
University of Ljubljana

Faculty of Mechanical Engineering

Tomaº Poºrl, Marko Corn

Industrial IoT through JavaScript language and

Node.js run-time environment

Project materials for 2018 LDSE Summer School on Industrial IoT

Ljubljana, 2018

Content

List of Pictures v

List of Tables vii

1. Introduction 1

2. Raspberry Pi platform and Node.js environment 5

2.1 Operating system . 5

2.2 Nodejs . 6

2.2.1 Installation . 6

2.2.2 Hello world example . 7

2.2.3 Web API . 8

2.2.4 Services . 10

2.2.5 Communication between nodes 10

3. Beckho� PLC platform and TwinCAT environment 13

3.1 Programmable logic controllers (PLC) 13

3.2 Staudinger warehouse model . 14

3.3 Beckho� automation and control systems 17

3.3.1 Embedded PC CX 8090 . 18

3.3.2 I/O devices . 19

3.4 TwinCAT . 21

3.4.1 TwinCAT Usage . 21

3.4.2 System Manager . 22

3.4.3 PLC Control . 26

3.5 Structured Text (ST) . 33

3.6 Modbus TCP . 34

3.6.1 Modbus TCP in Beckho� systems 35

A 2018 Summer School Project Assignments 37

A.1 Module 1: Smart Package Node . 38

A.2 Module 2: Retailer Node . 40

A.3 Module 3: Warehouse Node . 41

A.4 Module 4: Transportation Node . 52

A.5 Integration . 53

iii

iv Content

References 55

List of Pictures

1.1 Traditional supply chain system . 1

1.2 Decentralized supply chain system . 2

2.1 Raspberry Pi computer . 5

2.2 Output of the browser . 8

2.3 Response of web server in json format 9

3.1 Staudinger Warehouse Model 226001 15

3.2 Staudinger Warehouse Model 226001 System Layout 17

3.3 Beckho� Embedded PC CX 8090 . 19

3.4 TwinCAT System Manager - open new �le 23

3.5 TwinCAT System Manager - System Con�guration - Choose Target . 23

3.6 TwinCAT System Manager - PLC Con�guration - Append PLC Project 25

3.7 TwinCAT System Manager - I/O Con�guration - Set TwinCAT to

Con�g mode . 25

3.8 TwinCAT System Manager - I/O Con�guration - Check Con�guration 26

3.9 TwinCAT SystemManager - I/O Con�guration - Activate Con�guration 27

3.10 TwinCAT PLC Control Overview . 27

3.11 TwinCAT PLC Control - Global variables 29

3.12 TwinCAT PLC Control - Local variables 30

3.13 TwinCAT PLC Control - Library Manager 31

3.14 TwinCAT PLC Control - Main Programming Window 31

A.1 MCS of distributed supply chain system 37

A.2 Example of a Simple Warehouse GUI 51

A.3 Example of process of delivering package to the customer 53

v

vi List of Pictures

List of Tables

3.1 Staudinger Warehouse Model 226001 Technical Data 15

3.2 Staudinger Warehouse Model 226001 Sensors and Actuators 16

3.3 Beckho� CX 8090 Technical Data . 20

3.4 Modbus Object Types . 34

3.5 Modbus Basic Functions . 35

3.6 Modbus to TwinCAT PLC Mapping 36

A.1 Warehouse Model Inputs - Mapping from Connected Pins to Program

Variables . 44

A.2 Warehouse Model Outputs - Mapping from Connected Pins to

Program Variables . 44

A.3 Warehouse Model Positions De�nition 45

A.4 node-modbus Module TCP Connection Settings 49

A.5 node-modbus Module Examples . 50

vii

viii List of Tables

1. Introduction

The main goal of this summer school is to give you an insight into the �eld of

industrial internet of things (IIot). We will be discovering application use of IIOT

by building a small decentralized supply chain system (online store) that will be able

to deliver purchased products to the costumer front door.

Traditional supply chain systems that are used by big retailers like Amazon

rely on centralized systems to take orders, to monitor storing conditions, ordering

transports and other activities. In contrast, the decentralized supply chain systems

do not have a central system, they have a distributed system that consists of

multitude of smart 'mini' systems or nodes that communicate with each other to

achieve their goals. In Figure 1.1 we can see a simpli�ed example of a traditional

supply chain system.

Figure 1.1: Traditional supply chain system

In presented supply chain system the retailer plays the central role in the whole

process. It communicates with the customers via online store, it manages the

packages that are stored in warehouses and organizes the transportation services.

1

2 Introduction

This type of systems rely on the central control systems to e�ciently control theirs

supply lines.

Decentralized supply line systems don't have a central control system; they have

a distributed system of nodes that communicate with each other directly to achieve

their goals. In this type of systems each node is a free agent that maximizes its

own e�ciency which consequently maximizes whole supply chain system e�ciency.

In Figure 1.2 an example of a decentralized supply chain system (that has been

build from the example of a centralized supply chain system seen in Figure 1.1) is

presented.

Figure 1.2: Decentralized supply chain system

Distributed supply chain system consists of multitude of nodes that communicate

with each other to arrange storage, transportation and other tasks. Our distributed

supply chain system de�nes four types of nodes: smart package, retailer, warehouse

and transportation.

• Smart package node

Smart package node represents product that is purchased by the user and has

to be delivered to the user home address. Smart package node can also be

used to monitor package environmental variables like temperature, humidity,

accelerations and others that can be used to monitor storing and transportation

conditions.

• Retailer node

3

Retailer node represents an online shop provider. Retailer does not own, store

or transport packages it just sells them via its online shop platform. Its main

function is to provide shop services and advertisements for the products.

• Warehouse node

Warehouse node represents a storage facility for storing smart packages. Its

main functions are storing packages and loading and unloading of packages to

the transportation node.

• Transportation node

Transportation node represents a transportation service that is able to deliver

packages to desired location. This node can utilize any type of transportation

from a ship, an air plane, drones, autonomous vehicles and any other as long

as they are able to provide transportation of the packages.

4 Introduction

2. Raspberry Pi platform and Node.js environment

Implementation of this project will be based on IoT approaches which in most cases

utilize web technologies. This means that each node has to provide a web server

through which it can communicate with other nodes via web protocols. In order to

host a web server on each node the node must have a proper hardware and software

equipment.

The technology has made a huge progress towards cheap mini computers like

Raspberry Pi that are more than capable of serving the needs of our application

which enables us to use them for our project. We will be using Raspberry Pi 3

Model B+ that is illustrated in Figure 2.1

Figure 2.1: Raspberry Pi computer

Raspberry Pi has an integrated Wi-Fi module for wireless connectivity for

nodes that change locations like packages and transportation and an Ethernet port

for wired connectivity for nodes that don't change locations like warehouses and

retailers.

2.1 Operating system

Each node must have an operating system on which the server is running.

Nodes will be running a Linux operation system called Raspbian. Installation

5

6 Raspberry Pi platform and Node.js environment

instructions for the selected operating system can be found online www.reeve.com/

Documents/Articles\%20Papers/Reeve_RPi_BasicSetup.pdf. After installation

of the operating system we can proceed with the installation of a Node.js web server.

2.2 Nodejs

Node.js R© is a JavaScript runtime built on Chrome's V8 JavaScript engine. Node.js

uses an event-driven, non-blocking I/O model that makes it lightweight and e�cient.

Node.js' package ecosystem, npm, is the largest ecosystem of open source libraries

in the world. In this chapter we present how to install Node.js and write three

example applications that will help us build our application of decentralized supply

chain system.

2.2.1 Installation

Installation of the Node.js server on Linux operating system is done using the

terminal console by following next steps:

1. First we update our local package index with the following command. When

prompted for password (because of sudo command) we type it in.

sudo apt-get update

2. Then we type a curl command that utilize a cURL tool to download the latest

package from the server where Node.js package is hosted.

curl -sL https://deb.nodesource.com/setup_10.x | sudo -E bash -

3. Then we install Node.js package from the repository.

sudo apt-get install nodejs

4. To compile and install native add-ons from npm you may also need to install

build tools.

sudo apt-get install -y build-essential

5. To check if Node.js server is successfully installed on our system in the console

type:

node -version

2.2 Nodejs 7

2.2.2 Hello world example

After successful installation of Node.js server we create an example 'Hello World'

project and run it as a standalone server on our computer.

1. Prepare folder for your project.

We open console and type two commands. These commands are universal for

whatever OS you'll be running. The �rst command will create a new directory

inside the directory you are currently in. The second will change into this

newly created directory.

mkdir helloworld

cd helloworld

2. Initialize your project and link it to npm.

After creating your directory, you will need to initialize a project and link it

to the Node.js package manager npm. npm is a public repository where all

Node.js packages are stored. Packages can be viewed as bundles of code, like

modules, which carry out a speci�c function.

npm init

This creates a package.json �le in your application folder. The �le contains

references for all npm packages you have downloaded to your project. The

command will prompt you to enter a number of things. You can enter your

way through all of them.

3. Install Express in the application directory

npm install express --save

The install command will go ahead and �nd the package you wish to install

and install it to your project. You will now be able to see a node_modules

folder gets created in the root of your project. This is a crucial step, as you

will be able to require any of the recently installed �les in your own application

�les. The addition of --save will save the package to your dependencies list

located in the package.json �le in your application directory. Express is a

fast, unopinionated, minimalist web framework for Node.js. It gives you a set

of robust and easy to use tools to get your web application up and running.

