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Functional thinking is an appropriate way to introduce algebraic concepts in elementary school. 
We have developed a framework for assessing and interpreting students’ level of understanding 
of functional thinking using a construct modeling approach. An assessment was administered to 
231 second- through sixth-grade students. We then developed a progression of functional 
thinking knowledge. This investigation elucidates the sequence of acquisition of functional 
thinking skills. This study also highlights the utility of a construct modeling approach, which was 
used to create criterion-referenced and ability-leveled assessment. This measure is particularly 
suited to measuring knowledge change and to evaluating instructional interventions.  
 

Objectives 
Research into the effectiveness of teaching and learning interventions has become 

increasingly more mainstream, particularly as the call for evidence-based research grows louder. 
Unfortunately, instruments that measure learning outcomes from focused interventions are often 
researcher-created and are not tested for reliability and validity. This makes it difficult to 
compare research results and generalize findings into instructional recommendations. 

The goal of this project is twofold. The first is to develop an assessment of elementary-
school student’s functional thinking abilities, with a specific focus on students’ ability to find a 
rule of correspondence within a function table. The second is to develop a model of knowledge 
progression of elementary-level functional thinking skills. We identified a set of skills important 
for elementary-level functional thinking, designed an assessment which tapped these skills, 
administered the assessment to students in Grades 2 to 6, and used a construct modeling 
approach (Wilson, 2005) to developed a construct map, or model of knowledge progression, 
based on the student performance data. The findings provide insight into the typical sequence in 
which learners acquire functional thinking skills. This proposed sequence of functional thinking 
skills, and the assessment, are useful tools for measuring student knowledge. Eventually, the 
assessment can be used to measure learning gains after instructional interventions.  

 
Theoretical Perspective 

The transition to algebra is a notoriously difficult one for many students. Our students 
must be better prepared in order to take on the challenges of an increasingly technical and 
complex world. Traditional mathematics instruction, which focuses on teaching arithmetic 
procedures, followed by a similarly procedure-based algebra instruction in middle and upper 
grades, has not been successful in supporting student learning (Blanton, 2005).  

One way to overcome this difficulty is to inculcate appropriate forms of algebraic 
reasoning into early math instruction. Algebraic reasoning is defined as a type of reasoning in 
which students generalize mathematical ideas from a set of particular instances, establish those 
generalizations through the discourse of argumentation, and express them in increasingly formal 
and age-appropriate ways (Kaput, 1999). 
Functional Thinking 



Functional thinking is a particular kind of generalized thinking that lends directly to the 
development of algebraic thinking. It is a type of representational thinking that focuses on the 
relation between two varying quantities (Smith, 2008). Functional thinking is one of the core 
strands of Kaput’s (2008) framework of algebraic reasoning and a core expectation for 
mathematics curriculum. For grades 3 through 5, students are expected to “describe, extend, and 
make generalizations about geometric and numeric patterns; represent and analyze patterns and 
functions, using words, tables, and graphs” (NCTM, 2008). At the heart of functional thinking is 
a relationship between two particular quantities; this can be referred to as a rule of 
correspondence (Blanton, 2005). This relationship can be used to find other sets of particular 
quantities that adhere to the same rule. The functional relationship binds together the set of 
numbers to which it applies.  
 Elementary-school students often focus on particular numbers as outcomes. In order to 
think in an algebraic way, and in a way which allows for generalization, one must understand 
that there are many possible outcome values. Finding a functional relationship between two sets 
of numbers is a way to jump from thinking of particulars to sets (Carrahar et al. 2008). This is an 
accessible way to get students thinking about numbers in a general way, and in a way which 
eases their transition to algebra. Thinking about functional relationships makes explicit the fact 
that many sets of values are possible for a given constraint (i.e., the rule) (Carrahar et al. 2008). 
This functional relationship can be described in terms of algebraic syntax, such a y = 3x – 3, and 
a prolonged consideration of functional relationships can scaffold a learner up to the logic behind 
such syntax (Carrahar et al. 2008).  
Children’s Functional Thinking Abilities 

Exploring ways to support early functional thinking has been the focus of several recent 
teaching experiments, and commonalities across these studies indicate particular abilities that can 
be cultivated in elementary school. 

