
RESULTANT AND DISCRIMINANT OF POLYNOMIALS

SVANTE JANSON

Abstract. This is a collection of classical results about resultants and
discriminants for polynomials, compiled mainly for my own use. All
results are well-known 19th century mathematics, but I have not inves-
tigated the history, and no references are given.

1. Resultant

Definition 1.1. Let f(x) = anx
n + · · ·+ a0 and g(x) = bmx

m + · · ·+ b0 be
two polynomials of degrees (at most) n and m, respectively, with coefficients
in an arbitrary field F . Their resultant R(f, g) = Rn,m(f, g) is the element
of F given by the determinant of the (m + n) × (m + n) Sylvester matrix
Syl(f, g) = Syln,m(f, g) given by



an an−1 an−2 . . . 0 0 0
0 an an−1 . . . 0 0 0
...

...
...

...
...

...
0 0 0 . . . a1 a0 0
0 0 0 . . . a2 a1 a0
bm bm−1 bm−2 . . . 0 0 0
0 bm bm−1 . . . 0 0 0
...

...
...

...
...

...
0 0 0 . . . b1 b0 0
0 0 0 . . . b2 b1 b0


(1.1)

where the m first rows contain the coefficients an, an−1, . . . , a0 of f shifted
0, 1, . . . ,m− 1 steps and padded with zeros, and the n last rows contain the
coefficients bm, bm−1, . . . , b0 of g shifted 0, 1, . . . , n−1 steps and padded with
zeros. In other words, the entry at (i, j) equals an+i−j if 1 ≤ i ≤ m and bi−j
if m + 1 ≤ i ≤ m + n, with ai = 0 if i > n or i < 0 and bi = 0 if i > m or
i < 0.
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Example. If n = 3 and m = 2,

R(f, g) =

∣∣∣∣∣∣∣∣∣∣
a3 a2 a1 a0 0
0 a3 a2 a1 a0
b2 b1 b0 0 0
0 b2 b1 b0 0
0 0 b2 b1 b0

∣∣∣∣∣∣∣∣∣∣
.

In the exterior algebra over F [x], we thus have

(xm−1f(x)) ∧ (xm−2f(x)) ∧ · · · ∧ f(x)

∧ (xn−1g(x)) ∧ (xn−2g(x)) ∧ · · · ∧ g(x)

= R(f, g)xn+m−1 ∧ xn+m−2 ∧ · · · ∧ 1, (1.2)

which can be used as an alternative form of Definition 1.1.

Remark 1.2. Typically, one assumes in Definition 1.1 that n = deg(f)
and m = deg(g), i.e. that an 6= 0 and bm 6= 0; this implies that R(f, g)
is completely determined by the polynomials f and g (and it excludes the
case f = 0 or g = 0). It is, however, convenient to use the slightly more
general version above which also allows n and m to be regarded as given and
then R(f, g) is defined for all polynomials f and g of degrees deg(f) ≤ n,
deg(g) ≤ m. (See for example Remarks 1.9 and 3.4.) In this case, we may
use the notation Rn,m(f, g) to avoid ambiguity, but usually we write just
R(f, g).

Remark 1.3. It is sometimes convenient to regard ai and bj is indetermi-
nates, thus regarding f and g as polynomials with coefficients in the field
F (an, . . . , a0, bm, . . . , b0). Any formula or argument that requires an 6= 0
and bm 6= 0 then can be used; if this results in, for example, a polynomial
identity involving Rn,m(f, g), then this formula holds also if we substitute
any values in F for an, . . . , b0.

The resultant is obviously a homogeneous polynomial of degree n + m
with integer coefficients in the coefficients ai, bj . More precisely, we have
the following. We continue to use the notations ai and bj for the coefficients
of f and g, respectively, as in Definition 1.1.

Theorem 1.4. Rn,m(f, g) is a homogeneous polynomial with integer coeffi-
cients in the coefficients ai, bj.

(i) Rn,m(f, g) is homogeneous of degree m in an, . . . , a0 and degree n in
bm, . . . , b0.

(ii) If ai and bi are regarded as having degree i, then Rn,m(f, g) is ho-
mogeneous of degree nm.

Proofs of this and other results in this section are given in Section 2.

Remark 1.5. If we write Rn,m(f, g) as a polynomial with integer coefficients
for any field with characteristic 0, such as Q or C, then the formula is
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valid (with the same coefficients) for every field F . (Because the coefficients
are given by expanding the determinant of Syln,m(f, g) and thus have a
combinatorial interpretation independent of F . Of course, for a field of
characteristic p 6= 0, the coefficients may be reduced modulo p, so they are
not unique in that case.)

The main importance of the resultant lies in the following formula, which
often is taken as the definition.

Theorem 1.6. Let f(x) = anx
n+· · ·+a0 and g(x) = bmx

m+· · ·+b0 be two
polynomials of degrees n and m, respectively, with coefficients in an arbitrary
field F . Suppose that, in some extension of F , f has n roots ξ1, . . . , ξn and
g has m roots η1, . . . , ηm (not necessarily distinct). Then

R(f, g) = amn b
n
m

n∏
i=1

m∏
j=1

(ξi − ηj). (1.3)

Here and below, the roots of a polynomial are listed with multiple roots
repeated according to their multiplicities. Thus every polynomial of degree
n has n roots in some extension field (for example in an algebraically closed
extension). Combining Theorem 1.6 and Definition 1.1, we see that the
product in (1.3) lies in coefficient field F , and that it does not depend on
the choice of extension field.

Theorem 1.6 implies the perhaps most important result about resultants.

Corollary 1.7. Let f and g be two non-zero polynomials with coefficients
in a field F . Then f and g have a common root in some extension of F if
and only if R(f, g) = 0.

It is here implicit that R = Rn,m with n = deg(f) and m = deg(g). Since
f and g have a common root in some extension of F if and only if they have
a common non-trivial (i.e., non-constant) factor in F , Corollary 1.7 can also
be stated as follows.