Express has become so popular it now is the de facto standard in the vast

majority of Node.js applications today. It's use is strongly encouraged.

4. Start WebStorm IDE, open the helloworld directory as a project and create a

�le named index.js. Write the following code to the �le:

8 Raspberry Pi platform and Node.js environment

var express = require('express');

var app = express();

app.get('/', function (req, res) {

res.send('Hello World!');

});

app.listen(3000, function () {

console.log('Example app listening on port 3000!');

});

Here is where you will need to use the package which was recently installed.

The �rst line declares a variable which will contain the module called express,

grabbing it from the node_modules folder. The module is actually a function.

Assigning the function call to another variable gives you access to a prede�ned

set of tools which will in a great deal make your life much easier. You could

view the variable app as an object, whose methods you are utilizing to build

the actual program. The listen method starts a server and listens on port 3000

for connections. It responds with �Hello World!� for get requests to the root

URL (/). For every other path it will respond with a >404 Not Found.

5. Run the application by typing the command

node index.js

After running the command, load http://localhost:3000/ in a browser to see

the output (Figure 2.2). You should also see that 'Example app listening on

port 3000!' message gets logged to the command line.

Figure 2.2: Output of the browser

2.2.3 Web API

A Web API is an application programming interface for either a web server or a web

browser. It is a web development concept, usually limited to a web application's

client-side.

A server-side web API is a programmatic interface consisting of one or more

publicly exposed endpoints to a de�ned request�response message system, typically

expressed in JSON or XML, which is exposed via the web � most commonly by

means of an HTTP-based web server (in our case Node.js server).

2.2 Nodejs 9

Endpoints are important aspects of interacting with server-side web APIs, as they

specify where resources lie that can be accessed by third party software. Usually the

access is via a URI to which HTTP requests are posted and from which the response

is thus expected. Endpoints need to be static, otherwise the correct functioning of

software that interacts with it cannot be guaranteed. If the location of a resource

changes (and with it the endpoint) then previously written software will break, as

the required resource can no longer be found at the same place. Endpoint example

of a live trading activity of cryptocurrency exchange Poloniex: https://poloniex.

com/public?command=returnTicker.

We have already written an API endpoint in our Hello world application that

can be called with http://localhost:3000/. Now we will add another endpoint

to our project that will accept two numbers and return their product. In our code

we add a new app.get function as shown below:

var express = require('express');

var app = express();

app.get('/', function (req, res) {

res.send('Hello World!');

});

app.get('/clcSurface', function (req, res) {

let a=req.param(`a');

let b=req.param(`b');

res.send({surface:a*b});

});

app.listen(3000, function () {

console.log('Example app listening on port 3000!');

});

If we call this new endpoint we must include two parameters a an b in the

URL. The proper URL is http://localhost:3000/clcSurface?a=10&b=3 and the

response is a json string, as shown in Figure 2.3.

Figure 2.3: Response of web server in json format

10 Raspberry Pi platform and Node.js environment

2.2.4 Services

Our web server will not be used only for serving http requests. We will be using it

also for other purposes that are required for a certain type of node. For an example

a package node has to communicate with a GPS module to obtain its location. In

order to run this type of services we have to add a periodically repeating function

that can communicate with other systems. After the program starts the server (with

code line app.listen...) we place our code that executes periodically.

var express = require('express');

var app = express();

app.get('/', function (req, res) {

res.send('Hello World!');

});

app.get('/clcSurface', function (req, res) {

let a=req.param(`a');

let b=req.param(`b');

res.send({surface:a*b});

});

app.listen(3000, function () {

console.log('Example app listening on port 3000!');

});

let i=0;

setInterval(function() {

i++;

console.log(`Counter:'+i);

},1000);

To periodically execute code we are calling a setInterval function that is a

global Node.js function. We set an execution of this function to 1000 ms as can be

seen as second parameter to the setInterval function. In JavaScript programming

language it is possible to pass function as an input argument to another function

which we did as �rst parameter of the setInterval function where we increase

counter i and write to the console state of the counter.

Because Node.js is an asynchronous event-driven system we can place more

setInterval functions as they functionality is going to be executed when their

interval event happens.

2.2.5 Communication between nodes

Each node represents a WEB server with its endpoints that can be evoked via web

browser call. We have described a way of calling this endpoints by typing strings into

2.2 Nodejs 11

browser URL �led. Here we will describe a way in which nodes can call each other

automatically, which is crucial function for our decentralized supply chain system.

var express = require('express');

var request = require('request');

var app = express();

app.get('/', function (req, res) {

res.send('Hello World!');

});

request('192.168.1.120:3000/clcSurface?a=2&b=3', function (error,

response, body) {

if (!error && response.statusCode == 200) {

console.log(body) // Print the output

}

})

app.listen(3000, function () {

console.log('Example app listening on port 3000!');

});

We used a module called request which is available via npm package manager.

Request object enables us to make a request to other nodes by specifying their

IP address with port on which server of the node we wish to call listens and a

desired endpoint in our case clcSurface with parameters a and b. When the code

is executed and if the other node is running it will return a response to our request

and store it in the variable body which can be then printed to the console of caller

node.

12 Raspberry Pi platform and Node.js environment

3. Beckho� PLC platform and TwinCAT

environment

3.1 Programmable logic controllers (PLC)

Programmable logic controllers (PLCs) [1] are industrial digital computers adapted

for the control of manufacturing processes, such as assembly lines, robotic devices, or

any activity that requires high reliability control, ease of programming and process

fault diagnosis. They were built to replace hard-wire relays, timers, sequencers

etc. and provide industry with a �exible and reliable controllers suitable for harsh

environments. A PLC is a hard real-time system and output results must be

produced in response to input signal within a limited time.

Typical components of the PLC among others include:

• Central Processing Unit (CPU): This unit contains the brains of the PLC
and is often referred to as a microprocessor. The basic instruction set is a

high-level program, installed in Read-Only Memory (ROM). The programmed

logic is usually stored in Electrically Erasable Permanent Read-Only Memory

(EEPROM). The logic can be edited or changed if needed.

• Memory: System memory mostly implemented in �ash technology is used by

a PLC for a process control system. Aside from this operating system, it also

contains a translated user program. Flash memory contents can be changed

only in a case where the user program is being changed. Reprogramming a

program memory is done through a serial cable in a program for application

development. User memory is divided into blocks having special functions.

Some parts of a memory are used for storing input and output status. Other

parts of the memory are used to store variable contents for variables used in

user programs. For example, timer value or counter value would be stored in

this part of the memory.

• Communication board: Every brand of PLC has its own programming

hardware, usually a computer based programmers. Computer-based

programmers typically use a special communication board, installed in an

industrial terminal or personal computer, with the appropriate software

program installed. Computer-based programming allows o�ine programming,

where the programmers develop their logic, store it on a disk, and then

13

14 Beckho� PLC platform and TwinCAT environment

download the program to the CPU. It also allows more than one programmer

to develop di�erent modules of the program. When connected to the CPU the

programmer can test the system, and watch the logic operate when the system

is running.

• PLC controller inputs: One of the most important ability of a PLC

controller is to read signals from di�erent types of sensors and input devices.

The basic sensors include keys, keyboards, and functional switches, but there

are also more speci�c automatic devices such as proximity sensors, marginal

switches, photoelectric sensors, level sensors, inductive sensors for detecting

metal objects, and so on. Input signals can be digital/logical (ON/OFF) or

analog.

• PLC controller outputs: An industrial control system is incomplete if

it is not connected with some output devices - actuators. Some of the

most frequently used devices are motors, solenoids, relays, indicators, sound

signalization, and so on. By starting a motor, or a relay, PLC can manage

or control a simple system such as a system for sorting products all the way

up to complex systems such as a service system for positioning the head of a

robotic machine.

• Power supply: Electrical supply is used in bringing electrical energy to a

CPU. Most PLC controllers work either at 24 V DC or 220 V AC. On bigger

PLC controllers electrical supply comes as a separate module, while small

and medium series already contain the supply module. Separate supplies

need to be supplied to start PLC controller inputs and outputs. The internal

logic and communication circuitry usually operates on 5 and 15 V DC power.

Separate control transformers are often used to isolate inputs and CPU from

output devices. The purpose is to isolate this sensitive circuitry from transient

disturbances produced by any highly inductive output devices.

3.2 Staudinger warehouse model

Staudinger [2] compact high level storage warehouse model (Article no. 226001,

Figure 3.1) will be used to enable storage functionalities of the distributed supply

chain. The model simulates an automatically working high level storage system as

used in many industrial branches. The model consists of a rack, divided up in a 3

x 3 storage places and a warehouse operating device, being portable in X direction.

A cage, portable in Z directions, and including a telescopic palette carrier, that is

portable iz Y direction, is attached to the warehouse operating device.

Table 3.1 presents warehouse model basic technical data. Modes of operation are

enabled by a number of mechanical and re�ection light sensors (switches) as well as

a number of actuators (two direction motors and LED lights).

