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Abstract

In this paper we deal with the demosaicing problem when the Bayer pattern is
used. We propose a fast heuristic algorithm, consisting of three parts. In the first one,
we initialize the green channel by means of an edge-directed and weighted average
technique. In the second part, the red and blue channels are updated, thanks to an
equality constraint on the second derivatives. The third part consists of a constant-
hue-based interpolation. We show experimentally how the proposed algorithm gives
in mean better reconstructions than more computationally expensive algorithms.

Key words: Demosaicing, sparse data problem, inverse problem, edge-preserving image
reconstruction, local filtering, Bayer Pattern.

1 Introduction
The demosaicing problem is related to the acquisition of RGB color images by means of
CCD digital cameras. In the RGB model, each pixel of a digital color image is associated
to a triple of numbers, which indicate the light intensity of the red, green and blue channel,
respectively. However, most cameras use a single sensor, associated with a color filter
that allows only the measurement at each pixel of the reflectance of the scene at one of
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the three colors, according to a given scheme or pattern, called Color Filter Array (CFA).
For this reason, at each pixel, the other two missing colors should be estimated. Different
CFA’s are proposed for the acquisition (see also [3, 14, 18]). The most common is the
Bayer pattern (see also [4]). In this scheme, the numbers of pixels where the green color
is sampled is twice what those associated with the red and blue channels are, because
of the higher sensibility of the human eye to the green wavelengths. If we decompose
the acquired image in three channels, we obtain three downsampled grayscale images, so
that demosaicing could be interpreted as the problem of interpolating grayscale images
from sparse data. In most cameras, demosaicing is a part of the processing required to
obtain a visible images. The camera’s built-in-firmware is substantially based on fast local
interpolation algorithms.

The heuristic approaches, which do not try to solve an optimization problem defined in
mathematical terms, are widely used in the literature. These methods have the advantage
of being very fast. Our proposed technique is one of heuristic kind. In general, the
heuristic techniques consist of filtering operations, which are formulated by means of
suitable observations on color images. The nonadaptive algorithms, among which bilinear
and bicubic interpolation, yield satisfactory results in smooth regions of an image, but they
can fail in textured or edge areas. Edge-directed interpolation is an adaptive approach,
where, by analyzing the area around each pixel, we choose the possible interpolation
direction. In practice, the interpolation direction is chosen to avoid interpolating across
the edges. In [15], for each pixel the horizontal and vertical gradients are compared
with a constant threshold. If the gradient in one direction is greater than the threshold,
then interpolation is not performed along this direction. Some other direct interpolation
methods use larger neighborhoods by examining different color channels. In [23], to
determine the edges of the green channels, the red and blue channels are employed. On the
other hand, to determine the edges of the red and blue channels, some discrete derivation
operators of the second order are used, while in [19], to determine the edges in the various
channels, a suitable Jacobian operator is applied. In [16], local homogeneity is used
as an indicator to choose horizontally or vertically interpolated intensities. Thanks to
homogeneity-directed interpolation, the luminance and chrominance values have to be
similar in a suitable neighborhood. In demosaicing it is often assumed that the differences
or the ratios of the intensity values in different channels are locally constant (see also
[1, 10, 15, 21, 23, 30, 32, 34]). In [21] the probability of having an edge in a certain
direction is determined and used to find the weights relative to the weighted average
empoyed as an interpolation operator. In this algorithm, the color channels are updated
iteratively according to the constant color ratio condition. In [24] a similar algorithm
is proposed, where 7-size neighborhoods are employed to find the edges of the green
channel, and 5×5-size neighborhoods are used to determine the edges of the red and blue
channels. An analogous algorithm is defined in [35], where the interpolation can be done
also in the diagonal direction, while in [33] the weighted directional interpolation is used
by means of a fuzzy membership assignment. In [2] a second order operator is employed
as a correction term.