Corollary 1.8. Let f and g be two non-zero polynomials with coefficients
in a field. Then f and g have a common non-trivial factor if and only if
R(f, g) = 0. Equivalently, f and g are coprime if and only if R(f, g) 6= 0.

Remark 1.9. If n and m are fixed, we can (in the style of projective ge-
ometry) say that a polynomial f with deg(f) ≤ n has n − deg(f) roots at
∞, and similarly g has m − deg(g) roots at ∞. Thus f always has n roots
and g has m, in F1 ∪ {∞} for some extension F1. With this interpretation,
Corollary 1.7 holds for all polynomials with deg(f) ≤ n and deg(g) ≤ m.
(Including f = 0 and g = 0 except in the trivial case n = m = 0.)

We have also the following useful formulas related to (1.3).

Theorem 1.10. Let f(x) = anx
n + · · ·+ a0 and g(x) = bmx

m + · · ·+ b0 be
two polynomials with coefficients in an arbitrary field F .
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(i) Suppose that f has n roots ξ1, . . . , ξn in some extension of F . Then

R(f, g) = amn

n∏
i=1

g(ξi). (1.4)

(ii) Suppose that g has m roots η1, . . . , ηm in some extension of F . Then

R(f, g) = (−1)nmbnm

m∏
j=1

f(ηj). (1.5)

In (i), f necessarily has degree n, while deg(g) ≤ m may be less than m.
Similarly, in (ii), deg(g) = m and deg(f) ≤ n.

The Sylvester matrix of g and f is obtained by permuting the rows of the
Sylvester matrix of f and g. The number of inversions of the permutation
is nm, and it follows immediately from Definition 1.1 that

Rm,n(g, f) = (−1)nmRn,m(f, g). (1.6)

(If deg(f) = n and deg(g) = m, (1.6) also follows from (1.3).) This kind
of anti-symmetry explains why there is a factor (−1)nm in (1.5) but not in
(1.4).

The factorization properties in Theorem 1.10 can also be expresed as
follows.

Theorem 1.11. If f1, f2 and g are polynomials with deg(f1) ≤ n1, deg(f2) ≤
n2 and deg(g) ≤ m, then

Rn1+n2,m(f1f2, g) = Rn1,m(f1, g)Rn2,m(f2, g). (1.7)

Similarly, if f , g1 and g2 are polynomials with deg(f) ≤ n , deg(g1) ≤ m1

and deg(g2) ≤ m2, then

Rn,m1+m2(f, g1g2) = Rn,m1(f, g1)Rn,m2(f, g2). (1.8)

There is, besides (1.6), also another type of symmetry. With f(x) =
anx

n + · · · + a0 and g(x) = bmx
m + · · · + b0 as above, define the reversed

polynomials by

f∗(x) = xnf(1/x) = an + an−1x+ · · ·+ a0x
n, (1.9)

g∗(x) = xmg(1/x) = bm + bm−1x+ · · ·+ b0x
m. (1.10)

Theorem 1.12. With notations as above, for any two polynomials f and g
with deg(f) ≤ n and deg(g) ≤ m,

Rn,m(f∗, g∗) = Rm,n(g, f) = (−1)nmRn,m(f, g).

As said in Remark 1.2, the standard case for the resultant is when deg(f) =
n and deg(g) = m. We can always reduce to that case by the following for-
mulas.

Theorem 1.13. (i) If deg(g) ≤ k ≤ m, then

Rn,m(f, g) = am−kn Rn,k(f, g). (1.11)
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(ii) If deg(f) ≤ k ≤ n, then

Rn,m(f, g) = (−1)(n−k)mbn−km Rk,m(f, g). (1.12)

Note further that if both deg(f) < n and deg(g) < m, then Rn,m(f, g) =
0. (Because the first column in (1.1) vanishes, or from (1.11) or (1.12).)

Theorem 1.14. Let f and g be polynomials with deg(f) ≤ n and deg(g) ≤
m. If n ≥ m and h is any polynomial with deg(h) ≤ n−m, then

Rn,m(f + hg, g) = Rn,m(f, g). (1.13)

Similarly, if n ≤ m and h is any polynomial with deg(h) ≤ m− n, then

Rn,m(f, g + hf) = Rn,m(f, g). (1.14)

Theorem 1.15. If f and g are polynomials of degrees n and m as above,
with roots ξ1, . . . , ξn and η1, . . . , ηm in some extension field, then the re-
sultant R

(
f(x), g(y − x)

)
(with g(y − x) regarded as a polymial in x) is a

polynomial in y of degree nm with roots ξi + ηj, 1 ≤ i ≤ n and 1 ≤ j ≤ m.
Further, R

(
f(x), g(y − x)

)
has leading coefficient amn b

n
m. In particular,

R
(
f(x), g(y − x)

)
is monic if both f and g are.

If deg(f) < n or deg(g) < m, but not both, then by Theorem 1.13
R
(
f(x), g(y − x)

)
is still a polynomial whose roots are given by ξi + ηj ,

where ξi runs through the roots of f and ηj through the roots of g (with
multiplicities). If deg(f) < n and deg(g) < m, then R

(
f(x), g(y − x)

)
= 0.

Example 1.16. Let n = 1 and f(x) = ax + c. Then, if a 6= 0, f has the
single root ξ = −c/a and (1.4) yields

R1,m(f, g) = amg(−c/a) =

m∑
j=0

bj(−c)jam−j . (1.15)

This formula (ignoring the middle expression) holds also if a = 0 (and then
simplifies to R1,m(c, g) = bm(−c)m), for example by Remark 1.3.

Example 1.17. Let n ≥ 0 and let f(x) and g(x) be two polynomials of
degree ≤ n with coefficients in a field F . Further, let a, b, c, d ∈ F .