3.2 Staudinger warehouse model 15

Figure 3.1: Staudinger Warehouse Model 226001

The model features two basic modes of operation:

• storing a package in the warehouse

• withdrawing a package from the warehouse

Technical data Value

Power supply of sensors and actuators 24 V DC

Sensors

Read switches 1

Mechanical switches 16

Actuators

Motors with two directions 3

LED 2

Control system requirements

Digital inputs (+ reading) 15

Digital outputs (+switching) 8

Table 3.1: Staudinger Warehouse Model 226001 Technical Data

16 Beckho� PLC platform and TwinCAT environment

Pin Label Function

Sensors

1 3S1 X axis position 1 (X+)

2 3S2 X axis position 2

3 3S3 X axis position 3 (X-)

4 3S4 Y axis position Y+

5 3S5 Y axis position middle

6 3S6 Y axis position Y-

7 3S7 Z axis above position 1 (Z+)

8 3S8 Z axis below position 1

9 4S1 Z axis above position 2

10 4S2 Z axis below position 2

11 4S3 Z axis above position 3

12 4S4 Z axis below position 3 (Z-)

13 4S6 rack feeder occupied

14 3S7 hand key 1

15 3S8 hand key 2

16 spare -

17 spare -

18 X- power supply 0 V

19 X- power supply 0 V

Actuators

20 5S1 X axis to X+

21 5S2 X axis to X-

22 7A1 Y axis to Y+

23 7A1 Y axis to Y-

24 7A2 Z axis to Z+

25 7A2 Z axis to Z-

26 5H1 LED light 1 (green)

27 5H2 LED light 2 (red)

28 spare -

29 spare -

30 spare -

31 spare -

32 spare -

33 spare -

34 spare -

35 spare -

36 2F1 power supply 24 V

37 2F2 power supply 24 V

Table 3.2: Staudinger Warehouse Model 226001 Sensors and Actuators

3.3 Beckho� automation and control systems 17

As presented in Table 3.1 15 sensors and 8 actuators are used to control the

warehouse model. Two additional mechanical switches are installed at the both ends

of the X axis to prevent the warehouse system from the fatal mistakes when using

the conveyor or programming the control unit. These two switches (labelled 5S1 and

5S2) are working automatically and can not be directly accessed and manipulated.

Table 3.2 describes all sensors and actuators used in the warehouse model. This

is also a list of connecting pins. Wiring from all the sensors and actuators in the

model is merged into a 37 pin D-sub female connector. 37 D-sub male connector is

needed to connect the warehouse to a PLC unit.

Figure 3.2 shows the warehouse layout with locations of all sensors and actuators

as labelled in table 3.2.

Figure 3.2: Staudinger Warehouse Model 226001 System Layout

3.3 Beckho� automation and control systems

To enable control of the warehouse model, Beckho� automation and control systems

will be used. Beckho� [3] implements open automation systems based on PC

Control technology. Their product range covers industrial PCs, I/O and �eldbus

components, drive (motion) technology and automation software. Beckho� systems

cover all �elds of industries with products that can be used as a separate components

or integrated into a complete and seamless control systems.

We will focus on using industrial PCs and input / output devices:

• Industrial PCs: PC components based on open standards and rugged

construction of the device housings. Embedded PCs make modular IPC

18 Beckho� PLC platform and TwinCAT environment

technology available in miniature format for DIN rail mounting. Several types

of PCs are available: embedded PCs, control cabinet PCs, panel PCs and

control panels.

• Input/Output: Beckho� supplies a wide range of �eldbus components for all

common I/Os and �eldbus systems. In addition to conventional bus systems,

Beckho� o�ers its own solution, a complete EtherCAT I/O range for the high-

speed Ethernet �eldbus based on EtherCAT terminals, the EtherCAT Box and

EtherCAT Plug-in modules.

� Bus terminal: open and �eldbus-neutral I/O system of electronic

terminal blocks. The head of an electronic terminal block is the Bus

Coupler with the interface to the �eldbus. Supported bus systems:

EtherCAT, Lightbus, PROFIBUS, Interbus, CANopen, DeviceNet,

ControlNet, Modbus, Fipio, CC-Link, SERCOS, RS232/RS485,

Ethernet TCP/IP, EtherNet/IP, PROFINET, USB.

• Automation: Beckho� o�ers comprehensive system solutions in di�erent

performance classes for all areas of automation. TwinCAT automation software

integrates real-time control with PLC, NC and CNC functions in a single

package. All Beckho� controllers are programmed using TwinCAT software in

accordance with the globally-recognised IEC 61131-3 programming standard.

We will use TwinCAT 2 suite.

� TwinCAT 2: automation software suite that forms the core of the control

system. TwinCAT can turn almost any PC-based system into a real-time

control with multiple PLC, NC, CNC and robotics runtime systems. More

details about TwinCAT 2 can be found in Chapter 3.4.

3.3.1 Embedded PC CX 8090

Embedded PC CX 8090 (Figure 3.3) will be used for the Module 3 project assignment

to manage and remotely control the warehouse. CX 8090 is a control system with

a switched Ethernet port and supports protocols such as real-time Ethernet, ADS

UDP/TCP, Modbus TCP client/server or open TCP/IP - UDP/IP communication.

The CX 8090 is able to automatically recognise the type of I/O systems connected.

The control system is programmed with TwinCAT via the �eldbus interface or the

additional Ethernet interface. 24 V of DC power supply is needed to enable the

functioning of the embedded PC and the connected I/O devices. More technical

details are presented in table 3.3.

3.3 Beckho� automation and control systems 19

Figure 3.3: Beckho� Embedded PC CX 8090

3.3.2 I/O devices

Two types of I/O devices will be used to enable the management and control of the

warehouse. Potential distribution units will supply the warehouse with power, while

digital input/output units will manage data exchange.

Potential distribution terminals

As already mentioned in Chapter 3.3.1 Beckho� Embedded PCs run on 24 V of DC

power. Besides powering the PC and connected I/O devices, it also provides means

to power the connected PLC devices. Smart warehouse also runs on 24 V, so 0 V

and 24 V potential distribution units will be used.

EL9186

The potential distribution terminal EL9186 provides eight terminal points with

a potential of 24 V and enable the voltage to be picked up without further bus

terminal blocks or wiring.

EL9187

The potential distribution terminal EL9187 provides eight terminal points with a

potential of 0 V and enable the voltage to be picked up without further bus terminal

blocks or wiring.

20 Beckho� PLC platform and TwinCAT environment

Technical data CX 8090s

Processor ARM9, 400 MHz

Internal main memory 64 MB RAM

Flash memory 512 MB RAM (expandable)

Protocols
real-time Ethernet, ADS TCP, Modbus TCP,

TCP/IP, UDP/IP, EAP (EtherCAT Automation

Protocol)

Programming TwinCAT PLC

Programming languages all languages de�ned in IEC 61131-3 standard

Web visualisation yes

Online change yes

Interfaces 1 x Ethernet 10/100 Mbit/s, 1 x USB device

Bus interface 2 x RJ45 (switched)

I/O connection E-bus or K-bus, automatic recognition

Clock internal battery-backed clock for time and date

Operating system Microsoft Windows Embedded CE 6

Web based managementt yes

Current supply 2A

Operating/storage temp. 0 to +55 ◦C / -25 to +85 ◦C

Relative humidity 95 %, no condensation

Protection class IP 20

Table 3.3: Beckho� CX 8090 Technical Data

Digital input / output terminals

Digital I/O terminals are used to acquire binary (true / false) control signals from

device sensors or to send the control signals to the actuators. All I/O terminals

have two power contacts (for 24 V and 0 V) that supply power to the terminal,

while power supply is also looped through to the next terminal. E-bus or K-bus

contacts and communication is used to transfer data. Terminals are automatically

recognized and con�gured by the control PC and enable high interoperability. Up

to 65535 units with robust housing and safe contacts can be assembled together.

EL1809

The 16-channel 24 V DC digital input terminal EL1809 acquires the binary

control signals from the process level and transmits them, in an electrically isolated

form, to the higher-level automation device. The EtherCAT Terminal contains 16

channels, whose signal states are displayed by LEDs.

EL2809

The 16-channel 24 V DC digital output terminal EL2809 connects the binary

control signals from the automation device on to the actuators at the process level

3.4 TwinCAT 21

with electrical isolation. The EL2809 is protected against polarity reversal and

processes load currents with outputs protected against overload and short-circuit.

The EtherCAT Terminal contains 16 channels, whose signal states are displayed by

LEDs.

3.4 TwinCAT

Beckho� developed a specialized software to manage their control and automation

systems. TwinCAT, The Windows Control and Automation, is a software system

that turns any compatible PC into a real-time controller with a multi-PLC system,

programming environment and operation station. TwinCAT replaces conventional

PLC controllers and operating devices with an open and compatible PC hardware

and embedded software PLC based on IEC 61131-3 standard for PLC programming.

TwinCAT includes programming and run-time systems and o�ers connection to all

common �eldbuses. PC interfaces are supported as is data communication with user

interfaces and other programs by means of open Microsoft standards (OPC, OCX,

DLL, etc.).

The latest version of TwinCAT is TwinCAT 3, but as LDSE Summer School

Module 3 assignment will be implemented in TwinCAT 2, we hereafter shortly

present basic features of TwinCAT version 2 [4].

TwinCAT 2 software suite includes various components that enable CNC, NC

PTP and NC Interpolation functionalities, and drivers for Windows I/O and control

panels. The two most important components, used in any PLC application, are:

• TwinCAT System Manager: the con�guration centre for the system,

relationships are de�ned among the number of PLC systems, PLC system

programs, con�guration of axis control and connected I/O channels.