Evidence from teaching experiments have shown that elementary-school students have 
the ability to understand the functional relation between X and Y values (Carraher, Schliemann, 
& Brizuela, 2003; Carraher, Martinez, & Schliemann, 2008), identify the rule or pattern 
(Carraher et al., 2003), use it to predict new values (Carraher et al., 2003, Carraher et al., 2008), 
and articulate the general rule verbally (Carraher et al., 2008; Cooper & Warren, 2008; Warren & 
Cooper, 2005; Warren & Cooper, 2006) and symbolically (Carraher et al., 2003; Carraher et al., 
2008; Carraher & Earnest, 2003; Cooper & Warren, 2008; Warren & Cooper, 2006). In the 
teaching experiments, researchers typically use geometric or numeric patterns and introduce 
function tables as a representation for capturing functional relations.  However, researchers have 
used their own assessments of student thinking and have not provided evidence for the validity 
of their assessments.  In addition, little is known about the emergence of these skills in students 
in typical classrooms.  In the current study, we focused on assessing students’ knowledge of 
function tables, working with students in classrooms not receiving special interventions.  
Assessment Development  

We chose to focus on numeric patterns presented in function tables because they are a 
common and foundational component of functional thinking (Schliemann, Carraher & Brizuela, 
2001). In an informal review of textbooks and national and state tests, we found function tables 
to be the most common problem format used at the elementary level. In particular, we focused on 
students’ ability to identify rules of correspondence in function tables and use the rule to predict 
new instances. 



A review of existing test items as well as a task analysis suggested at least 6 skills related 
to understanding function tables.  (1) A precursor skill is to apply a given rule. When presented 
with a table with X and Y values, and a verbal or symbolic rule which describes how to compute 
the Y value from an X value, students should be able to use that rule to compute a Y value given 
a particular X value. (2) Students should also be able to recognize a function rule out of a 
selection of possible rules for a given table. In this case, students can test the rule against values 
in the table, rather than needing to generate the rule. (3) Students should be able to determine the 
next instance in a function table.  However, students may be able to predict the next instance 
without thinking about the relation between the X and Y values (Schliemann et al., 2001).  (4) 
Students should be able to extrapolate the function rule and articulate the function rule for a table 
in words. (5) Students should be able to predict a variety of instances in a function table, 
particularly instances that require identifying the function rule to make the prediction (e.g., 
predicting the 100th instance).  (6) Students eventually learn to articulate the rule in the function 
table symbolically (Schliemann et al., 2001).  Although there is a logical ordering of the relative 
difficulty of some of these skills (e.g., skill 1 is easier than skill 6), the relative difficulty of some 
skills could not be determined from previous research, and exploring the relative difficulty was 
one goal of the current research.  

With these skills in mind, we created an assessment meant to tap each skill for working 
with functions presented in function tables.  The functions were additive, multiplicative and two-
operator functions.  After data collection, we evaluated the progression of mastery of these skills, 
and used the data to inform the creation of a construct map (Wilson, 2005) of the development of 
functional thinking.  

 
Method 

The assessment was administered to a wide range of grade levels, as we expected 
differential performance and an increase in functional thinking skill through the grade levels. 
Participants were 231 2nd – 6th grade students attending two suburban schools.  There were 52 
second graders (24 girls), 50 third graders (30 girls), 25 fourth graders (15 girls), 60 fifth graders 
(28 girls), and 44 sixth graders (16 girls).  Approximately 3% of the students were from minority 
groups.  About 27% of students at the schools were eligible for free or reduced lunch.   

The assessment contained 11 items, and was divided into three parts.  Some of the items 
were broken into sub-items. The first section (one item) asked students to identify the number of 
eyes that a certain number of dogs would have, and to articulate the rule. It was designed to see 
to what extent students could engage in functional thinking given a supportive and grounded 
context without scaffolding from the problem formats that follow. The second section (six items) 
asked students to apply (two items) and recognize (four items) function rules. Of these four 
items, the function rules were presented as verbal statements (two items), and as algebraic 
equations (two items). The third section (four items) contained two problem types. Three of the 
items were function table problems, which required students to determine missing entries in the 
table, and then formulate both a verbal and symbolic rule.  There was also a multiple-choice item 
asking students to identify the next value in a sequential numeric pattern.  

The assessment was administered during a single class period. A member of the research 
team read the directions for each section, answered any questions, and enforced a time limit for 
each section.  For 2nd and 3rd graders, each item was read aloud to reduce the reading demands. If 
a student had a question, the researcher would provide a helping prompt from a script. 



All items were coded as correct or incorrect. A few items had open ended responses, and 
these were also coded as correct or incorrect according to a strict coding rubric. Each item or 
sub-item in the assessment only assessed one isolated skill.  

 
Results 

We used student accuracy on each item, in conjunction with other findings in the 
functional thinking literature, to place the skills into hierarchy and develop a construct map. A 
construct map is a representation of the continuum of knowledge that people are thought to 
progress through for the target construct (Wilson, 2005). Our preliminary construct map is 
presented in Table 1, with lower level skills at the bottom of the table. Student accuracy at each 
level of the construct map is presented in Table 2.  