Assume first that d 6= 0. Then, by Theorem 1.14 and Theorem 1.4,

Rn,n(af + bg, cf + dg) = Rn,n
(
af + bg − (b/d)(cf + dg), cf + dg

)
= Rn,n

(
(a− bc/d)f, cf + dg

)
= (a− bc/d)nRn,n(f, cf + dg)

= (a− bc/d)nRn,n(f, dg)

= (ad− bc)nRn,n(f, g). (1.16)

The final formula holds in the case d = 0 too, for example by regarding d as
an indeterminate. We may write the result as

Rn,n(af + bg, cf + dg) =

∣∣∣∣a b
c d

∣∣∣∣nRn,n(f, g). (1.17)
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1.1. Trivial cases. For completeness we allow n = 0 or m = 0 above. The
case m = n = 0 is utterly trivial: f(x) and g(x) are constants, the Sylvester
matrix (1.1) has 0 rows and columns (the empty matrix), and R0,0(f, g) = 1
(by definition).

In the case m = 0, g(x) = b0 is constant. The Sylvester matrix is
the diagonal matrix b0In, where In is the n × n identity matrix, and thus
Rn,0(f, g) = bn0 .

Similarly, or by (1.6), if n = 0, then f(x) = a0 and R0,m(f, g) = am0 .
(These formulas are special cases of (1.5) and (1.4).)

Note that the formulas (1.3), (1.4), (1.5) in Theorems 1.6 and 1.10 hold
also for n = 0 and m = 0, with empty products defined to be 1.

1.2. Another determinant formula.

Theorem 1.18. Let f and g be polynomials with deg(f) = n and deg(g) ≤
m. Let, for k ≥ 0, rk(x) = rk,n−1x

n−1+ · · ·+rk,0 be the remainder of xkg(x)

modulo f(x), i.e., xkg(x) = qk(x)f(x) + rk(x) for some polynomial qk and
deg(rk) ≤ n− 1. Then (where as above an is the leading coefficient of f),

Rn,m(f, g) = amn

∣∣∣∣∣∣∣
rn−1,n−1 . . . rn−1,0

...
...

r0,n−1 . . . r0,0

∣∣∣∣∣∣∣ . (1.18)

1.3. More on the Sylvester matrix. The following theorem extends
Corollary 1.8, since it in particular says that the Sylvester matrix of f and
g is singular if and only if their greatest common divisor has degree ≥ 1.

Theorem 1.19. Let f and g be two polynomials with deg(f) = n and
deg(g) = m, and let h := GCD(f, g) be their greatest common divisor (i.e., a
common divisor of highest degree). Then deg(h) is the corank of the Sylvester
matrix Syl(f, g). In other words, the Sylvester matrix Syl(f, g) has rank
n+m− deg(h).

There is also an explicit description of the left null space.

Theorem 1.20. Let f and g be two polynomials with deg(f) ≤ n and
deg(g) ≤ m. Let v := (αm−1, . . . , α0, βn−1, . . . , β0) be a row vector of di-
mension m + n. Then v Syl(f, g) = 0 if and only if pf + qg = 0, where
p(x) = αm−1x

m−1 + · · ·+ α0x
0 and q(x) = βn−1x

n−1 + · · ·+ β0x
0.

1.4. Further examples. If n = m = 2,

R(f, g) =

∣∣∣∣∣∣∣∣
a2 a1 a0 0
0 a2 a1 a0
b2 b1 b0 0
0 b2 b1 b0

∣∣∣∣∣∣∣∣ = (a2b0 − b2a0)2 − (a2b1 − b2a1)(a1b0 − b1a0).
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If n = m = 3,

R(f, g) =

∣∣∣∣∣∣∣∣∣∣∣∣

a3 a2 a1 a0 0 0
0 a3 a2 a1 a0 0
0 0 a3 a2 a1 a0
b3 b2 b1 b0 0 0
0 b3 b2 b1 b0 0
0 0 b3 b2 b1 b0

∣∣∣∣∣∣∣∣∣∣∣∣
.

More generally, if m = n, then

R(f, g) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

an an−1 . . . a0 0 0 . . . 0
0 an . . . a1 a0 0 . . . 0
...

...
...

...
...

...
0 0 . . . an−1 an−2 0 . . . a0
bn bn−1 . . . b0 0 0 . . . 0
0 bn . . . b1 b0 0 . . . 0
...

...
...

...
...

...
0 0 . . . bn−1 bn−2 0 . . . b0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
.

2. Proofs

We begin by noting that, as said above, (1.6) holds by a permutation of
the rows in (1.1).

Proof of Theorem 1.4. It is obvious that Rn,m(f, g) is a homogeneous poly-
nomial with integer coefficients in the coefficients ai, bj , of total degree m+n.
Moreover, to replace ai by tai and bj by ubj in the Sylvester matrix means
that we multiply each of the first m rows by t and each of the last n by
u, and thus the determinant Rn,m(f, g) by tmun, which shows (i). (It is
here best to treat ai, bj , t and u as different indeterminates, and do the
calculations in F (a0, . . . , an, b0, . . . , bm, t, u).)

Similarly, (ii) follows because to replace each ai by tiai and each bj by tjbj
in Syln,m(f, g) yields the same result as multiplying the i:th row by tn+i for

i = 1, . . . ,m and by ti for i = m+1, . . . ,m+n, and the j : th column by t−j ;

this multiplies the determinant Rn,m(f, g) by tmn+
∑n+m

1 i−
∑n+m

1 j = tnm. �

Proof of Theorem 1.14. First, assume n ≥ m and deg(h) ≤ n − m. The
Sylvester matrix Syln,m(f + hg, g) is obtained from Syln,m(f, g) by row op-

erations that do not change its determinant Rn,m. (If h(x) = clx
l + · · ·+ c0,

add ck times row n+ i− k to row i, for i = 1, . . . ,m and k = 0, . . . , l.)
The second part follows similarly, or by the first part and (1.6). �

Proof of Theorem 1.13. (i). Suppose that deg(g) < m, so bm = 0. Then
the first column of the Sylvester matrix (1.1) is 0 except for its first element
an, and the submatrix of Syln,m(f, g) obtained by deleting the first row
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and column equals Syln,m−1(f, g). Hence, by expanding the determinant
Rn,m(f, g) along the first column,

Rn,m(f, g) = anRn,m−1(f, g).