To have more accurate results, several techniques, which use iterative methods, are
proposed. However, they have a higher computational cost with respect to the heuristic
techniques. One of well-known techniques is the algorithm of Alternate Projections (AP)
(see [12]), which uses the strong correlation between the high frequences of the three
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colored components, by projecting alternatively the estimated image in a constraint of
observation and in a constraint which imposes similarity between the red and green edges
and between the blue and green edges, until a fixed point is found. Another widely used
technique is regularization (see also [11, 27]). The algorithm in [20] is based on interpo-
lation in a residual domain. The residuals are the differences between the observed and
estimated pixel values which minimize a Laplacian energy.

The algorithm here presented consists of three steps. The first two ones are initial-
ization steps, while the third one is an iterative steps. In the first one, the missing valued
in the green component are determined, in particular a weighted average-type technique
is used. The weights are determined in an edge-directed approach, in which we consider
also the possible edges in the red and blue components. In the second step, we determine
the missing values in the red and blue components. In this case we use two alternative
techniques according to the position in the Bayer pattern of the involved pixel. In the first
technique, the missing value is determined by imposing that the second derivative of the
intensity value of the red/blue channel is equal to the second derivative of the intensity
values of the green channel. This is done according to the proposed approaches in the AP
algorithm and the regularization algorithm given in [11]. In particular, in [11] a constraint
is imposed, to get the derivatives of all channels similar as soon as possible. At the third
step, all values of the three channels are recursively updated, by means of a constant-hue-
based technique. In particular, we assume the constant color difference. The technique
we propose at this step is similar to that used by W. T. Freeman in [10]. Indeed, even here
a median filter is employed, in order to correct small spurious imperfections. We repeat
iteratively the third step. However, to avoid increasing excessively the computational cost,
we experimentally estimate that only four iterations are necessary to obtain an accurate
demosaicing. We call our technique as Local Edge Preserving (LEP) algorithm.

The paper is structured as follows. In Section 2 we give a mathematical formulation
of the demosaicing problem. In Section 3 we describe the initialization of the proposed
algorithm, which consists of the two first steps aforementioned. In Section 4 we give the
third iterative step of our algorithm, highlighting the differences with the Freeman filter.
In Section 5 our experimental results are presented. This section consists of two parts.
In the first one, we determine the best detection function which can be used in order to
evaluate the edges. In the second one, we compare our algorithm with other techniques
recently proposed in the literature and we show how the LEP method gives in mean more
accurate reconstructions than the other considered algorithms.

2 The demosaicing problem
An RGB (red-green-blue) color image is a vector of the type

x =

 r
g
b

 ∈ R3n·m,

where r, g, b ∈ Rn·m are the red, green and blue channels according to the lexicographic
order, respectively. We consider the problem of acquisition of data from a digital camera,
and call it mosaicing problem. Given an ideal image x ∈ R3n·m, the acquired or mosaiced
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image is defined by

x =

 r
g

b

 = Mx,

where x ∈ R3n·m and M ∈ R(3n·m)×(3n·m) is a linear operator defined by setting

M =

 M (r) O O
O M (g) O
O O M (b)

 ,

where O ∈ R(n·m)×(n·m) is the null matrix, and M (r),M (g),M (b) ∈ R(n·m)×(n·m) are
diagonal matrices whose principal entries, if we use the Bayer pattern (see Figure ??), are
given by

m
(r)
(i,j),(i,j) =

{
1, if i ≡2 0 and j ≡2 0,
0, otherwise;

m
(g)
(i,j),(i,j) =

{
1, if i 6≡2 j,
0, otherwise;

m
(b)
(i,j),(i,j) =

{
1, if i ≡2 1 and j ≡2 1,
0, otherwise.

Figure 1: Bayer Pattern.

The corresponding demosaicing problem is the associated inverse problem, that is to
determine the ideal color image x, knowing the mosaiced image x and the linear operator
M . An inverse problem is said to be well-posed (in the sense of Hadamard) if and only if
the solution exists, is unique and stable with respect to data variation. A not well-posed
problem is said to be ill-posed (see also [13]). Note that the demosaicing problem is ill-
posed, since the matrixM in (1) is singular, as it is readily seen, and so there are infinitely
many solutions.

