial condition x(0)=0.1, y(0) =0, sketch the ap-
proximate waveform of x(z), without obtaining an explicit expression for it.

7.1.8 (A circular limit cycle) Consider ¥ +ax(x’+%°>—1)+x=0, where
a>0.

a) Find and classify all the fixed points.

b) Show that the system has a circular limit cycle, and find its amplitude and period.
¢) Determine the stability of the limit cycle.

d) Give an argument which shows that the limit cycle is unique, i.e., there are no
other periodic trajectories.

7.1.9 (Circular pursuit problem) A dog at the center of circular pond sees a
duck swimming along the edge. The dog chases the duck b/y/ always swimming
straight toward it. In other words, the dog’s velocity vector/always lies along the
line connecting it to the duck. Meanwhile, the duck takes e\fasive action by swim-
ming around the circumference as fast as it can, always moving counterclockwise.
a) Assuming the pond has unit radius and both animals swirh at the same constant
speed, derive a pair of differential equations for the path ofrg‘n@ dog. (Hint: Use the
coordinate system shovm\ in Figure 2 and

duck find equations for dR/d6 and d¢/d8.) An-
alyze the system. Can you solve it explic-
b R itly? Does the dog ever catch the duck?

b) Now suppose the dog swims k times
faster than the duck. Derive the differen-
h dog tial equations for the dog’s path.
c) If k=%, what does the dog end up doing
in the long run?

Note: This problem has a long and intrigu-
ing history, dating back to the mid-1800s at
least. It is much more difficult than similar
pursuit problems—there is no known solu-
tion for the path of the dog in part (a), in
terms of elementary functions. See Davis
(1962, pp. 113-125) for a nice analysis and a
guide to the literature.

Figure 2

7.2 Ruling Out Closed Orbits
Plot the phase portraits of the following gradient systems x = —VV.

720 V=x>+y? 722 V=x*-y’ 723 V=¢"siny
7.2.4 Show that all vector fields on the line are gradient systems. Is the same

true of vector fields on the circle?

7.2.5 Letx=f(x,y),y=g(x,y) beasmooth vector field defined on the phase
plane.

a) Show that if this is a gradient system, then d f/dy = dg/dx .
b) Is the condition in (a) also sufficient?

7.2.6  Given that a system is a gradient system, here’s how to find its potential
function V. Suppose that x= f(x,y), y=g(x,y). Then x=-VV implies
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f(x,y)=-0V/dx and g(x,y)=—0V/dy. These two equations may be “partially
integrated” to find V. Use this procedure to find V for the following gradient sys-
tems.

a) x=y +ycosx, y=2xy+sinx

b) x=3x*-1-¢>, y=-2xe”’

7.2.7 Consider the system x = y+2xy, y=x+x’ —y’.

a) Show that df/dy =dg/dx . (Then Exercise 7.2.5(a) implies this is a gradient
system.)

b) Find V.

c¢) Sketch the phase portrait.

7.2.8 Show that the trajectories of a gradient system always cross the equipo-
tentials at right angles (except at fixed points).

7.2.9 For each of the following systems, decide whether it is a gradient system.
If so, find V and sketch the phase portrait. On a separate graph, sketch the equipo-
tentials V = constant . (If the system is not a gradient system, go on to the next
question.)

a) x=y+x’y, y=-x+2xy

b) x=2x, y=8y

v2

2,2
Q) i=-2xe"", y=-2ye

7.2.10 Show that the system x =y —x’, y = —x— y* has no closed orbits, by con-
structing a Liapunov function V = ax® + by* with suitable a,b.

7.2.11 Show that V = ax® +2bxy +cy’ is positive definite if and only if a>0
and ac —b* > 0. (This is a useful criterion that allows us to test for positive defi-
niteness when the quadratic form V includes a “cross term” 2bxy.)

7.2.12 Show that = —x+2y' —2y*, y=—x—y+xy has no periodic solutions.
(Hint: Choose a, m, and n such that V = x" +ay" is a Liapunov function.)

7.2.13 Recall the competition model

Nl =nN,(1-N,/K))=bN,N,, Nz =r,N,(1-N,/K;) = b,N\N,,

of Exercise 6.4.6. Using Dulac’s criterion with the weighting function
g=(N,N,)™", show that the system has no periodic orbits in the first quadrant
N,,N, >0.

7.2.14 Consider x =x* —y—-1, y=y(x—2).
a) Show that there are three fixed points and classify them.
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b) By considering the three straight lines through pairs of fixed points, show that
there are no closed orbits.
¢) Sketch the phase portrait.

7.2.15 Consider the system x = x(2—-x—-y), y = y(4x — x> - 3). We know from
Example 7.2.4 that this system has no closed orbits.
a) Find the three fixed points and classify them.

b) Sketch the phase portrait.

7.2.16 If R is not simply connected, then the conclusion of Dylac’s criterion is
no longer valid. Find a counterexample.

7.2.17 Assume the hypotheses of Dulac’s criterion, except now suppose that R
is topologically equivalent to an annulus, i.e., it has exactly oné hole in it. Using
Green’s theorem, show that there exists ar most one closed orbit in R. (This result
can be useful sometimes as a way of proving that a closed orbit is ynique.)

7.3 Poincaré-Bendixson Theorem

7.3.1 Consider i = x—y—x(x* +5y%), y=x+y—y(x* + ).

a) Classify the fixed point at the origin.

b) Rewrite the system in polar coordinates, using rF=xt+yy and
0 =(xy—yi)/r’.

¢) Determine the circle of maximum radius, r,, centered on the origin such that all
trajectories have a radially outrward component on it.

d) Determine the circle of minimum radius, r, , centered on the origin such that all
trajectories have a radially inward component on it.

e) Prove that the system has a limit cycle somewhere in the trapping region
LEr<r.

7.3.2 Using numerical integration, compute the limit cycle of Exercise 7.3.1
and verify that it lies in the trapping region you constructed.

7.3.3  Show that the system x =x—y—x’, y= x+y—y* has a periodic solution.

7.3.4 Consider the system

x=x(1-4x" - y) -+ y(l +x), y=y(1-4x* = y*)+2x(1+x).

a) Show that the origin is an unstable fixed point.

b) By considering V', where V =(1-4x—y?), show that all trajectories ap-
proach the ellipse 4x* + y> =1 as t — oo .

7.3.5 Show that the system x=-x—y+x(x*+2y%), x=x—y+y(x>+2y%)
has at least one periodic solution.
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7.3.6 Consider the oscillator equation X + F(x,x)x +x =0, where F(x,x)<0
if r<a and F(x,x)>0 if r2b, where rt=x?+x%

a) Give a physical interpretation of the assumptions on F.

b) Show that there is at least one closed orbit in the region a <r <b.

7.3.7 Consider x = y+ax(1-2b—r?), y=—x+ay(1-r’), where a and b are

parameters (0 <a<1,0<b<%)and r’ =x" +y”

a) Rewrite the system in polar coordinates.

b) Prove that there is at least one limit cycle, and that if there are several, they all
have the same period T(a,b).

¢) Prove that for b =0 there is only one limit cycle.

7.3.8 Recall the system 7= r(1— r’)+ prcos, 6 =1 of Example 7.3.1. Using
the computer, plot the phase portrait for various values of u > 0. Is there a critical
value p, at which the closed orbit ceases to exist? If so, estimate it. If not, prove
that a closed orbit exists for all p > 0.

7.3.9 (Serie$ approximation for a closed orbit) In Example 7.3.1, we used the
Poincaré—Bendixson Theorem to prove that the system r=r(1- r*)+ prcos@,
6 =1 has a closed orbit in the annulus ﬁ—_u <r< \/1—+ﬁ forall u<1.

a) To approximate the shape r(8) of the orbit for u <<1, assume a power series
solution of the form r(@) =1+ ur(6)+ O(u”). Substitute the series into a dif-
ferential equation for dr/d6. Neglect all O(u?) terms, and thereby derive a
simple differential equation for r,(6). Solve this equation explicitly for r(6).
(The approximation technique used here is called regular perturbation theory;

see Section 7.6.)

b) Find the maximum and minimum  on your approximate orbit, and hence show
that it lies in the annulus /1— ¢ <r<./1+p , as expected.

¢) Use a computer to calculate r(6) numerically for various small g, and plot the
results on the same graph as your analytical approximation for r(6). How does
the maximum error depend on (£ ?

7.3.10 Consider the two-dimensional system X = Ax—r’x, where r =|x| and
A is a 2x2 constant real matrix with complex eigenvalues @ +i® . Prove that
there exists at least one limit cycle for & >0 and that there are none for & < 0.

7.3.11 (Cycle graphs) Suppose x = f(x) is a smooth vector field on R*. An im-
proved version of the Poincaré—Bendixson theorem states that if a trajectory is
trapped in a compact region, then it must approach a fixed point, a limit cycle, or
something exotic called a cycle graph (an invariant set containing a finite number
of fixed points connected by a finite number of trajectories, all oriented either
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clockwise or counterclockwise). Cycle graphs are rare in practice; here’s a con-
trived but simple example.

a) Plot the phase portrait for the system

F=r(1~r){r* sin 6 + (" cos’ 0 - 1)? ]

( 0 =r*sin® @+ (r* cos’ 6 —1)°

where r,0 are polar coordinates. (Hint: Note the’common factor in the two
equations; examine where it vanishes.) /

b) Sketch x vs. ¢ for a trajectory starting away from the unit circle. What happens
ast—>o0?
!
7.4 lLiénard Systems )
7.4.1  Show that the equation X + ,u(x2 -Dx+ tanh x = 0, for i >0, has exactly
one periodic solution, and classify its stability.

7.4.2 Consider the equation X + u(x* - 1)x +x=0.

a) Prove that the system has a unique stable limit cycle if > 0.
b) Using a computer, plot the phase portrait for the case u =1.
¢) If 4 <0, does the system still have a limit cycle? If so, is it stable or unstable?

7.5 Relaxation Oscillations

7.5.1  For the van der Pol oscillator with ¢ >> 1, show that the positive branch
of the cubic nullcline begins at x, =2 and ends at x, =1.

7.5.2 In Example 7.5.1, we used a tricky phase plane (often called the Liénard
plane) to analyze the van der Pol oscillator for ¢ >>1. Try to redo the analysis in

the standard phase plane where x =y, y=—x— u(x* —1).'What is the advantage
of the Liénard plane?

7.5.3  Estimate the period of the limit cycle of ¥ + k(x> —4)x+x=1for k>>1.

7.5.4 (Piecewise-linear nullclines) Consider the equation ¥+ U f(x)x+x=0,
where f(x)=~1 for |x|<1 and f(x)=1 for |x|>1.

a) Show that the system is equivalent to x = u(y — F(x)), y = —x/u , where F(x)
is the piecewise-linear function

x+2, x<-1
Fx)=3-x |x|<1

x=2, x=21.
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b) Graph the nullclines.

c) Show that the system exhibits relaxation oscillations for ¢ >>1, and plot the
limit cycle in the (x,y) plane.

d) Estimate the period of the limit cycle for y>>1.

7.5.5 Consider the equation X + y( lxl - 1) x+x =0. Find the approximate pe-
riod of the limit cycle for u>>1.

7.5.6 (Biased van der Pol) Suppose the van der Pol oscillator is biased by a
constant force: X + i (x* =1) X+ x = a, where a can be positive, negative, or zero.
(Assume >0 as usual.)

a) Find and classify all the fixed points.

b) Plot the nullclines in the Liénard plane. Show that if they intersect on the
middle branch of the cubic nulicline, the corresponding fixed point is unsta-
ble.

¢) For u>>1, show that the system has a stable limit cycle if and only if |a| <a,,
where a, is to be determined. (Hint: Use the Liénard plane.)

d) Sketch the phase portrait for a slightly greater than a_. Show that the system is
excitable (it has a globally attracting fixed point, but certain disturbances can
send the system on a long excursion through phase space before returning to the
fixed point; compare Exercise 4.5.3.)

This system is closely related to the Fitzhugh-Nagumo model of neural activ-
ity; see Murray (1989) or Edelstein—Keshet (1988) for an introduction.

7.5.7 (Cell cycle) Tyson (1991) proposed an elegant model of the cell division
cycle, based on interactions between the proteins cdc2 and cyclin. He showed that
the model’s mathematical essence is contained in the following set of dimension-
less equations:

u=bv-ulot+u*)-u, v=c—u,

where u is proportional to the concentration of the active form of a cdc2-cyclin com-

plex, and v is proportional to the total cyclin concentration (monomers and dimers).

The parameters b >>1 and o << 1 are fixed and satisfy 8atb < 1, and ¢ is adjustable.

a) Sketch the nullclines.

b) Show that the system exhibits relaxation oscillations for ¢, <c <c¢,, where c,
and ¢, are to be determined approximately. (It is too hard to find ¢, and c, ex-
actly, but a good approximation can be achieved if you assume 8ab <<1.)

c) Show that the system is excitable if ¢ is slightly less than c,.

7.6 Weakly Nonlinear Oscillators

7.6.1  Show that if (7.6.7) is expanded as a power series in €, we recover (7.6.17).
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7.6.2 (Calibrating regular perturbation theory) Consider the initial value prob-
lem X+ x+€ex=0, with x(0)=1, x(0)=0.
) Obtain the exact solution to the problem.
(1:) Using regular perturbation theory, find x,, x,, and x, in the series expansion
x(1,€) = x, (1) + €x,(t) + €2, (1) + O(€*).
¢) Does the perturbation solution contain secular terms? Did you expect to see
any? Why?

7.6.3 (More calibration) Consider the initial value problem X+ x = ¢, with
x(0)=1, x(0)=0. /

a) Solve the problem exactly. /

b) Using regular perturbation theory, find x,, x,, and x, in the series expansion
x(1,8) = x, (1) + £x,(t) + £2x, (1) + O €?).
¢) Explain why the perturbation solutipn does or doesn’t contain secular terms.

For each of the following systems X + Jé\d- eh(x,x)=0, with 0 < £ << 1, calculate
the averaged equations (7.6.53) and analyze the long-term behavior of the system.
Find the amplitude and frequency of any limit cycles for the original system. If
possible, solve the averaged equations explicitly for x(t, ), given the initial condi-
tions x(0)=a, x(0)=0.

7.64 h(x,x)=x 7.6.5 h(x,x)=xx’
7.6.6 h(x,x)=xx 7.6.7 h(x,x)=(x*-Dx
7.6.8  h(x,x)=(]x-1)x 769 h(x,x)=(x*-Dix’

7.6.10 Derive the identity sin@ cos’ 6 = 4[sin@ +sin36] as follows: Use the
complex representations
i0 -i0 e -i0

e’ +e .
cosf=—— sin@ =
2 2i

multiply everything out, and then collect terms. This is always the most straight-
forward method of deriving such identities, and you don’t have to remember any
others.