The formula (1.11) now follows for k = m,m−1, . . . , 0 by backwards induc-
tion.

(ii). By (1.6) and part (i),

Rn,m(f, g) = (−1)nmRm,n(g, f) = (−1)nmbn−km Rm,k(g, f)

= (−1)nm−kmbn−km Rk,m(f, g). �

Proof of Theorems 1.6 and 1.10. We prove these theorems together by in-
duction on n+m.

Assume that deg(f) = n and deg(g) = m. Then, at least in some exten-
sion field, f(x) = an

∏n
i=1(x− ξi) and g(x) = bm

∏m
j=1(x− ηj), and (1.3) is

equivalent to both (1.4) and (1.5). Assume by induction that these formulas
hold for all smaller values of n+m (and all polynomials of these degrees).

Case 1. First, suppose 0 < n = deg(f) ≤ m = deg(g). Divide g by f to
obtain polynomials q and r with g = qf + r and deg(r) < deg(f) = n. Note
that

deg(q) = deg(qf)− deg(f) = deg(g − r)− n = m− n.
By Theorem 1.14,

Rn,m(f, g) = Rn,m(f, g − qf) = Rn,m(f, r). (2.1)

Case 1a. Suppose that r 6= 0 and let k := deg(r) ≥ 0. By Theorem 1.13
and the inductive hypothesis in the form (1.4),

Rn,m(f, r) = am−kn Rn,k(f, r) = am−kn akn

n∏
i=1

r(ξi) = amn

n∏
i=1

g(ξi),

since g(ξi) = q(ξi)f(ξi) + r(ξi) = r(ξi), which verifies (1.4) and thus (1.3).
Case 1b. Suppose now that r = 0, so g = qf , but n > 0. Then

Syln,m(f, r) = Syln,m(f, 0) has the last n rows identically 0, so Rn,m(f, r) =
0, and Rn,m(f, g) = 0 by (2.1). Further, g(ξ1) = q(ξ1)f(ξ1) = 0 so ξ1 is a
root of g too, and the right hand side of (1.3) vanishes too. Hence, (1.3)
holds.

Case 2. Suppose that n = 0. As remarked in Subsection 1.1, R0,m(f, g) =
am0 , which agrees with (1.3). (This includes the case n = m = 0 that starts
the induction.)

Case 3. Suppose that m = deg(g) < n = deg(f). This is reduced to Case
1 or 2 by (1.6).

This completes the induction, and the proof of Theorem 1.6. It remains
to verify Theorem 1.10(i),(ii) also in the cases deg(g) < m and deg(f) < n,
respectively. This follows by Theorem 1.13, as in the proof of Case 1a above,
or by Remark 1.3. �
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Proof of Corollaries 1.7 and 1.8. Immediate from (1.3), using the fact on
common factors stated before Corollary 1.8. �

Proof of Theorem 1.11. By the argument in Remark 1.3, we may assume
that deg(g) = m, so g has m roots in some extension of F , and then (1.7)
follows from (1.5). Similarly, (1.8) follows from (1.4). �

Proof of Theorem 1.12. The Sylvester matrix Syln,m(f∗, g∗) is obtained from
Sylm,n(g, f) by reversing the order of both rows and columns, and thus they
have the same determinant. �

Proof of Theorem 1.15. We have g(x) = bm
∏m
j=1(x− ηj) and thus

g(y − x) = bm

m∏
j=1

(y − x− ηj) = (−1)mbm

m∏
j=1

(x− y + ηj).

Thus, by (1.4) (or Theorem 1.6),

R
(
f(x), g(y − x)

)
= amn (−1)nmbnm

n∏
i=1

m∏
j=1

(ξi − y + ηj)

= amn b
n
m

n∏
i=1

m∏
j=1

(y − ξi − ηj). �

Proof of Theorem 1.18. We work in the exterior algebra over F (x), using
(1.2). Let D be the determinant in (1.18); thus

rn−1(x) ∧ · · · ∧ r0(x) = Dxn−1 ∧ · · · ∧ x0. (2.2)

For k ≤ n − 1, xkg(x) − rk(x) = qk(x)f(x) has degree ≤ n + m − 1 and is
thus a linear combination of f(x), xf(x), . . . , xm−1f(x); hence, using (2.2)
and (1.2) (with g(x) replaced by 1),

(xm−1f(x)) ∧ · · · ∧ f(x) ∧ (xn−1g(x)) ∧ · · · ∧ g(x)

= (xm−1f(x)) ∧ · · · ∧ f(x) ∧ rn−1(x) ∧ · · · ∧ r0(x)

= (xm−1f(x)) ∧ · · · ∧ f(x) ∧Dxn−1 ∧ · · · ∧ x0

= DRn,m(f, 1)xn+m−1 ∧ · · · ∧ 1.

Consequently, using (1.2) again,

Rn,m(f, g) = DRn,m(f, 1).

Finally, by Theorem 1.13, or by (1.4),

Rn,m(f, 1) = amn Rn,0(f, 1) = amn . �

Proof of Theorem 1.19. Note first that Syln,m(f, g) and Sylm,n(g, f) have
the same rank and corank, so we may interchange f and g. We may thus
assume n ≥ m.

In this case, we may as in the proof of Theorem 1.14 for any polynomial
q with deg(q) ≤ n − m obtain Syln,m(f − qg, g) from Syln,m(f, g) by row
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operations that do not change the rank and corank. In particular, we may
replace f by the remainder r obtained when dividing f by g. Then deg(r) <
m ≤ n and the first column of Syln,m(r, g) has a single non-zero element,
bm in row m + 1. We may thus delete the first column and the m + 1:th
row without changing the corank, and this yields Syln−1,m(r, g). (Cf. the
proof of Theorem 1.13.) Repeating, we see that if r 6= 0 and k = deg(r),
then Syln,m(f, g) has the same corank as Sylk,m(r, g) and Sylm,k(g, r). We
repeat from the start, by dividing g by r and so on; this yields the Euclidean
algorithm for finding the GCD h, and we finally end up with the Sylvester
matrix Sylk,l(0, h), for some k ≥ 0 and l = deg(h), which evidently has
corank l since the first l rows are 0 and the last k are independent, as is
witnessed by the lower left k × k minor which is triangular.