 
Table 1. Elementary Function Skill Construct Map 

Level Description Abilities Examples 
Level 4: 
Generate 
Symbolic Rule 

• Generate an explicit symbolic 
rule 

Can write rule of correspondence 
using algebraic symbols. 

Y = X +4 

Level 3: 
Generate & 
Use Verbal 
Rule 

• Generate an explicit verbal rule 
• Complete a function table with 

missing values 

Can write rule of correspondence 
verbally. Can fill in missing 
values of a function table, 
including a far instance. 

-“You add 4 to the number in 
the X column to get the 
number in the Y column” 
-Completed function table 

Level 2: 
Recognize 
Rule  

Recognize Explicit Rule 
• Select a correct verbal rule out of 

several choices 
• Determine the next Y value in a 

function sequence 

Can recognize a rule of 
correspondence for a table. Can 
also determine the next Y value in 
function tables and in patterns.  

X   Y 
1     5 
2     6 
3     7 
Is the rule:     -multiply by 5 
                          -multiply by 3 
                          -add 4 

Level 1: Apply 
Rule 

Application of an Explicit Rule 
• Use a given rule to determine 

new Y values 

When given a rule for a table, can 
use it to determine new values of 
the table. 

Complete the Table: X+4=Y 
X   Y 
1     5 
2     6 
3     7 
4     8 

 
Level One: Apply Rule 

The easiest items were the application of a given function rule items (85% correct). This 
ability level included items that asked students to apply a rule to determine missing values in a 
table. This application of an explicit rule is level one of our construct map. These items required 
that students understood enough about a relationship between X and Y values in a table that they 
could determine new Y values when the rule is provided. To complete items like these, 
computational skill is required, but not yet any deep understanding of a functional relationship. 
Level Two: Recognize Rule 
 Level two of our construct map is Recognize Rule. Within this level are two of our 
original skills: recognizing a rule, and determining the next Y value. Performance on items at 
this level was at 61%. Recognizing a rule for a table from a number of other options is presumed 
to be a skill children acquire before they can generate a rule on their own, and our data bear this 
out. This level also includes determining the next sequential Y value in a function table. This is 
different than determining other missing values in a function table, as the next value can be 
determined by extending the pattern in the Y values, if the table is ordered sequentially.  
Level Three: Generate & Use Verbal Rule 

Level three in our construct map incorporates the main set of skills students must have in 
order to have a grasp of function table problems. The skills included within this level are 



determining further missing values in a table and generating a verbal rule. The ability to generate 
a correct rule for a table coincided with the ability to determine the missing values. This should 
not be so surprising, as one would have to determine the rule to find the missing values. 
Performance on items that utilized these skills was at 40%. 
Level Four: Generate Symbolic Rule 

The fourth and final level in our construct map is Generate a Symbolic Rule. These items 
entailed writing the rule using algebraic notation, such a Y = X + 4. This was more difficult for 
students, presumably not only because of the use of variables, but because of the generality that 
variables imply. Performance on Symbolic Rule items was at 28%.   
 

Table 2. Performance on Items by Level and Grade 
 
 

 
 
 
 
 
 
Assessment and Construct Map Evaluation 

To further evaluate the assessment and refine the construct map, classical test and item 
response methodologies were used. The alignment of the relative difficulty of the items and the 
leveled construct map was considered. An item-respondent map (i.e., a Wright map) generated 
by a Rasch model (a type of item response model) was used in this evaluation. The left column 
of a Wright map is the respondent, or participant, column. Respondents with the most estimated 
ability are placed near the top of the column, and those with the least estimated ability are on the 
lower end. In the right column, the most difficult items are listed at the top, and the easier items 
are at the bottom of the column. This Wright map allows for a visual evaluation of our construct 
map.  

The purposed levels roughly clump together in the Wright map (Figure 1). There are 
some issues with Level 3 items overlapping with Level 2 and 4 items. The fact that there are 
different arithmetic operations in the underlying functional relationships in the items was the 
suspected cause for this overlap. Specifically, some items have an underlying functional 
relationship that involve addition (i.e., y=x+2), some multiplication (i.e., y=2x), and others, a 
combination of both (i.e., y=2x+2). Students in grades two through six have different 
proficiencies with these arithmetic skills, and so it is reasonable that this would affect item 
difficulty. 