7.6.11 (Higher harmonics) Notice the third harmonic sin3(z +¢) in Equation
(7.6.39). The generation of higher harmonics is a characteristic feature of non-
linear systems. To find the effect of such terms, return to Example 7.6.2 and

solve for x,, assuming that the original system had initial conditions x(0)=2,
x(0)=0.

7.6.12 (Deriving the Fourier coefficients) This exercise leads you through the

derivation of the formulas (7.6.51) for the Fourier coefficients. For convenience,
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2n
let brackets denote the average of a function: {f(6)) = —2‘;_[) f(8)d@ for any 27-

periodic function f. Let k and m be arbitrary integers.
a) Using integration by parts, complex exponentials, trig identities, or otherwise,
derive the orthogonality relations

(cosk® sinm@) =0, for all k,m
(coskB cosmB) = (sink@ sinm@) =0, for all k # m;
<cos2 k6>=<sin2 k0>=%, for k#0.

b) To find g, for k # 0, multiply both sides of (7.6.50) by cosm6 and average
both sides term by term over the interval [0,27]. Now using the orthogonality
relations from part (a), show that all the terms on the right-hand side cancel
out, except the k =m term! Deduce that (h(6)cosk8) = a,, which is equiva-
lent to the formula for a, in (7.6.51).

c¢) Similarly, derive the formulas for b, and a,.

7.6.13 (Exact period of a conservative oscillator) Consider the Duffing oscilla-

tor ¥+ x+¢ex’ =0, where 0 <e<<1, x(0)=a, and x(0)=0.

a) Using conservation of energy, express the oscillation period T(€) as a certain
integral.

b) Expand the integrand as a power series in €, and integrate term by term to ob-
tain an approximate formula T(g) = ¢, +c,€ +c,€* + O(¢”). Find ¢, c,, ¢, and
check that c,, ¢, are consistent with (7.6.57).

7.6.14 (Computer test of two-timing) Consider the equation X +£x’ +x=0.

a) Derive the averaged equations.

b) Given the initial conditions x(0)=a, x(0)=0, solve the averaged equations
and thereby find an approximate formula for x(z,€) .

c) Solve X + ex*+x=0 numerically fora=1, €=2, 0<t <50, and plot the re-
sult on the same graph as your answer to part (b). Notice the impressive agree-
ment, even though £ is not small!

7.6.15 (Pendulum) Consider the pendulum equation x +sinx =0.

a) Using the method of Example 7.6.4, show that the frequency of small oscilla-
tions of amplitude a<<1 is given by @=1-+a’. (Hint: sinx=x-4$x°,
where +x’ is a “small” perturbation.)

b) Is this formula for @ consistent with the exact results obtained in Exercise 6.7.47

7.6.16 (Amplitude of the van der Pol oscillator via Green’s theorem) Here’s an-
other way to determine the radius of the nearly circular limit cycle of the van der
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Pol oscillator ¥+ £x(x* —1)+ x =0, in the limit £ << 1. Assume that the limit cy-
cle is a circle of unknown radius a about the origin, and invoke the normal form of
Grgen’s theorem (i.e., the 2-D divergence theorem):

§v~nd€=£‘[V~vdA

C

where C is the cycle and A is the region enclosed. By substituting v = % = (x, ¥)
and evaluating the integrals, show that g =2 .

7.6.17 (Playing on a swing) A’simple model for a child playing on a swing is

X+(l+ey+ecost)sinx =0

where € and y are parameteys, and 0 < € << 1. The variable x measures the angle
between the swing and the downward vertical. The term 1+ £y + £cos2¢ models
the effects of gravity and the periodic pumping of the child’s legs at approximately
twice the natural frequency of the swing. The question is: Starting near the fixed
point x=0, x =0, can the child get the swing going by pumping her legs this
way, or does she need a push?

a) For small x, the equation may be replaced by X +(l1+£y+&cos2f)x=0.

Show that the averaged equations (7.6.53) become

r’=4rsin2¢, ¢’ =4(y++cos2¢),
where x =rcosf =r(T)cos(t+¢(T)), x=-rsin@=—r(T)sin(z + ¢(T)), and
prime denotes differentiation with respect to slow time T = &¢. Hint: To aver-

age terms like cos2t cos @ sin@ over one cycle of 8, recall that =0 —¢ and
use trig identities:

{cos2f cos@ sinf ) =

1

= +((c0s 20 cos2¢ +sin 26 sin2¢) sin20)
1
%8S

b) Show that the fixed point r =0 is unstable to exponentially growing oscilla-
tions, i.e., r(T)=rye’” with k>0, if |y|<y. where y, is to be determined.
(Hint: For r near 0, ¢’ >> r” so ¢ equilibrates relatively rapidly.)

¢) For |y|<y,, write a formula for the growth rate k in terms of Y.

d) How do the solutions to the averaged equations behave if |y|>y,?
e) Interpret the results physically.

7.6.18 (Mathieu equation and a super-slow time scale) Consider the Mathieu
equation X +(a+é€ecost)x=0 with a~1. Using two-timing with a slow time
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T=¢*, show that the solution becomes unbounded as f->o if
I-Le?+0(e" ) <asl+5€ +0(e*).

7.6.19 (Poincaré-Lindstedt method) This exercise guides you through an
improved version of perturbation theory known as the Poincaré-Lindstedt
method. Consider the Duffing equation ¥+ x+¢ex’ =0, where 0<e<<l,
x(0)=a, and x(0)=0. We know from phase plane analysis that the true
solution x(t,€) is periodic; our goal is to find an approximate formula for
x(t,€) that is valid for all ¢. The key idea is to regard the frequency @ as un-
known in advance, and to solve for it by demanding that x(z,€) contains no sec-
ular terms.

a) Define a new time T = wt such that the solution has period 27 with respect to
7. Show that the equation transforms to @’ x” + x +£x* =0.

b) Let x(7,€) = X, (1) + £x,(T) + €2 x,(7) + O(€’) and @ =1+ £w, + £’ W, + O(€").
(Wé know already that @, =1 since the solution has frequency =1 when
£ =0.) Substitute these series into the differential equation and collect powers
of £ . Show that

O): x+x,=0
0(&): x/'+x, =-20,x) - X, .

c) Show that the initial conditions become x,(0)=a, x,(0)=0; x,(0)=
x,(0)=0 forall k >0.

d) Solve the O(1) equation for x,.

e) Show that after substitution of x, and the use of a trigonometric identity, the
O(g) equation becomes x/+x, =(2w,a—3a’)cost~+a’cos37. Hence, to
avoid secular terms, we need @, = ia*.

f) Solve for x,.

Two comments: (1) This exercise shows that the Duffing oscillator has a fre-
quency that depends on amplitude: @ =1+%¢&a’ +0(¢), in agreement with
(7.6.57). (2) The Poincaré-Lindstedt method is good for approximating peri-
odic solutions, but that’s all it can do; if you want to explore transients or non-
periodic solutions, you can’t use this method. Use two-timing or averaging
theory instead.

7.6.20 Show that if we had used regular perturbation to solve Exercise 7.6.19, we
would have obtained x(t,€) = acost+€a’[ —$tsint + 4 (cos 3t —cos) |+ O(€).
Why is this solution inferior?

7.6.21 Using the Poincaré-Lindstedt method, show that the frequency of the
limit cycle for the van der Pol oscillator i+€(x*=Dxi+x=0 is given by
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® =1—/-,%£2 +0(&%).

7.6.22 (Asymmetric spring) Use the Poincaré~Lindstedt method to find the first
few terms in the expansion for the solution of ¥+ x+¢&x2 = 0, with x(0)=a,
x(0) = 0. Show that the center of oscillation is at x ~ +ea’, approximately.

7.6.23 Find the approximatg relation between amplitude and frequency for the
periodic solutions of X — £xy

7.6.24 (Computer algebra) Using Mathematica, Maple, or some other computer
algebra package, apply| the Poincaré-Lindstedt method to the problem
i+x-ex’=0, with x(0
solutions, up to and includi

=a, and x(0)=0. Find the frequency @ of periodic
the O(e®) term.

7.6.25 (The method of averaging) Consider the weakly nonlinear oscillator

X+x+eh(x,x,0)=0. Let x(t)=r(t)cos(t+ (), x=—r(t)sin(t+ ¢(2)). This

change of variables should be regarded as a definition of 7(¢) and ¢(z).

a) Show that 7= ghsin(t+¢), ré = ehsin(t+¢). (Hence r and ¢ are slowly
varying for 0 < £ << 1, and thus x(z) is a sinusoidal oscillation modulated by a
slowly drifting amplitude and phase.)

I+

b) Let (r)(t) =F(t) =4 | r(t)d7 denote the running average of r over one cycle
(e 4

of the sinusoidal oscillation. Show that d(r)/dt =(dr/dt), i.e., it doesn’t mat-

ter whether we differentiate or time-average first.

c) Show that d(r)/dt = £( h[rcos(t + ¢), — rsin(t + ), t]sin( + ¢) )

d) The result of part (c) is exact, but not helpful because the left-hand side in-
volves (r) whereas the right-hand side involves r . Now comes the key approx-
imation: replace r and ¢ by their averages over one cycle. Show that
r(f)=F(t)+ O(€) and é(t) = ¢(r) + O(€), and therefore

dF/dt = e h[F cos(t +$), — Fsin(r +§), r]sin(t + ) )+0(e?)

7d$/dt = e( h[Fcos(t +8), — Fsin(t +§), r]cos(t +3) ) + O(e?)
where the barred quantities are to be treated as constants inside the averages. These
equations are just the averaged equations (7.6.53), derived by a different approach

in the text. It is customary to drop the overbars; one usually doesn’t distinguish be-
tween slowly varying quantities and their averages.

7.6.26 (Calibrating the method of averaging) Consider the equation x = —£xsin’ ¢,
withO<g<<land x=x,atr=0.
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a) Find the exact solution to the equation.
b) Let x(¢)= ﬁj';r(r) dt . Show that x(r) = X(r) + O(€) . Use the method of aver-
-

aging to find an approximate differential equation satisfied by x , and solve it.
c) Compare the results of parts (a) and (b); how large is the error incurred by aver-

aging?
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BIFURCATIONS REVISITED

8.0 Introduction

This chapter extends our earlier work on bifurcations (Chapter 3). As we move up
from one-dimensional to two-dimensional systems, we still find that fixed points
can be created or destroyed or destabilized as parameters are varied—but now the
same is true of closed orbits as well. Thus we can begin to describe the ways in
which oscillations can be turned on or off.

In this broader context, what exactly do we mean by a bifurcation? The usual
definition involves the concept of “topological equivalence” (Section 6.3): if the
phase portrait changes its topological structure as a parameter is varied, we say that
a bifurcation has occurred. Examples include changes in the number or stability of
fixed points, closed orbits, or saddle connections as a parameter is varied.

This chapter is organized as follows: for each bifurcation, we start with a simple
prototypical example, and then graduate to more challenging examples, either
briefly or in separate sections. Models of genetic switches, chemical oscillators,
driven pendula and Josephson junctions are used to illustrate the theory.

8.1 Saddle-Node, Transcritical, and
Pitchfork Bifurcations

The bifurcations of fixed points discussed in Chapter 3 have analogs in two dimen-
sions (and indeed, in al/l dimensions). Yet it turns out that nothing really new hap-
pens when more dimensions are added—all the action is confined to a
one-dimensional subspace along which the bifurcations occur, while in the extra
dimensions the flow is either simple attraction or repulsion from that subspace, as
we’ll see below.
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Saddle-Node Bifurcation

The saddle-node bifurcation is the basic mechanism for the creation and de-
struction of fixed points. Here’s the prototypical example in two dimensions:

x=p—-x
y=-y. (1)

In the x-direction we see the bifurcation behavior discussed in Section 3.1, while
in the y-direction the motion is exponentially damped.

Consider the phase portrait as u varies. For u >0, Figure 8.1.1 shows that
there are two fixed points, a stable node at (x*, y*)= (J— ,0) and a saddle at
(—f , 0). As u decreases, the saddle and node approach each other, then collide
when u =0, and finally disappear when u <0.

J.oJ 4
i

u>0 u=0 u<o

31;051, x

—c—T—-——c

Figure 8.1.1

Even after the fixed points have annihilated each other, they continue to influence
the flow—as in Section 4.3, they leave a ghost, a bottleneck region that sucks trajec-
tories in and delays them before allowing passage out the other side. For the same
reasons as in Section 4.3, the time spent in the bottleneck generically increases as
(u—-p)"*, where . is the value at which the saddle-node bifurcati(?n occur's.
Some applications of this scaling law in
condensed-matter physics are discussed
by Strogatz and Westervelt (1989).

Figure 8.1.1 is representative of the
following more general situation. Con-
~ sider a two-dimensional system
x = f(x,y), y=g(x,y) that depends on
a parameter pt. Suppose that for some
value of g the nullclines intersect as

x=0 shown in Figure 8.1.2. Notice that each
Figure 8.1.2 intersection corresponds to a fixed point
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since x=0 and y =0 simultaneously. Thus, to see how the fixed points move as
changes, we j ave to watch the intersections. Now suppose that the nullclines
pull away ffom each other as u varies, becoming tangent at i = y_. Then the fixed
points dpproach each other and collide when y = p1_; after the nullclines pull apart,

therg’are no intersections and the fixed points disappear with a bang. The point is
that all saddle-node bifurcations have this character locally.

EXAMPLE 8.1.1:

The following system has been discussed by Griffith (1971) as a model for a ge-
netic control system. The activity of a certain gene is assumed to be directly in-
duced by two copies of the protein for which it codes. In other words, the gene is
stimulated by its own product, potentially leading to an autocatalytic feedback
process. In dimensionless form, the equations are

X=—ax+y
2

y= —by

1+ x?
where x and y are proportional to the concentrations of the protein and the mes-
senger RNA from which it is translated, respectively, and a, b >0 are parameters
that govern the rate of degradation of x and y.

Show that the system has three fixed points when a < a., where a_ is to be de-
termined. Show that two of these fixed points coalesce in a saddle-node bifurcation
when a = a,. Then sketch the phase portrait for a < a,, and give a biological inter-
pretation.

Solution: The nullclines are given by the line y = ax and the sigmoidal curve

x2

Y b))
as sketched in Figure 8.1.3. Now suppose we vary a while holding b fixed. This is
simple to visualize, since a is the slope of the line. For small a there are three in-
tersections, as in Figure 8.1.3. As
a increases, the top two intersec-
2 tions approach each other and
ry= b(1+x?) collide when the line intersects
the curve tangentially. For larger
values of a, those fixed points
disappear, leaving the origin as
x the only fixed point.
Figure 8.1.3 To find a , we compute the

Yy y=ax
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fixed points directly and find where they coalesce. The nullclines intersect when
xZ
A ra+x)
One solution is x* =0, in which case y*=0. The other intersections satisfy the
quadratic equation
ab(1+x*)=x (2)
which has two solutions

. 1EV1-4a°
xX*=—

2ab

if 1-4a’b* >0, i.e., 2ab < 1. These solutions coalesce when 2ab = 1. Hence
a =1/2b.