(Alternatively, Theorem 1.19 follows easily from Theorem 1.20.) �

Proof of Theorem 1.20. Let v Syln,m(f, g) = (γ1, . . . , γn+m). Then, for j =
1, . . . ,m + n, with ak and bk defined for all integers k as at the end of
Definition 1.1,

γj =
m∑
i=1

αm−ian+i−j +
m+n∑
i=m+1

βm+n−ibi−j ,

which equals the coefficient of xm+n−j in pf + qg. �

3. Discriminant

Several different normalizations of the discriminant of a polynomial are
used by different authors, differing in sign and in factors that are powers of
the leading coefficient of the polynomial. One natural choice is the following.

Definition 3.1. Let f be a polynomial of degree n ≥ 1 with coefficients
in an arbitrary field F . Let F1 be an extension of F where f splits, and
let ξ1, . . . , ξn be the roots of f in F1 (taken with multiplicities). Then the
(normalized) discriminant of f is

∆0(f) :=
∏

1≤i<j≤n
(ξi − ξj)2. (3.1)

Note that such a field F1 always exists, for example an algebraic clo-
sure of F will do, and that, e.g. by Theorem 3.3 below, ∆0(f) ∈ F and
does not depend on the choice of F1. (This also follows from the fact that
∆0(f) is a symmetric polynomial in ξ1, . . . , ξn, and thus by a well-known
fact a polynomial in the elementary symmetric polynomials σk(ξ1, . . . , ξn) =
(−1)kan−k/an, k = 1, . . . , n.)

Note further that ∆0(cf) = ∆0(f) for any constant c 6= 0.
However, while the definition of ∆0 is simple and natural, ∆0 is particu-

larly useful for monic polynomials. In general, it is often more convenient
to use the following version, which by Theorem 3.5 below is a polynomial in
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the coefficients of f . (This is the most common version of the discriminant.
The names ’normalized’ and ’standard’ are my own.)

Definition 3.2. Let f = anx
n + · · · + a0 be a polynomial of degree n ≥ 1

with coefficients in an arbitrary field F . Then the (standard) discriminant
of f is

∆(f) := a2n−2n ∆0(f) = a2n−2n

∏
1≤i<j≤n

(ξi − ξj)2, (3.2)

where as above ξ1, . . . , ξn are the roots of f in some extension F1 of F .

The discriminant can also be defined as the resultant of f and its deriva-
tive f ′, with a suitable normalizing factor, as is stated more precisely in the
following theorem.

Theorem 3.3. Let f = anx
n+ · · ·+a0 be a polynomial of degree n ≥ 1 with

coefficients in an arbitrary field F . Then the discriminant of f is given by

∆(f) = (−1)n(n−1)/2a−1n R(f, f ′) (3.3)

and thus
∆0(f) = (−1)n(n−1)/2a−(2n−1)n R(f, f ′). (3.4)

Remark 3.4. To be precise, we should write Rn,n−1(f, f
′) in this theorem.

Typically, deg(f ′) = deg(f) − 1 = n − 1 and we may then write R(f, f ′)
without any ambiguity. (For example, always when F has characteristic
0, such as R and C.) However, if F has characteristic p > 0 and p|n,
then deg(f ′) < n − 1. In this case, if deg(f ′) = k, then by Theorem 1.13,
Rn,n−1(f, f

′) = an−1−kn Rn,k(f, f
′) and thus

∆(f) = (−1)n(n−1)/2an−k−2n Rn,k(f, f
′), (3.5)

∆0(f) = (−1)n(n−1)/2a−n−kn Rn,k(f, f
′). (3.6)

Proof of Theorem 3.3. Let f have roots ξ1, . . . , ξn (in some extension field).
Then f(x) = an

∏n
i=1(x − ξ), and thus f ′(ξi) = an

∏
j 6=i(ξi − ξj). Conse-

quently, by (1.4),

Rn,n−1(f, f
′) = an−1+nn

n∏
i=1

∏
j 6=i

(ξi − ξj) = a2n−1n

∏
1≤i<j≤n

(ξi − ξj)(ξj − ξi)

= (−1)n(n−1)/2a2n−1n ∆0(f) = (−1)n(n−1)/2an∆(f). �

Theorem 3.5. ∆(f) is a homogeneous polynomial with integer coefficients
in the coefficients a0, . . . , an of f . Further, with n = deg(f),

(i) ∆(f) is homogeneous of degree 2n− 2 in a0, . . . , an.
(ii) If ai is regarded as having degree i, then ∆(f) is homogeneous of

degree n(n− 1).

Proof. The derivative f ′(x) = bn−1x
n−1 + · · · + b0 with bj = (j + 1)aj+1.

Hence all entries of the Sylvester matrix Syln,n−1(f, f
′) are integer multiples

of a0, . . . , an, and thus R(f, f ′) is a homogeneous polynomial with integer
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coefficients in a0, . . . , an. Moreover, the only (possibly) non-zero entries in
the first column of Syln,n−1(f, f

′) are an and bn−1 = nan; hence R(f, f ′) is
a multiple of an, and ∆(f, f ′) is also such a polynomial by (3.3).

Since R(f, f ′) has total degree n + n − 1, this also shows that ∆(f) has
degree 2n−2. Alternatively, this follows from Definition 3.2, since replacing
ai by tai for all i does not change the roots ξ1, . . . , ξn of f .

For (ii), note that if ft(x) =
∑n

i=0 ait
ixi, for an indeterminate t, then ft

has roots t−1ξ1, . . . , t
−1ξn, and Definition 3.2 yields

∆(ft) = (tnan)2n−2t−n(n−1)
∏

1≤i<j≤n
(ξi − ξj)2 = tn(n−1)∆(f).