3 The initialization of the proposed algorithm
In the initialization phase we proceed as follows: first we initialize the green channel,
since in the green channel we have more data than in the other ones, and successively,
thanks to the initialization of the green channel, we update the other two.
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3.1 The initialization of the green channel
We refer to a clique as a pair of adjacent pixels. Every missing value of the green channel
is initialized by a weighted mean of the known green values in its neighborhood. The
weights of the considered mean take into account possible discontinuities in a set of ad-
jacent cliques. We consider cliques both in the blue and in the red channel, since it is
well-known that there is a correlation between the discontinuities in the various channels
related to edges, such as object borders and textures (see e.g. [11]).

Here we distinguish three cases: the first one is when we have the value of the green
light intensity on a pixel; the second one is when we the blue value of the involved pixel
is known, that is when i and j are both odd; the third one is when the red value on the
considered pixel is known, namely when i and j are both even.

The first approximation g(0) of the green ideal image g is given by

g
(0)
(i,j) =



g(i,j) if i 6≡2 j,

t1g(i−1,j) + t2g(i+1,j) + t3g(i,j−1) + t4g(i,j+1)

t1 + t2 + t3 + t4
if i ≡2 1 and j ≡2 1,

t5g(i−1,j) + t6g(i+1,j) + t7g(i,j−1) + t8g(i,j+1)

t5 + t6 + t7 + t8
if i ≡2 0 and j ≡2 0.

Note that, in the first case, we keep the value we already have. In the second case, we do a
weighted mean of the intensity values taken on the adjacent pixels where the green value
is known. The weights t1, t2, t3, t4 of the mean are computed by using the green and the
blue channels. In particular,

t1 = φ(τ1), (1)

where φ is a suitable positive decreasing detection function and τ1 is defined by

τ1 = |g(i−1,j) − g(i,j−1)|+ |g(i−1,j) − g(i,j+1)|+ |b(i,j) − b(i−2,j)|.

When the differences between the green values on the pixels (i − 1, j) and (i, j − 1),
(i − 1, j) and (i, j + 1), and between the blue values on the pixels (i, j) and (i − 2, j),
are small enough, then we can assume that there are no discontinuities between the pixels
(i − 1, j) and (i, j). So, in the calculus of the green value on the pixel (i, j), we give a
large weight t1 to the green value in the position (i − 1, j). Thus, when the value τ1 is
small, the probability of having a discontinuity between the pixels (i, j) and (i − 1, j) in
the green channel is large, and vice versa.

Moreover, t2 = φ(τ2), where τ2 is given by

τ2 = |g(i+1,j) − g(i,j−1)|+ |g(i+1,j) − g(i,j+1)|+ |b(i,j) − b(i+2,j)|.

When the differences between the green values on the pixels (i + 1, j) and (i, j − 1),
(i + 1, j) and (i, j + 1), and between the blue values on the pixels (i, j) and (i + 2, j),
are sufficiently small, then we can suppose that there exist no edges between the pixels
(i + 1, j) and (i, j). Thus, in the calculus of the green value on the pixel (i, j), we give a
large weight t2 to the green value in the position (i+ 1, j).

5



Furthermore, t3 = φ(τ3), where

τ3 = |g(i−1,j) − g(i,j−1)|+ |g(i,j−1) − g(i+1,j)|+ |b(i,j) − b(i,j−2)|.

When the differences between the green values on the pixels (i − 1, j) and (i, j − 1),
(i, j − 1) and (i + 1, j), and between the blue values on the pixels (i, j) and (i, j − 2),
are small, then we assume that there are no discontinuities between the pixels (i, j) and
(i, j− 1). So, in the calculus of the green value on the pixel (i, j), we have a large weight
t3 for the green value in the position (i, j − 1).

Finally, t4 = φ(τ4), where

τ4 = |g(i,j+1) − g(i−1,j)|+ |g(i,j+1) − g(i+1,j)|+ |b(i,j) − b(i,j+2)|.