• TwinCAT PLC Control: PLC programming environment, code is

programmed in accordance with IEC 61131-3 standards independently of the

manufacturer; PLC Control supports all languages of the IEC standard and

enables online connections with PLC runtime systems around the world with

TCP/IP or via �eldbuses.

3.4.1 TwinCAT Usage

To easier understand how TwinCAT is used to develop and run control program for

the warehouse, we hereafter brie�y describe operations needed to set up a working

PLC program with TwinCAT.

• PLC programs are developed on a remote working station (PC or laptop).

• Both Embedded PC (CX 8090) and remote working station must be running

the TwinCAT software.

22 Beckho� PLC platform and TwinCAT environment

• TwinCAT System Manager is used �rst to set up a complete con�guration.

• TwinCAT System Manager - System Con�guration connects the remote

working station to the embedded PC that controls the warehouse.

• TwinCAT System Manager - I/O Con�guration detects, recognises and

con�gures I/O devices connected in the embedded PC assembly.

• TwinCAT System Manager - PLC Con�guration adds and con�gures PLC

program that is run to control the warehouse.

• TwinCAT PLC Control is used next to develop the control program,

including the input and output variables mapped to the physical connectors

on the I/O devices and programming logic that enables all modes of operation.

• After the control program is developed, checked and compiled, TwinCAT PLC

Control is used to download the program on the embedded PC.

• Using TwinCAT PLC Control the control program is remotely run, stopped,

and, if needed, debugged.

• Modbus TCP feature of the CX 8090 is used to connect to the embedded PC

via Ethernet, read state of the sensors and set the actuators.

A short tutorial on how to use TwinCAT System Manager and TwinCAT PLC

Control follows in the next two chapters.

3.4.2 System Manager

TwinCAT System Manager [5] is a program for general system con�guration. It

enables connection from remote working station to the PC running the PLC

program, detection and con�guration of connected I/O devices and setting up a

PLC program that controls the operations.

TwinCAT System Manager usage includes the following operations:

• Open new System Manager �le.

• Connect to the control PC.

• Add a PLC project.

• Add I/O devices and generate mappings from PLC program variables and

physical connectors of I/O devices.

• Check con�guration.

• Activate con�guration.

• Set System Manager to run mode.

3.4 TwinCAT 23

Open new System Manager �le

In System Manager main program menu select File → New (Figure 3.4). This will

open new .tsm (TwinCAT System Manager) �le. Save this �le for future reference

and give it an appropriate name.

Figure 3.4: TwinCAT System Manager - open new �le

Connect to the control PC

To successfully ful�l this step your remote working station needs to be physically

connected to the control PC (CX 8090) with the Ethernet cable. From the program

window on the left select SYSTEM - Con�guration. From the program window on

the right select the Choose Target button (Figure 3.5).

Figure 3.5: TwinCAT System Manager - System Con�guration - Choose Target

24 Beckho� PLC platform and TwinCAT environment

A Choose Target System pop-up window appears. Select the Search (Ethernet)

button.

An Add Route Dialog pop-up window appears. Select IP Address option in the

Address Info section. Now press the Broadcast Search button.

The connected embedded PC will appear on the search results list with a host

name CX-aaaaaa, where 'aaaaaa' is a combination of numbers and upper case

letters.

Select the detected embedded PC and press the Add Route button. A pop-up

window appears to enter user credentials to log on the target system. Enter:

• user: Administrator

• password: 1

and press OK. This will create a route from the working station to the control

PC and connect both devices. A letter X appears next to the host name of the

embedded PC in the Connected section of the search results list.

Press close to return to the previous window. The connected CX 8090 device

appears on the list of possible target systems. Select it and press OK. Remote

working station should now be connected to the target system.

Add a PLC project

From the program window on the left select PLC - Con�guration and right click on

it. Select Append PLC Project (Figure 3.6). An Insert IEC1131 Project window

appears. Find and select a TwinCAT Project Info �le (.tpy). It must be previously

created to add it in this step. TwinCAT Project Info �le is created in TwinCAT

PLC Control program after creating and building a PLC project. Refer to Chapter

3.4.3 for more information on how to create .tpy �le.

Check to see if the correct target system was chosen (CX embedded PCs run on

ARM architecture) and what are the run-time number and port.

The selected PLC project appears in the left program windows in the PLC -

Con�guration section. Expand it to check various options. Under the Standard

option you will see the Inputs and Outputs sections.

Input and output variables that you de�ne in the control program to work with

the controlled device will appear in this sections and need to be linked to the physical

connections of the appropriate I/O devices. From the list of variables select it, one

by one, right click on it and select Change Link. A list of available addresses on the

I/O devices will appear, select the correct one.

Add I/O devices

This part of system con�guration works in Con�g mode of TwinCAT. From the

toolbar select the Set/Reset to Con�g mode icon or press Shift + F4 (Figure 3.7) .

3.4 TwinCAT 25

Figure 3.6: TwinCAT System Manager - PLC Con�guration - Append PLC Project

Figure 3.7: TwinCAT System Manager - I/O Con�guration - Set TwinCAT to Con�g

mode

From the program window on the left select I/O - Con�guration. Select I/O

Devices and right click on it. Select the Scan Devices option and then click OK

when a pop-up window appears informing you that some devices may not be found

automatically. This process �rst �nds all primary devices (which include EtherCAT

devices and internal PC RAM) and then goes on to �nd I/O boxes (connected

terminals).

A list of discovered devices appear in the program window on the left under

I/O devices. Expand the Device 1 (EtherCAT) to see the terminals found on this

26 Beckho� PLC platform and TwinCAT environment

device. It �rst �nds Term 1 (EK1200) terminal which is an EtherCAT bus and if

you expand it even further you will discover three more terminals attached to the

EtherCAT bus. Term 2 is digital input terminal (EL1809), Term 3 is a digital

output terminal (EL2809) and Term 4 is a bus end terminal (EL9011).

TwinCAT I/O con�guration o�ers an option of directly reading and changing

input and output signals from the connected terminals. After all the devices and

boxes have been discovered System Manager asks you if you want to enable Free

Run option (still in Con�g mode). With this option enabled go to Term 4 (output

terminal), expand it and select Channel 8 (led light). Expand it again and select

Output. In program window on the right select the Online tab. Current value of

the output signal is shown in the Value �eld and to change it use the Write button.

One of the LED lights on the warehouse model will turn on.

After all the I/O terminals have been discovered and con�gured (this is done

automatically), you need to generate mappings between PLC project variables and

I/O devices channels. Select Generate Mappings from the I/O - Con�guration

option in the left program window of the System Manager.

Check and activate con�guration

After all the con�guration has been done you need to check and activate it. Use

icons on the toolbar (Figures 3.8 and 3.9). If everything is OK, the System Manager

asks you if you wish to set the TwinCAT in run mode. A successful con�guration

check and setting the TwinCAT in run mode is con�rmed with a green colour of the

status bar in the right bottom corner of the System Manager program window.

Figure 3.8: TwinCAT System Manager - I/O Con�guration - Check Con�guration

3.4.3 PLC Control

TwinCAT PLC Control [6] is a PLC project development environment, based on IEC

61131-3 standard for PLC programming. It supports all programming languages of

the IEC standard, we will focus on a high-level textual language Structured Text

(more details in Chapter 3.5).

3.4 TwinCAT 27

Figure 3.9: TwinCAT System Manager - I/O Con�guration - Activate Con�guration

TwinCAT PLC Control program window is divided into several parts and sub-

windows (Figure 3.10). Menu bar allows access to all the functionalities of the

software while most important functions of the program are also accessible from a

toolbar below the menu bar using small icons.

Figure 3.10: TwinCAT PLC Control Overview

Main PLC Control program sub-windows are:

• On the left: POUs / Data Types / Visualizations / Resources window - all

program organization units (POUs) are listed here. The main POU is MAIN

(Program) and other POUs such as functions and function blocks can also be

de�ned here. This window is also used to access additional resources, such as

global variables, libraries etc.

• In the top centre position: start of the POU (program, function or function

block) with a type of the POU, name of the POU and declaration and

28 Beckho� PLC platform and TwinCAT environment

initialization of the local variables. Functions' input variables are also de�ned

here, as are function blocks' input and output variables.

• In the middle centre position: main programming window, all the program

code goes here (variables' values assignment, programming logic etc.)

• In the bottom centre position: log window with compiler logger information,

such as loading a library, compiling, warnings and errors in the code etc.

Program Organization Units (POUs)

Program organization units are core building parts of the PLC application. Three

types of POUs are de�ned:

• Program

• Function

• Function block

For simple PLC applications all the code can go into a program (like MAIN),

while functions and function block are useful when the code gets larger and some

functionalities of the application repeat. Functions and function blocks are used to

make the code cleaner and easier to program.

Basic di�erence between a function and a function block is that given the same

parameter values a function always returns the same value, while a function block

output depends on the state of internal variables from previous invocation of the

function block. FB output is not necessarily the same every time it is invoked.

Function blocks must �rst be created as a "class" objects with input, internal and

output variables, then instantiated and receive an instance identi�er. Function block

have output variables, that can be accessed at any time. Functions, on the other

hand, do not have outputs, but rather a return value as the function identi�er is

actually a "container" for the result value, so it must be assigned a data type.