(Alternatively, (ii) is easily derived from (3.3) and Theorem 1.4(i),(ii).) �

Remark 3.6. As for the resultant, see Remark 1.5, the integer coefficients
of ∆(f) do not depend on the field F (except for the obvious non-uniqueness
when char(F ) 6= 0).

Theorem 3.7. Let f = anx
n + · · · + a0 be a polynomial of degree n ≥ 1

with coefficients in an arbitrary field F , and let the roots of f ′(x) = 0 be
η1, . . . , ηn−1 (in some extension of F ). Then

∆(f) = (−1)n(n−1)/2nnan−1n

n−1∏
j=1

f(ηj), (3.7)

and thus

∆0(f) = (−1)n(n−1)/2nna−(n−1)n

n−1∏
j=1

f(ηj). (3.8)

Proof. By Theorem 3.3 and (1.5), since f ′(x) = nanx
n−1 + . . . . �

The roots ηj of f ′ are the stationary points of f , and the function values
f(ηj) there the stationary values. Thus, assuming for simplicity an = 1,
Theorem 3.7 says that the discriminant is a constant times the product of
the stationary values.

The perhaps most important use of the discriminant is the following im-
mediate consequence of Definitions 3.1 and 3.2.

Theorem 3.8. Let f be a polynomial of degree n ≥ 1 with coefficients in a
field F . Then

∆0(f) = 0 ⇐⇒ ∆(f) = 0 ⇐⇒ f has a double root in some extension of F .

Equivalently, f has n distinct roots in some extension field if and only if the
discriminant is 6= 0.

By Theorem 3.5, ∆(f) for f of a given degree n ≥ 1 is a polynomial in
a0, . . . , an; we can apply this polynomial also when an = 0, i.e., to polynomi-
als f of degree < n. To avoid confusion, we denote this polynomial in the co-
efficients a0, . . . , an by ∆(n)(f), defined for all polynomials f = anx

n+· · ·+a0
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of degree ≤ n. Thus ∆(n)(f) = ∆(f) when an 6= 0. This polynomial has a
simple symmetry.

Theorem 3.9. If f = anx
n + · · · + a0 is a polynomial of degree ≤ n and

f∗ is defined by (1.9), then

∆(n)(f∗) = ∆(n)(f). (3.9)

In particular, if f has degree n and a0 6= 0, then

∆(f∗) = ∆(f). (3.10)

Proof. Suppose first that an 6= 0 and a0 6= 0. Let f have roots ξ1, . . . , ξn
in some extension field; these roots are non-zero and f∗ has the roots
ξ−11 , . . . , ξ−1n and leading coefficient a0 = anξ1 · · · ξn. Hence, by Defini-
tion 3.2,

∆(f∗) = a2n−20

∏
1≤i<j≤n

(
ξ−1i − ξ

−1
j

)2
= a2n−2n

∏
1≤i<j≤n

(
ξj − ξi

)2
= ∆(f),

which proves (3.10). In particular, this holds if we regard a0, . . . , an as
indeterminates, and thus (3.9) follows in general because both sides are
polynomials in a0, . . . , an. �

We give another simple consequence of the definition.

Theorem 3.10. If f and g are polynomials of degrees n and m ≥ 1, then

∆(fg) = ∆(f)∆(g)R(f, g)2. (3.11)

Proof. This follows from Definition 3.2 and Theorem 1.6.
Alternatively, by Theorems 1.11, 1.14 and 1.11 again,

R(fg, (fg)′) = R(fg, f ′g + fg′) = R(f, f ′g + fg′)R(g, f ′g + fg′)

= R(f, f ′g)R(g, fg′) = R(f, f ′)R(f, g)R(g, f)R(g, g′),

and the result follows by (3.3) and (1.6). �

As said above, ∆(n)(f) = ∆(f) when an 6= 0. In the opposite case
an = 0, we have the following simple formula, which can be regarded as a
relation between discriminants for polynomials of different degrees. (See the
examples in (4.1) and (4.3), or, more complicated, in Examples 4.7 and 4.3.)

Theorem 3.11. If an = 0, then

∆(n)(f) = a2n−1∆
(n−1)(f). (3.12)

In particular, if an = an−1 = 0, then ∆(n)(f) = 0.

Proof. Assume first an−1 6= 0 and a0 6= 0. Let g(x) = an−1x
n−1 + · · · + a0

(this is the same as f(x), but we regard it as a polynomial of degree n− 1),
and define f∗ by (1.9) and g∗ by (1.10), with m replaced by n − 1. Then
f∗(x) = xg∗(x), where f∗ has degree n and g∗(x) degree n − 1. Trivially,
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∆(x) = 1, and Example 1.16 shows R1,n−1(x, g
∗) = g∗(0) = an−1. Hence,

Theorems 3.9 and 3.10 yield

∆(n)(f) = ∆(f∗) = ∆(xg∗) = ∆(g∗)a2n−1 = a2n−1∆
(n−1)(g),

which shows (3.12) in the case an−1, a0 6= 0. The general case follows,
because both sides of (3.12) are polynomials in a0, . . . , an−1. (An alternative
proof without using inversion and Theorem 3.9 is givven in Appendix A.) �

Remark 3.12. If we fix n ≥ 1 and as in Remark 1.9 say that a polynomial
f with deg(f) ≤ n has n− deg(f) roots at ∞, then Theorems 3.8 and 3.11

show that ∆(n)(f) = 0 if and only if f has a double root (or more precisely,
a multiple root) in F1 ∪ {∞} for some extension F1 (and in any extension
where f splits).