When the differences between the green values on the pixels (i, j + 1) and (i − 1, j),
(i, j + 1) and (i+ 1, j), and between the blue values on the pixels (i, j) and (i, j + 2), are
small enough, then we can assume that there are no edges between the pixels (i, j + 1)
and (i, j). So, in the calculus of the green value on the pixel (i, j), we give a large weight
t4 to the green value in the position (i, j + 1).

Even in the third case, we compute the weighted mean of the intensity values taken on
the adjacent pixels where the green value is known. The weights t5, t6, t7, t8 of the mean
are computed by using the green and the red channels. In particular, t5 = φ(τ5), where

τ5 = |g(i−1,j) − g(i,j−1)|+ |g(i−1,j) − g(i,j+1)|+ |r(i,j) − r(i−2,j)|.

We argue analogously as in the computation of the weight t1, where the role of the blue
channel is played by the red component.

Moreover, proceeding analogously as in the calculation of t2, we get t6 = φ(τ6),
where

τ6 = |g(i+1,j) − g(i,j−1)|+ |g(i+1,j) − g(i,j+1)|+ |r(i,j) − r(i+2,j)|.

By arguing analogously as in the computation of t3, we obtain t7 = φ(τ7), where

τ7 = |g(i−1,j) − g(i,j−1)|+ |g(i,j−1) − g(i+1,j)|+ |r(i,j) − r(i,j−2)|.

Finally, by proceeding as in the computation of t4, one has t8 = φ(τ8), where

τ8 = |g(i,j+1) − g(i−1,j)|+ |g(i,j+1) − g(i+1,j)|+ |r(i,j) − r(i,j+2)|.

3.2 The initialization of the red values
Here we distinguish four cases: the first one is when we already know the red value of
a pixel; the second one is when we know the red values in the two adjacent pixels in the
same column, that is i is odd and j is even (see Figure 2 (a)); the third one is when we
know the red values in the two adjacent pixels in the same row, namely i is even and j
is odd (see Figure 2 (b)); the fourth one is when we know the red values of the pixels
adjacent in the corners of the involved pixel, that is i and j are both odd (see Figure 2 (c)).
In the second and in the third case we equalize the second derivatives of the red and the
green channels previously computed. In the last case we use the computed values of the
red channel to determine the weights of a suitable mean. So, we define the initial estimate
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(a) Second case. (b) Third case. (c) Fourth case.

Figure 2: Different cases in the initialization of the red channel.

r(0) of the red ideal image r by

r
(0)
(i,j) =



r(i,j) if i ≡2 0 and j ≡2 0,

r(i−1,j) + r(i+1,j) − (g
(0)
(i−1,j) − 2g(i,j) + g

(0)
(i+1,j))

2
if i ≡2 1 and j ≡2 0,

r(i,j−1) + r(i,j+1) − (g
(0)
(i,j−1) − 2g(i,j) + g

(0)
(i,j+1))

2
if i ≡2 0 and j ≡2 1,

t9 r
(0)
(i+1,j) + t10 r

(0)
(i−1,j) + t11 r

(0)
(i,j−1) + t12 r

(0)
(i,j+1)

t9 + t10 + t11 + t12
if i ≡2 1 and j ≡2 1.

Note that, in the first case, we keep the value which we already have. In the second case,
we pose that the finite difference of the second order in the vertical direction of the red
channel coincides with that of the green channel, which we already initializated, namely

r(i−1,j) − 2r
(0)
(i,j) + r

(0)
(i+1,j) = g

(0)
(i−1,j) − 2g(i,j) + g

(0)
(i+1,j). (2)

Since we know g(0), g and r, we can deduce the value of r(0)(i,j) from (2).
In the third case, we impose that the finite difference of the second order in the hori-

zontal direction of the red channel coincides with that of the green channel, just already
initializated, that is

r(i,j−1) − 2r
(0)
(i,j) + r(i,j+1) = g

(0)
(i,j−1) − 2g(i,j) + g

(0)
(i,j+1). (3)