Many prede�ned functions and function blocks are available from libraries and

custom functions and function block can also be de�ned, as applicable in a speci�c

PLC application. Here are some examples of the standard functions and function

blocks:

• functions: ADD, SQRT, SIN, COS, GT, MIN, MAX, AND, OR etc.

• function blocks: TON, TOF, TP (timers), CTD, CTU, CTUD (counters),

F_TRIG, R_TRIG (triggers) etc.

3.4 TwinCAT 29

Figure 3.11: TwinCAT PLC Control - Global variables

Variables

Variables are an essential part of any programming language. PLC programming

languages de�ne several types of variables:

• global : accessible from any part of the PLC application (see Figure 3.11)

• local: accessible inside a POU (program, function, function block) (see Figure

3.12)

• I/O: a local or a global variable mapped to input or output signal from a

controlled device

• static and temporary: static variables' values are stored to the internal

DB and can be used later when a function block is invoked again; temporary

variables' values are not stored and are lost after a function or function block

is exited

• external: external variables are global variables that are imported into a

function block

Some variable attributes can also be de�ned:

• AT: set variable at speci�c location (for example, input or output location,

internal memory location etc.

• RETAIN: retain variables retain their value after an uncontrolled stop (after

a reset or if the PLC program is unexpectedly downloaded to the control PC

again); when the program restarts, the system continues to operate with the

stored values

30 Beckho� PLC platform and TwinCAT environment

Figure 3.12: TwinCAT PLC Control - Local variables

• PERSISTENT: similar as retain, but persistent variables are only retained

when the TwinCAT shuts down

• CONSTANT: variables that are constants, i.e. their values can not be

changed

Libraries

Many useful functions and function blocks have already been written and it is a good

programming practice to reuse them wherever possible. Libraries can be include in

a PLC application via a Library Manager (see Figure 3.13). Standard.lib library

containing declarations of timers, counters, triggers and string function blocks is

automatically included and other libraries such as TcSystem.lib and TcBase.lib can

be added (right click in the area where libraries are listed and select Additional

Library).

Main programming window

The main part of the code is written here. Depending on the PLC application that

is programmed, appropriate language constructs, data types, decisions, loops etc.

are used. More details about writing PLC application in a Structured Text (ST)

programming language are presented in Chapter 3.5, here we present just an excerpt

from a real-life application for you to get an insight how a PLC application looks

like (Figure 3.14).

A special note must be made about programming a PLC application. Usually, a

program is written in such a way that it is started and run only once and when all the

program steps (code statements) are executed the program stops and exists. A PLC

3.4 TwinCAT 31

Figure 3.13: TwinCAT PLC Control - Library Manager

Figure 3.14: TwinCAT PLC Control - Main Programming Window

application must be programmed di�erently. It is run periodically and it basically

never stops. It constantly checks the state of the device sensors and, depending

on the programming logic, reacts to a change by activating some of the actuators.

TwinCAT does that by going through a code and executing program statements

over and over again until the application is stopped manually. Program repetition

frequency is de�ned by PLC Cycle (Base) time in TwinCAT System Manager, inside

SYSTEM - Con�guration (Real-Time Settings).

32 Beckho� PLC platform and TwinCAT environment

Log window

Logging window at the bottom of the PLC Control application displays noti�cations

from a compiler, including various tasks it performs during a compilation, external

libraries it includes in the project and if, when checking the code, it encounters some

problems. The compiler displays warnings and errors that need to be corrected.

TwinCAT PLC Control Usage

Using TwinCAT PLC Control involves several steps, from programming a PLC code,

building the code and creating a translated version of the code speci�c to a control

PC, logging on a control PC and running the code. We will go through some of the

details of each step:

• Create new PLC project: Select File→ New. A Choose Target System Type

dialog window appears. Beckho� CX 8090 embedded PC which is based on

ARM processor architecture will be used a control PC, so select CX (ARM).

New POU dialog window now appears where we create a new main POU

(Program) and select ST as a language of the POU. By clicking OK a TwinCAT

PLC Project �le (.pro) is created. Save it with an appropriate �le name. Next,

run-time system must be selected that will run the PLC application. Select

Online → Choose Run-Time System. A Choose Run-Time System dialog

window appears where you select the control PC and an available run-time

system within the PC. Note: the remote working station must be physically

connected to the control PC at this point and a proper connection must also

be made in the TwinCAT System Manager Con�guration (see Chapter 3.4.2).

• Programming the PLC application: Write the application in the

appropriate program windows - use the top centre window for declaration of

variables and the middle window for the main part of the code. Use appropriate

coding syntax, data types, programming constructs etc. (for more information

on how to properly program in Structured Text programming language see

Chapter 3.5).

• Building the code: Select Project → Build. This will check the code

for possible mistakes and show where they are. If (or when) the code is

syntactically OK, the building process results in a translated code that suits the

architecture of the target system. Building process also generates a TwinCAT

Project Info �le (.tpy) that is added into a PLC Con�guration of the TwinCAT

System Manager. Adding the .tpy �le to a System Con�guration automatically

recognizes I/O variables in the program and lists them in the con�guration.

These need to be linked to a physical inputs and outputs of the PLC hardware

assembly. Once a program is built and added to the System Con�guration for

the �rst time, all further changes in the program are immediately visible in

3.5 Structured Text (ST) 33

System Con�guration. No actions in System Con�guration are needed if the

program changes, except if the I/O variables change.

• Connecting to the control PC: Select Online → Login. This connects the

remote working station to the control PC. If there is no PLC application on the

control PC, the pop-up window appears asking you if you want to download

a program from remote station to the control PC. If there is an application

on the control PC, the pop-up window appears informing you that Online

Changes will be made to the PLC application. After a successful login the

TwinCAT PLC Control window in the middle of the screen changes and shows

program variables' current values. If you want to log out the control PC select

Online → Logout. Note: always stop the application and reset the variables'

values before logging out to avoid unexpected movements of the controlled

device and a possible damage.

• Running the PLC application: When logged in select Online → Run or

press F5 to start the application. To stop the application select Online →
Stop or press Shift + F8. If you want to analyse the application step by step

�rst toggle some breakpoint(s) by selecting Online → Toggle Breakpoint and

then run the application. The application will stop at breakpoint(s) and allow

you to go through the code step by step. To step over a line of code select

Online → Step over or press F10 and if you want to move inside a function

or function block call select Online → Step in or press F8.

3.5 Structured Text (ST)

Structured Text will be used to program control application for the warehouse.

Structured Text is a high level textual programming language that is block

structured and syntactically resembles Pascal, on which it is based. ST

supports complex statements and nested instructions, such as decisions (conditional

execution), iteration loops and functions. Structured Text is of the standardized

languages for PLC programming and is a part of IEC 61131-3 standard [7].

IEC 61131-3 is the third part (of 10) of the open international standard IEC

61131 for programmable logic controllers, and was �rst published in December 1993

by the IEC. The current (third) edition was published in February 2013.

Part 3 of IEC 61131 deals with basic software architecture and programming

languages of the control program within PLC. It de�nes two graphical and two

textual programming language standards:

• Ladder diagram (LD), graphical

• Function block diagram (FBD), graphical

• Structured text (ST), textual

34 Beckho� PLC platform and TwinCAT environment

• Instruction list (IL), textual

• Sequential function chart (SFC) - has elements to organize programs for

sequential and parallel control processing.

For more information on PLC programming with Structured Text language check

[8].

3.6 Modbus TCP

Modbus [9] is a serial communications protocol designed for use with programmable

logic controllers. It was developed in 1979 and is now a de facto standard

communication protocol used in many industrial devices. It was speci�cally designed

with industrial applications in mind, it is openly published and easy to deploy

and maintain. It is based on master/slave architecture where there is a master

(supervisory) computer and a slave remote terminal unit. A good advantage of this

protocol is also that it moves raw bits or words without placing many restrictions

on vendors.

Many variants of the Modbus protocol exist. The most common implementation

is Modbus RTU (remote terminal unit). This version is used in serial

communication and uses a compact binary representation of the data for protocol

communication. Modbus TCP [10] (or Modbus TCP/IP) variant is used for

communication over TCP/IP network and connects over port 502. Modbus TCP

will be used in the project assignment to connect to and control the warehouse.

Modbus de�nes 4 basic object types that are provided by a Modbus slave device

to a Modbus master device (see Table 3.4). A coil is a single-bit physical output

which can be both read and written to. A discrete input is a single-bit physical

input and it can only be read. An input register is an object type that allows to

read 16 input signals simultaneously, while a holding register allows to write to 16

output signals simultaneously.

Object type Access Size Use

Coil read and write 1 bit on / o�

Discrete input read only 1 bit on / o�

Input register read only 16 bits measurements and statues

Holding register read and write 16 bits con�guration values

Table 3.4: Modbus Object Types

Various operations de�ned in Modbus are categorized with a function code.

These operations include data access, diagnostics and some other operations. Here,

we focus on data access operations. Table 3.5 presents the most basic and commonly

3.6 Modbus TCP 35

used data access operations - reading and writing single or multiple physical inputs

and outputs.