Remark 3.13. If f = anx
n + · · · + a0 is a polynomial of degree n with

non-zero a0, . . . , an−1, define

∆∗(f) :=

n−1∏
i=0

a−2i ·∆(f). (3.13)

Theorem 3.11 shows that if we, more generally, for f of degree ≤ n define

∆(n)∗(f) :=

n−1∏
i=0

a−2i ·∆
(n)(f), (3.14)

then, whenever deg(f) < n,

∆(n)∗(f) = ∆(n−1)∗(f). (3.15)

It is here best to regard the coefficients ai as indeterminates; then ∆(n)∗(f)
is a Laurent polynomial in a0, . . . , an, and (3.15) shows that there is a single
Laurent series ∆∗ in the infinitely many indeterminates a0, a1, . . . such that
if f is a polynomial of any degree n ≥ 1, then ∆∗(f) is obtained from this
series ∆∗ by substituting ai = 0 for i > n. (This has to be done with some
care since also negative powers appear, but each term containing a negative
power a−αi

i with i > n contains also a positive power a
αj

j with j > i > n,
so there is no real problem; we simply delete all terms containing some
non-zero power of some ai with i > n.) We may regard ∆∗ as a universal
discriminant. (Or as a mere curiosity.)

It follows from Theorem 3.5 that the monomials that appear in ∆∗ have

integer coefficients and all have the form
∏k
i=0 a

αi
i with

∑
i αi = −2 and∑

i iαi = 0; except for the term a−20 , they further have αk > 0 if k is chosen
minimal. See Example 4.11.

4. Examples of discriminants

Example 4.1 (n = 1). If f = ax+ b, then trivially ∆(f) = ∆(f0) = 1.
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Example 4.2 (n = 2). If f(x) = ax2 + bx+ c, then Theorem 3.3 yields

∆(f) = −a−1R(f, f ′) = −a−1
∣∣∣∣∣∣
a b c
2a b 0
0 2a b

∣∣∣∣∣∣ = b2 − 4ac (4.1)

and

∆0(f) = a−2∆(f) =
b2 − 4ac

a2
=
( b
a

)2
− 4

c

a
. (4.2)

Note that the standard formula for finding the roots of ax2 + bx+ c = 0 can
be written

x± =
b

2a
± 1

2

√
∆0(f) =

b±
√

∆(f)

2a
.

Example 4.3 (n = 3). If f(x) = ax3 + bx2 + cx + d, then Theorem 3.3
yields

∆(f) = −a−1R(f, f ′) = −a−1

∣∣∣∣∣∣∣∣∣∣
a b c d 0
0 a b c d
3a 2b c 0 0
0 3a 2b c 0
0 0 3a 2b c

∣∣∣∣∣∣∣∣∣∣
= b2c2 − 4ac3 − 4b3d+ 18abcd− 27a2d2. (4.3)

Example 4.4 (n = 3). If f(x) = x3 + bx2 + cx+ d is monic, (4.3) simplifies
to

∆0(f) = ∆(f) = −R(f, f ′) = b2c2 − 4c3 − 4b3d+ 18bcd− 27d2.

Example 4.5 (n = 3). For f(x) = x3 +px+q, without second degree term,
(4.3) simplifies further to

∆0(f) = ∆(f) = −4p3 − 27q2.

Example 4.6 (n = 3). The polynomial f(x) = 4x3− g2x− g3 is important
in the theory of the Weierstrass elliptic functions. Its discriminant is, by
(4.3),

∆(4x3 − g2x− g3) = 16g32 − 432g23.

Equivalently, ∆0(4x
3 − g2x − g3) = 1

16g
3
2 − 27

16g
2
3. In this context, it is

customary to change the normalization and define the discriminant as

16∆0(f) =
1

16
∆(f) = g32 − 27g23.
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Example 4.7 (n = 4). If f(x) = ax4+bx3+cx2+dx+e, then Theorem 3.3
yields

∆(f) = a−1R(f, f ′) = a−1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

a b c d e 0 0
0 a b c d e 0
0 0 a b c d e
4a 3b 2c d 0 0 0
0 4a 3b 2c d 0 0
0 0 4a 3b 2c d 0
0 0 0 4a 3b 2c d

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= b2c2d2 − 4 b2c3e− 4 b3d3 + 18 b3cde− 27 b4e2 − 4 ac3d2 + 16 ac4e

+ 18 abcd3 − 80 abc2de− 6 ab2d2e+ 144 ab2ce2 − 27 a2d4

+ 144 a2cd2e− 128 a2c2e2 − 192 a2bde2 + 256 a3e3. (4.4)

Example 4.8 (n = 4). If f(x) = x4 + bx3 + cx2 + dx + e is monic, then
(4.4) simplifies slightly to

∆0(f) = ∆(f) = R(f, f ′)

= b2c2d2 − 4 b2c3e− 4 b3d3 + 18 b3cde− 27 b4e2 − 4 c3d2

+ 16 c4e+ 18 bcd3 − 80 bc2de− 6 b2d2e+ 144 b2ce2

− 27 d4 + 144 cd2e− 128 c2e2 − 192 bde2 + 256 e3.

Example 4.9 (n = 4). If f(x) = x4 + px2 + qx + r is monic and without
third degree term, then (4.4) simplifies further to

∆0(f) = ∆(f) = −4 p3q2 − 27 q4 + 16 p4r + 144 pq2r − 128 p2r2 + 256 r3.

Example 4.10. Let f(x) = xn + px + q for some n ≥ 2. Then f ′(x) =
nxn−1 + p and, using Theorem 1.14 with h(x) = −x/n, Theorem 1.13 and
Example 1.16, at least if F has characteristic 0,

(−1)n(n−1)/2∆(f) = Rn,n−1(f, f
′) = Rn,n−1(x

n + px+ q, nxn−1 + p)

= Rn,n−1
(
p(1− 1/n)x+ q, nxn−1 + p

)
= (−1)(n−1)

2
nn−1R1,n−1

(
p(1− 1/n)x+ q, nxn−1 + p

)
= (−1)(n−1)nn−1

(
n(−q)n−1 + p

(
p(1− 1/n)

)n−1)
= nnqn−1 + (−1)n−1(n− 1)n−1pn.