By proceeding analogously as above, we obtain the value of r(0)(i,j) from (3).
In the fourth case, we do a weighted mean of the intensity values taken on the adjacent

pixels where the red value has just been computed. The weights t9, t10, t11, t12 of the mean
are calculated by using the observed blue and the red channels, this last just initializated
in the second and third case. In particular, t9 is given by φ(τ9), where φ is the detection
function used in initializating the green channel, and

τ9 = |r(0)(i−1,j) − r
(0)
(i,j−1)|+ |r

(0)
(i−1,j) − r

(0)
(i,j+1)|+ |b(i,j) − b(i−2,j)|.

When the differences between the red values on the pixels (i−1, j) and (i, j−1), (i−1, j)
and (i, j+1), and between the blue values on the pixels (i, j) and (i−2, j), are sufficiently
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small, then we can suppose that there are no edges between the pixels (i − 1, j) and
(i, j). So, in the calculus of the red value on the pixel (i, j), we have a large weight t9
in correspondence with the red value in the position (i − 1, j). Analogously as in the
previous case, we deduce t10 = φ(τ10), where

τ10 = |r(0)(i+1,j) − r
(0)
(i,j−1)|+ |r

(0)
(i+1,j) − r

(0)
(i,j+1)|+ |b(i,j) − b(i+2,j)|;

t11 = φ(τ11), where

τ11 = |r(0)(i−1,j) − r
(0)
(i,j−1)|+ |r

(0)
(i,j−1) − r

(0)
(i+1,j)|+ |b(i,j) − b(i,j−2)|;

t12 = φ(τ12), where

τ12 = |r(0)(i,j+1) − r
(0)
(i−1,j)|+ |r

(0)
(i,j+1) − r

(0)
(i+1,j)|+ |b(i,j) − b(i,j+2)|.

3.3 The initialization of the blue values
Also in this setting, we distinguish four cases: the first one is given when we know the
blue value of a pixel; the second one is when we know the blue values in the two adjacent
pixels in the same column, that is i is even and j is odd (see Figure 4 (a)); the third one
is when we know the blue values in the two adjacent pixels in the same row, namely i is
odd and j is even (see Figure 4 (b)); the fourth one is when we know the blue values of
the pixels adjacent in the corners of the involved pixel, that is i and j are both even (see
Figure 4 (c)). In the second and third cases we equalize the second derivatives of the blue
and the green channels previously calculated. In the last case we use the computed values
of the blue channel to determine the weights of a suitable mean.

(a) Second case. (b) Third case. (c) Fourth case.

Figure 3: Different cases in the initialization of the blue channel.

Thus, we define the estimate b(0) of the blue ideal image b by

b
(0)
(i,j) =



b(i,j) if i ≡2 1 and j ≡2 1;

b(i−1,j) + b(i+1,j) − (g
(0)
(i−1,j) − 2g(i,j) + g

(0)
(i+1,j))

2
if i ≡2 0 and j ≡2 1;

b(i,j−1) + b(i,j+1) − (g
(0)
(i,j−1) − 2g(i,j) + g

(0)
(i,j+1))

2
if i ≡2 1 and j ≡2 0;

t9 b
(0)
(i+1,j) + t10 b

(0)
(i−1,j) + t11 b

(0)
(i,j−1) + t12 b

(0)
(i,j+1)

t9 + t10 + t11 + t12
if i ≡2 0 and j ≡2 0.
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Note that, in the first case, we keep the value which we already have.
In the second case, analogously as before, we impose

b(i−1,j) − 2b
(0)
(i,j) + b(i+1,j) = g

(0)
(i−1,j) − 2g(i,j) + g

(0)
(i+1,j). (4)

As we know g(0), g and b, we derive the value of b(0)(i,j) from (4).
In the third case, similarly as above, we get

b(i,j−1) − 2b
(0)
(i,j) + b(i,j+1) = g

(0)
(i,j−1) − 2g(i,j) + g

(0)
(i,j+1). (5)

By arguing as in the previous section, we deduce the value of b(0)(i,j) from (5).
In the fourth case, we do a weighted mean of the intensity values of the adjacent pixels

where the blue value has just been computed. The weights t9, t10, t11, t12 of the mean are
calculated by using the observed blue channels and the blue channel, just initializated in
the second and third case.