Function code Function name Access type

2 Read Discrete Inputs bit access

1 Read Coils bit access

5 Write Single Coil bit access

15 Write Multiple Coils bit access

4 Read Input Registers 16-bit access

3 Read Multiple Holding Registers 16-bit access

6 Write Single Holding Register 16-bit access

16 Write Multiple Holding Registers 16-bit access

Table 3.5: Modbus Basic Functions

3.6.1 Modbus TCP in Beckho� systems

Beckho� o�ers several solutions for using Modbus protocol in their systems. Aa

specialized Embedded PC for Ethernet - CX 8090 (see Chapter 3.3.1) will be used

in Module 3 assignments. CX 8090 natively supports Modbus TCP and no extra

installation or con�guration is needed to make Modbus TCP protocol work on CX

8090. CX 8090 Modbus TCP protocol support provides both server and client

functionalities. Modbus registers and I/O's are automatically mapped to TwinCAT

PLC areas (variables) and a supplied PLC library allows to communicate with other

Modbus devices to request data.

The default mapping between Modbus and TwinCAT PLC areas is described

in Table 3.6. Let's look at some examples to easier grasp the principle of Modbus

addressing.

Let's assume we have a CX 8090 terminal assembly with one digital input

terminal EL 1809 and one digital output terminal EL 2809 3.3.2. Both terminals have

16 physical connections. When con�guring both I/O devices in the TwinCAT System

Manager the TwinCAT assigns speci�c addresses to all the physical connections. As

both terminals are digital, assigned addresses are in a binary form. For example,

digital input terminal physical connections are assigned addresses from 40.0 to 40.7

and from 41.0 to 41.7. Digital output terminal physical connections are assigned

addresses from 26.0 to 26.7 and from 27.0 to 27.7. The decimal number in the �rst

part of the address represents number of bytes, while the last digit in the address

represents bits in the last byte.

To read values of sensors (digital input terminal) from Modbus TCP client

we use the function Read Discrete Inputs with addresses from 320 to 335 (if used

in a decimal form) or from 140 to 14E (if used in a hexadecimal form). Where do

36 Beckho� PLC platform and TwinCAT environment

Modbus area Modbus addresses TwinCAT area

Discrete inputs 0x0000 - 0x7FFF
0xF021 - process image

of the physical inputs (bit access)

Coils 0x0000 - 0x7FFF
0xF031 - process image

of the physical outputs (bit access)

Input registers 0x0000 - 0x7FFF
0xF020 - process image

of the physical inputs)

Holding registers 0x0000 - 0x2FFF
0xF030 - process image

of the physical outputs

0x3000 - 0x5FFF 0x4020 - PLC memory area

0x6000 - 0x7FFF 0x4040 - PLC data area

Table 3.6: Modbus to TwinCAT PLC Mapping

this numbers come from? First, as presented in table 3.6 discrete inputs start at

Modbus address 0 (0x0000) so there is no o�set. The address 40.0 is in bytes form,

but we need it in bit form. So: 40 · 8 + 0 = 320 bits. Similarly 41.7 in bytes form is

41 · 8+ 7 = 335 bits. 140 and 14E are hexadecimal representations of 320 and 335.

To control the actuators (start or stop them) we use the functionWrite Single

Coil with addresses from 208 to 223 (decimal form) or D0 to DF (hexadecimal

form). Again, coils start at Modbus address 0 so there is no o�set. The address 26.0

is in bytes form, but we need it in bit form. So 26 · 8 + 0 = 208 bits. Similarly 27.7

in bytes form is 27 · 8 + 7 = 223 bits. D0 and DF are hexadecimal representations

of 208 and 223.

To read or write to a variable in the PLC memory area (if the M attribute

is used in the variable declaration, for example: var AT \%MX0.0 : BOOL := TRUE)

we use the functions Read Holding Register or Write Holding Registers. Addresses

from 12288 (decimal form) or from 3000 (hexadecimal form) on must be used.

To read or write to a variable in PLC data area (if not extra attribute is

used in the variable declaration) we use the functions Read Holding Register orWrite

Holding Registers. Addresses from 24576 (decimal form) or from 6000 (hexadecimal

form) on must be used. Two registers (each is 16 bits long) are reserved for each

variable.

A 2018 Summer School Project Assignments

Summer school is set in a way that participants have the main role in designing

the nodes and communications between them. One of the most representational

graphic tool for designing communication between nodes is a Message Sequence

Chart (MSC). MSC in Figure A.1 shows all four types of nodes and a customer that

is there only as a free agent as it does not represent a node.

Figure A.1: MCS of distributed supply chain system

MSC shows an example process of adding a new package into the system. In the

�rst step, the package node requests to be registered on retailer node by sending a

request message registerToShop. This means that package node sends a message

to the retailer node Web API endpoint that enables a package to be registered and

can appear in the retailers online shop. In the second step, a package node requests

a warehouse node to store the package by sending a message load. When the

warehouse node loads the package it returns, for example, a message of the package

location in case of success, or rejects the package if the warehouse is full.

37

38 2018 Summer School Project Assignments

A.1 Module 1: Smart Package Node

Demands for building a smart package node are:

1. De�ne package node properties:

• id: Identi�cation string of the package. It has to be unique for each

package.

• owner: Owner of the package is user that buys the package.

• content

Describes content of the package.

• type: Type de�nes special treatment of the package based on its content

like food, liquid, glass etc.

• location: This parameter shows current location of the package in the

form of the IP address of the warehouse node.

• size: Size of the package in the form: Length x Width x Height (in mm).

• state: State de�nes the current state of the package. States of the

package are:

initial: the package server has started but the package is not yet created

created: the package properties has been set

registered: the package has been registered with the retailer node

purchased: the package has been purchased by some user

transport_ordered: transport of the package has been ordered

transport_pickup: transport is on its way to pick up the package

warehouse_unloading: transport has arrived at the warehouse

location and is waiting for the package to be unloaded

warehouse_unloaded: package is loaded to the transportation

transport_delivering: package is on its way to the customer

transport_delivered: package has been delivered to the customer

2. Build WEB API endpoints

• createPackage

Create package with all the package parameters. Example:

http://192.168.1.100:3000/createPackage?content=banane&

owner=Janez&type=glass

• registerToMarketPlace

Call retailer node and register to its online shop. Example:

http://192.168.1.100:3000/registerToMarketPlaces?reatailer_

ip=192.168.1.101

Because the package node will communicate with the retailer node we

have to provide retailers node's IP address.

A.1 Module 1: Smart Package Node 39

• load

initial load of package to the warehouse. Example http://192.168.1.

100:3000/load?warehouse_ip=192.168.1.102

Because the package node has to communicate with the warehouse node

we have to provide warehouse's IP address.

3. Deploy 3 packages (optional)

4. Include also economic aspects into the system. (optional)

40 2018 Summer School Project Assignments

A.2 Module 2: Retailer Node

Demands for building a retailer node are:

1. De�ne retailer node properties

• packages: Array of packages that can be �lled with packages data that

are then displayed in online store web page.

2. Build WEB API endpoints

• initialize

Initialize the retailer shop on startup of the system. Example: http:

//192.168.1.101:3000/initialize

• getPackages

Return all packages that are registered in the shop.

• removePackage

Remove package from the retailers memory of items that are o�ered in the

online store. Example http://192.168.1.101:3000/removePackage?

id=gfwqgebgwtegvwe

Remove package with id �gfwqgebgwtegvwe� from the retailer node

memory.

• buy

Buy a package with a certain id. When customer visits online store and

buys one product this web API is called. Example: http://192.168.1.

101:3000/buy?id=gfwqgebgwtegvwe

• register

Register package. http://192.168.1.101:3000/buy?id=

gfwqgebgwtegvwe&content=banane&owner=Janez&type=glass&

location=192.168.1.102

In order to register package to the retailer node we have to append all

data of the package.

3. Build shop web page (optional).

4. Include also economic aspect into the system. The retailer charge the package

a fee for being listed or additional services such as advertisement. (optional)

A.3 Module 3: Warehouse Node 41

A.3 Module 3: Warehouse Node

Demands for building a warehouse node are:

1. De�ne warehouse node properties:

• location: location of the warehouse (longitude and latitude coordinates)

• occupancy: storage capacity of the warehouse

• orders: array of collected orders for warehouse (load / unload)

• occupation information

• state:

loading: loading a package into the warehouse

unloading: unloading a package from the warehouse

idle: no operation

2. Build WEB API endpoints

(a) loadPackage

Load a package into the warehouse. Smart Package node calls this API

when a new package (product) is registered in the system and needs to be

stored in a warehouse. Example: http://192.168.1.103:3000/load?

id=gfwqgebgwtegvwe

(b) unloadPackage

Unload a package from the warehouse. Transport node calls this API

when it receives an order from the smart package node to deliver the

package to a customer. Example: http://192.168.1.103:3000/load?

id=gfwqgebgwtegvwe

3. Include also economic aspects into the system. The warehouse node charges

the package a fee for storage and for loading/unloading services. (optional)

In this module you will �rst create a PLC application for warehouse control and

then a warehouse node with logic for communication with the warehouse and APIs

for integration into the a distributed supply chain system.

Assignment 1: PLC Project Setup

Use TwinCAT System Manager to set up a PLC project for warehouse management.

For more information on how to use TwinCAT System Manager, see Chapter 3.4.2.

Connect your remote working station to the Embedded PC CX 8090 which is

connected to the warehouse and will run the PLC project code.