For future reference, note that the fixed point x* =1 at the bifurcation.

The nullclines (Figure 8.1.4) provide a lot of information about the phase por-
trait for a < a.. The vector field is vertical on the line y = ax and horizoptal on.the
sigmoidal curve. Other arrows can be sketched by noting the signs o.f x and y. It
appears that the middle fixed point is a saddle and the oth.er two are sinks. To con-
firm this, we turn now to the classification of the fixed points.

y .
N

Figure 8.1.4

The Jacobian matrix at (x,y) is

A= . -
(l+2x2 ) b

A has trace T = —(a + b) < 0 so all the fixed points are either sinks or saddles', de-
pending on the value of the determinant A. At (0,0), A=ab >20 , S0 the orlgmzxs al-
ways a stable fixed point. In fact, it is a stzable node, since 7° ~4A=(a-b)" >0
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(except/in the degenerate case a = b, which we disregard). At the other two fixed
points; A looks messy but it can be simplified using (2). We find

2
A=ab- — 2" _plio 2 ] le0i-1]
(1+ (%) L+ (x%)? 1+ (x%)?

So A <0 for the “middle” fixed point, which has 0 < x* < 1; this is a saddle point.
The fixed point with x*>1 is always a stable node, since A < ab and therefore
2 ~4A>(a-b)* >0.

The phase portrait is plotted in Figure 8.1.5. By looking back at Figure 8.1.4, we
can see that the unstable manifold of the saddle is necessarily trapped in the narrow
channel between the two nullclines. More importantly, the stable manifold sepa-
rates the plane into two regions, each a basin of attraction for a sink.

y

=_

AN

Figure 8.1.5

The biological interpretation is that the system can act like a biochemical
switch, but only if the mRNA and protein degrade slowly enough—specifically,
their decay rates must satisfy ab < 1/2. In this case, there are two stable steady
states: one at the origin, meaning that the gene is silent and there is no protein
around to turn it on; and one where x and y are large, meaning that the gene is ac-
tive and sustained by the high level of protein. The stable manifold of the saddle
acts like a threshold; it determines whether the gene turns on or off, depending on
the initial values of x and y.m

As advertised, the flow in Figure 8.1.5 is qualitatively similar to that in the ide-
alized Figure 8.1.1. All trajectories relax rapidly onto the unstable manifold of the
saddle, which plays a completely analogous role to the x-axis in Figure 8.1.1.

Thus, in many respects, the bifurcation is a fundamentally one-dimensional
event, with the fixed points sliding toward each other along the unstable manifold
like beads on a string. This is why we spent so much time looking at bifurcations in
one-dimensional systems—they’re the building blocks of analogous bifurcations in
higher dimensions. (The fundamental role of one-dimensional systems can be jus-
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tified rigorously by “center manifold theory”—see Wiggins (1990) for an intro-
duction.)

Transcritical and Pitchfork Bifurcations

Using the same idea as above, we can also construct prototypical exarrilples. of
transcritical and pitchfork bifurcations at a stable fixed point. In the x-dlrefctlon
the dynamics are given by the normal forms discussed in Chapter 3, anq in the
y-direction the motion is exponentially damped. This yields the following ex-
amples:

x=px—x* y=-y (transcritical)
x=ux—-x', y=-) (supercritical pitchfork)
x=ux+x’, y=-—) (subcritical pitchfork)

The analysis in each case follows the same pattern, so we’ll discuss only the super-
critical pitchfork, and leave the other two cases as exercises.

EXAMPLE 8.1.2:

Plot the phase portraits for the supercritical pitchfork system x = px - x?,
y=-y,foru<0,u=0,and u>0. N

Solution: For <0, the only fixed point is a stable node at the origin. For
1 =0, the origin is still stable, but now we have very slow (algebraic) decay alc'mg
the x-direction instead of exponential decay; this is the phenomenon of “critical
slowing down” discussed in Section 3.4 and Exercise 2.4.9. For >0, the origin
loses stability and gives birth to two new stable fixed points symmetrically located
at (x*,y*) = (i\/ﬁ ,0). By computing the Jacobian at each point, you can check
that the origin is a saddle and the other two fixed points are stable nodes. The phase
portraits are shown in Figure 8.1.6. m

oL

KNS

un<0 u=0 u>0
Figure 8.1.6

As mentioned in Chapter 3, pitchfork bifurcations are common in systems that
have a symmetry. Here’s an example.
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EXAMPLE 8.1.3:

Show that a supercitical pitchfork bifurcation occurs at the origin in the system

X =ux+y+sin\x\
y=x-y
and determine the bifurcation value u_. Plot the phase portrait near the origin for
U slightly greater than y_.
Solution: The system is invariant under the change of variables x — —x,

Y = =y, so the phase portrait must be symmetric under reflection through the ori-
gin. The origin is a fixed point for all 4, and its Jacobian is

A ( u+1l 1 J
1 -1
which has 7=yu and A=—(u+2). Hence the origin is a stable fixed point if
M <=2 and a saddle if p > 2. This suggests that a pitchfork bifurcation occurs at
M, =-2. To confirm this, we seek a symmetric pair of fixed points close to the ori-
gin for u close to u, . (Note that at this stage we don’t know whether the bifur-
cation is sub- or supercritical.) The fixed points satisfy y=x and hence

(u+1)x +sinx = 0. One solution is x = 0, but we’ve found that already. Now sup-
pose x is small and nonzero, and expand the sine as a power series. Then

3
(p+nx+x—%r+ou5=o.

After dividing through by x and neglecting higher-order terms, we get
U+2-x*/6=0. Hence there is a pair of fixed points with x* =~ +./6(u+2) for
i slightly greater than —2. Thus a supercritical pitchfork bifurcation occurs at
M. ==2. (If the bifurcation had been subcritical, the pair of fixed points would ex-
ist when the origin was stable, not after it has become a saddle.) Because the bifur-
cation is supercritical, we know the new fixed points are stable without even
checking.

To draw the phase portrait near (0,0) for u slightly greater than —2 , it’s helpful
to find the eigenvectors of the Jacobian at the origin. This can be done exactly, but
a simple approximation is that the Jacobian is close to that at the bifurcation. Thus

-1 1
A=~
1 -1
which has eigenvectors (1,1) and (1,~1), with eigenvalues A =0 and A =-2, re-
spectively. For u slightly greater than —2 , the origin becomes a saddle and so the
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zero eigenvalue becomes slightly positive. This information implies the phase por-
trait shown in Figure 8.1.7.

Figure 8.1.7

Note that because of the approximations we’ve made, this picture is only valid lc?-
cally in both parameter and phase space—if we’re not near the origin and if y is
not close to i, , all bets are off. m

In all of the examples above, the bifurcation occurs when A= 0, or equiva-
lently, when one of the eigenvalues equals zero. More generally, the saddle-n'ode,
transcritical, and pitchfork bifurcations are all examples of zero-eigenvalue‘btfur-
cations. (There are other examples, but these are the most common.) Such bifurca-
tions always involve the collision of two or more fixed points. .

In the next section we’ll consider a fundamentally new kind of bifurcation, one
that has no counterpart in one-dimensional systems. It provides a way for a fixed
point to lose stability without colliding with any other fixed points.

8.2 Hopf Bifurcations

Suppose a two-dimensional system has a stable fixed point. What are all the possi-
ble ways it could lose stability as a parameter {4 varies? The eigenvalues of the Ja-
cobian are the key. If the fixed point is stable, the eigenvalues A, A, must both lie

in the left half-plane Re A < 0. Since the A ’s satisfy a quadratic equation with real
coefficients, there are two possible pictures: either the.: e_igenval}les are both real
and negative (Figure 8.2.1a) or they are complex conjugates (Figure 8.2.1b). To
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destabilize the fixed point, we need one or both of the eigenvalues to cross into the
right half-plane as y varies.

ImA ImA

ReA ReA

(a) (®)

Figure 8.2.1

In Section 8.1 we explored the cases in which a real eigenvalue passes through
A =0. These were just our old friends from Chapter 3, namely the saddle-node,
transcritical, and pitchfork bifurcations. Now we consider the other possible sce-

nario, in which two complex conjugate eigenvalues simultaneously cross the imag-
inary axis into the right half-plane.

Supercritical Hopf Bifurcation

Suppose we have a physical system that settles down to equilibrium through
exponentially damped oscillations. In other words, small disturbances decay after
“ringing” for a while (Figure 8.2.2a). Now suppose that the decay rate depends on
a control parameter . If the decay becomes slower and slower and finally
changes to growth at a critical value u_, the equilibrium state will lose stability. In
many cases the resulting motion is a small-amplitude, sinusoidal, limit cycle oscil-
lation about the former steady state (Figure 8.2.2b). Then we say that the system
has undergone a supercritical Hopf bifurcation.

In terms of the flow in phase
N~ (@) H<U:  space, a supercritical Hopf bifur-
cation occurs when a stable spiral

changes into an unstable spiral
/\/V\/\/\/\/\/\ (b)pu >y, surrounded by a small, nearly el-
liptical limit cycle. Hopf bifurca-

Figure 8.2.2 tions can occur in phase spaces of
any dimension n>2, but as in
the rest of this chapter, we’ll restrict ourselves to two dimensions.

A simple example of a supercritical Hopf bifurcation is given by the following
system:
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F=pur—r
6=w+br’.
There are three parameters: i controls the stability of the fixed point at the origin,

@ gives the frequency of infinitesimal oscillations, and b determines the depen-
dence of frequency on amplitude for larger amplitude oscillations.

Figure 8.2.3 plots the phase portraits for u above and below the bifurcation.
When p <0 the origin r =0 is a stable spiral whose sense of rotation depends on
the sign of @ . For i =0 the origin is still a stable spiral, though a very weak one:
the decay is only algebraically fast. (This case was shown in Figure 6.3.2. Recall
that the linearization wrongly predicts a center at the origin.) Finally, for >0

there is an unstable spiral at the origin and a stable circular limit cycle at r = Jﬁ .

Y

u>0

Figure 8.2.3

To see how the eigenvalues behave during the bifurcation, we rewrite the sys-
tem in Cartesian coordinates; this makes it easier to find the Jacobian. We write
x=rcos@, y=rsin8. Then

% =Fcosf—rfsiné
=(ur-r*)cos@—r(w+br*)sinf
=(u-[x* +y"))x - (@+bix* +)*))y
= ux — @y + cubic terms

and similarly

y=@x + iy + cubic terms.

So the Jacobian at the origin is

-
Ao W)
o u
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which has eigenvalues
A=utio.

As expected, the eigenvalues cross the imaginary axis from left to right as g in-
creases from negative to positive values.

Rules of Thumb

Our idealized case illustrates two rules that hold generically for supercritical
Hopf bifurcations:

1. The size of the limit cycle grows continuously from zero, and increases
proportional to /i~ , for y close to 4.

2. The frequency of the limit cycle is given approximately by w=ImA,
evaluated at 4 = u, . This formula is exact at the birth of the limit cycle,
and correct within O(y — ) for g close to y_. The period is therefore
T=Qnr/lmA)+0(u~u,).

But our idealized example also has some artifactual properties. First, in Hopf
bifurcations encountered in practice, the limit cycle is elliptical, not circular, and
its shape becomes distorted as 12 moves away from the bifurcation point. Our ex-
ample is only typical topologically, not geometrically. Second, in our idealized
case the eigenvalues move on horizontal lines as y varies, i.e., Im A is strictly in-
dependent of u. Normally, the eigenvalues would follow a curvy path and cross
the imaginary axis with nonzero slope (Figure 8.2.4).

ImA

wf)\

\_/

Figure 8.2.4

ReA

Subcritical Hopf Bifurcation

Like pitchfork bifurcations, Hopf bifurcations come in both super- and subcritical
varieties. The subcritical case is always much more dramatic, and potentially danger-
ous in engineering applications. After the bifurcation, the trajectories must jump to a
distant attractor, which may be a fixed point, another limit cycle, infinity, or—in
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three and higher dimensions—a chaotic attractor. We’ll see a concrete example of
this last, most interesting case when we study the Lorenz equations (Chapter 9).
But for now, consider the two-dimensional example

F=pr+r—r
0=w+br’.

The important difference from the earlier supercritical case is that the cubic term
r* is now destabilizing; it helps to drive trajectories away from the origin.

The phase portraits are shown in Figure 8.2.5. For 1 < 0 there are two attractors, a
stable limit cycle and a stable fixed point at the origin. Between them lies an unstable
cycle, shown as a dashed curve in Figure 8.2.5; it’s the player to watch in this sce-
nario. As 4 increases, the unstable cycle tightens like a noose around the fixed point.
A subcritical Hopf bifurcation occurs at i = 0, where the unstable cycle shrinks to
zero amplitude and engulfs the origin, rendering it unstable. For u >0, the large-
amplitude limit cycle is suddenly the only attractor in town. Solutions that used to re-
main near the origin are now forced to grow into large-amplitude oscillations.

<0 uw>0
Figure 8.2.5

Note that the system exhibits hysteresis: once large-amplitude oscillations have
begun, they cannot be turned off by bringing i back to zero. In fact, the large os-
cillations will persist until 4 = —1/4 where the stable and unstable cycles collide
and annihilate. This destruction of the large-amplitude cycle occurs via another
type of bifurcation, to be discussed in Section 8.4.

Subcritical Hopf bifurcations occur in the dynamics of nerve cells (Rinzel and
Ermentrout 1989), in aeroelastic flutter and other vibrations of airplane wings
(Dowell and Ilgamova 1988, Thompson and Stewart 1986), and in instabilities of
fluid flows (Drazin and Reid 1981).

Subcritical, Supercritical, or Degenerate Bifurcation?

Given that a Hopf bifurcation occurs, how can we tell if it’s sub- or supercriti-
cal? The linearization doesn’t provide a distinction: in both cases, a pair of eigen-
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values moves from the left to the right half-plane.

An analytical criterion exists, but it can be difficult to use (see Exercises
8.2.12-15 for some tractable cases). A quick and dirty approach is to use the com-
puter. If a small, attracting limit cycle appears immediately after the fixed point
goes unstable, and if its amplitude shrinks back to zero as the parameter is re-
versed, the bifurcation is supercritical; otherwise, it’s probably subcritical, in
which case the nearest attractor might be far from the fixed point, and the system
may exhibit hysteresis as the parameter is reversed. Of course, computer experi-
ments are not proofs and you should check the numerics carefully before making
any firm conclusions.

Finally, you should also be aware of a degenerate Hopf bifurcation. An ex-
ample is given by the damped pendulum X + px +sinx=0. As we change the
damping u from positive to negative, the fixed point at the origin changes from
a stable to an unstable spiral. However at g =0 we do not have a true Hopf bi-
furcation because there are no limit cycles on either side of the bifurcation. In-
stead, at =0 we have a continuous band of closed orbits surrounding the
origin. These are not limit cycles! (Recall that a limit cycle is an isolated closed
orbit.)