Analogously as before, we obtain t13 = φ(τ13), where

τ13 = |b(0)(i−1,j) − b
(0)
(i,j−1)|+ |b

(0)
(i−1,j) − b

(0)
(i,j+1)|+ |r(i,j) − r(i−2,j)|;

t14 = φ(τ14), where

τ14 = |b(0)(i+1,j) − b
(0)
(i,j−1)|+ |b

(0)
(i+1,j) − b

(0)
(i,j+1)|+ |r(i,j) − r(i+2,j)|;

t15 = φ(τ15), where

τ15 = |b(0)(i−1,j) − b
(0)
(i,j−1)|+ |b

(0)
(i,j−1) − b

(0)
(i+1,j)|+ |r(i,j) − r(i,j−2)|;

and finally t16 = φ(τ16), where

τ16 = |b(0)(i,j+1) − b
(0)
(i−1,j)|+ |b

(0)
(i,j+1) − b

(0)
(i+1,j)|+ |r(i,j) − r(i,j+2)|.

4 The iterative phase of the proposed algorithm
A classical filter, often used to solve the demosaicing problem, is the Freeman filter (see
also [10]). The phase described in this section is a suitable modification of this filter. The
Freeman filter performes the initialization phase by means of the bilinear filter, which
works as follows. When the value of a certain color of a pixel is not available, such a
value is computed by the arithmetic mean of the values of that color, which are assumed
in the neighborhood of this pixel, that is the bilinear estimation x̃ = (r̃, g̃, b̃) is given as

g̃(i,j) =


g(i,j) if i 6≡2 j,

g(i−1,j) + g(i+1,j) + g(i,j−1) + g(i,j+1)

4
otherwise;
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r̃(i,j) =



r(i,j) if i ≡2 0 and j ≡2 0,

r(i,j−1) + r(i,j+1)

2
if i ≡2 0 and j ≡2 1,

r(i−1,j) + r(i+1,j)

2
if i ≡2 1 and j ≡2 0,

r(i−1,j−1) + r(i+1,j−1) + r(i−1,j+1) + r(i+1,j+1)

4
if i ≡2 1 and j ≡2 1;

b̃(i,j) =



b(i,j) if i ≡2 1 and j ≡2 1,

b(i,j−1) + b(i,j+1)

2
if i ≡2 1 and j ≡2 0,

b(i−1,j) + b(i+1,j)

2
if i ≡2 0 and j ≡2 1,

b(i−1,j−1) + b(i+1,j−1) + b(i−1,j+1) + b(i+1,j+1)

4
if i ≡2 0 and j ≡2 0.

Moreover, in [10] the following values are defined, by means of the median of the
color differences of the channels red-green and blue-green:

r̃ g(i,j) = median{r̃(k,l) − g̃(k,l) : (k, l) ∈ B∞((i, j), t)},

b̃ g(i,j) = median{b̃(k,l) − g̃(k,l) : (k, l) ∈ B∞((i, j), t)},
where

B∞((i, j), t) := {(k, l) ∈ N× N : ‖(i, j)− (k, l)‖∞ ≤ t}, (6)

with ‖(a, b)‖∞ = max{|a|, |b|}. The median turns out to be very useul to correctly pre-
serve the edges which are in the images. Indeed, the median filter is often used to restore
images corrupted by salt-and-pepper noise, namely by the noise present only in a few
pixels not adjacent each other.