First, create and save a System Manager �le (.tsm �le). This �le will contain

complete PLC project con�guration. PLC project con�guration should include:

42 2018 Summer School Project Assignments

• System Con�guration:

◦ Connect your remote working station to the embedded PC CX 8090 that

will run the PLC project code.

◦ Choose Target

◦ Search (Ethernet)

◦ Broadcast Search (select IP Address option in the Address Info section)

◦ Add Route (user name: Administrator, password: 1)

• PLC Con�guration:

◦ In TwinCAT PLC Control create and save a new PLC Project (.pro �le) -

Target System Type is CX (ARM), programming language is Structured

Text. For testing purposes declare a variable and assign it some value.

◦ Build the project and create .tpy �le

◦ In System Manager add .tpy �le in the PLC Con�guration.

• I/O Con�guration

◦ Run System Manager in CONFIG mode to �nd devices and terminals

attached to the control PC.

◦ I/O devices → Scan Devices

◦ Scan boxes

◦ Free run

◦ Use the Free run option to check if the connection to the control PC was

successful and turn on one of the two LED lights on the warehouse

∗ I/O Devices → Device (EtherCAT) → Term1 (EK1200) → Term3

(EL2809) → Channel 8 → Output → Online → Value = 1

• Check if the con�guration was successful

◦ Check con�guration

◦ Activate con�guration

◦ Run mode

◦ Status bar in the bottom right corner of the TwinCAT System Manager

window turns green.

A.3 Module 3: Warehouse Node 43

Assignment 2: Warehouse Control Program

In this assignment you will use TwinCAT PLC Control development environment to

write a program for warehouse control. Warehouse control program will be running

in 2 modes of operation:

• loading a package to the warehouse (the program needs to know the state of

the warehouse - which locations are free)

• unloading a package from the warehouse (the program needs to know which

package to unload)

I/O Variables

First, input and output variables for control of warehouse sensors and actuators will

be created in TwinCAT PLC Project. Variables must be declared as global.

Declare 15 input variables and set them to link to the addresses of matching

sensors on the warehouse, i.e. digital input terminal EL1809 physical connections.

Also declare 8 output variables and set them to link to the addresses of matching

actuators on the warehouse, i.e. digital output terminal EL809 physical connections.

Use an appropriate Structured Text syntax for variables declaration:

• variable_name AT \%IXaa.a : BOOL - for input variables

• variable_name AT \%QXaa.a : BOOL - for output variables

I/O variables are declared as boolean variables because the controlled sensors

and actuators work in a binary mode (on / o� or true / false).

aa.a are addresses on the input and output terminals and are automatically

assigned during the I/O con�guration. Check the addresses in the I/O Con�guration

section of TwinCAT System Manager.

Use tables A.1 and A.2 to help you link and map programming variables to pins

on input and output terminals, i.e. functions of the warehouse model. Table A.3

will help you to easier understand where are the various positions of the warehouse

tower and the package feeder.

After all I/O variables are correctly declared, rebuild the PLC project and refresh

PLC Con�guration in System Manager. Additional options appear in PLC Project

menu. Inputs and Outputs options contain a list of all declared input and output

variables in the PLC Project. These variables need to be linked and mapped to

actual physical connections on the input and output terminals.

Linking variables to the correct address is done by:

• right click on a variable → Change Link → select the correct connection

Mapping variables is done by:

44 2018 Summer School Project Assignments

Terminal Pin Address Variable Function
Sensor

detect no detect

Term. 2 1 X axis at position 1 (X+) false true

EL 1809 2 X axis at position 2 false true

inputs 3 X axis at position 3 (X-) false true

4 Y axis at position 1 (Y+) false true

5 Y axis at position 2 (middle) false true

6 Y axis at position 3 (Y-) false true

7 Z axis above position 1 (Z+) false true

8 Z axis below position 1 false true

9 Z axis above position 2 false true

10 Z axis below position 2 false true

11 Z axis above position 3 false true

12 Z axis below position 3 (Z-) false true

13 feeder full true false

14 control switch 1 true false

15 control switch 2 true false

Table A.1: Warehouse Model Inputs - Mapping from Connected Pins to Program

Variables

Terminal Pin Address Variable Function
Actuator

turn on turn o�

Term. 4 1 X axis to X+ position true false

EL 2809 2 X axis to X- position true false

outputs 3 Y axis to Y+ position true false

4 Y axis to Y- position true false

5 Z axis to Z+ position true false

6 Z axis to Z- position true false

7 green LED light true false

8 red LED light true false

Table A.2: Warehouse Model Outputs - Mapping from Connected Pins to Program

Variables

• Mappings → Generate mappings

A.3 Module 3: Warehouse Node 45

Position

X axis position 1 (X+) warehouse tower end position on X axis

X axis position 2 warehouse tower middle position on X axis

X axis position 3 (X-) warehouse tower starting position on X axis

Y axis position 1 (Y-) feeder outer position (loading / unloading the package)

Y axis position 2 feeder middle position

Y axis position 3 (Y+) feeder inner position (inside the warehouse)

Z axis position 1 (Z+) warehouse tower top position on Z axis (3rd �oor)

Z axis position 2 warehouse tower middle position on Z axis (2nd �oor)

Z axis position 3 (Z-) warehouse tower bottom position on Z axis (1st �oor)

Table A.3: Warehouse Model Positions De�nition

Re-check and re-activate project con�guration:

• Check con�guration

• Activate con�guration

• Run mode

• Status bar in the bottom right corner of the TwinCAT SystemManager window

turns green.

Minimum Working Example

In TwinCAT PLC Control create a minimum working PLC project. Write the code,

build it, download the program to the control PC and run it. Write a program

that will turn both LED lights on the warehouse model on.

Before downloading the program to the control PC, set the Run-time system:

• Online → Choose Run-time system

• Select the correct control PC and an available run-time system

Test the program:

• Login

• Download program

• Run, Stop, Reset

• Logout

46 2018 Summer School Project Assignments

Complete PLC Project for Warehouse Control

In TwinCAT PLC Control write a complete PLC Project to control the warehouse

functionalities. Implement 2 modes of operation - loading the package in the

warehouse and unloading the package from the warehouse. Mode of operation is

selected using two control switches on the warehouse model.

First, declare a set of variables to de�ne the current state of the warehouse -

which warehouse locations are full and which are empty. Warehouse has a 3 by 3

sized �eld of locations so declare 9 boolean variables, one for each of the locations.

Declare this variables as global. These variables will be used during the loading of

a new package into the warehouse to �nd the empty location.

Next, declare two variables that will be used during the unloading of the package

from the warehouse and will de�ne the package location (one variable for X axis and

one variable for Z axis). Declare these two variables as global. These two variables

will be set by a remote function call to unload a package.

Warehouse Control Project must be written as a �nite state machine and must

include the steps described below:

1. When started the program waits for a command that enables one of two modes

of warehouse operation. Two control switches on the warehouse model are

used for this purpose. These could either be physically pressed on the model

or enabled programmatically by setting the input variable to TRUE.

2. Until one of the two modes of operation is enabled, the red LED light is on.

Once one of the two modes is enabled, the red light is turned o� and the green

LED is turned on. When the current mode of operation is �nished, the green

light is turned o� and the red light is turned on.

3. Loading the package into the warehouse:

a) Check the status of the warehouse and �nd an available location.

b) Move the feeder out by Y axis to the outside position and wait for 2 seconds

for package loading (timer TON)

c) Move the feeder back in to the middle position. Use the magnet sensor to

check if the package was actually loaded. If it was not, repeat the previous

step (3.b)).

d) Move the warehouse tower by X axis to the correct position where you want

to put the package.

e) Move the warehouse tower by Z axis to the correct position. NOTE: move

the warehouse tower ABOVE the position where you want to put the

package.

f) Move the feeder in by Y axis to the inside position.

A.3 Module 3: Warehouse Node 47

g) Move the warehouse tower DOWN by Z axis to the position BELOW the

position where you want to put the package.

h) Move the feeder back in by Y axis to the middle position.

i) Move the warehouse tower down by Z axis to the starting position.

j) Move the warehouse tower back by X axis to the starting position.

k) Switch to step 1.

4. Unloading the package from the warehouse:

a) From the function call read package location parameters (X axis and Z

axis).

b) Move the warehouse tower by X axis to the correct position where you want

to take the package from.

c) Move the warehouse tower by Z axis to the correct position. NOTE: move

the warehouse tower BELOW the position where you want to take the

package from.

d) Move the feeder in by Y axis to the inside position.

e) Move the warehouse tower UP by Z axis to the position ABOVE the

position where you want to take the package from.

f) Move the feeder back in by Y axis to the middle position.

g) Move the warehouse tower down by Z axis to the starting position.

h) Move the warehouse tower back by X axis to the starting position.

i) Move the feeder out by Y axis to the outside position and wait for 2 seconds

for package unloading (timer TON)

j) Move the feeder back in to the middle position. Use the magnet sensor

to check if the package was actually unloaded. If it was not, repeat the

previous step (4.i)).

k) Switch to step 1.

General instructions for PLC Project programming:

• Write the program as a �nite state machine. De�ne the states and conditions

for state transitions.

• Consider the fact that the PLC Project will run continuously with a pre-

de�ned run cycle (see Chapter 3.4.3). This demands a thoughtful approach to

program design.

• At any bigger change to the PLC program, save the PLC project �le, re-build

the project and refresh the PLC Con�guration in TwinCAT System Manager.