This degenerate case typically arises when a nonconservative system suddenly
becomes conservative at the bifurcation point. Then the fixed point becomes a
nonlinear center, rather than the weak spiral required by a Hopf bifurcation. See
Exercise 8.2.11 for another example.

EXAMPLE 8.2.1:

Consider the system x = ix —y+xy”, y=x+uy+y’. Show that a Hopf bifur-
cation occurs at the origin as y varies. Is the bifurcation subcritical, supercritical,
or degenerate?

. . -1
Solution: The Jacobian at the origin is A=(/il J, which has 7=2yu,
u

A=p’>+1>0, and A= Hti. Hence, as u increases through zero, the origin
changes from a stable spiral to an unstable spiral. This suggests that some kind of
Hopf bifurcation takes place at = 0.

To decide whether the bifurcation is subcritical, supercritical, or degenerate, we

use simple reasoning and numerical integration. If we transform the system to po-
lar coordinates, we find that

F=ur+ry’,

as you should check. Hence 7> ur . This implies that for u>0, r(t) grows at least
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as fast as rye"’. In other words, all trajectories are repelled out to infinity! So there
are certainly no closed orbits for u> 0. In particular, the unstable spiral is not sur-
rounded by a stable limit cycle; hence the bifurcation cannot be supercritical.

Could the bifurcation be degenerate? That would require that the origin be a
nonlinear center when 4 =0. But r is strictly positive away from the x-axis, so
closed orbits are still impossible.

By process of elimination, we expect that the bifurcation is subcritical. This is
confirmed by Figure 8.2.6, which is a computer-generated phase portrait for
u=-02.

y
1-

Figure 8.2.6

Note that an unstable limit cycle surrounds the stable fixed point, just as we expect
in a subcritical bifurcation. Furthermore, the cycle is nearly elliptical and sur-
rounds a gently winding spiral—these are typical features of either kind of Hopf
bifurcation. m

8.3 Oscillating Chemical Reactions

For an application of Hopf bifurcations, we now consider a class of experimental
systems known as chemical oscillators. These systems are remarkable, both for
their spectacular behavior and for the story behind their discovery. After present-
ing this background information, we analyze a simple model proposed recently for
oscillations in the chlorine dioxide—iodine-malonic acid reaction. The definitive
reference on chemical oscillations is the book edited by Field and Burger (1985).
See also Epstein et al. (1983), Winfree (1987b) and Murray (1989).

Belousov’s “Supposedly Discovered Discovery”

In the early 1950s the Russian biochemist Boris Belousov was trying to create a
test tube caricature of the Krebs cycle, a metabolic process that occurs in living
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cells. When he mixed citric acid and bromate ions in a solution of sulfuric acid,
and in the presence of a cerium catalyst, he observed to his astonishment that the
mixture became yellow, then faded to colorless after about a minute, then returned
to yellow a minute later, then became colorless again, and continued to oscillate
dozens of times before finally reaching equilibrium after about an hour.

Today it comes as no surprise that chemical reactions can oscillate sponta-
neously—such reactions have become a standard demonstration in chemistry
classes, and you may have seen one yourself. (For recipes, see Winfree (1980).)
But in Belousov’s day, his discovery was so radical that he couldn’t get his work
published. It was thought that all solutions of chemical reagents must go monoton-
ically to equilibrium, because of the laws of thermodynamics. Belousov’s paper
was rejected by one journal after another. According to Winfree (19870, p.161),
one editor even added a snide remark about Belousov’s “supposedly discovered
discovery” to the rejection letter.

Belousov finally managed to publish a brief abstract in the obscure proceed-
ings of a Russian medical meeting (Belousov 1959), although his colleagues
weren’t aware of it until years later. Nevertheless, word of his amazing reaction
circulated among Moscow chemists in the late 1950s, and in 1961 a graduate stu-
dent named Zhabotinsky was assigned by his adviser to look into it. Zhabotinsky
confirmed that Belousov was right all along, and brought this work to light at an
international conference in Prague in 1968, one of the few times that Western and
Soviet scientists were allowed to meet. At that time there was a great deal of in-
terest in biological and biochemical oscillations (Chance et al. 1973) and the BZ
reaction, as it came to be called, was seen as a manageable model of those more
complex systems.

The analogy to biology turned out to be sutprisingly close: Zaikin and Zhabotinsky
(1970) and Winfree (1972) observed beautiful propagating waves of oxidation in thin
unstirred layers of BZ reagent, and found that these waves annihilate upon collision,
just like waves of excitation in neural or cardiac tissue. The waves always take the
shape of expanding concentric rings or spirals (Color plate 1). Spiral waves are now
recognized to be a ubiquitous feature of chemical, biological, and physical excitable
media; in particular, spiral waves and their three-dimensional analogs, “scroll waves”
(Front cover illustration) appear to be implicated in certain cardiac arrhythmias, a
problem of great medical importance (Winfree 1987b).

Boris Belousov would be pleased to see what he started.

In 1980, he and Zhabotinsky were awarded the Lenin Prize, the Soviet Union’s
highest medal, for their pioneering work on oscillating reactions. Unfortunately,
Belousov had passed away ten years earlier.

For more about the history of the BZ reaction, see Winfree (1984, 1987b). An

English translation of Belousov’s original paper from 1951 appears in Field and
Burger (1985).
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Chlorine Dioxide-lodine-Malonic Acid Reaction

The mechanisms of chemical oscillations can be very complex. The BZ reaction
is thought to involve more than twenty elementary reaction steps, but luckily many
of them equilibrate rapidly—this allows the Kinetics to be reduced to as few as
three differential equations. See Tyson (1985) for this reduced system and its
analysis.

In a similar spirit, Lengyel et al. (1990) have proposed and analyzed a particu-
larly elegant model of another oscillating reaction, the chlorine dioxide-iodine-
malonic acid (C10, -1, ~MA ) reaction. Their experiments show that the following
three reactions and empirical rate laws capture the behavior of the system:

MA+1, 5 IMA+I +H"; d[12]=_kla[MA][12] ()
dt klb +[12]
d[cl0,]

dt

ClO, +1" > ClO,” +41,; -K[co,[I'] @

ClO,” +41" +4H" - CI” +2I, +2H,0;

d[clo,|

3
. ” (3)

s fero, ] -k foro, )

u +[I ]
Typical values of the concentrations and kinetic parameters are given in Lengyel et
al. (1990) and Lengyel and Epstein (1991).

Numerical integrations of (1)—~(3) show that the model exhibits oscillations that
closely resemble those observed experimentally. However this model is still too
complicated to handle analytically. To simplify it, Lengyel et al. (1990) use a re-
sult found in their simulations: Three of the reactants (MA, I,, and ClO,) vary
much more slowly than the intermediates I” and ClO,~, which change by several
orders of magnitude during an oscillation period. By approximating the concentra-
tions of the slow reactants as constants and making other reasonable simplifica-
tions, they reduce the system to a two-variable model. (Of course, since this
approximation neglects the slow consumption of the reactants, the model will be
unable to account for the eventual approach to equilibrium.) After suitable nondi-
mensionalization, the model becomes

x=a—x—1‘:_xy2 (4)
X
y'=bx(1_ 1+yx2) | (5)
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where x and y are the dimensionless concentrations of I~ and ClO," . The para-

meters a,b >0 depend on the empirical rate constants and on the concentrations
assumed for the slow reactants.

We begin the analysis of (4), (5) by constructing a trapping region and applying
the Poincaré—Bendixson theorem. Then we’ll show that the chemical oscillations
arise from a supercritical Hopf bifurcation.

EXAMPLE 8.3.1:

Prove that the system (4), (5) has a closed orbit in the positive quadrant x,y >0
if a and b satisfy certain constraints, to be determined.

Solution: Asin Example 7.3.2, the nullclines help us to construct a trapping re-
gion. Equation (4) shows that x =0 on the curve

_(a-x)(1+x%)
r= 4x (©

and (5) shows that y =0 on the y-axis and on the parabola y = 1+ x°. These null-
clines are sketched in Figure 8.3.1, along with some representative vectors.

y

y=0
/ x<0
\y‘>0
= _- hY
NN
x=0
Figure 8.3.1

(We’ve taken some pedagogical license with Figure 8.3.1; the curvature of the
nullcline (6) has been exaggerated to highlight its shape, and to give us more room
to draw the vectors.) :

Now consider the dashed box shown in Figure 8.3.2. It’s a trapping region be-
cause all the vectors on the boundary point into the box.
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Figure 8.3.2

We can’t apply the Poincaré—Bendixson theorem yet, because there’s a fixed
point

x*=al5, y* =1+ (x*)? =1+ (a/5)*

inside the box at the intersection of the nullclines. But now we argue as in Example
7.3.3: if the fixed point turns out'to be a repeller, we can apply the Poincaré—Ben-
dixson theorem to the “punctured” box obtained by removing the fixed point.

All that remains is to see under what conditions (if any) the fixed point is a re-
peller. The Jacobian at (x*, y*) is

1 3(x*%)? -5  —4x*
1+ | 2b(x*)? —bx*)

(We’ve used the relation y* =1+ (x*)’ to simplify some of the entries in the Jaco-
bian.) The determinant and trace are given by

__Sbx* 50 _3(x*)’ -5-bx*
1+(x*)? " T+

We’re in luck—since A > 0, the fixed point is never a saddle. Hence (x*,y*) is a
repellerif >0, i.e., if

b<b, =3a/5-25/a. (7)

When (7) holds, the Poincaré—Bendixson theorem implies the existence of a closed
orbit somewhere in the punctured box. m

EXAMPLE 8.3.2:

Using numerical integration, show that a Hopf bifurcation occurs at b= b, and

decide whether the bifurcation is sub- or supercritical.

Solution: The analytical results above show that as b decreases through b, , the
fixed point changes from a stable spiral to an unstable spiral; this is the signature
of a Hopf bifurcation. Figure 8.3.3 plots two typical phase portraits. (Here we have
chosen a =10 ; then (7) implies b, =3.5.) When & > b_, all trajectories spiral into
the stable fixed point (Figure 8.3.3a), while for b < b, they are attracted to a stable
limit cycle (Figure 8.3.3b).

y
y 10 t
@ ] ©
o1 )
61
a=10 I a=10
b=4 a1 b=2
27 stable
1 limit cycle
x ot ' + x
1 2 3 4

Figure 8.3.3

Hence the bifurcation is supercritical—after the fixed point loses stability, it is
surrounded by a stable limit cycle. Moreover, by plotting phase portraits as b — b,
from below, we could confirm that the limit cycle shrinks continuously to a point,
as required. m

Our results are summarized in the stability diagram in Figure 8.3.4. The boundary
between the two regions is given by the Hopf bifurcation locus b = 3a/5 —-25/a.
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b - fixed point
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Figure 8.3.4
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EXAMPLE 8.3.3:

Approximate the period of the limit cycle for & slightly less than b,.

Solution: The frequency is approximated by the imaginary part of the eigenval-
ues at the bifurcation. As usual, the eigenvalues satisfy A —1A+A=0. Since
7=0 and A>0 at b=b_, we find

A=+iJA.

But at b,

s(3e_BYa
sbx* s a \s)_ 15a” — 625

1+(x*)?  1+(@a/5* = a*+25

Hence o = A" = [(15(12 —-625)/(a’ + 25)]”2 and therefore
T=2r/w
=2n[(a* +25)/(154° - 625)] .

A graph of T(a) is shown in Figure 8.3.5. As a—> oo, T — 27/+/15 ~1.63. u
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Figure 8.3.5

8.4 Global Bifurcations of Cycles

In two-dimensional systems, there are four common ways in which limit cycles are
created or destroyed. The Hopf bifurcation is the most famous, but the other three
deserve their day in the sun. They are harder to detect because they involve large
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regions of the phase plane rather just the neighborhood of a single fixed point.
Hence they are called global bifurcations. In this section we offer some prototypi-
cal examples of global bifurcations, and then compare them to one another and to
the Hopf bifurcation. A few of their scientific applications are discussed in Sec-
tions 8.5 and 8.6 and in the exercises.

Saddle-node Bifurcation of Cycles

A bifurcation in which two limit cycles coalesce and annihilate is called a fold
or saddle-node bifurcation of cycles, by analogy with the related bifurcation of
fixed points. An example occurs in the system

r=ur+r —r’
0=w+br’

studied in Section 8.2. There we were interested in the subcritical Hopf bifurcation
at /1 =0; now we concentrate on the dynamics for u<o.

It is helpful to regard the radial equation 7 = pr+r’—r® as a one-dimensional
system. As you should check, this system undergoes a saddle-node bifurcation of
fixed points at p =-1/4. Now returning to the two-dimensional system, these
fixed points correspond to circular limit cycles. Figure 8.4.1 plots the “radial phase
portraits” and the corresponding behavior in the phase plane.

ﬁ %7? rﬁf‘\\'
© @ @

Figure 8.4.1

——

At 41, a half-stable cycle is born out of the clear blue sky. As u increases it splits
into a pair of limit cycles, one stable, one unstable. Viewed in the other direction, a
stable and unstable cycle collide and disappear as u decreases through u_. Notice
that the origin remains stable throughout; it does not participate in this bifurcation.
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For future reference, note that at birth the cycle has O(1) amplitude, in contrast

to the Hopf bifurcation, where the limit cycle has small amplitude proportional to
12

w-p)"
Infinite-period Bifurcation

Consider the system

F=r(1-r%)

6=p~-sind
where g 2 0. This system combines two one-dimensional systems that we have
studied previously in Chapters 3 and 4. In the radial direction, all trajectories (ex-
cept r* = 0) approach the unit circle monotonically as t — o . In the angular direc-
tion, the motion is everywhere counterclockwise if u >1, whereas there are two
invariant rays defined by sin@ = y if g <1. Hence as u decreases through p, =1,
the phase portraits change as in Figure 8.4.2.

e

u>1
Figure 8.4.2

As U decreases, the limit cycle r=1 develops a bottleneck at 6 = /2 that be-
comes increasingly severe as u — 1". The oscillation period lengthens and finally
becomes infinite at 4, = 1, when a fixed point appears on the circle; hence the term
infinite-period bifurcation. For j1<1, the fixed point splits into a saddle and a

node.
As the bifurcation is approached, the amplitude of the oscillation stays O(1) but

the frequency increases like (i~ pt,)™"'?, for the reasons discussed in Section 4.3.

Homoclinic Bifurcation

In this scenario, part of a limit cycle moves closer and closer to a saddle point.
At the bifurcation the cycle touches the saddle point and becomes a homoclinic or-
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bit. This is another kind of infini i i
. te-period bifurcation; to avoi i ’
call it a saddle-loop or homoclini , void confuston, werl

It iS hard to fil‘ld an al‘laly i y tIaIlSpalelll exall[l) e, SO Wi SOrt to I][e com-
tlcall 1
: N € I

x=y

)"=,Uy+x—x2+xy.