Since the right hand side is a polynomial in p and q with integer coefficient,
the final formula holds for all fields and all n ≥ 2. Consequently,

∆0(f) = ∆(f) = (−1)(n−1)(n−2)/2(n− 1)n−1pn + (−1)n(n−1)/2nnqn−1.

Note the special cases in Examples 4.2, 4.5 and 4.9 (with p = 0). The next
case is the quintic in Bring’s form:

∆0(x
5 + px+ q) = ∆(x5 + px+ q) = 44p5 + 55q4.
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Example 4.11. It follows from Remark 3.13 and Example 4.7 that

∆∗ = a−20 − 4 a2a
−2
1 a−10 − 4 a3a

−2
2 a1a

−2
0 + 18 a3a

−1
2 a−11 a−10 − 27 a23a

−2
2 a−21

− 4 a4a
−2
3 a2a

−2
0 + 16 a4a

−2
3 a22a

−2
1 a−10 + 18 a4a

−1
3 a−12 a1a

−2
0

− 80 a4a
−1
3 a−11 a−10 − 6 a4a

−2
2 a−10 + 144 a4a

−1
2 a−21

− 27 a24a
−2
3 a−22 a21a

−2
0 + 144 a24a

−2
3 a−12 a−10 − 128 a24a

−2
3 a−21

− 192 a24a
−1
3 a−22 a−11 + 256 a34a

−2
3 a−22 a−21 a0 + . . . , (4.5)

where the omitted terms have at least one factor ak with k ≥ 5. In particular,
if f(x) = a4x

4 + a3x
3 + a2x

2 + a1x+ a0 has degree at most 4, this formula
without “. . . ” is an exact formula for ∆∗(f). Setting a4 = 0 we find that if
deg(f) ≤ 3, then

∆∗(f) = a−20 − 4 a2a
−2
1 a−10 − 4 a3a

−2
2 a1a

−2
0 + 18 a3a

−1
2 a−11 a−10 − 27 a23a

−2
2 a−21 ,

which is equivalent to (4.3). Similarly, setting also a3 = 0, if deg(f) ≤ 2,
then

∆∗(f) = a−20 − 4 a2a
−2
1 a−10 ,

which is equivalent to (4.1).

5. Discriminants for real polynomials

If f is real and of degree n, then its n roots in C consist of n−2ν real roots
and ν pairs ξi, ξi of complex (non-real) roots, for some ν with 0 ≤ ν ≤ n/2.

Theorem 5.1. If f is a real polynomial of degree n ≥ 1 with n − 2ν real
roots and ν pairs of complex (non-real) roots, and all roots are distinct and
thus ∆(f) 6= 0, then

sign(∆(f)) = sign(∆0(f)) = (−1)ν . (5.1)

Proof. This is easily seen directly from Definitions 3.1 and 3.2, by suitably
pairing terms.

Alternatively, we may factor f into its irreducible real factors f1, . . . , fn−2ν ,
g1, . . . , gν , where deg(fi) = 1 and deg(gj) = 2, and note that Theorem 3.10
and induction shows

sign(∆(f)) =
n−2ν∏
i=1

sign(∆(fi))
ν∏
j=1

sign(∆(gj)).

Further, each ∆(fi) = 1, while ∆(gj) < 0 by Definition 3.2, since gj has two

roots ξ and ξ with (ξ − ξ)2 < 0. �

For example, this leads to the following classifications for low degrees. (In
these examples, “complex” means “non-real”.)

Example 5.2 (n = 2). For a real quadratic polynomial f ,

• ∆(f) > 0 ⇐⇒ ∆0(f) > 0 ⇐⇒ f has two distinct real roots;
• ∆(f) < 0 ⇐⇒ ∆0(f) < 0 ⇐⇒ f has no real root and two conju-

gate complex roots.
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• ∆(f) = 0 ⇐⇒ ∆0(f) = 0 ⇐⇒ f has a double real root;

Example 5.3 (n = 3). For a real cubic polynomial f ,

• ∆(f) > 0 ⇐⇒ ∆0(f) > 0 ⇐⇒ f has 3 distinct real roots;
• ∆(f) < 0 ⇐⇒ ∆0(f) < 0 ⇐⇒ f has 1 real root and 2 conjugate

complex roots.
• ∆(f) = 0 ⇐⇒ ∆0(f) = 0 ⇐⇒ f has either a triple real root, or

one double real root and one single real root;

Example 5.4 (n = 4). For a real quartic polynomial f ,

• ∆(f) > 0 ⇐⇒ ∆0(f) > 0 ⇐⇒ f has either 4 distinct real roots,
or 4 complex roots (in two conjugate pairs);
• ∆(f) < 0 ⇐⇒ ∆0(f) < 0 ⇐⇒ f has 2 real roots and 2 conjugate

complex roots.
• ∆(f) = 0 ⇐⇒ ∆0(f) = 0 ⇐⇒ f has 1 quadruple real root, or 2

real roots, one triple and one single, or 2 double real roots, or 3
real roots, one double and two single, or 1 double real root and 2
conjugate complex roots, or 2 conjugate complex double roots.

Appendix A

Alternative proof of Theorem 3.11. Assume first an−1 6= 0; thus f(x) =
an−1x

n−1 + · · ·+ a0 has degree n− 1.
Let fε(x) = (−εx+1)f(x) for an indeterminate ε. Trivially, ∆(−εx+1) =

1, and Example 1.16 shows

R(−εx+ 1, f) = (−ε)n−1f(1/ε) = (−1)n−1f∗(ε)

with f∗ defined by (1.9) with n replaced by n − 1. Hence, Theorem 3.10
yields

∆(n)(fε) = ∆(fε) = ∆(f)(f∗(ε))2 = ∆(n−1)(f)f∗(ε)2.

Both sides are polynomials in a0, . . . , an−1 and ε, so we may here put ε = 0
and obtain ∆(n)(f) = ∆(n−1)(f)f∗(0)2. Since f∗(0) = an−1, this proves the
result when an−1 6= 0. The general case follows, because both sides of (3.12)
are polynomials in a0, . . . , an−1. �
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