48 2018 Summer School Project Assignments

• Use the correct states of input variables (sensors) when they are enabled or

disabled. NOTE: some sensors are TRUE when they are disabled, while most

of the sensors are TRUE when they are enabled (see Table A.1).

• Use the correct values for enabling actuators (motors, LED lights...). Actuators

are enabled by setting the appropriate variable to TRUE (see Table A.2).

Assignment 3: Warehouse node

The application should de�ne two types of entities, a warehouse and a package and

also functions to work with these types of entities.

The application should include the following functions:

• getWarehouseState: the current state of the warehouse; for example: loading

the package, unloading the package, extending the feeder to accept / release a

package etc. (this could be a textual representation of the �nite state machine

states in TwinCAT that are used to control the warehouse).

• getPackages: get information on all the packages present in the warehouse

(id, content, location etc.).

• load: main function for loading a new package into the warehouse; this

activates the loading mode of the warehouse; the function call include the

getNewPackageLocation function.

• getNewPackageLocation: returns an empty location in the warehouse, to be

used by the load function when adding a new package.

• unload: the main function for unloading a package from the warehouse; this

activates the unloading mode of the warehouse; the function call must include

package id or it's location in the warehouse.

For communication with the warehouse over a local network use Modbus

protocol. Include node-modbus library in Node.js and de�ne a Modbus client. Use

the node-modbus.client.tcp.complete function to de�ne a new Modbus client

with the parameters presented in Table A.4.

A.3 Module 3: Warehouse Node 49

Parameter Value

host 192.168.1.6

port 502

unitId 1

timeout 2000

autoReconnect true

reconnectTimeout 15000

logLabel 'ModbusClientTCP'

logLevel 'debug'

logEnabled false

Table A.4: node-modbus Module TCP Connection Settings

Modbus TCP client of the node-modbus module de�nes all read and write

functions standardized in the Modbus protocol (see Table 3.5 in Chapter 3.6). Use:

• readHoldingRegisters(start, count): to read the values of variables in

the PLC application, where start is the starting addresses of the �rst register

and count is the number of registers to be read

• writeSingleRegister(start, value) to change values of variables, where

start is the address of the register and value is a value to be written

As described in Chapter 3.6, a local variable can be de�ned in a general PLC data

area, starting from address 0x6000 (hexadecimal) or in a special PLC memory area,

starting from address 0x3000 (hexadecimal) (see Table 3.6). If you use the PLC

memory area, you have to declare the variable with the AT attribute, for example:

variable_name AT %MX0.0 := TRUE;. This gives you a direct information about

the address of the variable. In case of declaring a variable in a general PLC data

area, the compiler independently selects the variable's address (thus no AT attribute

is used in the declaration) and the address depends on the number, the order and

the type of all variables declared in a PLC program.

Table A.5 gives some examples on to how to correctly use Modbus TCP functions

to address variables in the PLC application. There are a couple of details that require

a comment:

• To load or unload a package from the warehouse declare two extra local

variables in the PLC application. Do not try to change the PLC I/O variables

of the control switches directly.

• The actual address used in the Modbus TCP client function call needs to be

written in the decimal form, so a hexadecimal to decimal conversion is needed

(0x3000 converts to 12288 and 0x6000 converts to 24576)

50 2018 Summer School Project Assignments

• A register is a 16 bit data structure. This especially requires an attention

when reading holding register(s) and the function results need to be properly

parsed.

First example in Table A.5 shows how to check the current state a warehouse is

in. A state variable in the PLC application is declared in the general PLC data area

and is the �rst variable to be declared, therefore it's address is 0x6000. We only

read one register as the state variable is of type integer.

Function Modbus function Address Function call

getWarehouseState readHoldingRegisters 0x6000 = 24576 client.readHoldingRegisters(24576,1)

getStateOfSlots readHoldingRegisters 0x3000 = 12288 client.readHoldingRegisters(12288,1)

load a package writeSingleRegister 0x6050 = 24656 client.writeSingleRegister(24656,1)

unload a package writeSingleRegister 0x6052 = 24658

client.writeSingleRegister(24632,2);

client.writeSingleRegister(24656,2);

client.writeSingleRegister(24632,1)

Table A.5: node-modbus Module Examples

The second example shows how to read the current state of slots in the warehouse.

In this case, the 9 variables that correspond to 9 warehouse slots are de�ned in the

PLC memory address, therefore the address starts with 0x3000. These variables are

boolean (TRUE / FALSE) and are 1 bit long, so similarly to the �rst example only

one register needs to be read. The return values are 1 if the slot is occupied or 0 if

the slot is free.

Loading a package into the warehouse works similarly to checking the warehouse

state. A dedicated local variable is set to 1 (or TRUE) which enables the loading

mode of the warehouse. The warehouse automatically �nd the free slot.

Unloading a package from the warehouse requires a bit more work. First, the

location of the package that is to be unloaded must be set. In this example two

coordinates of the warehouse 3 by 3 storage �eld are set to 2. Next, a dedicated local

variable is set to 1 (or TRUE) which enables the unloading mode of the warehouse.

Assignment 4: Web GUI for warehouse control (optional)

Build a simple web GUI that will enable visual representation of the warehouse

state and control functions. The GUI should enable all of the functions developed

in Assignment 4. Figure A.2 shows an example of a simple GUI.

A.3 Module 3: Warehouse Node 51

Figure A.2: Example of a Simple Warehouse GUI

52 2018 Summer School Project Assignments

A.4 Module 4: Transportation Node

1. De�ne transportation node properties:

• location: current location of the transport longitude and latitude

coordinates

• occupancy: storage capacity of the transportation

• speed: maximum speed of the transport

• orders: array of collected orders for transport

• occupation information

• state:

parked: transport is parked somewhere and waiting for transportation

order

moving_to_warehouse: transport is moving to the warehouse

location to pick up a package

arrived_at_warehouse: transport has arrived to the warehouse, now

the loading of the package can be triggered.

package_loaded: the package has been loaded to the transport

moving_to_customer_location: transport is delivering the package

to the customer location

delivered: transport has delivered the package

moving_to_parked: transport is moving to its parking space

2. Build WEB API endpoints

(a) orderTransport

Order a new transport for the package and provide all

data that is needed to complete the transport. Example:

http://192.168.1.104:3000/orderTransport?buyerlocation=

'Ljubljana'&id=gfwqgebgwtegvwe&warehouse=192.168.1.103

(b) packageLoaded

Warehouse calls this endpoint to con�rm that the package has been loaded

to the transport and transport can move on. Example: http://192.168.

1.104:3000/packageLoaded

(c) packageDelivered

Customer calls this endpoint when the package is delivered to him.

Example: http://192.168.1.104:3000/packageDelivered

3. Include also economic aspects into the system. The transportation node

charges the package a fee for transportation. (optional)

A.5 Integration 53

A.5 Integration

Integrate all 4 modules into a fully functional distributed supply chain. Figure A.3

shows an example of the process of ordering a product from our Decentralized supply

chain system.

Figure A.3: Example of process of delivering package to the customer

First customer browses the retailer shop for a product. When he decides for

one product he buys it by calling web API endpoint buy() of the retailer node.

Retailer node then responds with the purchased response. Customer then calls

package endpoint orderTransport() which triggers a call of transport endpoint

orderTransport() from the package node. Transportation node con�rms transport

by responding ordered to the package call. The transportation node is then in

the process of moving to the warehouse to load the package when it arrives it

calls warehouses endpoint unloadPackage(). Warehouse node starts the process

of unloading the package which �nishes with the response unloaded back to the

transportation node. Transportation node then starts moving towards customer

54 2018 Summer School Project Assignments

location and calls package endpoint packageDelivered() when it completes the

delivery.

References

[1] P. Zhang. Industrial Control Technology, A Handbook for Engineers and

Researchers. William Andrew Inc., 2008.

[2] Staudinger - automation website. https://www.staudinger-est.de/en/

simulation. Last accessed in May 2018.

[3] Beckho� automation website. https://www.beckhoff.com. Last accessed in

May 2018.

[4] Twincat 2 overview website. https://infosys.beckhoff.com/english.

php?content=../content/1033/tcoverview/html/default.htm&id=

7054720205085915955. Last accessed in May 2018.

[5] Twincat 2 system manager overview website. https://infosys.beckhoff.

com/english.php?content=../content/1033/tcsystemmanager/basics/

tcsysmgr_common_intro.htm&id=1211772295410824515. Last accessed in

May 2018.

[6] Twincat 2 plc control overview website. http://www.google.com. Last

accessed in May 2018.

[7] Iec 61131-3 standard website. https://webstore.iec.ch/publication/4552.

Last accessed in May 2018.

[8] Structured text in beckho� system website. https://infosys.beckhoff.com/

english.php?content=../content/1033/tcplccontrol/html/TcPlcCtrl_

Languages\%20ST.htm&id=. Last accessed in May 2018.

[9] Modbus application protocol speci�cation v1.1b3. http://www.modbus.org/

docs/Modbus_Application_Protocol_V1_1b3.pdf. Last accessed in May

2018.

[10] Modbus messaging on tcp/ip implementation guide v1.0b. http://www.

modbus.org/docs/Modbus_Messaging_Implementation_Guide_V1_0b.pdf.

Last accessed in May 2018.

55