In the Freeman filter it is assumed that the color differences are constant in a suitable
subarea. Thus, the Freeman estimation x̂ = (r̂T , ĝT , b̂)T is defined as follows:

ĝ(i,j) =


g(i,j) if i 6≡2 j,

(r̃(i,j) − r̃g(i,j)) + (̃b(i,j) − b̃g(i,j))
2

otherwise;

r̂(i,j) =


r(i,j) if i ≡2 0 and j ≡2 0,

g(i,j) + r̃g(i,j) otherwise;

b̂(i,j) =


b(i,j) if i ≡2 1 and j ≡2 1,

g(i,j) + b̃g(i,j) otherwise.
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In this paper we modify the Freeman filter as follows.
From the initial estimation x(0) = (r(0)

T
,g(0)T ,b(0)T )T we define the following vari-

ables:
r g

(s)
(i,j) = median{r(s)(k,l) − g

(s)
(k,l) : (k, l) ∈ B∞((i, j), t)},

b g
(s)
(i,j) = median{b(s)(k,l) − g

(s)
(k,l) : (k, l) ∈ B∞((i, j), t)},

r b
(s)
(i,j) = median{r(s)(k,l) − b

(s)
(k,l) : (k, l) ∈ B∞((i, j), t)},

where s = 0, 1, . . .

So, we define the estimates x(s) = (r(s)
T
,g(s)T ,b(s)T )T for s = 1, 2, . . . as follows:

g
(s)
(i,j) =


g(i,j) if i 6≡2 j,

(r
(s−1)
(i,j) − rg

(s−1)
(i,j) ) + (b

(s−1)
(i,j) − bg

(s−1)
(i,j) )

2
otherwise:

r
(s)
(i,j) =


r(i,j) if i ≡2 0 and j ≡2 0,

b(i,j) + rb(s−1) if i ≡2 1 and j ≡2 1,

g(i,j) + rg(s−1) otherwise;

b
(s)
(i,j) =



b(i,j) if i ≡2 1 and j ≡2 1,

r(i,j) − rb(s−1)(i,j) if i ≡2 0 and j ≡2 0,

g(i,j) + bg
(s−1)
(i,j) otherwise.

We pose our final estimate as
x̆ = lim

s→+∞
x(s).

We saw experimentally that a good approximation is given by x̆ = x(4). We call the
technique associated to this estimate as Local Edge Preserving (LEP) algorithm.

5 Experimental results and discussion
In this section we present the experimental results obtained from the implementation of
the proposed algorithm, which was tested for the Bayer CFA on the set of 24 Kodak sam-
ple images [22], of size 512× 768, shown in Figure 4. This dataset represents the typical
benchmark images used in the literature to compare the various demosaicing algorithms.
These high quality images have been acquired as raw images, in order to minimize the
compression.

To define a specific LEP method, we fix to one the radius t of the neighborhood of
the median filter in the equation (6), and we experimentally choose the detection function

11



φ : R+
0 → R+ in (1). In particular, the set of the tested functions consists of

φ1(t) =

{
2− t if 0 ≤ t ≤ 1,
1
t

if t ≥ 1,

φ2(t) =

{
3−2 e
e−1 t+ 2 if 0 ≤ t ≤ 1,
1

et−1 if t ≥ 1,

φ3(t) =

{
(log 2− 2)t+ 2 if 0 ≤ t ≤ 1,

1
log(t+1)

if t ≥ 1,

φ4(t) =

{
2− t if 0 ≤ t ≤ 1,

1
t13/10

if t ≥ 1,

φ5(t) =

{
2− t if 0 ≤ t ≤ 1,
1
t7/5

if t ≥ 1,

φ6(t) =

{
2− t if 0 ≤ t ≤ 1,
1
t3/2

if t ≥ 1.

The detection functions φj , j = 1, . . . , 6 are decreasing and continuous. Moreover, we
get

φj(0) = 2 and lim
t→+∞

φj(t) = 0.