Figure 8.4.3 plots a series of i
. phase portraits before, during, and after the bi
tion; only the important features are shown. : © e

Numerically, the bifurcation is found to occur at U, ~—0.8645. For u< u_, sa
H1=-0.92, a stable limit cycle passes close to a saddle point at the origin (lsi,gurz
8.4.3a). As u increases to y,_, the limit cycle swells (Figure 8.4.3b) and bangs into
the sad?le, creating a homoclinic orbit (Figure 8.4.3c). Once U > u., the saddle
connection breaks and the loop is destroyed (Figure 8.4.3d). a

¥y y
()

©
@

Figure 8.4.3

4 Tllie key to this bifurcation is the behavior of the unstable manifold of the sad-
€. Look at the branch of the unstable manifold that leaves the origin to the north-

east: after it loops around, it either hits the origin (Fi
. X e origin (Figure 8.4.
side or the other (Figures 8.4.3a, d). s 9 orveers offtoone
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Scaling Laws

For each of the bifurcations given here, there are characteristic scaling laws that
govern the amplitude and period of the limit cycle as the bifurcation is ap.proacl.led.
Let u denote some dimensionless measure of the distance from the blfur.catlon,
and assume that 4 << 1. The generic scaling laws for bifurcations of cycles in two-
dimensional systems are given in Table 7.4.1.

Amplitude of
stable limit cycle Period of cycle
Supercritical Hopf ow'?) oW
Saddle-node bifurcation oW oW
of cycles
ow %)
Infinite-period o) (u
Homoclinic o) O(Iny)

Table 7.4.1

All of these laws have been explained previously, except those for the‘ horr.lo—
clinic bifurcation. The scaling of the period in that case is obtained by estimating
the time required for a trajectory to pass by a saddle point (see Exercise 8.4.12 and

Gaspard 1990). ‘ .
Exceptions to these rules can occur, but only if there is some symmetry or

other special feature that renders the problem nongeneric, as in the following

example.

EXAMPLE 8.4.1:

The van der Pol oscillator ¥ + £x(x?> —1)+x =0 does not seem to fit anywhere
in Table 7.4.1. At £ = 0, the eigenvalues at the origin are pure imaginary (A =%i),
suggesting that a Hopf bifurcation occurs at € =0. But we know from Section 7.'6
that for 0 < £ << 1, the system has a limit cycle of amplitude r = 2. Thus the cycle is
born “full grown,” not with size O(¢''*) as predicted by the scaling law. What's the
explanation? . p

Solution: The bifurcation at € =0 is degenerate. The nonlinear term .exx .van-
ishes at precisely the same parameter value as the eigenvalues cross the imaginary
axis. That’s a nongeneric coincidence if there ever was one! )

We can rescale x to remove this degeneracy. Write the equation as x+x

+ex’i-€x=0.Let u* = £x* to remove the £-dependence of the nonlinear term.

/2

Then u = €'*x and the equation becomes

rYVy ) RIEIIDLATIAONES DEVICITED

li+u+un—en=0.

Now the nonlinear term is not destroyed when the eigenvalues become pure imag-
inary. From Section 7.6 the limit cycle solution is x(t,€)=2cost for 0<e<<1.In
terms of u this becomes

u(t, €)= (2\/E)cos t.

Hence the amplitude grows like €2, just as expected for a Hopf bifurcation. a

The scaling laws given here were derived by thinking about prototypical exam-
ples in two-dimensional systems. In higher-dimensional phase spaces, the corre-
sponding bifurcations obey the same scaling laws, but with two caveats: (1) Many
additional bifurcations of limit cycles become possible; thus our table is no longer
exhaustive. (2) The homoclinic bifurcation becomes much more subtle to analyze.
It often creates chaotic dynamics in its aftermath (Guckenheimer and Holmes
1983, Wiggins 1990).

All of this begs the question: Why should you care about these scaling laws?
Suppose you’re an experimental scientist and the system you’re studying exhibits
a stable limit cycle oscillation. Now suppose you change a control parameter and
the oscillation stops. By examining the scaling of the period and amplitude near
this bifurcation, you can learn something about the system’s dynamics (which are
usually not known precisely, if at all). In this way, possible models can be elimi-
nated or supported. For an example in physical chemistry, see Gaspard (1990).

8.5 Hysteresis in the Driven Pendulum and
Josephson Junction

This section deals with a physical problem in which both homoclinic and infinite-
period bifurcations arise. The problem was introduced back in Sections 4.4 and
4.6. At that time we were studying the dynamics of a damped pendulum driven by
a constant torque, or equivalently, its high-tech analog, a superconducting J oseph-
son junction driven by a constant current. Because we weren’t ready for two-
dimensional systems, we reduced both problems to vector fields on the circle by
looking at the heavily overdamped limit of negligible mass (for the pendulum) or
negligible capacitance (for the Josephson junction).

Now we’re ready to tackle the full two-dimensional problem. As we claimed at
the end of Section 4.6, for sufficiently weak damping the pendulum and the
Josephson junction can exhibit intriguing hysteresis effects, thanks to the coexis-
tence of a stable limit cycle and a stable fixed point. In physical terms, the pendu-
lum can settle into either a rotating solution where it whirls over the top, or a stable
rest state where gravity balances the applied torque. The final state depends on the
initial conditions. Our goal now is to understand how this bistability comes about.
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We will phrase our discussion in terms of the Josephson junction, but will men-
tion the pendulum analog whenever it seems helpful.

Governing Equations

As explained in Section 4.6, the governing equation for the Josephson junction is
C. h .
—¢+——0¢+1 singp=1 (1)
ze ¢ 28 R ¢ c ¢ B

where % is Planck’s constant divided by 27, e is the charge on the electron, I, is
the constant bias current, C, R, and I, are the junction’s capacitance, resistance,
and critical current, and ¢(¢) is the phase difference across the junction.

To highlight the role of damping, we nondimensionalize (1) differently from in
Section 4.6. Let

2 I V2 I h /2

~ 4

= < I:.A, o= — . (2)
! (hc) ‘ ] [MERZC]

Then (1) becomes
¢”+o¢’ +sing=1 (3)

where o \and I are the dimensionless damping and applied current, and the prime
denotes differentiation with respect to ¢. Here o >0 on physical grounds, and we
may choose I >0 without loss of generality (otherwise, redefine ¢ — —¢).

Let y = ¢’. Then the system becomes

¢'=y
y' =I-sing—ay. (4)
As in Section 6.7 the phase space is a cylinder, since ¢ is an angular variable and

y is a real number (best thought of as an angular velocity).

Fixed Points

The fixed points of (4) satisfy y* =0 and sin ¢* = I. Hence there are two fixed
points on the cylinder if / <1, and none if 7 >1. When the fixed points exist, one
is a saddle and the other is a sink, since the Jacobian

Az 0 1
_(—cosq)* -0

has T=-a <0 and A =cos¢*=x1-I> . When A >0, we have a stable node if

-_—a- . MESIATRA AYIMMALS LI AT N

) . o
T°~4A=0’-4\/1-I" >0, i.., if the damping is strong enough or if I is close

to 1; otherwise the sink is a stable spiral. At /=1 the stable node and the saddle
coalesce in a saddle-node bifurcation of fixed points.

Existence of a Closed Orbit

What happens when I > 1? There are no more fixed points available; something

new has to happen. We claim that all trajectories are attracted to a unique, stable
limit cycle.

The first step is to show that a periodic solution exists. The argument uses a

clever idea introduced by Poincaré long ago. Watch carefully—this idea will come
up frequently in our later work.

Consider the nullcline y = a™'(/ —sin¢) where y’=0. The flow is downward
above the nullcline and upward below it (Figure 8.5.1).

y

NS SN
VARYAR

y=0"(I-sing)

o e F N

Figure 8.5.1

In particular, all trajectories eventually enter the strip » £y<y, (Figure 8.5.1),

and stay in there forever. (Here y, and y, are any fixed numbers such that

O0<y <(I-1)/a and y, > (I +1)/c.) Inside the strip, the flow is always to the
right, because y > 0 implies ¢’ > 0.

_ N Also, since $ =0 and ¢ =27 are equivalent
Y=Y .
). \ on the cylinder, we may as well confine our atten-
P(y) tion to the rectangular box 0<¢<2rm,
¥, £ y<y,. This box contains all the information
y=y / about the long-term behavior of the flow (Figure
! 7 8.5.2).
0 o 4 Now consider a trajectory that starts at a
height y on the left side of the box, and follow it
Figure 8.5.2

until it intersects the right side of the box at some
new height P(y), as shown in Figure 8.5.2. The
mapping from y to P(y) is called the Poincaré map. It tells us how the height of a
trajectory changes after one lap around the cylinder (Figure 8.5.3).
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The Poincaré map is also called the first-return map, because
if a trajectory starts at a height y on the line ¢ =0 (mod27x),
then P(y) is its height when it returns to that line for the first
time.

Now comes the key point: we can’t compute P(y) explicitly,
but if we can show that there’s a point y* such that P(y*)=y*,

9=0 then the corresponding trajectory will be a closed orbit (because
(mod 27) it returns to the same location on the cylinder after one lap).

To show that such a y* must exist, we need to know what
the graph of P(y) looks like, at least roughly. Consider a tra-
jectory that starts at y = y,, ¢ = 0. We claim that

Figure 8.5.3

P(y)>y,.

This follows because the flow is strictly upward at first, and the trajectory can
never return to the line y =y, , since the flow is everywhere upward on that line
(recall Figures 8.5.1 and 8.5.2). By the same kind of argument,

P(y,)<y,.

urthermore, P(y) is a continuous function. This follows from the theorem that
solutions of differential equations depend continuously on initial conditions, if the
vector field is smooth enough.

And finally, P(y) is a monotonic function. (By drawing pictures, you can con-
vince yourself that if P(y) were not monotonic, two trajectories would cross—and
that’s forbidden.) Taken together, these results imply that P(y) has the shape
shown in Figure 8.5.4.

y(2m)

P(y)

: . y(0)
n y* »

Figure 8.5.4

By the intermediate value theorem (or common sense), the graph of P(y) must
cross the 45° diagonal somewhere; that intersection is our desired y *.

Uniqueness of the Limit Cycle

The argument above proves the existence of a closed orbit, and almost proves
its uniqueness. But we haven’t excluded the possibility that P(y) =y on some in-

terval, in which case there would be a band of infinitely many closed orbits.

To nail down the uniqueness part of our claim, we recall from Section 6.7 that
there are two topologically different kinds of periodic orbits on a cylinder: libra-
tions and rotations (Figure 8.5.5).

librati rotation
y y
¢ ¢
Figure 8.5.5

For I>1, librations are impossible because any libration must encircle a fixed

point, by index theory—but there are no fixed points when 7 > 1. Hence we only
need to consider rotations.

Suppose there were two different rotations. The phase portrait on the cylinder
would have to look like Figure 8.5.6.

3
~ Y ($)
' yL(9)

¢
Figure 8.5.6

One of the rotations would have to lie strictly above the other because trajectories

can’t cross. Let y,(¢) and y, (¢) denote the “upper” and “lower” rotations, where
Yu(9) >y, (9) forall ¢.

The existence of two such rotations leads to a contradiction, as shown by the
following energy argument. Let

E=1y*—cos¢. (5)

After one circuit around any rotation y(¢), the change in energy AE must vanish.
Hence

FTae (6)
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But (5) implies

dE dy .

—_—y——+ 7

) yd¢ sin @ (7)
and

d ’ J-sing—

& _y _I-smg-ay 8)

dp ¢ y

from (4). Substituting (8) into (7) gives dE/d¢ = I — oty. Thus (6) implies

2
0= j (- ay)do
0

on any rotation y(¢) . Equivalently, any rotation must satisfy

27 2l
y@)dg=""= . ®
0 o

But since y,(9) > y,(9),

2n 2
[yu@rdo> [ y.@do,
N 0 0
and so (9) can’t hold for both rotations.
This contradiction proves that the rotation for /> 1 is unique, as claimed.

Homoclinic Bifurcation

Suppose we slowly decrease I, starting from some value 7> 1. What happens to
the rotating solution? Think about the pendulum: as the driving torque is reduced,
the pendulum struggles more and more to make it over the top. At some critical
value I <1, the torque is insufficient to overcome gravity and damping, and the
pendulum can no longer whirl. Then the rotation disappears and all solutions damp
out to the rest state.

Our goal now is to visualize the corresponding bifurcation in phase space. In
Exercise 8.5.2, you're asked to show (by numerical computation of the phase por-
trait) that if a is sufficiently small, the stable limit cycle is destroyed in a homo-
clinic bifurcation (Section 8.4). The following schematic drawings summarize the
results you should get.

First suppose I, < I <1. The system is bistable: a sink coexists with a stable
limit cycle (Figure 8.5.7).
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t
\ 1
I 1
L—/’_\I_—

L stable limit cycle

stable
manifold
of saddle

Figure 8.5.7

Keep your eye on the trajectory labeled U in Figure 8.5.7. It is a branch of the un-
stable manifold of the saddle. As t — «, U asymptotically approaches the stable
limit cycle.

As [ decreases, the stable limit cycle moves down and squeezes U closer to the
stable manifold of the saddle. When I = I, the limit cycle merges with U in a ho-
moclinic bifurcation. Now U is a homoclinic orbit—it joins the saddle to itself
(Figure 8.5.8).

i
U= homgclinic orbit

-

Figure 8.5.8

Finally, when I < I, the saddle connection breaks and U spirals into the sink (Fig-
ure 8.5.9).
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The scenario described here is valid only if
the dimensionless damping « is sufficiently
small. We know that something different has
to happen for large «. After all, when ¢ is in-
finite we are in the overdamped limit studied

in Section 4.6. Our analysis there showed that

@/ the periodic solution is destroyed by an infi-

! nite-period bifurcation (a saddle and a node

i are born on the former limit cycle). So it’s

' plausible that an infinite-period bifurcation

should also occur if o is large but finite.

Figure 8.5.9 These intuitive ideas are confirmed by numer-
ical integration (Exercise 8.5.2).

Putting it all together, we arrive at the stability diagram shown in Figure 8.5.10.
Three types of bifurcations occur: homoclinic and infinite-period bifurcations of
periodic orbits, and a saddle-node bifurcation of fixed points.