When the items were separated by operation of underlying function, the Wright maps 
have good grouping of items by level, and good separation between levels (Figures 2-4). There is 
some compression of levels 3 and 4 in the combination-only Wright map. This is likely due to 
the difficulty of the items; if a student is of high enough ability to do the level 3 combination 
items, they are also likely to be of high enough ability for the level 4 combination items. 
Viewing the Wright maps separately by underlying function type, or operation, seems to be quite 
useful for delineating and clarifying the underlying functional thinking ability progression. Now 
the levels have much more separation, and the item difficulties are no longer confounded by 
arithmetic difficulty. This multidimensional model, with operational difficulty considered as a 

 Knowledge Level 
Grade 1 2 3 4 

2 (n=52) 71% 35% 11% 1% 
3 (n=50) 82% 45% 23% 5% 
4 (n=25) 94% 74% 50% 32% 
5 (n=60) 91% 71% 53% 38% 
6 (n=44) 91% 87% 69% 68% 
Average 85% 61% 40% 28% 



separate factor, is a much clearer way of tracking the progression of early functional thinking 
knowledge. This model will be developed further in future work.  

Several analyses were performed to evaluate the validity and reliability of the assessment. 
To evaluate validity from measures of internal structure, the expected rank order of difficulty 
from the construct map was compared to the empirical rank order difficulty from the Wright map 
analysis (rs=0.916). An item-mean location analysis was performed to determine if getting an 
item correct implicated a greater ability level on the part of the respondent than getting it 
incorrect would. All items behaved appropriately according to this metric. Internal consistency of 
the assessment was high. The classical test index of internal consistency for binary data (the 
Kuder-Richardson 20) was quite high, indicating that 93% of the variance was accounted for by 
the model. The analogous measure from item response methodology, the separation reliability 
index, was at 0.99. These measures can be thought of as similar to Cronbach’s alpha. 
Additionally, several other analyses from item response methodology were employed, and all 
metrics of item analyses and person and item fit indicated that the assessment functions well.  

 
Discussion 

Functional thinking has been argued to be a useful way to introduce young students to 
fundamental algebraic concepts. Several teaching experiments have suggested instructional 
techniques for bringing functional thinking to elementary classrooms. As this topic becomes a 
focus of more research studies, it becomes increasingly important to have a reliable and valid 
measure that can be used to capture knowledge change and to have a well defined knowledge 
construct, so that general claims can be made across studies. In this project, we have identified 
key skills that are important for elementary-level functional thinking, with a focus on function 
table problems. These skills were then incorporated into an assessment, which was given to 231 
2nd through 6th grade students. Student performance data was used to develop a construct map, or 
proposed knowledge progression, of elementary-level functional thinking skills. The resulting 
construct map provided insight into the acquisition of functional thinking knowledge in 
elementary-school students, and can be used to guide future research.  
Benefits of a Construct Modeling Approach 

This approach to measurement development, based on Wilson’s construct modeling 
approach (2005), was useful for several reasons. First, it elucidated the relative difficulty of 
functional thinking skills, and at times this was not in line with our predictions. Second, the 
resulting assessment is a criterion referenced measure which is particularly appropriate for 
assessing the affects of an intervention on individuals (Wilson, 2005).  

In regard to relative skill difficulty, skills fell together in ways which we did not predict. 
For instance, Level 2 includes the ability to recognize a rule, as well as determine the next 
sequential Y value. Based on our literature review and intuitions, we predicted that determining 
the next Y value would be the easier skill. Also, Level 3 includes the skills of completing a 
function table and generating a verbal rule. We had predicted that there would be a gap in 
students’ ability to master these two skills. This construct modeling approach allowed us to see 
that these skills were of the same difficulty, as they could be completed by students of the same 
ability level. Another aspect we did not predict to play such a large role was the arithmetic 
operation of the underlying function.  We initially predicted that functional thinking skill would 
function somewhat independently of operation type, but the data indicated that operation 
profoundly effects students’ ability to successfully complete a function table problem. As such, 



operation type must be given attention in future functional thinking research. We are working to 
more formally incorporate arithmetic operation of the underlying function into our model.  
Future Directions and Conclusions 

Our elementary-level functional thinking assessment and construct map are important 
first steps, but they could each be further refined. Based on the construct map, we can now edit 
the assessment to more evenly include items at the different skill levels. Additionally, since it is 
now clear that the operation in the underlying function is a highly important factor, we will 
include more items so that there are items of each difficulty using each operation type. This 
revised assessment will then be used in a new iteration of this project. We hope to develop a 
multidimensional item response model which incorporates both functional thinking and 
operational skill level. This will allow us to more accurately measure change in students’ 
knowledge.  

In conclusion, we have developed an assessment and proposed knowledge progression of 
elementary students’ functional thinking skills, with a focus on function table problems. We 
believe that this and future iterations of this measure will be valuable tools for educational and 
psychological researchers who wish to measure knowledge change and evaluate instructional 
interventions.  
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Figure 3. Wright Map, Multiplication   Figure 4. Wright Map, Combination 

    