In Table 1 there are the errors of the LEP algorithm in terms of MSE in reconstructing the
images of the Kodak set as the detection function varies. The values in bold are related
to the best reconstruction of a specific image. In the last line there are the means of the
MSE obtained in the reconstruction of the Kodak sample images, as the detection function
varies. Note that the best result can be obtained by different detection functions, but, if
one takes the means, the minimal error corresponds to detection function φ4. To evaluate
whether the function φ4 is actually the best detection function, we proceed as follows. For
each sample image we give five points to the detection function which allows to obtain
an estimate with the minimal error; four points to the detection function which obtain the
second best minimal error; three points in correspondence with the third minimal error,
and so on. In Table 2 there are the results obtained by the all detection functions on the
single images, and in the last line there is the global score. Observe that, even in this case,
the highest score is obtained by the detection function φ4.

Successively, we compared the LEP algorithm with other techniques existing in the
literature by choosing the detection function φ4. In particular we compare the LEP method
with the original Freeman filter and with other recently published algorithms (see also
[5, 9, 12, 16, 20]). Although the proposed algorithm give the best reconstruction of only
four images, the total mean of the errors obtained with the LEP algorithm is the smallest
one.

6 Conclusions
We investigated the demosaicing problem and proposed a heuristic technique, in order to
obtain a very fast algorithm. In particular, we proposed an algorithm consisting of three
steps. In the first one, the green channel was updated by means of an edge-directed and
weighted average technique. In the second one, the red and blue channels were updated,

12



(a) Image 01. (b) Image 02. (c) Image 03. (d) Image 04.

(e) Image 05. (f) Image 06. (g) Image 07. (h) Image 08.

(i) Image 09. (j) Image 10. (k) Image 11. (l) Image 12.

(m) Image 13. (n) Image 14. (o) Image 15. (p) Image 16.

(q) Image 17. (r) Image 18. (s) Image 19. (t) Image 20.

(u) Image 21. (v) Image 22. (w) Image 23.

Figure 4: Kodak image set.
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Image φ1 φ2 φ3 φ4 φ5 φ6

01 10.02 16.86 13.68 9.77 9.75 9.75
02 6.96 8.66 7.63 6.90 6.91 6.92
03 4.22 6.01 4.95 4.14 4.13 4.12
04 6.16 9.15 6.66 6.17 6.18 6.21
05 13.41 22.46 15.05 13.36 13.39 13.44
06 9.29 13.12 11.76 9.10 9.09 9.08
07 5.05 8.10 5.77 5.04 5.05 5.07
08 20.63 26.39 27.39 19.99 19.87 19.83
09 4.60 7.28 5.68 4.63 4.66 4.69
10 4.82 6.94 5.82 4.79 4.80 4.81
11 7.79 11.17 8.99 7.70 7.70 7.71
12 3.88 5.81 5.41 3.83 3.84 3.85
13 19.05 29.38 20.47 19.11 19.19 19.27
14 15.96 22.12 17.59 15.79 15.77 15.77
15 8.77 11.77 10.29 8.68 8.69 8.71
16 4.26 5.36 5.32 4.11 4.08 4.06
17 5.50 7.83 6.00 5.52 5.54 5.57
18 14.88 21.30 15.36 15.00 15.04 15.09
19 8.68 11.36 11.24 8.48 8.47 8.46
20 6.71 8.24 8.75 6.43 6.39 6.36
21 8.14 12.32 9.41 8.06 8.07 8.08
22 12.12 16.09 12.93 12.09 12.11 12.13
23 3.82 6.17 4.02 3.85 3.87 3.89

mean 8.9002 12.7781 10.4428 8.8074 8.8080 8.8203

Table 1: MSE of the LEP algorithm on the Kodak set as the detection function varies.

by using also the constraint of equality of the second derivatives in the various channels.
In the third step, we proposed an iterative algorithm, assuming the constant color dif-
ference. Moreover, similarly as in the Freeman technique, in this phase we employed a
median filter. We fixed a maximum number of iterative steps as four, in order to obtain
low computational costs. We called our algorithm Local Edge Preserving (LEP). The
experimental results showed that the mean of the errors which we have with the LEP
algorithm is the lowest of those obtained with some recent proposed methods.
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