2.b A A R — 1
15T stable limit cycle ] -
I + ] m——— homoclinic
10f-cmmce e e 1 infinite-period
‘ [ - — — saddle-node
I bistable 1
05 | stable fixed point 1
0.0 le " PR SRS SIS (WY SUNE TS SR UM SN ST SN SV S S S S 1 "
0.0 0.5 1.0 1.5 2.0

Figure 8.5.10

Our argument leading to Figure 8.5.10 has been heuristic. For rigorous proofs,
see Levi et al. (1978). Also, Guckenheimer and Holmes (1983, p. 202) derive an
analytical approximation for the homoclinic bifurcation curve for & << |, using an
advanced technique known as Melnikov’s method. They show that the bifurcation
curve is tangent to the line / = 4a/x as @ — 0. Even if a is not so small, this ap-
proximation works nicely, thanks to the straightness of the homoclinic bifurcation
curve in Figure 8.5.10.

Hysteretic Current-Voltage Curve

Figure 8.5.10 explains why lightly damped Josephson junctions have hysteretic
I -V curves. Suppose « is small and / is initially below the homoclinic bifurca-
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tion (thick line in Figure 8.5.10). Then the junction will be operating at the stable
fixed point, corresponding to the zero-voltage state. As I is increased, nothing
changes until I exceeds 1. Then the stable fixed point disappears in a saddle-node
bifurcation, and the junctionjimps into a nonzero voltage state (the limit cycle).

If I is brought back down, the limit cycle persists below 7 =1 but its frequency
tends to zero continuously as 1, is approached. Specifically, the frequency tends to
zero like [ln(I -1, )]_l » just as expected from the scaling law discussed in Section
8.4, Now recall from Section 4.6 that the junction’s dc-voltage is proportional to

its oscillation frequency. Hence, the voltage also returns to zero continuously as
I — 1" (Figure 8.5.11).

3.

N

(V) ~

N

Figure 8.5.11

In practice, the voltage appears to jump discontinuously back to zero, but that is
to be expected because [ln(I - Ic)]_] has infinite derivatives of all orders at 1!
(See Exercise 8.5.1.) The steepness of the curve makes it impossible to resolve the
continuous return to zero. For instance, in experiments on pendula, Sullivan and
Zimmerman (1971) measured the mechanical analog of the 7—V curve—namely,

the curve relating the rotation rate to the applied torque. Their data show a jump
back to zero rotation rate at the bifurcation.

8.6 Coupled Oscillators and Quasiperiodicity

Besides the plane and the cylinder, another important two-dimensional phase
space is the forus. It is the natural phase space for systems of the form

él = fl(91’92)
92 = f2(91,92)

where f, and f, are periodic in both arguments.
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For instance, a simple model of coupled oscillators is given by

6, = , + K, sin(6, — 6,)
6, =, + K, sin(6, - 60,), (1)

where 0,, 6, are the phases of the oscillators, w;, @, >0 are their natural fre-
quencies, and K|, K, 20 are coupling constants. Equation (1) has been used to
model the interaction between human circadian rhythms and the sleep-wake cycle
(Strogatz 1986, 1987).

An intuitive way to think about (1) is to imagine two friends jogging on a cir-
cular track. Here 6,(¢), 0,(¢) represent their positions on the track, and ®,, @,
are proportional to their preferred running speeds. If they were uncoupled, then
each would run at his or her preferred speed and the faster one would periodically
overtake the slower one (as in Example 4.2.1). But these are friends—they want
to run around together! So they need to compromise, with each adjusting his or

her speed as necessary. If their preferred speeds are too
different, phase-locking will be impossible and they
6, may want to find new running partners.

6

Here we consider (1) more abstractly, to illustrate
some general features of flows on the torus and also to
provide an example of a saddle-node bifurcation of cy-
cles (Section 8.4). To visualize the flow, imagine two
Figure 8.6.1 points running around a circle at instantaneous rates 6,

6, (Figure 8.6.1). Alternatively, we could imagine a sin-
gle point tracing out a trajectory on a torus with coordinates 6,, 6, (Figure 8.6.2).

The coordinates are analogous to latitude and longitude.

C®

6,
coordinate system

Figure 8.6.2

But since the curved surface of a torus makes it hard to draw phase portraits, we
prefer to use an equivalent representation: a square with periodic boundary condi-
tions. Then if a trajectory runs off an edge, it magically reappears on the opposite
edge, as in some video games (Figure 8.6.3).
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2n

Figure 8.6.3

Uncoupled System

Even the seemingly trivial case of uncoupled oscillators (K,, K, =0) holds
some surprises. Then (1) reduces to é, =w,, 92 = w, . The corresponding trajecto-
ries on the square are straight lines with constant slope d6,/d6, = ®, /@, . There
are two qualitatively different cases, depending on whether the slope is a rational
or an irrational number.

If the slope is rational, then @, /w, = p/q for some integers p, g with no com-
mon factors. In this case all trajectories are closed orbits on the torus, because 6,
completes p revolutions in the same time that 6, completes g revolutions. For ex-
ample, Figure 8.6.4 shows a trajectory on the square with p=3, g=2.

Figure 8.6.4

When plotted on the torus, the same trajectory gives . . . a trefoil knot! Figure 8.6.5
shows a trefoil, alongside a top view of a torus with a trefoil wound around it.
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end here,/ ™~~~

two-thirds of
trefoil knot a revolution around the torus

start here,
on outer equator

Figure 8.6.5

Do you see why this knot corresponds to p =3, g =2? Follow the knotted tra-
Jectory in Figure 8.6.5, and count the number of revolutions made by 0, during the
time that 6, makes one revolution, where 6, is latitude and 8, is longitude. Start-
ing on the outer equator, the trajectory moves onto the top surface, dives into the
hole, travels along the bottom surface, and then reappears on the outer equator,
two-thirds of the way around the torus. Thus 6, makes two-thirds of a revolution
while 8, makes one revolution; hence p=3, g=2.

In fact the trajectories are always knotted if p, ¢ =2 have no common factors.
The resulting curves are called p:q torus knots.

The second possibility is that the slope is irrational (Figure 8.6.6).Then the
flow is said to be quasiperiodic. Every trajectory winds around endlessly on the
torus, never intersecting itself and yet never quite
\ closing.

: How can we be sure the trajectories never close?
' Any closed trajectory necessarily makes an integer
: number of revolutions in both 6, and 8, ; hence the
:// slope would have to be rational, contrary to assump-
|
)

2n

tion.

0 o Furthermore, when the slope is irrational, each
6 trajectory is dense on the torus: in other words, each
Figure 8.6.6 trajectory comes arbitrarily close to any given point
on the torus. This is not to say that the trajectory

passes through each point; it just comes arbitrarily close (Exercise 8.6.3).
Quasiperiodicity is significant because it is a new type of long-term behavior.
Unlike the earlier entries (fixed point, closed orbit, homoclinic and heteroclinic or-

bits and cycles), quasiperiodicity occurs only on the torus.

Coupled System

Now consider (1) in the coupled case where K,, K, >0. The dynamics can be
deciphered by looking at the phase difference ¢ = 6, —6,. Then (1) yields
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Plate 1: Spiral waves of chemical activity in a shallow dish of the Belousov—
Zhabotinsky reaction (Section 8.3). These snapshots read from left to right and
top to bottom. The complicated initial condition shown in the upper left was cre-
ated by touching the liquid with a hot wire, thereby inducing an expanding cir-
cular wave of oxidation, and then disrupting this wave by gently rocking the
dish. As time evolves, the blue waves propagate by diffusion through the
motionless reddish-orange liquid. Whenever two waves collide, they annihilate
each other, like grassfires rushing head on. Ultimately the system organizes itself

into a pair of counterrotating spirals. Reproduced from Winfree (1974).
Photographs by Fritz Goro.



Plate 2: Divergence of nearby trajectories on the Lorenz attractor (Sgcﬁon
9.3). The Lorenz attractor is shown in blue. The red points show the evolution of
a small blob of 10,000 nearby initial conditions, at times t=3, 6, 9, and 15.
As each point moves according fo the Lorenz equations, the blob is stretched
into a long thin filament, which then wraps around the atfractor. Ultimately the
points spread over much of the attractor, showing that the final state Fould bg
almost anywhere, even though the initial conditions were almost ld.enhccﬂ. This
sensitive dependence on initial conditions is the signature of a chaotic system.

Plate inspired by a similar illustration in Crutchfield et al. (1986)..Numer|cci
integration and computer graphics by Thanos Siapas, using Equation (%.2.1)
with parameters 0=10, b=8/3, r=28.

Plate 3: Fractal basin boundaries for the periodically forced double-well
oscillator

x'=y, y'=x-x*-8y+F cos wt,

with §=0.25, F=0.25, w=1 (Section 12.5). For these parameter values, the sys-
tem has two periodic attractors, corresponding to forced oscillations confined to
the left or right well.

(a) Color map: The square region -2.5< x,y< 2.5 is subdivided info 900x900
cells, and each cell is colorcoded according to the x-position of its center point.

{b) Basins of attraction: Each cell is colorcoded according to its fate after
many drive cycles. Roughly speaking, if the trajectory ends up oscillating in the
right well, the original cell is colored red; if it ends up in the left well, it is col-
ored blue. More precisely, given an initial point (xy, y,) at the center of a cell,
the state (x(z), y(1)) is computed at r=73x 27/w (that is, after 73 drive cycles),
and the original cell is colorcoded by the value of x(#). The basins have a com-
plicated shape, and the boundary between them is fractal (Moon and Li 1985).
Near the boundary, slight variations in inifial conditions can lead to totally dif-
ferent outcomes.

Computations by Thanos Siapas on a Thinking Machines CM-5 parallel com-
puter using a fifth-order Runge-Kutta—Fehlberg method.



(b = 91 - éz
=0, ~w,— (K, +K,)sin¢ , (2)
which s just the nonuniform oscillator studied in Section 4.3. By drawing the stan-
dard picture (Figure 8.6.7), we see that there are two fixed points for (2) if

|o, - ,| < K, + K, and none if |®, - o, |> K, + K, . A saddle-node bifurcation oc-
curs when |0, - 0,|= K, + K, .

Figure 8.6.7

Suppose for now that there are two fixed points, defined implicitly by

. ®, - o
sing*=—1——2
K, +K,

As Figure 8.6.7 shows, all trajectories of (2) asymptotically approach the stable
fixed point. Therefore, back on the torus, the trajectories of (1) approach a stable
phase-locked solution in which the oscillators are separated by a constant phase
difference ¢ *. The phase-locked solution is periodic; in fact, both oscillators run
at a constant frequency given by @* =6, = 0, = @, + K, sing *. Substituting for
sin¢ * yields

_Kw, +K,0,
K +K,

w*

This is called the compromise frequency because it lies between the natural fre-
quencies of the two oscillators (Figure 8.6.8).

Plate 4: Maps of the shortterm behavior of the periodically forced double-well

Aw, Aay
oscillator. Equations, parameters, and color codg as in Plate 3. Howevir, I | |
instead of showing the system’s asymptotic behavior, these plates :c,how the I | |
color-coded value of x () after only 1, 2, 3, and 4 drive cycles, respectlvelly. The ®, o o,
red and blue regions correspond to initial conditions that converge rapidly to Froure 8.6 ’
one of the two attractors. A rainbow of colors is found near the basin boundary,

because those initial conditions lead to trajectories that linger far from either

The compromise is not generally halfway; instead the frequencies are shifted by an
attractor during the time shown.

amount proportional to the coupling strengths, as shown by the identity
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Aw,
Aw,

0, -0*
w,-0*

K,

K, |

Now we’re ready to plot the phase portrait on the torus (Figure 8.6.9). The sta-
ble and unstable locked solutions appear as diagonal lines of slope 1, since
é, =0,=w*.

Figure 8.6.9

_If we pull the natural frequencies apart, say by detuning one of the oscillators,
then the locked solutions approach each other and coalesce when
|a)l - w2| = K, + K,. Thus the locked solution is destroyed in a saddle-node bifur-
cation of cycles (Section 8.4). After the bifurcation, the flow is like that in the un-
coupled case studied earlier: we have either quasiperiodic or rational flow,
depending on the parameters. The only difference is that now the trajectories on
the square are curvy, not straight.

8.7 Poincaré Maps

In Section 8.5 we used a Poincaré map to prove the existence of a periodic orbit for
the driven pendulum and Josephson junction. Now we discuss Poincaré maps more
generally.

Poincaré maps are useful for studying swirling flows, such as the flow near a
periodic orbit (or as we’ll see later, the flow in some chaotic systems). Consider an
n-dimensional system x = f(x). Let S be
an n—1 dimensional surface of section
(Figure 8.7.1). S is required to be trans-
verse to the flow, ie., all trajectories
starting on S flow through it, not paraliel
to it.

The Poincaré map P is a mapping
from S to itself, obtained by following
trajectories from one intersection with §
Figure 8.7.1 to the next. If x, € S denotes the kth in-
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tersection, then the Poincaré map is defined by

xk+| = P(X‘,).

Suppose that x * is a fixed point of P, i.e., P(x*)=x *. Then a trajectory starting
at X * returns to x * after some time T, and is therefore a closed orbit for the orig-
inal system x = f(x). Moreover, by looking at the behavior of P near this fixed
point, we can determine the stability of the closed orbit.

Thus the Poincaré map converts problems about closed orbits (which are diffi-
cult) into problems about fixed points of a mapping (which are easier in principle,
though not always in practice). The snag is that it’s typically impossible to find a
formula for P. For the sake of illustration, we begin with two examples for which
P can be computed explicitly.

EXAMPLE 8.7.1:

Consider the vector field given in polar coordinates by 7= r(1—r?), @ =1. Let
S be the positive x-axis, and compute the Poincaré map. Show that the system has
a unique periodic orbit and classify its stability.

Solution: Let r, be an initial condition on S. Since 6= 1, the first return to S
occurs after a time of flight t =2n. Then r, = P(ro)', where 1, satisfies

N 2
[ 4 _(ar=2x.
nr(l—=r) Jo

-1/2

Evaluation of the integral (Exercise 8.7.1) yields r, = [l +e(n7 - 1)] . Hence

P(r)= [1 +e (7 - l)] ™ The graph of P is plotted in Figure 8.7.2.

P(r)
B =P(n)
n =P(np) A
oo on rt=l r
Figure 8.7.2

A fixed point occurs at r* =1 where the graph intersects the 45° line. The cobweb
construction in Figure 8.7.2 enables us to iterate the map graphically. Given an in-
put 7, draw a vertical line until it intersects the graph of P; that height is the out-
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put r,,, . To iterate, we make r,, the new input by drawing a horizontal line until it
intersects the 45° diagonal line. Then repeat the process. Convince yourself that
this construction works; we’ll be using it often.

The cobweb shows that the fixed point r*=1 is stable and unique. No sur-

prise, since we knew from Example 7.1.1 that this system has a stable limit cycle
atr=1.m

EXAMPLE 8.7.2:

A sinusoidally forced RC-circuit can be written in dimensionless form as
x+x = Asint, where @ > 0. Using a Poincaré map, show that this system has a
unique, globally stable limit cycle.

Solution: This is one of the few time-dependent systems we’ve discussed in this
book. Such systems can always be made time-independent by adding a new vari-
able. Here we introduce 6 = @t and regard the system as a vector field on a cylin-
der: =w, x+x=Asin@. Any vertical line on the cylinder is an appropriate
section S ; we choose S = { 6,x): 6=0 mod 2n}. Consider an initial condition on
§ given by 8(0) =0, x(0) = x,. Then the time of flight between successive inter-
sections is = 27/ . In physical terms, we strobe the system once per drive cycle
and look at the consecutive values of x.

To compute P, we need to solve the differential equation. Its general solution is
a sum of homogeneous and particular solutions: x(t) = c,e” +c, sin @t + ¢, cos Wt .
The constants ¢, and ¢, can be found explicitly, but the important point is that they
depend on A and @ but not on the initial condition x,; only ¢, depends on x,. To
make the dependence on x, explicit, observe that at t =0, x =x, =c, +c,. Thus

x(t) = (xy —c;)e” +c, sinwt + ¢, coswt .
Then P is defined by x, = P(x,) = x(27/®) . Substitution yields

P(x,) = x(27/@) = (x, — ¢;) e 2" + ¢,

-2rj/w

= X,e +c,

where ¢, = c,(1—e72"?),

The graph of P is a straight line with a slope e™>* <1 as shown in Figure
8.7.3.
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P(x)

Figure 8.7.3

Since P has slope less than 1, it intersects the diagonal at a unique point. Furthermore,
the cobweb shows that the deviation of x, from the fixed point is reduced by a con-
stant factor with each iteration. Hence the fixed point is unique and globally stable.

In physical terms, the circuit always settles into the same forced oscillation, re-
gardless of the initial conditions. This is a familiar result from elementary physics,
looked at in a new way. m

Linear Stability of Periodic Orbits

Now consider the general case: Given a system x = f(x) with a closed orbit,
how can we tell whether the orbit is stable is not? Equivalently, we ask whether
the corresponding fixed point x * of the Poincaré map is stable. Let v, be an infin-
itesimal perturbation such that x * +v, is in S. Then after the first return to S,

X¥+v, = P(x*+v,)

= P(x*)+[DP(x*)]v, + 0(||v0||2)

where DP(x*) is an (n—1) x(n —1) matrix called the linearized Poincaré map at
x *, Since x* = P(x*), we get

v, =[DP(x*)]v,
assuming that we can neglect the small 0(||v0||2) terms.

The desired stability criterion is expressed in terms of the eigenvalues A; of
DP(x*) : The closed orbit is linearly stable if and only if Ilj| <1 forall j=1,
., n—1
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To understand this criterion, consider the generic case where there are no re-
peated eigenvalues. Then there is a basis of eigenvectors {e j} and so we can write
n—1

Vo = z v;e; for some scalars v;. Hence
j=l

n—1

n—1
v, =(DP(x0))2 v.e; = 2 v,Ae,;.

= j=1
Iterating the linearized map k times gives

n—1

v, = Zvj(/lj)"ej .

Jj=1

Hence, if all |l il <1, then ||v,| >0 geometrically fast. This proves that x * is lin-

early stable. Conversely, if Izl j| >1 for some j, then perturbations along e; grow,
so X * is unstable. A borderline case occurs when the largest eigenvalue has mag-
n’itude |ﬂ,m| =1 this occurs at bifurcations of periodic orbits, and then a nonlinear
stability analysis is required.

The A; are called the characteristic or Floquet multipliers of the periodic or-
bit. (Strictly speaking, these are the nontrivial multipliers; there is always an addi-
tional trivial multiplier A =1 corresponding to perturbations along the periodic
orbit. We have ignored such perturbations since they just amount to time-transla-
tion.)

In general, the characteristic multipliers can only be found by numerical inte-
gration (see Exercise 8.7.10). The following examples are two of the rare excep-
tions.

EXAMPLE 8.7.3:

Find the characteristic multiplier for the limit cycle of Example 8.7.1.

Solution: We linearize about the fixed point r* =1 of the Poincaré map. Let
r=1+n, where 1 is infinitesimal. Then r=n=(1+ 11)(1 -(1+ n)z) . After ne-
glecting O(1®) terms, we get 1) =—2n . Thus 1(t) = e . After a time of flight

t =27, the new perturbation is 7, = e™**1, . Hence e~ is the characteristic multi-

plier. Since |¢™**| <1, the limit cycle is linearly stable. »

For this simple two-dimensional system, the linearized Poincaré map degener-
ates to a 1 X 1 matrix, i.e., a number. Exercise 8.7.1 asks you to show explicitly that
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P’(r¥y=¢™", as expected from the general theory above.

Our final example comes from a recent analysis of coupled Josephson junc-
tions.

EXAMPLE 8.7.4:

The N-dimensional system

N
¢,=Q+asin¢i+—g,—25in¢j, (1)

j=1

fori=1,..., N, describes the dynamics of a series array of overdamped Josephson
junctions in parallel with a resistive load (Tsang et al. 1991). For technological rea-
sons, there is great interest in the solution where all the junctions oscillate in phase.
This in-phase solution is given by ¢,(£) = ¢,(t) = ... = ¢, (t) = ¢ *(¢), where ¢ * (¢)
denotes the common waveform. Find conditions under which the in-phase solution is
periodic, and calculate the characteristic multipliers of this solution.

Solution: For the in-phase solution, all N equations reduce to

do*
dt

=Q+(a+1)sing* . (2)

This has a periodic solution (on the circle) if and only if |Q|>|a +1|. To determine
the stability of the in-phase solution, let ¢,(t) = ¢ * () + n,(¢) , where the n,(¢) are
infinitesimal perturbations. Then substituting ¢, into (1) and dropping quadratic
terms in 77 yields

N
n; =[acos¢* ()] n; +[cosp* (1)) #z n,. (3)

j=1

We don’t have ¢ * (r) explicitly, but that doesn’t matter, thanks to two tricks. First,
the linear system decouples if we change variables to

N
=%y m,

j=t

éizni-fl—ni’ i=1...,N—1.
Then & =[acos¢* (1)] &,. Separation of variables yields

[acosp*|de*
Q+(a+sing*’

d§—§i=[acos¢*(1)]dt=
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where we’ve used (2) to eliminate dz. (That was the second trick.)
Now we compute the change in the perturbations after one circuit around the
closed orbit ¢ *:

§d_§.~: 2r [acos¢*|dg*
5

o Q+(a+1)sing*

§(T) a . 2z

In2—=-=——In[Q+(@+Dsing*| " =0.
= g Tan lera@rbsinel,

Hence & (T) = £,(0). Similarly, we can show that p(T) = ¢(0). Thus 1,(T) = 1,(0)

for all i ; all perturbations are unchanged after one cycle! Therefore all the charac-

teristic multipliers 4, =1. w

This calculation shows that the in-phase state is (linearly) neutrally stable.
That’s discouraging technologically—one would like the array to lock into coher-
ent oscillation, thereby greatly increasing the output power over that available
from a single junction.

Since the calculation above is based on linearization, you might wonder
whether the neglected nonlinear terms could stabilize the in-phase state. In fact
tﬁey don’t: a reversibility argument shows that the in-phase state is not attracting,
even if the nonlinear terms are kept (Exercise 8.7.11).

EXERCISES FOR CHAPTER 8

8.1 Saddle-Node, Transcritical, and Pitchfork Bifurcations
8.1.1  For the following prototypical examples, plot the phase portraits as p
varies:

a) x=pux-x’, y=-—y (transcritical bifurcation)

b) x=ux+x>, y=-—y (subcritical pitchfork bifurcation)

For each of the following systems, find the eigenvalues at the stable fixed point as
a function of u, and show that one of the eigenvalues tends to zeroas 4 — 0.
812 x=pu-x’, y=-y

8.1.3 i=ux—x’, y=-y

8.14 x=px+x’, y=-y

8.1.5 Prove that at any zero-eigenvalue bifurcation in two dimensions, the null-

clines always intersect tangentially. (Hint: Consider the geometrical meaning of
the rows in the Jacobian matrix.)
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8.1.6 Consider the system x =y —2x, y=pu+x> - y.

a) Sketch the nullclines.

b) Find and classify the bifurcations that occur as y varies.
¢) Sketch the phase portrait as a function of 1.

8.1.7 Find and classify all bifurcations for the system x= y—ax,
y==by+x/(1+x).

8.1.8 (Bead on rotating hoop, revisited) In Section 3.5, we derived the follow-
ing dimensionless equation for the motion of a bead on a rotating hoop:
d¢ do . .
EF = —E;—sm¢+ysm¢cos¢.
Here € > 0 is proportional to the mass of the bead, and ¥ > 0 is related to the spin rate
of the hoop. Previously we restricted our attention to the overdamped limit € — 0.
a) Now allow any &> 0. Find and classify all bifurcations that occur as £ and Y
vary.
b) Plot the stability diagram in the positive quadrant of the &, Y plane.

8.1.9 Plot the stability diagram for the system X +b% —kx+ x> =0, where b

and k can be positive, negative, or zero. Label the bifurcation curves in the (b,k)
plane. :

8.1.10 (Budworms vs. the forest ) Ludwig et al. (1978) proposed a model for the
effects of spruce budworm on the balsam fir forest. In Section 3.7, we considered
the dynamics of the budworm population; now we turn to the dynamics of the for-
est. The condition of the forest is assumed to be characterized by S(t), the average
size of the trees, and E(¢), the “energy reserve” (a generalized measure of the for-

est’s health). In the presence of a constant budworm population B, the forest dy-
namics are given by

where ry, r, Ko, K., P >0 are parameters.

a) Interpret the terms in the model biologically.

b) Nondimensionalize the system.

¢) Sketch the nullclines. Show that there are two fixed points if B is small, and
none if B is large. What type of bifurcation occurs at the critical value of B?

d) Sketch the phase portrait for both large and small values of B.

8.1.11 In a study of isothermal autocatalytic reactions, Gray and Scott (1985) con-
sidered a hypothetical reaction whose kinetics are given in dimensionless form by

u=a(l—u)—w?, v=w’—(a+k),
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where a,k>0 are parameters. Show that saddle-node bifurcations occur at
k=-ati+a.

8.1.12 (Interacting bar magnets) Consider the system

6, = Ksin(6, - 6,) —sin6,
6, = Ksin(, —6,) —sin#,

where K = 0. For a rough physical interpretation, suppose that two bar magnets
are confined to a plane, but are free to rotate about a common pin joint, as shown in
Figure 1. Let 6,, 8, denote the angular orientations of the north poles of the mag-
nets. Then the term K sin(8, — 0,) represents a repulsive force that tries to keep the
two north poles 180° apart. This repulsion is opposed by the sin@ terms, which
model external magnets that pull the north poles of both bar magnets to the east. If
the inertia of the magnets is negligible compared to viscous damping, then the
equations above are a decent approximation to the true dynamics.

0
\\ l
NN S

Figure 1

a) Find and classify all the fixed points of the system.

b) Show that a bifurcation occurs at K =+. What type of bifurcation is it? (Hint:
Recall that sin(a — b) = cosbsina —sinbcosa.)

c) Show that the system is a “gradient” system, in the sense that 6, = -2V /08, for
some potential function V(0,,6,), to be determined.

d) Use part (c) to prove that the system has no periodic orbits.

e) Sketch the phase portrait for 0 < K < 4, and then for K > +.

8.1.13 (Laser model) In Exercise 3.3.1 we introduced the laser model

n=GnN —kn
N=-GnN-fN+p

where N(¢) is the number of excited atoms and n(¢) is the number of photons in
the laser field. The parameter G is the gain coefficient for stimulated emission, &
is the decay rate due to loss of photons by mirror transmission, scattering, etc., f
is the decay rate for spontaneous emission, and p is the pump strength. All para-
meters are positive, except p, which can have either sign. For more information,
see Milonni and Eberly (1988).
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a) Nondimensionalize the system.

b) Find and classify all the fixed points.

¢) Sketch all the qualitatively different phase portraits that occur as the dimen-
sionless parameters are varied.

d) Plot the stability diagram for the system. What types of bifurcation occur?

8.2 Hopf Bifurcations
8.2.1 Consider the biased van der Pol oscillator ¥ + g (x” —1) x+x =a. Find
the curves in (i, a) space at which Hopf bifurcations occur.

The next three exercises deal with the system x=-—y+ ux+xy’
y=x+puy-x’.
8.2.2 By calculating the linearization at the origin, show that the system

X=-y+px+xy*, y=x+py—x* has pure imaginary eigenvalues when p = 0.

8.2.3 (Computer work) By plotting phase portraits on the computer, show that
the system x=-y+ux+xy’, y=x+puy—x’ undergoes a Hopf bifurcation at
1 =0.Is it subcritical, supercritical, or degenerate?

8.2.4 (A heuristic analysis) The system x = —y+ ux+xy’, y=x+ uy—- x> can

be analyzed in a rough, intuitive way as follows.

a) Rewrite the system in polar coordinates.

b) Show that if r << 1, then O~1and i~ ur +§r3 + ---, where the terms omitted
are oscillatory and have essentially zero time-average around one cycle.

¢) The formulas in part (b) suggest the presence of an unstable limit cycle of ra-
dius r = \(—8u for p < 0. Confirm that prediction numerically. (Since we as-

sumed that r << 1, the prediction is expected to hold only if | ¢t| << 1.)
The reasoning above is shaky. See Drazin (1992, pp. 188-190) for a proper
analysis via the Poincaré-Lindstedt method.

For each of the following systems, a Hopf bifurcation occurs at the origin when
1 =0. Using a computer, plot the phase portrait and determine whether the bifur-
cation is subcritical or supercritical.

825 xi=y+ux, y=-x+Uuy-x’y

826 x=px+y-x', y=-x+uy+2y

827 x=pux+y-x', y=-—-x+puy+2x’

8.2.8 (Predator-prey model) Odell (1980) considered the system

x=x[x(1-x)-y], y=y(x-a),

where x 20 is the dimensionless population of the prey, y 20 is the dimension-
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less population of the predator, and a = 0 is a control parameter.
a) Sketch the nullclines in the first quadrant x,y>0.
b) Show that the fixed points are (0,0), (1,0), and (a, @ —a’), and classify them.
¢) Sketch the phase portrait for a > 1, and show that the predators go extinct.
d) Show that a Hopf bifurcation occurs at a, = 4 . Is it subcritical or supercritical?
e) Estimate the frequency of limit cycle oscillations for a near the bifurcation.
f) Sketch all the topologically different phase portraits for 0 <a<1.

The article by Odell (1980) is worth looking up. It is an outstanding pedagogi-
cal introduction to the Hopf bifurcation and phase plane analysis in general.

8.2.9 Consider the predator-prey model

. y . X '
= b_ - ’ ) = ——_a *
* x( o 1+x) Y y[1+x y)

where x,y =0 are the populations and a,b >0 are parameters.

a) Sketch the nullclines and discuss the bifurcations that occur as b varies.

b) Show that a positive fixed point x* >0, y* >0 exists forall a,b>0. (Don’t try
to find the fixed point explicitly; use a graphical argument instead.)

¢) Show that a Hopf bifurcation occurs at the positive fixed point if

_4(b-2)
“ T bA(b+2)

and b > 2. (Hint: A necessary condition for a Hopf bifurcation to occur is 7 =0,
where 7 is the trace of the Jacobian matrix at the fixed point. Show that 7 = 0 if
and only if 2x* = b — 2. Then use the fixed point conditions to express q, in terms
of x*. Finally, substitute x* =(b—2)/2 into the expression for a. and you’re
done.)

d) Using a computer, check the validity of the expression in (c) and determine
whether the bifurcation is subcritical or supercritical. Plot typical phase por-
traits above and below the Hopf bifurcation.

8.2.10 (Bacterial respiration) Fairén and Velarde (1979) considered a model for
respiration in a bacterial culture. The equations are

oA i
1+gx

x=B-x- >
14 gx
where x and y are the levels of nutrient and oxygen, respectively, and A,B,q >0
are parameters. Investigate the dynamics of this model. As a start, find all the fixed
points and classify them. Then consider the nullclines and try to construct a trap-
ping region. Can you find conditions on A, B,q under which the system has a stable
limit cycle? Use numerical integration, the Poincaré—Bendixson theorem, results

about Hopf bifurcations, or whatever else seems useful. (This question is deliber-

ately open-ended and could serve as a class project; see how far you can go.)

8.2.11 (Degenerate bifurcation, not Hopf) Consider the damped Duffing oscilla-
tor ¥+ ux+x-x>=0.

a) Show that the origin changes from a stable to an unstable spiral as u decreases
though zero.

b) Plot the phase portraits for 4 >0, u =0, and U <0, and show that the bifurca-
tion at 4 = 0 is a degenerate version of the Hopf bifurcation.

8.2.12 (Analytical criterion to decide if a Hopf bifurcation is subcritical or super-

critical) Any system at a Hopf bifurcation can be put into the following form by
suitable changes of variables:

x=-wy+ f(x,y), y=wx+g(x,y),

where f and g contain only higher-order nonlinear terms that vanish at the origin.
As shown by Guckenheimer and Holmes (1983, pp. 152-156), one can decide
whether the bifurcation is subcritical or supercritical by calculating the sign of the
following quantity:

16a=f,, + Loy + 8y +8,,

1
ot )= 808+ 8) — Fusa + £,8,]

where the subscripts denote partial derivatives evaluated at (0,0). The criterion is:

If a <0, the bifurcation is supercritical; if a > 0, the bifurcation is subcritical.

a) Calculate a for the system x = —y +xy?, y = x — x%.

b) Use part (a) to decide which type of Hopf bifurcation occurs for
Xx=—y+ux+xy’, y=x+py-x*at u=0. (Compare the results of Exercises
8.2.2-8.24)

(You might be wondering what a measures. Roughly speaking, a is the coeffi-
cient of the cubic term in the equation 7 = ar’ governing the radial dynamics at the
bifurcation. Here r is a slightly transformed version of the usual polar coordinate.
For details, see Guckenheimer and Holmes (1983) or Grimshaw (1990).)

For each of the following systems, a Hopf bifurcation occurs at the origin when
i = 0. Use the analytical criterion of Exercise 8.2.12 to decide if the bifurcation is
sub- or supercritical. Confirm your conclusions on the computer.

8213 x=y+pux, y=-x+uy-xy
8214 x=px+y-x’, y=-x+py+2y’
8.2.15 x=pux+y-x?, y=—x+uy+2x®

8.2.16 In Example 8.2.1, we argued that the system I=pux—-y+xy°,
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y=x+uy+y" undergoes a subcritical Hopf bifurcation at u = 0. Use the analyti-
cal criterion to confirm that the bifurcation is subcritical.

8.3 Oscillating Chemical Reactions

8.3.1 (Brusselator) The Brusselator is a simple model of a hypothetical chemi-
cal oscillator, named after the home of the scientists who proposed it. (This is a
common joke played by the chemical oscillator community; there is also the
“Oregonator,” “Palo Altonator,” etc.) In dimensionless form, its kinetics are

x=1-(b+Dx+ax’y
y=bx—ax’y

where a,b > 0 are parameters and x,y > 0 are dimensionless concentrations.

a) Find all the fixed points, and use the Jacobian to classify them.

b) Sketch the nuliclines, and thereby construct a trapping region for the flow.

c) Show that a Hopf bifurcation occurs at some parameter value b = b_, where b,
is to be determined.

d) Does the limit cycle exist for b>b, or b<b,? Explain, using the
Poincaré-Bendixson theorem.

e) Find the approximate period of the limit cycle for b= b, .

8.3.2 Schnackenberg (1979) considered the following hypothetical model of a
chemical oscillator:

XA, By, 2X+Y —2 53X,

After using the Law of Mass Action and nondimensionalizing, Schnackenberg re-
duced the system to

i=a-x+xy
y=b-x"y

where a,b > 0 are parameters and x,y > 0 are dimensionless concentrations.

a) Show that all trajectories eventually enter a certain trapping region, to be deter-
mined. Make the trapping region as small as possible. (Hint: Examine the ratio
y/x for large x.)

b) Show that the system has a unique fixed point, and classify it.

¢) Show that the system undergoes a Hopf bifurcation when b—a = (a+ b)’.

d) Is the Hopf bifurcation subcritical or supercritical? Use a computer to decide.

) Plot the stability diagram in a,b space. (Hint: It is a bit confusing to plot the
curve b—a = (a+b)’, since this requires analyzing a cubic. As in Section 3.7,
the parametric form of the bifurcation curve comes to the rescue. Show that the
bifurcation curve can be expressed as
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=-Lx*(1—(x*)2), b=-§-x*(1+(x*)2)

where x* > 0 is the x-coordinate of the fixed point. Then plot the bifurcation curve
from these parametric equations. This trick is discussed in Murray (1989).)

8.3.3  (Relaxation limit of a chemical oscillator) Analyze the model for the chlo-
rine dioxide—iodine—malonic acid oscillator, (8.3.4), (8.3.5), in the limit b <<1.
Sketch the limit cycle in the phase plane and estimate its period.

8.4 Global Bifurcations of Cycles

8.4.1 Consider the system 7=r(1-r?), 6=pu—sin@ for u slightly greater
than 1. Let x=rcos@ and y=rsin@. Sketch the waveforms of x(¢) and y(z).
(These are typical of what one might see experimentally for a system on the verge
of an infinite-period bifurcation.)

8.4.2 Discuss the bifurcations of the system 7 = r(it —sinr), 6=1 as M varies.

8.4.3 (Homoclinic bifurcation) Using numerical integration, find the value of
U at which the system x=px+y—x*, y=—x+y+2x* undergoes a homo-
clinic bifurcation. Sketch the phase portrait just above and below the bifurcation.

8.4.4 (Second-order phase-locked loop) Using a computer, explore the phase
portrait of 0+01- ucos9)0+sm9 0 for u>0. For some values of i, you
should find that the system has a stable limit cycle. Classify the bifurcations that
create and destroy the cycle as y increases from 0.

Exercises 8.4.5-8.4.11 deal with the forced Duffing oscillator in the limit
where the forcing, detuning, damping, and nonlinearity are all weak:

i+x+ebx’+ki—ax—Fcost)=0,

where 0 < £<<1, b>0 is the nonlinearity, k >0 is the damping, a is the detun-
ing, and F > 0 is the forcing strength. This system is a small perturbation of a har-
monic oscillator, and can therefore be handled with the methods of Section 7.6.
We have postponed the problem until now because saddle-node bifurcations of cy-
cles arise in its analysis.

8.4.5 (Averaged equations) Show that the averaged equations (7.6.53) for the
system are

r'=—Lt(kr+Fcos¢), ¢ =—4(4a—-3br* +4Ecosg),
where x = rcos(t + ¢), x = —rsin(z + ¢), and prime denotes differentiation with re-

spect to slow time T = €¢, as usual. (If you skipped Section 7.6, accept these equa-
tions on faith.)
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8.4.6 (Correspondence between averaged and original systems) Show that fixed
points for the averaged system correspond to phase-locked periodic solutions for
the original forced oscillator. Show further that saddle-node bifurcations of fixed
points for the averaged system correspond to saddle-node bifurcations of cycles
for the oscillator.

8.4.7 (No periodic solutions for averaged system) Regard (r,¢) as polar coor-
dinates in the phase plane. Show that the averaged system has no closed orbits.
(Hint: Use Dulac’s criterion with g(r,¢)=r. Let x'=(,r¢’). Compute
V(rx)=2(r)+ la%(rqu') and show that it has one sign.)

T

8.4.8 (No sources for averaged system) The result of the previous exercise
shows that we only need to study the fixed points of the averaged system to deter-
mine its long-term behavior. By calculating V-x’ = £ (r")+ 1 & (r¢’), show that
the fixed points cannot be sources; only sinks and saddles are possible.

8.4.9 (Resonance curves and cusp catastrophe) In this exercise you are asked to

determine how the equilibrium amplitude of the driven oscillations depends on the

other parameters.

a) Show that the fixed points satisfy r’ [k2 +(3br* —a)’ ] = F~.

b) From now on, assume that k¥ and F are fixed. Graph r vs. a for the linear os-
cillator (b =0). This is the familiar resonance curve.

¢) Graph r vs. a for the nonlinear oscillator (b # 0). Show that the curve is sin-
gle-valued for small nonlinearity, say b < b, , but triple-valued for large nonlin-
earity (b>b,), and find an explicit formula for b.. (Thus we obtain the
intriguing conclusion that the driven oscillator can have three limit cycles for
some values of @ and b!)

d) Show that if r is plotted as a surface above the (a,b) plane, the result is a cusp
catastrophe surface (recall Section 3.6).

8.4.10 Now for the hard part: analyze the bifurcations of the averaged system.

a) Plot the nullclines ' =0 and ¢’ =0 in the phase plane, and study how their in-
tersections change as the detuning a is increased from negative values to large
positive values.

b) Assuming that b >b,, show that as a increases, the number of stable fixed
points changes from one to two and then back to one again.

8.4.11 (Numerical exploration) Fix the parameters k=1,b=3%, F=2.

a) Using numerical integration, plot the phase portrait for the averaged system
with a increasing from negative to positive values.

b) Show that for a = 2.8, there are two stable fixed points.

¢) Go back to the original forced Duffing equation. Numerically integrate it and
plot x(¢) as a increases slowly from a=-1 to a=5, and then decreases
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slowly back to @a=-1. You should see a dramatic hysteresis effect with the

limit cycle oscillation suddenly jumping up in amplitude at one value of a, and
then back down at another.

8.4.12 (Scaling near a homoclinic bifurcation) To find how the period of a closed
orbit scales as a homoclinic bifurcation is approached, we estimate the time it takes
for a trajectory to pass by a saddle point (this time is much longer than all others in
the problem). Suppose the system is given locally by i = A x,y==A,y.Letatra-
jectory pass through the point (41,1), where u <<1 is the distance from the stable
manifold. How long does it take until the trajectory has escaped from the saddle,
say out to x(#) = 1? (See Gaspard (1990) for a detailed discussion.)

8.5 Hysteresis in the Driven Pendulum and
Josephson Junction

8.5.1 Show that [ln(l -1, )]_l has infinite derivatives of all orders at I, . (Hint:
Consider f(I)=(InI)"' and try to derive a formula for f™(I) in terms of
F® ), where f™(I) denotes the nth derivative of f(I).)

8.5.2 Consider the driven pendulum ¢” + a¢’ + sin ¢ = 1. By numerical compu-
tation of the phase portrait, verify that if & is fixed and sufficiently small, the sys-
tem’s stable limit cycle is destroyed in a homoclinic bifurcation as I decreases.
Show that if & is too large, the bifurcation is an infinite-period bifurcation instead.

8.5.3 (Logistic equgtion with periodically varying carrying capacity) Consider

the logistic equation N = rN(1— N/K(t)), where the carrying capacity is positive,

smooth, and T-periodic in .

a) Using a Poincaré map argument like that in the text, show that the system has at
least one stable limit cycle of period T, contained in the strip K, < N < K, o

b) Is the cycle necessarily unique?

8.6 Coupled Oscillators and Quasiperiodicity

8.6.1 (“Oscillator death” and bifurcations on a torus) In a paper on systems of
neural oscillators, Ermentrout and Kopell (1990) illustrated the notion of “oscilla-
tor death” with the following model:

6, = @, +sin 6, cosH,, 0, = w, +sin6, cos b,

where @,, w, 0.
a) Sketch all the qualitatively different phase portraits that arise as w,, @, vary.

b) Find the curves in ,, @, parameter space along which bifurcations occur, and
classify the various bifurcations.
c) Plot the stability diagram in @,, @, parameter space.
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8.6.2 Reconsider the system (8.6.1):
él =, + K, sin(6, - 6,), éz =, + K, sin(6, - 6,).

a) Show that the system has no fixed points, given that @,, ®w, >0 and K|,
K,>0.

b) Find a conserved quantity for the system. (Hint: Solve for sin(@, —6,) in two
ways. The existence of a conserved quantity shows that this system is a non-
generic flow on the torus; normally there would not be any conserved quanti-
ties.)

¢) Suppose that K, = K, . Show that the system can be nondimensionalized to

de, /dt =1+asin(8, - 6,), dl,/dt = +asin(6, -0,).
d) Find the winding number ll_r)g 6,(1)/0,(t) analytically. (Hint: Evaluate the
long-time averages (d(6, +6, )/d‘r) and (d(6, —6,)/dt), where the brackets
are defined by ( f)= ;1_)12 %J;—Tf(r) dt . For another approach, see Guckenheimer

and Holmes (1983, p. 299).)

8.6.3 (Irrational flow yields dense orbits) Consider the flow on the torus given
by 6, = w,, 8, = w,, where w, /@, is irrational. Show each trajectory is dense; i.e.,
given any point p on the torus, any initial condition ¢, and any £ >0, there is
some ¢ < oo such that the trajectory starting at g passes within a distance € of p.

8.6.4 Consider the system
6, =E—sinf, +Ksin(0,-6,), 6, =E+sin6, + Ksin(, -6,

where E,K20.

a) Find and classify all the fixed points.

b) Show that if E is large enough, the system has periodic solutions on the torus.
What type of bifurcation creates the periodic solutions?

¢) Find the bifurcation curve in (E, K) space at which these periodic solutions are
created.
A generalization of this system to N >>1 phases has been proposed as a model

of switching in charge-density waves (Strogatz et al. 1988, 1989).

8.6.5 (Plotting Lissajous figures) Using a computer, plot the curve whose para-
metric equations are x(z) =sint, y(f) = sin o, for the following rational and irra-
tional values of the parameter m:

@ w=3 b o